hrtimer: clean up cpu->base locking tricks
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /* Reevalute with xtime_lock held */
52 write_seqlock(&xtime_lock);
53
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 >= tick_period.tv64) {
56
57 delta = ktime_sub(delta, tick_period);
58 last_jiffies_update = ktime_add(last_jiffies_update,
59 tick_period);
60
61 /* Slow path for long timeouts */
62 if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 s64 incr = ktime_to_ns(tick_period);
64
65 ticks = ktime_divns(delta, incr);
66
67 last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 incr * ticks);
69 }
70 do_timer(++ticks);
71 }
72 write_sequnlock(&xtime_lock);
73 }
74
75 /*
76 * Initialize and return retrieve the jiffies update.
77 */
78 static ktime_t tick_init_jiffy_update(void)
79 {
80 ktime_t period;
81
82 write_seqlock(&xtime_lock);
83 /* Did we start the jiffies update yet ? */
84 if (last_jiffies_update.tv64 == 0)
85 last_jiffies_update = tick_next_period;
86 period = last_jiffies_update;
87 write_sequnlock(&xtime_lock);
88 return period;
89 }
90
91 /*
92 * NOHZ - aka dynamic tick functionality
93 */
94 #ifdef CONFIG_NO_HZ
95 /*
96 * NO HZ enabled ?
97 */
98 static int tick_nohz_enabled __read_mostly = 1;
99
100 /*
101 * Enable / Disable tickless mode
102 */
103 static int __init setup_tick_nohz(char *str)
104 {
105 if (!strcmp(str, "off"))
106 tick_nohz_enabled = 0;
107 else if (!strcmp(str, "on"))
108 tick_nohz_enabled = 1;
109 else
110 return 0;
111 return 1;
112 }
113
114 __setup("nohz=", setup_tick_nohz);
115
116 /**
117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
118 *
119 * Called from interrupt entry when the CPU was idle
120 *
121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122 * must be updated. Otherwise an interrupt handler could use a stale jiffy
123 * value. We do this unconditionally on any cpu, as we don't know whether the
124 * cpu, which has the update task assigned is in a long sleep.
125 */
126 void tick_nohz_update_jiffies(void)
127 {
128 int cpu = smp_processor_id();
129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 unsigned long flags;
131 ktime_t now;
132
133 if (!ts->tick_stopped)
134 return;
135
136 touch_softlockup_watchdog();
137
138 cpu_clear(cpu, nohz_cpu_mask);
139 now = ktime_get();
140
141 local_irq_save(flags);
142 tick_do_update_jiffies64(now);
143 local_irq_restore(flags);
144 }
145
146 /**
147 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
148 *
149 * When the next event is more than a tick into the future, stop the idle tick
150 * Called either from the idle loop or from irq_exit() when an idle period was
151 * just interrupted by an interrupt which did not cause a reschedule.
152 */
153 void tick_nohz_stop_sched_tick(void)
154 {
155 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
156 unsigned long rt_jiffies;
157 struct tick_sched *ts;
158 ktime_t last_update, expires, now, delta;
159 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
160 int cpu;
161
162 local_irq_save(flags);
163
164 cpu = smp_processor_id();
165 ts = &per_cpu(tick_cpu_sched, cpu);
166
167 /*
168 * If this cpu is offline and it is the one which updates
169 * jiffies, then give up the assignment and let it be taken by
170 * the cpu which runs the tick timer next. If we don't drop
171 * this here the jiffies might be stale and do_timer() never
172 * invoked.
173 */
174 if (unlikely(!cpu_online(cpu))) {
175 if (cpu == tick_do_timer_cpu)
176 tick_do_timer_cpu = -1;
177 }
178
179 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
180 goto end;
181
182 if (need_resched())
183 goto end;
184
185 cpu = smp_processor_id();
186 if (unlikely(local_softirq_pending())) {
187 static int ratelimit;
188
189 if (ratelimit < 10) {
190 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
191 local_softirq_pending());
192 ratelimit++;
193 }
194 }
195
196 now = ktime_get();
197 /*
198 * When called from irq_exit we need to account the idle sleep time
199 * correctly.
200 */
201 if (ts->tick_stopped) {
202 delta = ktime_sub(now, ts->idle_entrytime);
203 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
204 }
205
206 ts->idle_entrytime = now;
207 ts->idle_calls++;
208
209 /* Read jiffies and the time when jiffies were updated last */
210 do {
211 seq = read_seqbegin(&xtime_lock);
212 last_update = last_jiffies_update;
213 last_jiffies = jiffies;
214 } while (read_seqretry(&xtime_lock, seq));
215
216 /* Get the next timer wheel timer */
217 next_jiffies = get_next_timer_interrupt(last_jiffies);
218 delta_jiffies = next_jiffies - last_jiffies;
219
220 rt_jiffies = rt_needs_cpu(cpu);
221 if (rt_jiffies && rt_jiffies < delta_jiffies)
222 delta_jiffies = rt_jiffies;
223
224 if (rcu_needs_cpu(cpu))
225 delta_jiffies = 1;
226 /*
227 * Do not stop the tick, if we are only one off
228 * or if the cpu is required for rcu
229 */
230 if (!ts->tick_stopped && delta_jiffies == 1)
231 goto out;
232
233 /* Schedule the tick, if we are at least one jiffie off */
234 if ((long)delta_jiffies >= 1) {
235
236 if (delta_jiffies > 1)
237 cpu_set(cpu, nohz_cpu_mask);
238 /*
239 * nohz_stop_sched_tick can be called several times before
240 * the nohz_restart_sched_tick is called. This happens when
241 * interrupts arrive which do not cause a reschedule. In the
242 * first call we save the current tick time, so we can restart
243 * the scheduler tick in nohz_restart_sched_tick.
244 */
245 if (!ts->tick_stopped) {
246 if (select_nohz_load_balancer(1)) {
247 /*
248 * sched tick not stopped!
249 */
250 cpu_clear(cpu, nohz_cpu_mask);
251 goto out;
252 }
253
254 ts->idle_tick = ts->sched_timer.expires;
255 ts->tick_stopped = 1;
256 ts->idle_jiffies = last_jiffies;
257 }
258
259 /*
260 * If this cpu is the one which updates jiffies, then
261 * give up the assignment and let it be taken by the
262 * cpu which runs the tick timer next, which might be
263 * this cpu as well. If we don't drop this here the
264 * jiffies might be stale and do_timer() never
265 * invoked.
266 */
267 if (cpu == tick_do_timer_cpu)
268 tick_do_timer_cpu = -1;
269
270 ts->idle_sleeps++;
271
272 /*
273 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
274 * there is no timer pending or at least extremly far
275 * into the future (12 days for HZ=1000). In this case
276 * we simply stop the tick timer:
277 */
278 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
279 ts->idle_expires.tv64 = KTIME_MAX;
280 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
281 hrtimer_cancel(&ts->sched_timer);
282 goto out;
283 }
284
285 /*
286 * calculate the expiry time for the next timer wheel
287 * timer
288 */
289 expires = ktime_add_ns(last_update, tick_period.tv64 *
290 delta_jiffies);
291 ts->idle_expires = expires;
292
293 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
294 hrtimer_start(&ts->sched_timer, expires,
295 HRTIMER_MODE_ABS);
296 /* Check, if the timer was already in the past */
297 if (hrtimer_active(&ts->sched_timer))
298 goto out;
299 } else if(!tick_program_event(expires, 0))
300 goto out;
301 /*
302 * We are past the event already. So we crossed a
303 * jiffie boundary. Update jiffies and raise the
304 * softirq.
305 */
306 tick_do_update_jiffies64(ktime_get());
307 cpu_clear(cpu, nohz_cpu_mask);
308 }
309 raise_softirq_irqoff(TIMER_SOFTIRQ);
310 out:
311 ts->next_jiffies = next_jiffies;
312 ts->last_jiffies = last_jiffies;
313 ts->sleep_length = ktime_sub(dev->next_event, now);
314 end:
315 local_irq_restore(flags);
316 }
317
318 /**
319 * tick_nohz_get_sleep_length - return the length of the current sleep
320 *
321 * Called from power state control code with interrupts disabled
322 */
323 ktime_t tick_nohz_get_sleep_length(void)
324 {
325 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
326
327 return ts->sleep_length;
328 }
329
330 /**
331 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
332 *
333 * Restart the idle tick when the CPU is woken up from idle
334 */
335 void tick_nohz_restart_sched_tick(void)
336 {
337 int cpu = smp_processor_id();
338 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
339 unsigned long ticks;
340 ktime_t now, delta;
341
342 if (!ts->tick_stopped)
343 return;
344
345 /* Update jiffies first */
346 now = ktime_get();
347
348 local_irq_disable();
349 select_nohz_load_balancer(0);
350 tick_do_update_jiffies64(now);
351 cpu_clear(cpu, nohz_cpu_mask);
352
353 /* Account the idle time */
354 delta = ktime_sub(now, ts->idle_entrytime);
355 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
356
357 /*
358 * We stopped the tick in idle. Update process times would miss the
359 * time we slept as update_process_times does only a 1 tick
360 * accounting. Enforce that this is accounted to idle !
361 */
362 ticks = jiffies - ts->idle_jiffies;
363 /*
364 * We might be one off. Do not randomly account a huge number of ticks!
365 */
366 if (ticks && ticks < LONG_MAX) {
367 add_preempt_count(HARDIRQ_OFFSET);
368 account_system_time(current, HARDIRQ_OFFSET,
369 jiffies_to_cputime(ticks));
370 sub_preempt_count(HARDIRQ_OFFSET);
371 }
372
373 /*
374 * Cancel the scheduled timer and restore the tick
375 */
376 ts->tick_stopped = 0;
377 hrtimer_cancel(&ts->sched_timer);
378 ts->sched_timer.expires = ts->idle_tick;
379
380 while (1) {
381 /* Forward the time to expire in the future */
382 hrtimer_forward(&ts->sched_timer, now, tick_period);
383
384 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
385 hrtimer_start(&ts->sched_timer,
386 ts->sched_timer.expires,
387 HRTIMER_MODE_ABS);
388 /* Check, if the timer was already in the past */
389 if (hrtimer_active(&ts->sched_timer))
390 break;
391 } else {
392 if (!tick_program_event(ts->sched_timer.expires, 0))
393 break;
394 }
395 /* Update jiffies and reread time */
396 tick_do_update_jiffies64(now);
397 now = ktime_get();
398 }
399 local_irq_enable();
400 }
401
402 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
403 {
404 hrtimer_forward(&ts->sched_timer, now, tick_period);
405 return tick_program_event(ts->sched_timer.expires, 0);
406 }
407
408 /*
409 * The nohz low res interrupt handler
410 */
411 static void tick_nohz_handler(struct clock_event_device *dev)
412 {
413 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
414 struct pt_regs *regs = get_irq_regs();
415 int cpu = smp_processor_id();
416 ktime_t now = ktime_get();
417
418 dev->next_event.tv64 = KTIME_MAX;
419
420 /*
421 * Check if the do_timer duty was dropped. We don't care about
422 * concurrency: This happens only when the cpu in charge went
423 * into a long sleep. If two cpus happen to assign themself to
424 * this duty, then the jiffies update is still serialized by
425 * xtime_lock.
426 */
427 if (unlikely(tick_do_timer_cpu == -1))
428 tick_do_timer_cpu = cpu;
429
430 /* Check, if the jiffies need an update */
431 if (tick_do_timer_cpu == cpu)
432 tick_do_update_jiffies64(now);
433
434 /*
435 * When we are idle and the tick is stopped, we have to touch
436 * the watchdog as we might not schedule for a really long
437 * time. This happens on complete idle SMP systems while
438 * waiting on the login prompt. We also increment the "start
439 * of idle" jiffy stamp so the idle accounting adjustment we
440 * do when we go busy again does not account too much ticks.
441 */
442 if (ts->tick_stopped) {
443 touch_softlockup_watchdog();
444 ts->idle_jiffies++;
445 }
446
447 update_process_times(user_mode(regs));
448 profile_tick(CPU_PROFILING);
449
450 /* Do not restart, when we are in the idle loop */
451 if (ts->tick_stopped)
452 return;
453
454 while (tick_nohz_reprogram(ts, now)) {
455 now = ktime_get();
456 tick_do_update_jiffies64(now);
457 }
458 }
459
460 /**
461 * tick_nohz_switch_to_nohz - switch to nohz mode
462 */
463 static void tick_nohz_switch_to_nohz(void)
464 {
465 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
466 ktime_t next;
467
468 if (!tick_nohz_enabled)
469 return;
470
471 local_irq_disable();
472 if (tick_switch_to_oneshot(tick_nohz_handler)) {
473 local_irq_enable();
474 return;
475 }
476
477 ts->nohz_mode = NOHZ_MODE_LOWRES;
478
479 /*
480 * Recycle the hrtimer in ts, so we can share the
481 * hrtimer_forward with the highres code.
482 */
483 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
484 /* Get the next period */
485 next = tick_init_jiffy_update();
486
487 for (;;) {
488 ts->sched_timer.expires = next;
489 if (!tick_program_event(next, 0))
490 break;
491 next = ktime_add(next, tick_period);
492 }
493 local_irq_enable();
494
495 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
496 smp_processor_id());
497 }
498
499 #else
500
501 static inline void tick_nohz_switch_to_nohz(void) { }
502
503 #endif /* NO_HZ */
504
505 /*
506 * High resolution timer specific code
507 */
508 #ifdef CONFIG_HIGH_RES_TIMERS
509 /*
510 * We rearm the timer until we get disabled by the idle code
511 * Called with interrupts disabled and timer->base->cpu_base->lock held.
512 */
513 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
514 {
515 struct tick_sched *ts =
516 container_of(timer, struct tick_sched, sched_timer);
517 struct pt_regs *regs = get_irq_regs();
518 ktime_t now = ktime_get();
519 int cpu = smp_processor_id();
520
521 #ifdef CONFIG_NO_HZ
522 /*
523 * Check if the do_timer duty was dropped. We don't care about
524 * concurrency: This happens only when the cpu in charge went
525 * into a long sleep. If two cpus happen to assign themself to
526 * this duty, then the jiffies update is still serialized by
527 * xtime_lock.
528 */
529 if (unlikely(tick_do_timer_cpu == -1))
530 tick_do_timer_cpu = cpu;
531 #endif
532
533 /* Check, if the jiffies need an update */
534 if (tick_do_timer_cpu == cpu)
535 tick_do_update_jiffies64(now);
536
537 /*
538 * Do not call, when we are not in irq context and have
539 * no valid regs pointer
540 */
541 if (regs) {
542 /*
543 * When we are idle and the tick is stopped, we have to touch
544 * the watchdog as we might not schedule for a really long
545 * time. This happens on complete idle SMP systems while
546 * waiting on the login prompt. We also increment the "start of
547 * idle" jiffy stamp so the idle accounting adjustment we do
548 * when we go busy again does not account too much ticks.
549 */
550 if (ts->tick_stopped) {
551 touch_softlockup_watchdog();
552 ts->idle_jiffies++;
553 }
554 update_process_times(user_mode(regs));
555 profile_tick(CPU_PROFILING);
556 }
557
558 /* Do not restart, when we are in the idle loop */
559 if (ts->tick_stopped)
560 return HRTIMER_NORESTART;
561
562 hrtimer_forward(timer, now, tick_period);
563
564 return HRTIMER_RESTART;
565 }
566
567 /**
568 * tick_setup_sched_timer - setup the tick emulation timer
569 */
570 void tick_setup_sched_timer(void)
571 {
572 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
573 ktime_t now = ktime_get();
574 u64 offset;
575
576 /*
577 * Emulate tick processing via per-CPU hrtimers:
578 */
579 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
580 ts->sched_timer.function = tick_sched_timer;
581 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
582
583 /* Get the next period (per cpu) */
584 ts->sched_timer.expires = tick_init_jiffy_update();
585 offset = ktime_to_ns(tick_period) >> 1;
586 do_div(offset, num_possible_cpus());
587 offset *= smp_processor_id();
588 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
589
590 for (;;) {
591 hrtimer_forward(&ts->sched_timer, now, tick_period);
592 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
593 HRTIMER_MODE_ABS);
594 /* Check, if the timer was already in the past */
595 if (hrtimer_active(&ts->sched_timer))
596 break;
597 now = ktime_get();
598 }
599
600 #ifdef CONFIG_NO_HZ
601 if (tick_nohz_enabled)
602 ts->nohz_mode = NOHZ_MODE_HIGHRES;
603 #endif
604 }
605
606 void tick_cancel_sched_timer(int cpu)
607 {
608 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
609
610 if (ts->sched_timer.base)
611 hrtimer_cancel(&ts->sched_timer);
612 ts->tick_stopped = 0;
613 ts->nohz_mode = NOHZ_MODE_INACTIVE;
614 }
615 #endif /* HIGH_RES_TIMERS */
616
617 /**
618 * Async notification about clocksource changes
619 */
620 void tick_clock_notify(void)
621 {
622 int cpu;
623
624 for_each_possible_cpu(cpu)
625 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
626 }
627
628 /*
629 * Async notification about clock event changes
630 */
631 void tick_oneshot_notify(void)
632 {
633 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
634
635 set_bit(0, &ts->check_clocks);
636 }
637
638 /**
639 * Check, if a change happened, which makes oneshot possible.
640 *
641 * Called cyclic from the hrtimer softirq (driven by the timer
642 * softirq) allow_nohz signals, that we can switch into low-res nohz
643 * mode, because high resolution timers are disabled (either compile
644 * or runtime).
645 */
646 int tick_check_oneshot_change(int allow_nohz)
647 {
648 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
649
650 if (!test_and_clear_bit(0, &ts->check_clocks))
651 return 0;
652
653 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
654 return 0;
655
656 if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
657 return 0;
658
659 if (!allow_nohz)
660 return 1;
661
662 tick_nohz_switch_to_nohz();
663 return 0;
664 }
This page took 0.074928 seconds and 5 git commands to generate.