ARM: mach-ixp23xx: remove arch specific special handling for ioremap
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 }
82 write_sequnlock(&xtime_lock);
83 }
84
85 /*
86 * Initialize and return retrieve the jiffies update.
87 */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99 }
100
101 /*
102 * NOHZ - aka dynamic tick functionality
103 */
104 #ifdef CONFIG_NO_HZ
105 /*
106 * NO HZ enabled ?
107 */
108 static int tick_nohz_enabled __read_mostly = 1;
109
110 /*
111 * Enable / Disable tickless mode
112 */
113 static int __init setup_tick_nohz(char *str)
114 {
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
122 }
123
124 __setup("nohz=", setup_tick_nohz);
125
126 /**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
141
142 ts->idle_waketime = now;
143
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
147
148 touch_softlockup_watchdog();
149 }
150
151 /*
152 * Updates the per cpu time idle statistics counters
153 */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 ktime_t delta;
158
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
161 if (nr_iowait_cpu(cpu) > 0)
162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 ts->idle_entrytime = now;
166 }
167
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
170
171 }
172
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
179
180 sched_clock_idle_wakeup_event(0);
181 }
182
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 ktime_t now;
186
187 now = ktime_get();
188
189 update_ts_time_stats(cpu, ts, now, NULL);
190
191 ts->idle_entrytime = now;
192 ts->idle_active = 1;
193 sched_clock_idle_sleep_event();
194 return now;
195 }
196
197 /**
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in. Do not update
201 * counters if NULL.
202 *
203 * Return the cummulative idle time (since boot) for a given
204 * CPU, in microseconds.
205 *
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
208 *
209 * This function returns -1 if NOHZ is not enabled.
210 */
211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212 {
213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214 ktime_t now, idle;
215
216 if (!tick_nohz_enabled)
217 return -1;
218
219 now = ktime_get();
220 if (last_update_time) {
221 update_ts_time_stats(cpu, ts, now, last_update_time);
222 idle = ts->idle_sleeptime;
223 } else {
224 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
225 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
226
227 idle = ktime_add(ts->idle_sleeptime, delta);
228 } else {
229 idle = ts->idle_sleeptime;
230 }
231 }
232
233 return ktime_to_us(idle);
234
235 }
236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
237
238 /**
239 * get_cpu_iowait_time_us - get the total iowait time of a cpu
240 * @cpu: CPU number to query
241 * @last_update_time: variable to store update time in. Do not update
242 * counters if NULL.
243 *
244 * Return the cummulative iowait time (since boot) for a given
245 * CPU, in microseconds.
246 *
247 * This time is measured via accounting rather than sampling,
248 * and is as accurate as ktime_get() is.
249 *
250 * This function returns -1 if NOHZ is not enabled.
251 */
252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
253 {
254 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
255 ktime_t now, iowait;
256
257 if (!tick_nohz_enabled)
258 return -1;
259
260 now = ktime_get();
261 if (last_update_time) {
262 update_ts_time_stats(cpu, ts, now, last_update_time);
263 iowait = ts->iowait_sleeptime;
264 } else {
265 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
266 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
267
268 iowait = ktime_add(ts->iowait_sleeptime, delta);
269 } else {
270 iowait = ts->iowait_sleeptime;
271 }
272 }
273
274 return ktime_to_us(iowait);
275 }
276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
277
278 /**
279 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
280 *
281 * When the next event is more than a tick into the future, stop the idle tick
282 * Called either from the idle loop or from irq_exit() when an idle period was
283 * just interrupted by an interrupt which did not cause a reschedule.
284 */
285 void tick_nohz_stop_sched_tick(int inidle)
286 {
287 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
288 struct tick_sched *ts;
289 ktime_t last_update, expires, now;
290 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
291 u64 time_delta;
292 int cpu;
293
294 local_irq_save(flags);
295
296 cpu = smp_processor_id();
297 ts = &per_cpu(tick_cpu_sched, cpu);
298
299 /*
300 * Call to tick_nohz_start_idle stops the last_update_time from being
301 * updated. Thus, it must not be called in the event we are called from
302 * irq_exit() with the prior state different than idle.
303 */
304 if (!inidle && !ts->inidle)
305 goto end;
306
307 /*
308 * Set ts->inidle unconditionally. Even if the system did not
309 * switch to NOHZ mode the cpu frequency governers rely on the
310 * update of the idle time accounting in tick_nohz_start_idle().
311 */
312 ts->inidle = 1;
313
314 now = tick_nohz_start_idle(cpu, ts);
315
316 /*
317 * If this cpu is offline and it is the one which updates
318 * jiffies, then give up the assignment and let it be taken by
319 * the cpu which runs the tick timer next. If we don't drop
320 * this here the jiffies might be stale and do_timer() never
321 * invoked.
322 */
323 if (unlikely(!cpu_online(cpu))) {
324 if (cpu == tick_do_timer_cpu)
325 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
326 }
327
328 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
329 goto end;
330
331 if (need_resched())
332 goto end;
333
334 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
335 static int ratelimit;
336
337 if (ratelimit < 10) {
338 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
339 (unsigned int) local_softirq_pending());
340 ratelimit++;
341 }
342 goto end;
343 }
344
345 ts->idle_calls++;
346 /* Read jiffies and the time when jiffies were updated last */
347 do {
348 seq = read_seqbegin(&xtime_lock);
349 last_update = last_jiffies_update;
350 last_jiffies = jiffies;
351 time_delta = timekeeping_max_deferment();
352 } while (read_seqretry(&xtime_lock, seq));
353
354 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
355 arch_needs_cpu(cpu)) {
356 next_jiffies = last_jiffies + 1;
357 delta_jiffies = 1;
358 } else {
359 /* Get the next timer wheel timer */
360 next_jiffies = get_next_timer_interrupt(last_jiffies);
361 delta_jiffies = next_jiffies - last_jiffies;
362 }
363 /*
364 * Do not stop the tick, if we are only one off
365 * or if the cpu is required for rcu
366 */
367 if (!ts->tick_stopped && delta_jiffies == 1)
368 goto out;
369
370 /* Schedule the tick, if we are at least one jiffie off */
371 if ((long)delta_jiffies >= 1) {
372
373 /*
374 * If this cpu is the one which updates jiffies, then
375 * give up the assignment and let it be taken by the
376 * cpu which runs the tick timer next, which might be
377 * this cpu as well. If we don't drop this here the
378 * jiffies might be stale and do_timer() never
379 * invoked. Keep track of the fact that it was the one
380 * which had the do_timer() duty last. If this cpu is
381 * the one which had the do_timer() duty last, we
382 * limit the sleep time to the timekeeping
383 * max_deferement value which we retrieved
384 * above. Otherwise we can sleep as long as we want.
385 */
386 if (cpu == tick_do_timer_cpu) {
387 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
388 ts->do_timer_last = 1;
389 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
390 time_delta = KTIME_MAX;
391 ts->do_timer_last = 0;
392 } else if (!ts->do_timer_last) {
393 time_delta = KTIME_MAX;
394 }
395
396 /*
397 * calculate the expiry time for the next timer wheel
398 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
399 * that there is no timer pending or at least extremely
400 * far into the future (12 days for HZ=1000). In this
401 * case we set the expiry to the end of time.
402 */
403 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
404 /*
405 * Calculate the time delta for the next timer event.
406 * If the time delta exceeds the maximum time delta
407 * permitted by the current clocksource then adjust
408 * the time delta accordingly to ensure the
409 * clocksource does not wrap.
410 */
411 time_delta = min_t(u64, time_delta,
412 tick_period.tv64 * delta_jiffies);
413 }
414
415 if (time_delta < KTIME_MAX)
416 expires = ktime_add_ns(last_update, time_delta);
417 else
418 expires.tv64 = KTIME_MAX;
419
420 /* Skip reprogram of event if its not changed */
421 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
422 goto out;
423
424 /*
425 * nohz_stop_sched_tick can be called several times before
426 * the nohz_restart_sched_tick is called. This happens when
427 * interrupts arrive which do not cause a reschedule. In the
428 * first call we save the current tick time, so we can restart
429 * the scheduler tick in nohz_restart_sched_tick.
430 */
431 if (!ts->tick_stopped) {
432 select_nohz_load_balancer(1);
433
434 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
435 ts->tick_stopped = 1;
436 ts->idle_jiffies = last_jiffies;
437 rcu_enter_nohz();
438 }
439
440 ts->idle_sleeps++;
441
442 /* Mark expires */
443 ts->idle_expires = expires;
444
445 /*
446 * If the expiration time == KTIME_MAX, then
447 * in this case we simply stop the tick timer.
448 */
449 if (unlikely(expires.tv64 == KTIME_MAX)) {
450 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
451 hrtimer_cancel(&ts->sched_timer);
452 goto out;
453 }
454
455 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
456 hrtimer_start(&ts->sched_timer, expires,
457 HRTIMER_MODE_ABS_PINNED);
458 /* Check, if the timer was already in the past */
459 if (hrtimer_active(&ts->sched_timer))
460 goto out;
461 } else if (!tick_program_event(expires, 0))
462 goto out;
463 /*
464 * We are past the event already. So we crossed a
465 * jiffie boundary. Update jiffies and raise the
466 * softirq.
467 */
468 tick_do_update_jiffies64(ktime_get());
469 }
470 raise_softirq_irqoff(TIMER_SOFTIRQ);
471 out:
472 ts->next_jiffies = next_jiffies;
473 ts->last_jiffies = last_jiffies;
474 ts->sleep_length = ktime_sub(dev->next_event, now);
475 end:
476 local_irq_restore(flags);
477 }
478
479 /**
480 * tick_nohz_get_sleep_length - return the length of the current sleep
481 *
482 * Called from power state control code with interrupts disabled
483 */
484 ktime_t tick_nohz_get_sleep_length(void)
485 {
486 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
487
488 return ts->sleep_length;
489 }
490
491 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
492 {
493 hrtimer_cancel(&ts->sched_timer);
494 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
495
496 while (1) {
497 /* Forward the time to expire in the future */
498 hrtimer_forward(&ts->sched_timer, now, tick_period);
499
500 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
501 hrtimer_start_expires(&ts->sched_timer,
502 HRTIMER_MODE_ABS_PINNED);
503 /* Check, if the timer was already in the past */
504 if (hrtimer_active(&ts->sched_timer))
505 break;
506 } else {
507 if (!tick_program_event(
508 hrtimer_get_expires(&ts->sched_timer), 0))
509 break;
510 }
511 /* Update jiffies and reread time */
512 tick_do_update_jiffies64(now);
513 now = ktime_get();
514 }
515 }
516
517 /**
518 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
519 *
520 * Restart the idle tick when the CPU is woken up from idle
521 */
522 void tick_nohz_restart_sched_tick(void)
523 {
524 int cpu = smp_processor_id();
525 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
526 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
527 unsigned long ticks;
528 #endif
529 ktime_t now;
530
531 local_irq_disable();
532 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
533 now = ktime_get();
534
535 if (ts->idle_active)
536 tick_nohz_stop_idle(cpu, now);
537
538 if (!ts->inidle || !ts->tick_stopped) {
539 ts->inidle = 0;
540 local_irq_enable();
541 return;
542 }
543
544 ts->inidle = 0;
545
546 rcu_exit_nohz();
547
548 /* Update jiffies first */
549 select_nohz_load_balancer(0);
550 tick_do_update_jiffies64(now);
551
552 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
553 /*
554 * We stopped the tick in idle. Update process times would miss the
555 * time we slept as update_process_times does only a 1 tick
556 * accounting. Enforce that this is accounted to idle !
557 */
558 ticks = jiffies - ts->idle_jiffies;
559 /*
560 * We might be one off. Do not randomly account a huge number of ticks!
561 */
562 if (ticks && ticks < LONG_MAX)
563 account_idle_ticks(ticks);
564 #endif
565
566 touch_softlockup_watchdog();
567 /*
568 * Cancel the scheduled timer and restore the tick
569 */
570 ts->tick_stopped = 0;
571 ts->idle_exittime = now;
572
573 tick_nohz_restart(ts, now);
574
575 local_irq_enable();
576 }
577
578 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
579 {
580 hrtimer_forward(&ts->sched_timer, now, tick_period);
581 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
582 }
583
584 /*
585 * The nohz low res interrupt handler
586 */
587 static void tick_nohz_handler(struct clock_event_device *dev)
588 {
589 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
590 struct pt_regs *regs = get_irq_regs();
591 int cpu = smp_processor_id();
592 ktime_t now = ktime_get();
593
594 dev->next_event.tv64 = KTIME_MAX;
595
596 /*
597 * Check if the do_timer duty was dropped. We don't care about
598 * concurrency: This happens only when the cpu in charge went
599 * into a long sleep. If two cpus happen to assign themself to
600 * this duty, then the jiffies update is still serialized by
601 * xtime_lock.
602 */
603 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
604 tick_do_timer_cpu = cpu;
605
606 /* Check, if the jiffies need an update */
607 if (tick_do_timer_cpu == cpu)
608 tick_do_update_jiffies64(now);
609
610 /*
611 * When we are idle and the tick is stopped, we have to touch
612 * the watchdog as we might not schedule for a really long
613 * time. This happens on complete idle SMP systems while
614 * waiting on the login prompt. We also increment the "start
615 * of idle" jiffy stamp so the idle accounting adjustment we
616 * do when we go busy again does not account too much ticks.
617 */
618 if (ts->tick_stopped) {
619 touch_softlockup_watchdog();
620 ts->idle_jiffies++;
621 }
622
623 update_process_times(user_mode(regs));
624 profile_tick(CPU_PROFILING);
625
626 while (tick_nohz_reprogram(ts, now)) {
627 now = ktime_get();
628 tick_do_update_jiffies64(now);
629 }
630 }
631
632 /**
633 * tick_nohz_switch_to_nohz - switch to nohz mode
634 */
635 static void tick_nohz_switch_to_nohz(void)
636 {
637 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
638 ktime_t next;
639
640 if (!tick_nohz_enabled)
641 return;
642
643 local_irq_disable();
644 if (tick_switch_to_oneshot(tick_nohz_handler)) {
645 local_irq_enable();
646 return;
647 }
648
649 ts->nohz_mode = NOHZ_MODE_LOWRES;
650
651 /*
652 * Recycle the hrtimer in ts, so we can share the
653 * hrtimer_forward with the highres code.
654 */
655 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
656 /* Get the next period */
657 next = tick_init_jiffy_update();
658
659 for (;;) {
660 hrtimer_set_expires(&ts->sched_timer, next);
661 if (!tick_program_event(next, 0))
662 break;
663 next = ktime_add(next, tick_period);
664 }
665 local_irq_enable();
666 }
667
668 /*
669 * When NOHZ is enabled and the tick is stopped, we need to kick the
670 * tick timer from irq_enter() so that the jiffies update is kept
671 * alive during long running softirqs. That's ugly as hell, but
672 * correctness is key even if we need to fix the offending softirq in
673 * the first place.
674 *
675 * Note, this is different to tick_nohz_restart. We just kick the
676 * timer and do not touch the other magic bits which need to be done
677 * when idle is left.
678 */
679 static void tick_nohz_kick_tick(int cpu, ktime_t now)
680 {
681 #if 0
682 /* Switch back to 2.6.27 behaviour */
683
684 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
685 ktime_t delta;
686
687 /*
688 * Do not touch the tick device, when the next expiry is either
689 * already reached or less/equal than the tick period.
690 */
691 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
692 if (delta.tv64 <= tick_period.tv64)
693 return;
694
695 tick_nohz_restart(ts, now);
696 #endif
697 }
698
699 static inline void tick_check_nohz(int cpu)
700 {
701 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
702 ktime_t now;
703
704 if (!ts->idle_active && !ts->tick_stopped)
705 return;
706 now = ktime_get();
707 if (ts->idle_active)
708 tick_nohz_stop_idle(cpu, now);
709 if (ts->tick_stopped) {
710 tick_nohz_update_jiffies(now);
711 tick_nohz_kick_tick(cpu, now);
712 }
713 }
714
715 #else
716
717 static inline void tick_nohz_switch_to_nohz(void) { }
718 static inline void tick_check_nohz(int cpu) { }
719
720 #endif /* NO_HZ */
721
722 /*
723 * Called from irq_enter to notify about the possible interruption of idle()
724 */
725 void tick_check_idle(int cpu)
726 {
727 tick_check_oneshot_broadcast(cpu);
728 tick_check_nohz(cpu);
729 }
730
731 /*
732 * High resolution timer specific code
733 */
734 #ifdef CONFIG_HIGH_RES_TIMERS
735 /*
736 * We rearm the timer until we get disabled by the idle code.
737 * Called with interrupts disabled and timer->base->cpu_base->lock held.
738 */
739 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
740 {
741 struct tick_sched *ts =
742 container_of(timer, struct tick_sched, sched_timer);
743 struct pt_regs *regs = get_irq_regs();
744 ktime_t now = ktime_get();
745 int cpu = smp_processor_id();
746
747 #ifdef CONFIG_NO_HZ
748 /*
749 * Check if the do_timer duty was dropped. We don't care about
750 * concurrency: This happens only when the cpu in charge went
751 * into a long sleep. If two cpus happen to assign themself to
752 * this duty, then the jiffies update is still serialized by
753 * xtime_lock.
754 */
755 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
756 tick_do_timer_cpu = cpu;
757 #endif
758
759 /* Check, if the jiffies need an update */
760 if (tick_do_timer_cpu == cpu)
761 tick_do_update_jiffies64(now);
762
763 /*
764 * Do not call, when we are not in irq context and have
765 * no valid regs pointer
766 */
767 if (regs) {
768 /*
769 * When we are idle and the tick is stopped, we have to touch
770 * the watchdog as we might not schedule for a really long
771 * time. This happens on complete idle SMP systems while
772 * waiting on the login prompt. We also increment the "start of
773 * idle" jiffy stamp so the idle accounting adjustment we do
774 * when we go busy again does not account too much ticks.
775 */
776 if (ts->tick_stopped) {
777 touch_softlockup_watchdog();
778 ts->idle_jiffies++;
779 }
780 update_process_times(user_mode(regs));
781 profile_tick(CPU_PROFILING);
782 }
783
784 hrtimer_forward(timer, now, tick_period);
785
786 return HRTIMER_RESTART;
787 }
788
789 /**
790 * tick_setup_sched_timer - setup the tick emulation timer
791 */
792 void tick_setup_sched_timer(void)
793 {
794 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
795 ktime_t now = ktime_get();
796
797 /*
798 * Emulate tick processing via per-CPU hrtimers:
799 */
800 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
801 ts->sched_timer.function = tick_sched_timer;
802
803 /* Get the next period (per cpu) */
804 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
805
806 for (;;) {
807 hrtimer_forward(&ts->sched_timer, now, tick_period);
808 hrtimer_start_expires(&ts->sched_timer,
809 HRTIMER_MODE_ABS_PINNED);
810 /* Check, if the timer was already in the past */
811 if (hrtimer_active(&ts->sched_timer))
812 break;
813 now = ktime_get();
814 }
815
816 #ifdef CONFIG_NO_HZ
817 if (tick_nohz_enabled)
818 ts->nohz_mode = NOHZ_MODE_HIGHRES;
819 #endif
820 }
821 #endif /* HIGH_RES_TIMERS */
822
823 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
824 void tick_cancel_sched_timer(int cpu)
825 {
826 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
827
828 # ifdef CONFIG_HIGH_RES_TIMERS
829 if (ts->sched_timer.base)
830 hrtimer_cancel(&ts->sched_timer);
831 # endif
832
833 ts->nohz_mode = NOHZ_MODE_INACTIVE;
834 }
835 #endif
836
837 /**
838 * Async notification about clocksource changes
839 */
840 void tick_clock_notify(void)
841 {
842 int cpu;
843
844 for_each_possible_cpu(cpu)
845 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
846 }
847
848 /*
849 * Async notification about clock event changes
850 */
851 void tick_oneshot_notify(void)
852 {
853 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
854
855 set_bit(0, &ts->check_clocks);
856 }
857
858 /**
859 * Check, if a change happened, which makes oneshot possible.
860 *
861 * Called cyclic from the hrtimer softirq (driven by the timer
862 * softirq) allow_nohz signals, that we can switch into low-res nohz
863 * mode, because high resolution timers are disabled (either compile
864 * or runtime).
865 */
866 int tick_check_oneshot_change(int allow_nohz)
867 {
868 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
869
870 if (!test_and_clear_bit(0, &ts->check_clocks))
871 return 0;
872
873 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
874 return 0;
875
876 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
877 return 0;
878
879 if (!allow_nohz)
880 return 1;
881
882 tick_nohz_switch_to_nohz();
883 return 0;
884 }
This page took 0.05118 seconds and 5 git commands to generate.