tick: Provide a check for a forced broadcast pending
[deliverable/linux.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22
23 #include "tick-internal.h"
24
25 /*
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
28 */
29
30 static struct tick_device tick_broadcast_device;
31 static cpumask_var_t tick_broadcast_mask;
32 static cpumask_var_t tmpmask;
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41
42 /*
43 * Debugging: see timer_list.c
44 */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47 return &tick_broadcast_device;
48 }
49
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52 return tick_broadcast_mask;
53 }
54
55 /*
56 * Start the device in periodic mode
57 */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60 if (bc)
61 tick_setup_periodic(bc, 1);
62 }
63
64 /*
65 * Check, if the device can be utilized as broadcast device:
66 */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69 if ((tick_broadcast_device.evtdev &&
70 tick_broadcast_device.evtdev->rating >= dev->rating) ||
71 (dev->features & CLOCK_EVT_FEAT_C3STOP))
72 return 0;
73
74 clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
75 tick_broadcast_device.evtdev = dev;
76 if (!cpumask_empty(tick_broadcast_mask))
77 tick_broadcast_start_periodic(dev);
78 return 1;
79 }
80
81 /*
82 * Check, if the device is the broadcast device
83 */
84 int tick_is_broadcast_device(struct clock_event_device *dev)
85 {
86 return (dev && tick_broadcast_device.evtdev == dev);
87 }
88
89 static void err_broadcast(const struct cpumask *mask)
90 {
91 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
92 }
93
94 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
95 {
96 if (!dev->broadcast)
97 dev->broadcast = tick_broadcast;
98 if (!dev->broadcast) {
99 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
100 dev->name);
101 dev->broadcast = err_broadcast;
102 }
103 }
104
105 /*
106 * Check, if the device is disfunctional and a place holder, which
107 * needs to be handled by the broadcast device.
108 */
109 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
110 {
111 unsigned long flags;
112 int ret = 0;
113
114 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
115
116 /*
117 * Devices might be registered with both periodic and oneshot
118 * mode disabled. This signals, that the device needs to be
119 * operated from the broadcast device and is a placeholder for
120 * the cpu local device.
121 */
122 if (!tick_device_is_functional(dev)) {
123 dev->event_handler = tick_handle_periodic;
124 tick_device_setup_broadcast_func(dev);
125 cpumask_set_cpu(cpu, tick_broadcast_mask);
126 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
127 ret = 1;
128 } else {
129 /*
130 * When the new device is not affected by the stop
131 * feature and the cpu is marked in the broadcast mask
132 * then clear the broadcast bit.
133 */
134 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
135 int cpu = smp_processor_id();
136 cpumask_clear_cpu(cpu, tick_broadcast_mask);
137 tick_broadcast_clear_oneshot(cpu);
138 } else {
139 tick_device_setup_broadcast_func(dev);
140 }
141 }
142 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
143 return ret;
144 }
145
146 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
147 int tick_receive_broadcast(void)
148 {
149 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
150 struct clock_event_device *evt = td->evtdev;
151
152 if (!evt)
153 return -ENODEV;
154
155 if (!evt->event_handler)
156 return -EINVAL;
157
158 evt->event_handler(evt);
159 return 0;
160 }
161 #endif
162
163 /*
164 * Broadcast the event to the cpus, which are set in the mask (mangled).
165 */
166 static void tick_do_broadcast(struct cpumask *mask)
167 {
168 int cpu = smp_processor_id();
169 struct tick_device *td;
170
171 /*
172 * Check, if the current cpu is in the mask
173 */
174 if (cpumask_test_cpu(cpu, mask)) {
175 cpumask_clear_cpu(cpu, mask);
176 td = &per_cpu(tick_cpu_device, cpu);
177 td->evtdev->event_handler(td->evtdev);
178 }
179
180 if (!cpumask_empty(mask)) {
181 /*
182 * It might be necessary to actually check whether the devices
183 * have different broadcast functions. For now, just use the
184 * one of the first device. This works as long as we have this
185 * misfeature only on x86 (lapic)
186 */
187 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
188 td->evtdev->broadcast(mask);
189 }
190 }
191
192 /*
193 * Periodic broadcast:
194 * - invoke the broadcast handlers
195 */
196 static void tick_do_periodic_broadcast(void)
197 {
198 raw_spin_lock(&tick_broadcast_lock);
199
200 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
201 tick_do_broadcast(tmpmask);
202
203 raw_spin_unlock(&tick_broadcast_lock);
204 }
205
206 /*
207 * Event handler for periodic broadcast ticks
208 */
209 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
210 {
211 ktime_t next;
212
213 tick_do_periodic_broadcast();
214
215 /*
216 * The device is in periodic mode. No reprogramming necessary:
217 */
218 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
219 return;
220
221 /*
222 * Setup the next period for devices, which do not have
223 * periodic mode. We read dev->next_event first and add to it
224 * when the event already expired. clockevents_program_event()
225 * sets dev->next_event only when the event is really
226 * programmed to the device.
227 */
228 for (next = dev->next_event; ;) {
229 next = ktime_add(next, tick_period);
230
231 if (!clockevents_program_event(dev, next, false))
232 return;
233 tick_do_periodic_broadcast();
234 }
235 }
236
237 /*
238 * Powerstate information: The system enters/leaves a state, where
239 * affected devices might stop
240 */
241 static void tick_do_broadcast_on_off(unsigned long *reason)
242 {
243 struct clock_event_device *bc, *dev;
244 struct tick_device *td;
245 unsigned long flags;
246 int cpu, bc_stopped;
247
248 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
249
250 cpu = smp_processor_id();
251 td = &per_cpu(tick_cpu_device, cpu);
252 dev = td->evtdev;
253 bc = tick_broadcast_device.evtdev;
254
255 /*
256 * Is the device not affected by the powerstate ?
257 */
258 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
259 goto out;
260
261 if (!tick_device_is_functional(dev))
262 goto out;
263
264 bc_stopped = cpumask_empty(tick_broadcast_mask);
265
266 switch (*reason) {
267 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
268 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
269 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
270 if (tick_broadcast_device.mode ==
271 TICKDEV_MODE_PERIODIC)
272 clockevents_shutdown(dev);
273 }
274 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
275 tick_broadcast_force = 1;
276 break;
277 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
278 if (!tick_broadcast_force &&
279 cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
280 if (tick_broadcast_device.mode ==
281 TICKDEV_MODE_PERIODIC)
282 tick_setup_periodic(dev, 0);
283 }
284 break;
285 }
286
287 if (cpumask_empty(tick_broadcast_mask)) {
288 if (!bc_stopped)
289 clockevents_shutdown(bc);
290 } else if (bc_stopped) {
291 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
292 tick_broadcast_start_periodic(bc);
293 else
294 tick_broadcast_setup_oneshot(bc);
295 }
296 out:
297 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
298 }
299
300 /*
301 * Powerstate information: The system enters/leaves a state, where
302 * affected devices might stop.
303 */
304 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
305 {
306 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
307 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
308 "offline CPU #%d\n", *oncpu);
309 else
310 tick_do_broadcast_on_off(&reason);
311 }
312
313 /*
314 * Set the periodic handler depending on broadcast on/off
315 */
316 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
317 {
318 if (!broadcast)
319 dev->event_handler = tick_handle_periodic;
320 else
321 dev->event_handler = tick_handle_periodic_broadcast;
322 }
323
324 /*
325 * Remove a CPU from broadcasting
326 */
327 void tick_shutdown_broadcast(unsigned int *cpup)
328 {
329 struct clock_event_device *bc;
330 unsigned long flags;
331 unsigned int cpu = *cpup;
332
333 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
334
335 bc = tick_broadcast_device.evtdev;
336 cpumask_clear_cpu(cpu, tick_broadcast_mask);
337
338 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
339 if (bc && cpumask_empty(tick_broadcast_mask))
340 clockevents_shutdown(bc);
341 }
342
343 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
344 }
345
346 void tick_suspend_broadcast(void)
347 {
348 struct clock_event_device *bc;
349 unsigned long flags;
350
351 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
352
353 bc = tick_broadcast_device.evtdev;
354 if (bc)
355 clockevents_shutdown(bc);
356
357 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
358 }
359
360 int tick_resume_broadcast(void)
361 {
362 struct clock_event_device *bc;
363 unsigned long flags;
364 int broadcast = 0;
365
366 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
367
368 bc = tick_broadcast_device.evtdev;
369
370 if (bc) {
371 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
372
373 switch (tick_broadcast_device.mode) {
374 case TICKDEV_MODE_PERIODIC:
375 if (!cpumask_empty(tick_broadcast_mask))
376 tick_broadcast_start_periodic(bc);
377 broadcast = cpumask_test_cpu(smp_processor_id(),
378 tick_broadcast_mask);
379 break;
380 case TICKDEV_MODE_ONESHOT:
381 if (!cpumask_empty(tick_broadcast_mask))
382 broadcast = tick_resume_broadcast_oneshot(bc);
383 break;
384 }
385 }
386 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
387
388 return broadcast;
389 }
390
391
392 #ifdef CONFIG_TICK_ONESHOT
393
394 static cpumask_var_t tick_broadcast_oneshot_mask;
395 static cpumask_var_t tick_broadcast_pending_mask;
396 static cpumask_var_t tick_broadcast_force_mask;
397
398 /*
399 * Exposed for debugging: see timer_list.c
400 */
401 struct cpumask *tick_get_broadcast_oneshot_mask(void)
402 {
403 return tick_broadcast_oneshot_mask;
404 }
405
406 /*
407 * Called before going idle with interrupts disabled. Checks whether a
408 * broadcast event from the other core is about to happen. We detected
409 * that in tick_broadcast_oneshot_control(). The callsite can use this
410 * to avoid a deep idle transition as we are about to get the
411 * broadcast IPI right away.
412 */
413 int tick_check_broadcast_expired(void)
414 {
415 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
416 }
417
418 /*
419 * Set broadcast interrupt affinity
420 */
421 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
422 const struct cpumask *cpumask)
423 {
424 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
425 return;
426
427 if (cpumask_equal(bc->cpumask, cpumask))
428 return;
429
430 bc->cpumask = cpumask;
431 irq_set_affinity(bc->irq, bc->cpumask);
432 }
433
434 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
435 ktime_t expires, int force)
436 {
437 int ret;
438
439 if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
440 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
441
442 ret = clockevents_program_event(bc, expires, force);
443 if (!ret)
444 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
445 return ret;
446 }
447
448 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
449 {
450 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
451 return 0;
452 }
453
454 /*
455 * Called from irq_enter() when idle was interrupted to reenable the
456 * per cpu device.
457 */
458 void tick_check_oneshot_broadcast(int cpu)
459 {
460 if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
461 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
462
463 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
464 }
465 }
466
467 /*
468 * Handle oneshot mode broadcasting
469 */
470 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
471 {
472 struct tick_device *td;
473 ktime_t now, next_event;
474 int cpu, next_cpu = 0;
475
476 raw_spin_lock(&tick_broadcast_lock);
477 again:
478 dev->next_event.tv64 = KTIME_MAX;
479 next_event.tv64 = KTIME_MAX;
480 cpumask_clear(tmpmask);
481 now = ktime_get();
482 /* Find all expired events */
483 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
484 td = &per_cpu(tick_cpu_device, cpu);
485 if (td->evtdev->next_event.tv64 <= now.tv64) {
486 cpumask_set_cpu(cpu, tmpmask);
487 /*
488 * Mark the remote cpu in the pending mask, so
489 * it can avoid reprogramming the cpu local
490 * timer in tick_broadcast_oneshot_control().
491 */
492 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
493 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
494 next_event.tv64 = td->evtdev->next_event.tv64;
495 next_cpu = cpu;
496 }
497 }
498
499 /* Take care of enforced broadcast requests */
500 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
501 cpumask_clear(tick_broadcast_force_mask);
502
503 /*
504 * Wakeup the cpus which have an expired event.
505 */
506 tick_do_broadcast(tmpmask);
507
508 /*
509 * Two reasons for reprogram:
510 *
511 * - The global event did not expire any CPU local
512 * events. This happens in dyntick mode, as the maximum PIT
513 * delta is quite small.
514 *
515 * - There are pending events on sleeping CPUs which were not
516 * in the event mask
517 */
518 if (next_event.tv64 != KTIME_MAX) {
519 /*
520 * Rearm the broadcast device. If event expired,
521 * repeat the above
522 */
523 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
524 goto again;
525 }
526 raw_spin_unlock(&tick_broadcast_lock);
527 }
528
529 /*
530 * Powerstate information: The system enters/leaves a state, where
531 * affected devices might stop
532 */
533 void tick_broadcast_oneshot_control(unsigned long reason)
534 {
535 struct clock_event_device *bc, *dev;
536 struct tick_device *td;
537 unsigned long flags;
538 ktime_t now;
539 int cpu;
540
541 /*
542 * Periodic mode does not care about the enter/exit of power
543 * states
544 */
545 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
546 return;
547
548 /*
549 * We are called with preemtion disabled from the depth of the
550 * idle code, so we can't be moved away.
551 */
552 cpu = smp_processor_id();
553 td = &per_cpu(tick_cpu_device, cpu);
554 dev = td->evtdev;
555
556 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
557 return;
558
559 bc = tick_broadcast_device.evtdev;
560
561 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
562 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
563 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
564 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
565 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
566 /*
567 * We only reprogram the broadcast timer if we
568 * did not mark ourself in the force mask and
569 * if the cpu local event is earlier than the
570 * broadcast event. If the current CPU is in
571 * the force mask, then we are going to be
572 * woken by the IPI right away.
573 */
574 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
575 dev->next_event.tv64 < bc->next_event.tv64)
576 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
577 }
578 } else {
579 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
580 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
581 if (dev->next_event.tv64 == KTIME_MAX)
582 goto out;
583 /*
584 * The cpu which was handling the broadcast
585 * timer marked this cpu in the broadcast
586 * pending mask and fired the broadcast
587 * IPI. So we are going to handle the expired
588 * event anyway via the broadcast IPI
589 * handler. No need to reprogram the timer
590 * with an already expired event.
591 */
592 if (cpumask_test_and_clear_cpu(cpu,
593 tick_broadcast_pending_mask))
594 goto out;
595
596 /*
597 * If the pending bit is not set, then we are
598 * either the CPU handling the broadcast
599 * interrupt or we got woken by something else.
600 *
601 * We are not longer in the broadcast mask, so
602 * if the cpu local expiry time is already
603 * reached, we would reprogram the cpu local
604 * timer with an already expired event.
605 *
606 * This can lead to a ping-pong when we return
607 * to idle and therefor rearm the broadcast
608 * timer before the cpu local timer was able
609 * to fire. This happens because the forced
610 * reprogramming makes sure that the event
611 * will happen in the future and depending on
612 * the min_delta setting this might be far
613 * enough out that the ping-pong starts.
614 *
615 * If the cpu local next_event has expired
616 * then we know that the broadcast timer
617 * next_event has expired as well and
618 * broadcast is about to be handled. So we
619 * avoid reprogramming and enforce that the
620 * broadcast handler, which did not run yet,
621 * will invoke the cpu local handler.
622 *
623 * We cannot call the handler directly from
624 * here, because we might be in a NOHZ phase
625 * and we did not go through the irq_enter()
626 * nohz fixups.
627 */
628 now = ktime_get();
629 if (dev->next_event.tv64 <= now.tv64) {
630 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
631 goto out;
632 }
633 /*
634 * We got woken by something else. Reprogram
635 * the cpu local timer device.
636 */
637 tick_program_event(dev->next_event, 1);
638 }
639 }
640 out:
641 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
642 }
643
644 /*
645 * Reset the one shot broadcast for a cpu
646 *
647 * Called with tick_broadcast_lock held
648 */
649 static void tick_broadcast_clear_oneshot(int cpu)
650 {
651 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
652 }
653
654 static void tick_broadcast_init_next_event(struct cpumask *mask,
655 ktime_t expires)
656 {
657 struct tick_device *td;
658 int cpu;
659
660 for_each_cpu(cpu, mask) {
661 td = &per_cpu(tick_cpu_device, cpu);
662 if (td->evtdev)
663 td->evtdev->next_event = expires;
664 }
665 }
666
667 /**
668 * tick_broadcast_setup_oneshot - setup the broadcast device
669 */
670 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
671 {
672 int cpu = smp_processor_id();
673
674 /* Set it up only once ! */
675 if (bc->event_handler != tick_handle_oneshot_broadcast) {
676 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
677
678 bc->event_handler = tick_handle_oneshot_broadcast;
679
680 /* Take the do_timer update */
681 tick_do_timer_cpu = cpu;
682
683 /*
684 * We must be careful here. There might be other CPUs
685 * waiting for periodic broadcast. We need to set the
686 * oneshot_mask bits for those and program the
687 * broadcast device to fire.
688 */
689 cpumask_copy(tmpmask, tick_broadcast_mask);
690 cpumask_clear_cpu(cpu, tmpmask);
691 cpumask_or(tick_broadcast_oneshot_mask,
692 tick_broadcast_oneshot_mask, tmpmask);
693
694 if (was_periodic && !cpumask_empty(tmpmask)) {
695 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
696 tick_broadcast_init_next_event(tmpmask,
697 tick_next_period);
698 tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
699 } else
700 bc->next_event.tv64 = KTIME_MAX;
701 } else {
702 /*
703 * The first cpu which switches to oneshot mode sets
704 * the bit for all other cpus which are in the general
705 * (periodic) broadcast mask. So the bit is set and
706 * would prevent the first broadcast enter after this
707 * to program the bc device.
708 */
709 tick_broadcast_clear_oneshot(cpu);
710 }
711 }
712
713 /*
714 * Select oneshot operating mode for the broadcast device
715 */
716 void tick_broadcast_switch_to_oneshot(void)
717 {
718 struct clock_event_device *bc;
719 unsigned long flags;
720
721 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
722
723 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
724 bc = tick_broadcast_device.evtdev;
725 if (bc)
726 tick_broadcast_setup_oneshot(bc);
727
728 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
729 }
730
731
732 /*
733 * Remove a dead CPU from broadcasting
734 */
735 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
736 {
737 unsigned long flags;
738 unsigned int cpu = *cpup;
739
740 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
741
742 /*
743 * Clear the broadcast mask flag for the dead cpu, but do not
744 * stop the broadcast device!
745 */
746 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
747
748 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
749 }
750
751 /*
752 * Check, whether the broadcast device is in one shot mode
753 */
754 int tick_broadcast_oneshot_active(void)
755 {
756 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
757 }
758
759 /*
760 * Check whether the broadcast device supports oneshot.
761 */
762 bool tick_broadcast_oneshot_available(void)
763 {
764 struct clock_event_device *bc = tick_broadcast_device.evtdev;
765
766 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
767 }
768
769 #endif
770
771 void __init tick_broadcast_init(void)
772 {
773 alloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
774 alloc_cpumask_var(&tmpmask, GFP_NOWAIT);
775 #ifdef CONFIG_TICK_ONESHOT
776 alloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
777 alloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
778 alloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
779 #endif
780 }
This page took 0.070062 seconds and 5 git commands to generate.