520592ab6aa4b1e6427b54c37714335f59557b56
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24
25 #include <asm/irq_regs.h>
26
27 #include "tick-internal.h"
28
29 /*
30 * Per cpu nohz control structure
31 */
32 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33
34 /*
35 * The time, when the last jiffy update happened. Protected by jiffies_lock.
36 */
37 static ktime_t last_jiffies_update;
38
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 return &per_cpu(tick_cpu_sched, cpu);
42 }
43
44 /*
45 * Must be called with interrupts disabled !
46 */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 unsigned long ticks = 0;
50 ktime_t delta;
51
52 /*
53 * Do a quick check without holding jiffies_lock:
54 */
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
58
59 /* Reevalute with jiffies_lock held */
60 write_seqlock(&jiffies_lock);
61
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
64
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
68
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
72
73 ticks = ktime_divns(delta, incr);
74
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
77 }
78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 }
83 write_sequnlock(&jiffies_lock);
84 }
85
86 /*
87 * Initialize and return retrieve the jiffies update.
88 */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 ktime_t period;
92
93 write_seqlock(&jiffies_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&jiffies_lock);
99 return period;
100 }
101
102
103 static void tick_sched_do_timer(ktime_t now)
104 {
105 int cpu = smp_processor_id();
106
107 #ifdef CONFIG_NO_HZ
108 /*
109 * Check if the do_timer duty was dropped. We don't care about
110 * concurrency: This happens only when the cpu in charge went
111 * into a long sleep. If two cpus happen to assign themself to
112 * this duty, then the jiffies update is still serialized by
113 * jiffies_lock.
114 */
115 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
116 tick_do_timer_cpu = cpu;
117 #endif
118
119 /* Check, if the jiffies need an update */
120 if (tick_do_timer_cpu == cpu)
121 tick_do_update_jiffies64(now);
122 }
123
124 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
125 {
126 #ifdef CONFIG_NO_HZ
127 /*
128 * When we are idle and the tick is stopped, we have to touch
129 * the watchdog as we might not schedule for a really long
130 * time. This happens on complete idle SMP systems while
131 * waiting on the login prompt. We also increment the "start of
132 * idle" jiffy stamp so the idle accounting adjustment we do
133 * when we go busy again does not account too much ticks.
134 */
135 if (ts->tick_stopped) {
136 touch_softlockup_watchdog();
137 if (is_idle_task(current))
138 ts->idle_jiffies++;
139 }
140 #endif
141 update_process_times(user_mode(regs));
142 profile_tick(CPU_PROFILING);
143 }
144
145 /*
146 * NOHZ - aka dynamic tick functionality
147 */
148 #ifdef CONFIG_NO_HZ
149 /*
150 * NO HZ enabled ?
151 */
152 int tick_nohz_enabled __read_mostly = 1;
153
154 /*
155 * Enable / Disable tickless mode
156 */
157 static int __init setup_tick_nohz(char *str)
158 {
159 if (!strcmp(str, "off"))
160 tick_nohz_enabled = 0;
161 else if (!strcmp(str, "on"))
162 tick_nohz_enabled = 1;
163 else
164 return 0;
165 return 1;
166 }
167
168 __setup("nohz=", setup_tick_nohz);
169
170 /**
171 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
172 *
173 * Called from interrupt entry when the CPU was idle
174 *
175 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
176 * must be updated. Otherwise an interrupt handler could use a stale jiffy
177 * value. We do this unconditionally on any cpu, as we don't know whether the
178 * cpu, which has the update task assigned is in a long sleep.
179 */
180 static void tick_nohz_update_jiffies(ktime_t now)
181 {
182 int cpu = smp_processor_id();
183 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
184 unsigned long flags;
185
186 ts->idle_waketime = now;
187
188 local_irq_save(flags);
189 tick_do_update_jiffies64(now);
190 local_irq_restore(flags);
191
192 touch_softlockup_watchdog();
193 }
194
195 /*
196 * Updates the per cpu time idle statistics counters
197 */
198 static void
199 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
200 {
201 ktime_t delta;
202
203 if (ts->idle_active) {
204 delta = ktime_sub(now, ts->idle_entrytime);
205 if (nr_iowait_cpu(cpu) > 0)
206 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
207 else
208 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
209 ts->idle_entrytime = now;
210 }
211
212 if (last_update_time)
213 *last_update_time = ktime_to_us(now);
214
215 }
216
217 static void tick_nohz_stop_idle(int cpu, ktime_t now)
218 {
219 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
220
221 update_ts_time_stats(cpu, ts, now, NULL);
222 ts->idle_active = 0;
223
224 sched_clock_idle_wakeup_event(0);
225 }
226
227 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
228 {
229 ktime_t now = ktime_get();
230
231 ts->idle_entrytime = now;
232 ts->idle_active = 1;
233 sched_clock_idle_sleep_event();
234 return now;
235 }
236
237 /**
238 * get_cpu_idle_time_us - get the total idle time of a cpu
239 * @cpu: CPU number to query
240 * @last_update_time: variable to store update time in. Do not update
241 * counters if NULL.
242 *
243 * Return the cummulative idle time (since boot) for a given
244 * CPU, in microseconds.
245 *
246 * This time is measured via accounting rather than sampling,
247 * and is as accurate as ktime_get() is.
248 *
249 * This function returns -1 if NOHZ is not enabled.
250 */
251 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
252 {
253 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
254 ktime_t now, idle;
255
256 if (!tick_nohz_enabled)
257 return -1;
258
259 now = ktime_get();
260 if (last_update_time) {
261 update_ts_time_stats(cpu, ts, now, last_update_time);
262 idle = ts->idle_sleeptime;
263 } else {
264 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
265 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
266
267 idle = ktime_add(ts->idle_sleeptime, delta);
268 } else {
269 idle = ts->idle_sleeptime;
270 }
271 }
272
273 return ktime_to_us(idle);
274
275 }
276 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
277
278 /**
279 * get_cpu_iowait_time_us - get the total iowait time of a cpu
280 * @cpu: CPU number to query
281 * @last_update_time: variable to store update time in. Do not update
282 * counters if NULL.
283 *
284 * Return the cummulative iowait time (since boot) for a given
285 * CPU, in microseconds.
286 *
287 * This time is measured via accounting rather than sampling,
288 * and is as accurate as ktime_get() is.
289 *
290 * This function returns -1 if NOHZ is not enabled.
291 */
292 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
293 {
294 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
295 ktime_t now, iowait;
296
297 if (!tick_nohz_enabled)
298 return -1;
299
300 now = ktime_get();
301 if (last_update_time) {
302 update_ts_time_stats(cpu, ts, now, last_update_time);
303 iowait = ts->iowait_sleeptime;
304 } else {
305 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
306 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
307
308 iowait = ktime_add(ts->iowait_sleeptime, delta);
309 } else {
310 iowait = ts->iowait_sleeptime;
311 }
312 }
313
314 return ktime_to_us(iowait);
315 }
316 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
317
318 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
319 ktime_t now, int cpu)
320 {
321 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
322 ktime_t last_update, expires, ret = { .tv64 = 0 };
323 unsigned long rcu_delta_jiffies;
324 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
325 u64 time_delta;
326
327 /* Read jiffies and the time when jiffies were updated last */
328 do {
329 seq = read_seqbegin(&jiffies_lock);
330 last_update = last_jiffies_update;
331 last_jiffies = jiffies;
332 time_delta = timekeeping_max_deferment();
333 } while (read_seqretry(&jiffies_lock, seq));
334
335 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
336 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
337 next_jiffies = last_jiffies + 1;
338 delta_jiffies = 1;
339 } else {
340 /* Get the next timer wheel timer */
341 next_jiffies = get_next_timer_interrupt(last_jiffies);
342 delta_jiffies = next_jiffies - last_jiffies;
343 if (rcu_delta_jiffies < delta_jiffies) {
344 next_jiffies = last_jiffies + rcu_delta_jiffies;
345 delta_jiffies = rcu_delta_jiffies;
346 }
347 }
348 /*
349 * Do not stop the tick, if we are only one off
350 * or if the cpu is required for rcu
351 */
352 if (!ts->tick_stopped && delta_jiffies == 1)
353 goto out;
354
355 /* Schedule the tick, if we are at least one jiffie off */
356 if ((long)delta_jiffies >= 1) {
357
358 /*
359 * If this cpu is the one which updates jiffies, then
360 * give up the assignment and let it be taken by the
361 * cpu which runs the tick timer next, which might be
362 * this cpu as well. If we don't drop this here the
363 * jiffies might be stale and do_timer() never
364 * invoked. Keep track of the fact that it was the one
365 * which had the do_timer() duty last. If this cpu is
366 * the one which had the do_timer() duty last, we
367 * limit the sleep time to the timekeeping
368 * max_deferement value which we retrieved
369 * above. Otherwise we can sleep as long as we want.
370 */
371 if (cpu == tick_do_timer_cpu) {
372 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
373 ts->do_timer_last = 1;
374 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
375 time_delta = KTIME_MAX;
376 ts->do_timer_last = 0;
377 } else if (!ts->do_timer_last) {
378 time_delta = KTIME_MAX;
379 }
380
381 /*
382 * calculate the expiry time for the next timer wheel
383 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
384 * that there is no timer pending or at least extremely
385 * far into the future (12 days for HZ=1000). In this
386 * case we set the expiry to the end of time.
387 */
388 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
389 /*
390 * Calculate the time delta for the next timer event.
391 * If the time delta exceeds the maximum time delta
392 * permitted by the current clocksource then adjust
393 * the time delta accordingly to ensure the
394 * clocksource does not wrap.
395 */
396 time_delta = min_t(u64, time_delta,
397 tick_period.tv64 * delta_jiffies);
398 }
399
400 if (time_delta < KTIME_MAX)
401 expires = ktime_add_ns(last_update, time_delta);
402 else
403 expires.tv64 = KTIME_MAX;
404
405 /* Skip reprogram of event if its not changed */
406 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
407 goto out;
408
409 ret = expires;
410
411 /*
412 * nohz_stop_sched_tick can be called several times before
413 * the nohz_restart_sched_tick is called. This happens when
414 * interrupts arrive which do not cause a reschedule. In the
415 * first call we save the current tick time, so we can restart
416 * the scheduler tick in nohz_restart_sched_tick.
417 */
418 if (!ts->tick_stopped) {
419 nohz_balance_enter_idle(cpu);
420 calc_load_enter_idle();
421
422 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
423 ts->tick_stopped = 1;
424 }
425
426 /*
427 * If the expiration time == KTIME_MAX, then
428 * in this case we simply stop the tick timer.
429 */
430 if (unlikely(expires.tv64 == KTIME_MAX)) {
431 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
432 hrtimer_cancel(&ts->sched_timer);
433 goto out;
434 }
435
436 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
437 hrtimer_start(&ts->sched_timer, expires,
438 HRTIMER_MODE_ABS_PINNED);
439 /* Check, if the timer was already in the past */
440 if (hrtimer_active(&ts->sched_timer))
441 goto out;
442 } else if (!tick_program_event(expires, 0))
443 goto out;
444 /*
445 * We are past the event already. So we crossed a
446 * jiffie boundary. Update jiffies and raise the
447 * softirq.
448 */
449 tick_do_update_jiffies64(ktime_get());
450 }
451 raise_softirq_irqoff(TIMER_SOFTIRQ);
452 out:
453 ts->next_jiffies = next_jiffies;
454 ts->last_jiffies = last_jiffies;
455 ts->sleep_length = ktime_sub(dev->next_event, now);
456
457 return ret;
458 }
459
460 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
461 {
462 /*
463 * If this cpu is offline and it is the one which updates
464 * jiffies, then give up the assignment and let it be taken by
465 * the cpu which runs the tick timer next. If we don't drop
466 * this here the jiffies might be stale and do_timer() never
467 * invoked.
468 */
469 if (unlikely(!cpu_online(cpu))) {
470 if (cpu == tick_do_timer_cpu)
471 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
472 }
473
474 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
475 return false;
476
477 if (need_resched())
478 return false;
479
480 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
481 static int ratelimit;
482
483 if (ratelimit < 10 &&
484 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
485 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
486 (unsigned int) local_softirq_pending());
487 ratelimit++;
488 }
489 return false;
490 }
491
492 return true;
493 }
494
495 static void __tick_nohz_idle_enter(struct tick_sched *ts)
496 {
497 ktime_t now, expires;
498 int cpu = smp_processor_id();
499
500 now = tick_nohz_start_idle(cpu, ts);
501
502 if (can_stop_idle_tick(cpu, ts)) {
503 int was_stopped = ts->tick_stopped;
504
505 ts->idle_calls++;
506
507 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
508 if (expires.tv64 > 0LL) {
509 ts->idle_sleeps++;
510 ts->idle_expires = expires;
511 }
512
513 if (!was_stopped && ts->tick_stopped)
514 ts->idle_jiffies = ts->last_jiffies;
515 }
516 }
517
518 /**
519 * tick_nohz_idle_enter - stop the idle tick from the idle task
520 *
521 * When the next event is more than a tick into the future, stop the idle tick
522 * Called when we start the idle loop.
523 *
524 * The arch is responsible of calling:
525 *
526 * - rcu_idle_enter() after its last use of RCU before the CPU is put
527 * to sleep.
528 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
529 */
530 void tick_nohz_idle_enter(void)
531 {
532 struct tick_sched *ts;
533
534 WARN_ON_ONCE(irqs_disabled());
535
536 /*
537 * Update the idle state in the scheduler domain hierarchy
538 * when tick_nohz_stop_sched_tick() is called from the idle loop.
539 * State will be updated to busy during the first busy tick after
540 * exiting idle.
541 */
542 set_cpu_sd_state_idle();
543
544 local_irq_disable();
545
546 ts = &__get_cpu_var(tick_cpu_sched);
547 /*
548 * set ts->inidle unconditionally. even if the system did not
549 * switch to nohz mode the cpu frequency governers rely on the
550 * update of the idle time accounting in tick_nohz_start_idle().
551 */
552 ts->inidle = 1;
553 __tick_nohz_idle_enter(ts);
554
555 local_irq_enable();
556 }
557
558 /**
559 * tick_nohz_irq_exit - update next tick event from interrupt exit
560 *
561 * When an interrupt fires while we are idle and it doesn't cause
562 * a reschedule, it may still add, modify or delete a timer, enqueue
563 * an RCU callback, etc...
564 * So we need to re-calculate and reprogram the next tick event.
565 */
566 void tick_nohz_irq_exit(void)
567 {
568 unsigned long flags;
569 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
570
571 if (!ts->inidle)
572 return;
573
574 local_irq_save(flags);
575
576 /* Cancel the timer because CPU already waken up from the C-states */
577 menu_hrtimer_cancel();
578 __tick_nohz_idle_enter(ts);
579
580 local_irq_restore(flags);
581 }
582
583 /**
584 * tick_nohz_get_sleep_length - return the length of the current sleep
585 *
586 * Called from power state control code with interrupts disabled
587 */
588 ktime_t tick_nohz_get_sleep_length(void)
589 {
590 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
591
592 return ts->sleep_length;
593 }
594
595 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
596 {
597 hrtimer_cancel(&ts->sched_timer);
598 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
599
600 while (1) {
601 /* Forward the time to expire in the future */
602 hrtimer_forward(&ts->sched_timer, now, tick_period);
603
604 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
605 hrtimer_start_expires(&ts->sched_timer,
606 HRTIMER_MODE_ABS_PINNED);
607 /* Check, if the timer was already in the past */
608 if (hrtimer_active(&ts->sched_timer))
609 break;
610 } else {
611 if (!tick_program_event(
612 hrtimer_get_expires(&ts->sched_timer), 0))
613 break;
614 }
615 /* Reread time and update jiffies */
616 now = ktime_get();
617 tick_do_update_jiffies64(now);
618 }
619 }
620
621 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
622 {
623 /* Update jiffies first */
624 tick_do_update_jiffies64(now);
625 update_cpu_load_nohz();
626
627 calc_load_exit_idle();
628 touch_softlockup_watchdog();
629 /*
630 * Cancel the scheduled timer and restore the tick
631 */
632 ts->tick_stopped = 0;
633 ts->idle_exittime = now;
634
635 tick_nohz_restart(ts, now);
636 }
637
638 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
639 {
640 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
641 unsigned long ticks;
642
643 if (vtime_accounting_enabled())
644 return;
645 /*
646 * We stopped the tick in idle. Update process times would miss the
647 * time we slept as update_process_times does only a 1 tick
648 * accounting. Enforce that this is accounted to idle !
649 */
650 ticks = jiffies - ts->idle_jiffies;
651 /*
652 * We might be one off. Do not randomly account a huge number of ticks!
653 */
654 if (ticks && ticks < LONG_MAX)
655 account_idle_ticks(ticks);
656 #endif
657 }
658
659 /**
660 * tick_nohz_idle_exit - restart the idle tick from the idle task
661 *
662 * Restart the idle tick when the CPU is woken up from idle
663 * This also exit the RCU extended quiescent state. The CPU
664 * can use RCU again after this function is called.
665 */
666 void tick_nohz_idle_exit(void)
667 {
668 int cpu = smp_processor_id();
669 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
670 ktime_t now;
671
672 local_irq_disable();
673
674 WARN_ON_ONCE(!ts->inidle);
675
676 ts->inidle = 0;
677
678 /* Cancel the timer because CPU already waken up from the C-states*/
679 menu_hrtimer_cancel();
680 if (ts->idle_active || ts->tick_stopped)
681 now = ktime_get();
682
683 if (ts->idle_active)
684 tick_nohz_stop_idle(cpu, now);
685
686 if (ts->tick_stopped) {
687 tick_nohz_restart_sched_tick(ts, now);
688 tick_nohz_account_idle_ticks(ts);
689 }
690
691 local_irq_enable();
692 }
693
694 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
695 {
696 hrtimer_forward(&ts->sched_timer, now, tick_period);
697 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
698 }
699
700 /*
701 * The nohz low res interrupt handler
702 */
703 static void tick_nohz_handler(struct clock_event_device *dev)
704 {
705 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
706 struct pt_regs *regs = get_irq_regs();
707 ktime_t now = ktime_get();
708
709 dev->next_event.tv64 = KTIME_MAX;
710
711 tick_sched_do_timer(now);
712 tick_sched_handle(ts, regs);
713
714 while (tick_nohz_reprogram(ts, now)) {
715 now = ktime_get();
716 tick_do_update_jiffies64(now);
717 }
718 }
719
720 /**
721 * tick_nohz_switch_to_nohz - switch to nohz mode
722 */
723 static void tick_nohz_switch_to_nohz(void)
724 {
725 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
726 ktime_t next;
727
728 if (!tick_nohz_enabled)
729 return;
730
731 local_irq_disable();
732 if (tick_switch_to_oneshot(tick_nohz_handler)) {
733 local_irq_enable();
734 return;
735 }
736
737 ts->nohz_mode = NOHZ_MODE_LOWRES;
738
739 /*
740 * Recycle the hrtimer in ts, so we can share the
741 * hrtimer_forward with the highres code.
742 */
743 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
744 /* Get the next period */
745 next = tick_init_jiffy_update();
746
747 for (;;) {
748 hrtimer_set_expires(&ts->sched_timer, next);
749 if (!tick_program_event(next, 0))
750 break;
751 next = ktime_add(next, tick_period);
752 }
753 local_irq_enable();
754 }
755
756 /*
757 * When NOHZ is enabled and the tick is stopped, we need to kick the
758 * tick timer from irq_enter() so that the jiffies update is kept
759 * alive during long running softirqs. That's ugly as hell, but
760 * correctness is key even if we need to fix the offending softirq in
761 * the first place.
762 *
763 * Note, this is different to tick_nohz_restart. We just kick the
764 * timer and do not touch the other magic bits which need to be done
765 * when idle is left.
766 */
767 static void tick_nohz_kick_tick(int cpu, ktime_t now)
768 {
769 #if 0
770 /* Switch back to 2.6.27 behaviour */
771
772 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
773 ktime_t delta;
774
775 /*
776 * Do not touch the tick device, when the next expiry is either
777 * already reached or less/equal than the tick period.
778 */
779 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
780 if (delta.tv64 <= tick_period.tv64)
781 return;
782
783 tick_nohz_restart(ts, now);
784 #endif
785 }
786
787 static inline void tick_check_nohz(int cpu)
788 {
789 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
790 ktime_t now;
791
792 if (!ts->idle_active && !ts->tick_stopped)
793 return;
794 now = ktime_get();
795 if (ts->idle_active)
796 tick_nohz_stop_idle(cpu, now);
797 if (ts->tick_stopped) {
798 tick_nohz_update_jiffies(now);
799 tick_nohz_kick_tick(cpu, now);
800 }
801 }
802
803 #else
804
805 static inline void tick_nohz_switch_to_nohz(void) { }
806 static inline void tick_check_nohz(int cpu) { }
807
808 #endif /* NO_HZ */
809
810 /*
811 * Called from irq_enter to notify about the possible interruption of idle()
812 */
813 void tick_check_idle(int cpu)
814 {
815 tick_check_oneshot_broadcast(cpu);
816 tick_check_nohz(cpu);
817 }
818
819 /*
820 * High resolution timer specific code
821 */
822 #ifdef CONFIG_HIGH_RES_TIMERS
823 /*
824 * We rearm the timer until we get disabled by the idle code.
825 * Called with interrupts disabled.
826 */
827 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
828 {
829 struct tick_sched *ts =
830 container_of(timer, struct tick_sched, sched_timer);
831 struct pt_regs *regs = get_irq_regs();
832 ktime_t now = ktime_get();
833
834 tick_sched_do_timer(now);
835
836 /*
837 * Do not call, when we are not in irq context and have
838 * no valid regs pointer
839 */
840 if (regs)
841 tick_sched_handle(ts, regs);
842
843 hrtimer_forward(timer, now, tick_period);
844
845 return HRTIMER_RESTART;
846 }
847
848 static int sched_skew_tick;
849
850 static int __init skew_tick(char *str)
851 {
852 get_option(&str, &sched_skew_tick);
853
854 return 0;
855 }
856 early_param("skew_tick", skew_tick);
857
858 /**
859 * tick_setup_sched_timer - setup the tick emulation timer
860 */
861 void tick_setup_sched_timer(void)
862 {
863 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
864 ktime_t now = ktime_get();
865
866 /*
867 * Emulate tick processing via per-CPU hrtimers:
868 */
869 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
870 ts->sched_timer.function = tick_sched_timer;
871
872 /* Get the next period (per cpu) */
873 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
874
875 /* Offset the tick to avert jiffies_lock contention. */
876 if (sched_skew_tick) {
877 u64 offset = ktime_to_ns(tick_period) >> 1;
878 do_div(offset, num_possible_cpus());
879 offset *= smp_processor_id();
880 hrtimer_add_expires_ns(&ts->sched_timer, offset);
881 }
882
883 for (;;) {
884 hrtimer_forward(&ts->sched_timer, now, tick_period);
885 hrtimer_start_expires(&ts->sched_timer,
886 HRTIMER_MODE_ABS_PINNED);
887 /* Check, if the timer was already in the past */
888 if (hrtimer_active(&ts->sched_timer))
889 break;
890 now = ktime_get();
891 }
892
893 #ifdef CONFIG_NO_HZ
894 if (tick_nohz_enabled)
895 ts->nohz_mode = NOHZ_MODE_HIGHRES;
896 #endif
897 }
898 #endif /* HIGH_RES_TIMERS */
899
900 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
901 void tick_cancel_sched_timer(int cpu)
902 {
903 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
904
905 # ifdef CONFIG_HIGH_RES_TIMERS
906 if (ts->sched_timer.base)
907 hrtimer_cancel(&ts->sched_timer);
908 # endif
909
910 ts->nohz_mode = NOHZ_MODE_INACTIVE;
911 }
912 #endif
913
914 /**
915 * Async notification about clocksource changes
916 */
917 void tick_clock_notify(void)
918 {
919 int cpu;
920
921 for_each_possible_cpu(cpu)
922 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
923 }
924
925 /*
926 * Async notification about clock event changes
927 */
928 void tick_oneshot_notify(void)
929 {
930 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
931
932 set_bit(0, &ts->check_clocks);
933 }
934
935 /**
936 * Check, if a change happened, which makes oneshot possible.
937 *
938 * Called cyclic from the hrtimer softirq (driven by the timer
939 * softirq) allow_nohz signals, that we can switch into low-res nohz
940 * mode, because high resolution timers are disabled (either compile
941 * or runtime).
942 */
943 int tick_check_oneshot_change(int allow_nohz)
944 {
945 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
946
947 if (!test_and_clear_bit(0, &ts->check_clocks))
948 return 0;
949
950 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
951 return 0;
952
953 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
954 return 0;
955
956 if (!allow_nohz)
957 return 1;
958
959 tick_nohz_switch_to_nohz();
960 return 0;
961 }
This page took 0.047331 seconds and 4 git commands to generate.