rcu: delete __cpuinit usage from all rcu files
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26
27 #include <asm/irq_regs.h>
28
29 #include "tick-internal.h"
30
31 #include <trace/events/timer.h>
32
33 /*
34 * Per cpu nohz control structure
35 */
36 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37
38 /*
39 * The time, when the last jiffy update happened. Protected by jiffies_lock.
40 */
41 static ktime_t last_jiffies_update;
42
43 struct tick_sched *tick_get_tick_sched(int cpu)
44 {
45 return &per_cpu(tick_cpu_sched, cpu);
46 }
47
48 /*
49 * Must be called with interrupts disabled !
50 */
51 static void tick_do_update_jiffies64(ktime_t now)
52 {
53 unsigned long ticks = 0;
54 ktime_t delta;
55
56 /*
57 * Do a quick check without holding jiffies_lock:
58 */
59 delta = ktime_sub(now, last_jiffies_update);
60 if (delta.tv64 < tick_period.tv64)
61 return;
62
63 /* Reevalute with jiffies_lock held */
64 write_seqlock(&jiffies_lock);
65
66 delta = ktime_sub(now, last_jiffies_update);
67 if (delta.tv64 >= tick_period.tv64) {
68
69 delta = ktime_sub(delta, tick_period);
70 last_jiffies_update = ktime_add(last_jiffies_update,
71 tick_period);
72
73 /* Slow path for long timeouts */
74 if (unlikely(delta.tv64 >= tick_period.tv64)) {
75 s64 incr = ktime_to_ns(tick_period);
76
77 ticks = ktime_divns(delta, incr);
78
79 last_jiffies_update = ktime_add_ns(last_jiffies_update,
80 incr * ticks);
81 }
82 do_timer(++ticks);
83
84 /* Keep the tick_next_period variable up to date */
85 tick_next_period = ktime_add(last_jiffies_update, tick_period);
86 }
87 write_sequnlock(&jiffies_lock);
88 }
89
90 /*
91 * Initialize and return retrieve the jiffies update.
92 */
93 static ktime_t tick_init_jiffy_update(void)
94 {
95 ktime_t period;
96
97 write_seqlock(&jiffies_lock);
98 /* Did we start the jiffies update yet ? */
99 if (last_jiffies_update.tv64 == 0)
100 last_jiffies_update = tick_next_period;
101 period = last_jiffies_update;
102 write_sequnlock(&jiffies_lock);
103 return period;
104 }
105
106
107 static void tick_sched_do_timer(ktime_t now)
108 {
109 int cpu = smp_processor_id();
110
111 #ifdef CONFIG_NO_HZ_COMMON
112 /*
113 * Check if the do_timer duty was dropped. We don't care about
114 * concurrency: This happens only when the cpu in charge went
115 * into a long sleep. If two cpus happen to assign themself to
116 * this duty, then the jiffies update is still serialized by
117 * jiffies_lock.
118 */
119 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
120 && !tick_nohz_full_cpu(cpu))
121 tick_do_timer_cpu = cpu;
122 #endif
123
124 /* Check, if the jiffies need an update */
125 if (tick_do_timer_cpu == cpu)
126 tick_do_update_jiffies64(now);
127 }
128
129 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
130 {
131 #ifdef CONFIG_NO_HZ_COMMON
132 /*
133 * When we are idle and the tick is stopped, we have to touch
134 * the watchdog as we might not schedule for a really long
135 * time. This happens on complete idle SMP systems while
136 * waiting on the login prompt. We also increment the "start of
137 * idle" jiffy stamp so the idle accounting adjustment we do
138 * when we go busy again does not account too much ticks.
139 */
140 if (ts->tick_stopped) {
141 touch_softlockup_watchdog();
142 if (is_idle_task(current))
143 ts->idle_jiffies++;
144 }
145 #endif
146 update_process_times(user_mode(regs));
147 profile_tick(CPU_PROFILING);
148 }
149
150 #ifdef CONFIG_NO_HZ_FULL
151 static cpumask_var_t nohz_full_mask;
152 bool have_nohz_full_mask;
153
154 static bool can_stop_full_tick(void)
155 {
156 WARN_ON_ONCE(!irqs_disabled());
157
158 if (!sched_can_stop_tick()) {
159 trace_tick_stop(0, "more than 1 task in runqueue\n");
160 return false;
161 }
162
163 if (!posix_cpu_timers_can_stop_tick(current)) {
164 trace_tick_stop(0, "posix timers running\n");
165 return false;
166 }
167
168 if (!perf_event_can_stop_tick()) {
169 trace_tick_stop(0, "perf events running\n");
170 return false;
171 }
172
173 /* sched_clock_tick() needs us? */
174 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
175 /*
176 * TODO: kick full dynticks CPUs when
177 * sched_clock_stable is set.
178 */
179 if (!sched_clock_stable) {
180 trace_tick_stop(0, "unstable sched clock\n");
181 /*
182 * Don't allow the user to think they can get
183 * full NO_HZ with this machine.
184 */
185 WARN_ONCE(1, "NO_HZ FULL will not work with unstable sched clock");
186 return false;
187 }
188 #endif
189
190 return true;
191 }
192
193 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
194
195 /*
196 * Re-evaluate the need for the tick on the current CPU
197 * and restart it if necessary.
198 */
199 void tick_nohz_full_check(void)
200 {
201 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
202
203 if (tick_nohz_full_cpu(smp_processor_id())) {
204 if (ts->tick_stopped && !is_idle_task(current)) {
205 if (!can_stop_full_tick())
206 tick_nohz_restart_sched_tick(ts, ktime_get());
207 }
208 }
209 }
210
211 static void nohz_full_kick_work_func(struct irq_work *work)
212 {
213 tick_nohz_full_check();
214 }
215
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 .func = nohz_full_kick_work_func,
218 };
219
220 /*
221 * Kick the current CPU if it's full dynticks in order to force it to
222 * re-evaluate its dependency on the tick and restart it if necessary.
223 */
224 void tick_nohz_full_kick(void)
225 {
226 if (tick_nohz_full_cpu(smp_processor_id()))
227 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
228 }
229
230 static void nohz_full_kick_ipi(void *info)
231 {
232 tick_nohz_full_check();
233 }
234
235 /*
236 * Kick all full dynticks CPUs in order to force these to re-evaluate
237 * their dependency on the tick and restart it if necessary.
238 */
239 void tick_nohz_full_kick_all(void)
240 {
241 if (!have_nohz_full_mask)
242 return;
243
244 preempt_disable();
245 smp_call_function_many(nohz_full_mask,
246 nohz_full_kick_ipi, NULL, false);
247 preempt_enable();
248 }
249
250 /*
251 * Re-evaluate the need for the tick as we switch the current task.
252 * It might need the tick due to per task/process properties:
253 * perf events, posix cpu timers, ...
254 */
255 void tick_nohz_task_switch(struct task_struct *tsk)
256 {
257 unsigned long flags;
258
259 local_irq_save(flags);
260
261 if (!tick_nohz_full_cpu(smp_processor_id()))
262 goto out;
263
264 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
265 tick_nohz_full_kick();
266
267 out:
268 local_irq_restore(flags);
269 }
270
271 int tick_nohz_full_cpu(int cpu)
272 {
273 if (!have_nohz_full_mask)
274 return 0;
275
276 return cpumask_test_cpu(cpu, nohz_full_mask);
277 }
278
279 /* Parse the boot-time nohz CPU list from the kernel parameters. */
280 static int __init tick_nohz_full_setup(char *str)
281 {
282 int cpu;
283
284 alloc_bootmem_cpumask_var(&nohz_full_mask);
285 if (cpulist_parse(str, nohz_full_mask) < 0) {
286 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
287 return 1;
288 }
289
290 cpu = smp_processor_id();
291 if (cpumask_test_cpu(cpu, nohz_full_mask)) {
292 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
293 cpumask_clear_cpu(cpu, nohz_full_mask);
294 }
295 have_nohz_full_mask = true;
296
297 return 1;
298 }
299 __setup("nohz_full=", tick_nohz_full_setup);
300
301 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
302 unsigned long action,
303 void *hcpu)
304 {
305 unsigned int cpu = (unsigned long)hcpu;
306
307 switch (action & ~CPU_TASKS_FROZEN) {
308 case CPU_DOWN_PREPARE:
309 /*
310 * If we handle the timekeeping duty for full dynticks CPUs,
311 * we can't safely shutdown that CPU.
312 */
313 if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
314 return NOTIFY_BAD;
315 break;
316 }
317 return NOTIFY_OK;
318 }
319
320 /*
321 * Worst case string length in chunks of CPU range seems 2 steps
322 * separations: 0,2,4,6,...
323 * This is NR_CPUS + sizeof('\0')
324 */
325 static char __initdata nohz_full_buf[NR_CPUS + 1];
326
327 static int tick_nohz_init_all(void)
328 {
329 int err = -1;
330
331 #ifdef CONFIG_NO_HZ_FULL_ALL
332 if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
333 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
334 return err;
335 }
336 err = 0;
337 cpumask_setall(nohz_full_mask);
338 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
339 have_nohz_full_mask = true;
340 #endif
341 return err;
342 }
343
344 void __init tick_nohz_init(void)
345 {
346 int cpu;
347
348 if (!have_nohz_full_mask) {
349 if (tick_nohz_init_all() < 0)
350 return;
351 }
352
353 cpu_notifier(tick_nohz_cpu_down_callback, 0);
354 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
355 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
356 }
357 #else
358 #define have_nohz_full_mask (0)
359 #endif
360
361 /*
362 * NOHZ - aka dynamic tick functionality
363 */
364 #ifdef CONFIG_NO_HZ_COMMON
365 /*
366 * NO HZ enabled ?
367 */
368 int tick_nohz_enabled __read_mostly = 1;
369
370 /*
371 * Enable / Disable tickless mode
372 */
373 static int __init setup_tick_nohz(char *str)
374 {
375 if (!strcmp(str, "off"))
376 tick_nohz_enabled = 0;
377 else if (!strcmp(str, "on"))
378 tick_nohz_enabled = 1;
379 else
380 return 0;
381 return 1;
382 }
383
384 __setup("nohz=", setup_tick_nohz);
385
386 /**
387 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
388 *
389 * Called from interrupt entry when the CPU was idle
390 *
391 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
392 * must be updated. Otherwise an interrupt handler could use a stale jiffy
393 * value. We do this unconditionally on any cpu, as we don't know whether the
394 * cpu, which has the update task assigned is in a long sleep.
395 */
396 static void tick_nohz_update_jiffies(ktime_t now)
397 {
398 int cpu = smp_processor_id();
399 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
400 unsigned long flags;
401
402 ts->idle_waketime = now;
403
404 local_irq_save(flags);
405 tick_do_update_jiffies64(now);
406 local_irq_restore(flags);
407
408 touch_softlockup_watchdog();
409 }
410
411 /*
412 * Updates the per cpu time idle statistics counters
413 */
414 static void
415 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
416 {
417 ktime_t delta;
418
419 if (ts->idle_active) {
420 delta = ktime_sub(now, ts->idle_entrytime);
421 if (nr_iowait_cpu(cpu) > 0)
422 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
423 else
424 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
425 ts->idle_entrytime = now;
426 }
427
428 if (last_update_time)
429 *last_update_time = ktime_to_us(now);
430
431 }
432
433 static void tick_nohz_stop_idle(int cpu, ktime_t now)
434 {
435 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
436
437 update_ts_time_stats(cpu, ts, now, NULL);
438 ts->idle_active = 0;
439
440 sched_clock_idle_wakeup_event(0);
441 }
442
443 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
444 {
445 ktime_t now = ktime_get();
446
447 ts->idle_entrytime = now;
448 ts->idle_active = 1;
449 sched_clock_idle_sleep_event();
450 return now;
451 }
452
453 /**
454 * get_cpu_idle_time_us - get the total idle time of a cpu
455 * @cpu: CPU number to query
456 * @last_update_time: variable to store update time in. Do not update
457 * counters if NULL.
458 *
459 * Return the cummulative idle time (since boot) for a given
460 * CPU, in microseconds.
461 *
462 * This time is measured via accounting rather than sampling,
463 * and is as accurate as ktime_get() is.
464 *
465 * This function returns -1 if NOHZ is not enabled.
466 */
467 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
468 {
469 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
470 ktime_t now, idle;
471
472 if (!tick_nohz_enabled)
473 return -1;
474
475 now = ktime_get();
476 if (last_update_time) {
477 update_ts_time_stats(cpu, ts, now, last_update_time);
478 idle = ts->idle_sleeptime;
479 } else {
480 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
481 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
482
483 idle = ktime_add(ts->idle_sleeptime, delta);
484 } else {
485 idle = ts->idle_sleeptime;
486 }
487 }
488
489 return ktime_to_us(idle);
490
491 }
492 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
493
494 /**
495 * get_cpu_iowait_time_us - get the total iowait time of a cpu
496 * @cpu: CPU number to query
497 * @last_update_time: variable to store update time in. Do not update
498 * counters if NULL.
499 *
500 * Return the cummulative iowait time (since boot) for a given
501 * CPU, in microseconds.
502 *
503 * This time is measured via accounting rather than sampling,
504 * and is as accurate as ktime_get() is.
505 *
506 * This function returns -1 if NOHZ is not enabled.
507 */
508 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
509 {
510 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
511 ktime_t now, iowait;
512
513 if (!tick_nohz_enabled)
514 return -1;
515
516 now = ktime_get();
517 if (last_update_time) {
518 update_ts_time_stats(cpu, ts, now, last_update_time);
519 iowait = ts->iowait_sleeptime;
520 } else {
521 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
522 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
523
524 iowait = ktime_add(ts->iowait_sleeptime, delta);
525 } else {
526 iowait = ts->iowait_sleeptime;
527 }
528 }
529
530 return ktime_to_us(iowait);
531 }
532 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
533
534 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
535 ktime_t now, int cpu)
536 {
537 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
538 ktime_t last_update, expires, ret = { .tv64 = 0 };
539 unsigned long rcu_delta_jiffies;
540 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
541 u64 time_delta;
542
543 /* Read jiffies and the time when jiffies were updated last */
544 do {
545 seq = read_seqbegin(&jiffies_lock);
546 last_update = last_jiffies_update;
547 last_jiffies = jiffies;
548 time_delta = timekeeping_max_deferment();
549 } while (read_seqretry(&jiffies_lock, seq));
550
551 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
552 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
553 next_jiffies = last_jiffies + 1;
554 delta_jiffies = 1;
555 } else {
556 /* Get the next timer wheel timer */
557 next_jiffies = get_next_timer_interrupt(last_jiffies);
558 delta_jiffies = next_jiffies - last_jiffies;
559 if (rcu_delta_jiffies < delta_jiffies) {
560 next_jiffies = last_jiffies + rcu_delta_jiffies;
561 delta_jiffies = rcu_delta_jiffies;
562 }
563 }
564
565 /*
566 * Do not stop the tick, if we are only one off (or less)
567 * or if the cpu is required for RCU:
568 */
569 if (!ts->tick_stopped && delta_jiffies <= 1)
570 goto out;
571
572 /* Schedule the tick, if we are at least one jiffie off */
573 if ((long)delta_jiffies >= 1) {
574
575 /*
576 * If this cpu is the one which updates jiffies, then
577 * give up the assignment and let it be taken by the
578 * cpu which runs the tick timer next, which might be
579 * this cpu as well. If we don't drop this here the
580 * jiffies might be stale and do_timer() never
581 * invoked. Keep track of the fact that it was the one
582 * which had the do_timer() duty last. If this cpu is
583 * the one which had the do_timer() duty last, we
584 * limit the sleep time to the timekeeping
585 * max_deferement value which we retrieved
586 * above. Otherwise we can sleep as long as we want.
587 */
588 if (cpu == tick_do_timer_cpu) {
589 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
590 ts->do_timer_last = 1;
591 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
592 time_delta = KTIME_MAX;
593 ts->do_timer_last = 0;
594 } else if (!ts->do_timer_last) {
595 time_delta = KTIME_MAX;
596 }
597
598 #ifdef CONFIG_NO_HZ_FULL
599 if (!ts->inidle) {
600 time_delta = min(time_delta,
601 scheduler_tick_max_deferment());
602 }
603 #endif
604
605 /*
606 * calculate the expiry time for the next timer wheel
607 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
608 * that there is no timer pending or at least extremely
609 * far into the future (12 days for HZ=1000). In this
610 * case we set the expiry to the end of time.
611 */
612 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
613 /*
614 * Calculate the time delta for the next timer event.
615 * If the time delta exceeds the maximum time delta
616 * permitted by the current clocksource then adjust
617 * the time delta accordingly to ensure the
618 * clocksource does not wrap.
619 */
620 time_delta = min_t(u64, time_delta,
621 tick_period.tv64 * delta_jiffies);
622 }
623
624 if (time_delta < KTIME_MAX)
625 expires = ktime_add_ns(last_update, time_delta);
626 else
627 expires.tv64 = KTIME_MAX;
628
629 /* Skip reprogram of event if its not changed */
630 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
631 goto out;
632
633 ret = expires;
634
635 /*
636 * nohz_stop_sched_tick can be called several times before
637 * the nohz_restart_sched_tick is called. This happens when
638 * interrupts arrive which do not cause a reschedule. In the
639 * first call we save the current tick time, so we can restart
640 * the scheduler tick in nohz_restart_sched_tick.
641 */
642 if (!ts->tick_stopped) {
643 nohz_balance_enter_idle(cpu);
644 calc_load_enter_idle();
645
646 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
647 ts->tick_stopped = 1;
648 trace_tick_stop(1, " ");
649 }
650
651 /*
652 * If the expiration time == KTIME_MAX, then
653 * in this case we simply stop the tick timer.
654 */
655 if (unlikely(expires.tv64 == KTIME_MAX)) {
656 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
657 hrtimer_cancel(&ts->sched_timer);
658 goto out;
659 }
660
661 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
662 hrtimer_start(&ts->sched_timer, expires,
663 HRTIMER_MODE_ABS_PINNED);
664 /* Check, if the timer was already in the past */
665 if (hrtimer_active(&ts->sched_timer))
666 goto out;
667 } else if (!tick_program_event(expires, 0))
668 goto out;
669 /*
670 * We are past the event already. So we crossed a
671 * jiffie boundary. Update jiffies and raise the
672 * softirq.
673 */
674 tick_do_update_jiffies64(ktime_get());
675 }
676 raise_softirq_irqoff(TIMER_SOFTIRQ);
677 out:
678 ts->next_jiffies = next_jiffies;
679 ts->last_jiffies = last_jiffies;
680 ts->sleep_length = ktime_sub(dev->next_event, now);
681
682 return ret;
683 }
684
685 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
686 {
687 #ifdef CONFIG_NO_HZ_FULL
688 int cpu = smp_processor_id();
689
690 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
691 return;
692
693 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
694 return;
695
696 if (!can_stop_full_tick())
697 return;
698
699 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
700 #endif
701 }
702
703 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
704 {
705 /*
706 * If this cpu is offline and it is the one which updates
707 * jiffies, then give up the assignment and let it be taken by
708 * the cpu which runs the tick timer next. If we don't drop
709 * this here the jiffies might be stale and do_timer() never
710 * invoked.
711 */
712 if (unlikely(!cpu_online(cpu))) {
713 if (cpu == tick_do_timer_cpu)
714 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
715 return false;
716 }
717
718 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
719 return false;
720
721 if (need_resched())
722 return false;
723
724 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
725 static int ratelimit;
726
727 if (ratelimit < 10 &&
728 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
729 pr_warn("NOHZ: local_softirq_pending %02x\n",
730 (unsigned int) local_softirq_pending());
731 ratelimit++;
732 }
733 return false;
734 }
735
736 if (have_nohz_full_mask) {
737 /*
738 * Keep the tick alive to guarantee timekeeping progression
739 * if there are full dynticks CPUs around
740 */
741 if (tick_do_timer_cpu == cpu)
742 return false;
743 /*
744 * Boot safety: make sure the timekeeping duty has been
745 * assigned before entering dyntick-idle mode,
746 */
747 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
748 return false;
749 }
750
751 return true;
752 }
753
754 static void __tick_nohz_idle_enter(struct tick_sched *ts)
755 {
756 ktime_t now, expires;
757 int cpu = smp_processor_id();
758
759 now = tick_nohz_start_idle(cpu, ts);
760
761 if (can_stop_idle_tick(cpu, ts)) {
762 int was_stopped = ts->tick_stopped;
763
764 ts->idle_calls++;
765
766 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
767 if (expires.tv64 > 0LL) {
768 ts->idle_sleeps++;
769 ts->idle_expires = expires;
770 }
771
772 if (!was_stopped && ts->tick_stopped)
773 ts->idle_jiffies = ts->last_jiffies;
774 }
775 }
776
777 /**
778 * tick_nohz_idle_enter - stop the idle tick from the idle task
779 *
780 * When the next event is more than a tick into the future, stop the idle tick
781 * Called when we start the idle loop.
782 *
783 * The arch is responsible of calling:
784 *
785 * - rcu_idle_enter() after its last use of RCU before the CPU is put
786 * to sleep.
787 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
788 */
789 void tick_nohz_idle_enter(void)
790 {
791 struct tick_sched *ts;
792
793 WARN_ON_ONCE(irqs_disabled());
794
795 /*
796 * Update the idle state in the scheduler domain hierarchy
797 * when tick_nohz_stop_sched_tick() is called from the idle loop.
798 * State will be updated to busy during the first busy tick after
799 * exiting idle.
800 */
801 set_cpu_sd_state_idle();
802
803 local_irq_disable();
804
805 ts = &__get_cpu_var(tick_cpu_sched);
806 /*
807 * set ts->inidle unconditionally. even if the system did not
808 * switch to nohz mode the cpu frequency governers rely on the
809 * update of the idle time accounting in tick_nohz_start_idle().
810 */
811 ts->inidle = 1;
812 __tick_nohz_idle_enter(ts);
813
814 local_irq_enable();
815 }
816 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
817
818 /**
819 * tick_nohz_irq_exit - update next tick event from interrupt exit
820 *
821 * When an interrupt fires while we are idle and it doesn't cause
822 * a reschedule, it may still add, modify or delete a timer, enqueue
823 * an RCU callback, etc...
824 * So we need to re-calculate and reprogram the next tick event.
825 */
826 void tick_nohz_irq_exit(void)
827 {
828 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
829
830 if (ts->inidle) {
831 /* Cancel the timer because CPU already waken up from the C-states*/
832 menu_hrtimer_cancel();
833 __tick_nohz_idle_enter(ts);
834 } else {
835 tick_nohz_full_stop_tick(ts);
836 }
837 }
838
839 /**
840 * tick_nohz_get_sleep_length - return the length of the current sleep
841 *
842 * Called from power state control code with interrupts disabled
843 */
844 ktime_t tick_nohz_get_sleep_length(void)
845 {
846 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
847
848 return ts->sleep_length;
849 }
850
851 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
852 {
853 hrtimer_cancel(&ts->sched_timer);
854 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
855
856 while (1) {
857 /* Forward the time to expire in the future */
858 hrtimer_forward(&ts->sched_timer, now, tick_period);
859
860 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
861 hrtimer_start_expires(&ts->sched_timer,
862 HRTIMER_MODE_ABS_PINNED);
863 /* Check, if the timer was already in the past */
864 if (hrtimer_active(&ts->sched_timer))
865 break;
866 } else {
867 if (!tick_program_event(
868 hrtimer_get_expires(&ts->sched_timer), 0))
869 break;
870 }
871 /* Reread time and update jiffies */
872 now = ktime_get();
873 tick_do_update_jiffies64(now);
874 }
875 }
876
877 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
878 {
879 /* Update jiffies first */
880 tick_do_update_jiffies64(now);
881 update_cpu_load_nohz();
882
883 calc_load_exit_idle();
884 touch_softlockup_watchdog();
885 /*
886 * Cancel the scheduled timer and restore the tick
887 */
888 ts->tick_stopped = 0;
889 ts->idle_exittime = now;
890
891 tick_nohz_restart(ts, now);
892 }
893
894 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
895 {
896 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
897 unsigned long ticks;
898
899 if (vtime_accounting_enabled())
900 return;
901 /*
902 * We stopped the tick in idle. Update process times would miss the
903 * time we slept as update_process_times does only a 1 tick
904 * accounting. Enforce that this is accounted to idle !
905 */
906 ticks = jiffies - ts->idle_jiffies;
907 /*
908 * We might be one off. Do not randomly account a huge number of ticks!
909 */
910 if (ticks && ticks < LONG_MAX)
911 account_idle_ticks(ticks);
912 #endif
913 }
914
915 /**
916 * tick_nohz_idle_exit - restart the idle tick from the idle task
917 *
918 * Restart the idle tick when the CPU is woken up from idle
919 * This also exit the RCU extended quiescent state. The CPU
920 * can use RCU again after this function is called.
921 */
922 void tick_nohz_idle_exit(void)
923 {
924 int cpu = smp_processor_id();
925 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
926 ktime_t now;
927
928 local_irq_disable();
929
930 WARN_ON_ONCE(!ts->inidle);
931
932 ts->inidle = 0;
933
934 /* Cancel the timer because CPU already waken up from the C-states*/
935 menu_hrtimer_cancel();
936 if (ts->idle_active || ts->tick_stopped)
937 now = ktime_get();
938
939 if (ts->idle_active)
940 tick_nohz_stop_idle(cpu, now);
941
942 if (ts->tick_stopped) {
943 tick_nohz_restart_sched_tick(ts, now);
944 tick_nohz_account_idle_ticks(ts);
945 }
946
947 local_irq_enable();
948 }
949 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
950
951 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
952 {
953 hrtimer_forward(&ts->sched_timer, now, tick_period);
954 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
955 }
956
957 /*
958 * The nohz low res interrupt handler
959 */
960 static void tick_nohz_handler(struct clock_event_device *dev)
961 {
962 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
963 struct pt_regs *regs = get_irq_regs();
964 ktime_t now = ktime_get();
965
966 dev->next_event.tv64 = KTIME_MAX;
967
968 tick_sched_do_timer(now);
969 tick_sched_handle(ts, regs);
970
971 while (tick_nohz_reprogram(ts, now)) {
972 now = ktime_get();
973 tick_do_update_jiffies64(now);
974 }
975 }
976
977 /**
978 * tick_nohz_switch_to_nohz - switch to nohz mode
979 */
980 static void tick_nohz_switch_to_nohz(void)
981 {
982 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
983 ktime_t next;
984
985 if (!tick_nohz_enabled)
986 return;
987
988 local_irq_disable();
989 if (tick_switch_to_oneshot(tick_nohz_handler)) {
990 local_irq_enable();
991 return;
992 }
993
994 ts->nohz_mode = NOHZ_MODE_LOWRES;
995
996 /*
997 * Recycle the hrtimer in ts, so we can share the
998 * hrtimer_forward with the highres code.
999 */
1000 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1001 /* Get the next period */
1002 next = tick_init_jiffy_update();
1003
1004 for (;;) {
1005 hrtimer_set_expires(&ts->sched_timer, next);
1006 if (!tick_program_event(next, 0))
1007 break;
1008 next = ktime_add(next, tick_period);
1009 }
1010 local_irq_enable();
1011 }
1012
1013 /*
1014 * When NOHZ is enabled and the tick is stopped, we need to kick the
1015 * tick timer from irq_enter() so that the jiffies update is kept
1016 * alive during long running softirqs. That's ugly as hell, but
1017 * correctness is key even if we need to fix the offending softirq in
1018 * the first place.
1019 *
1020 * Note, this is different to tick_nohz_restart. We just kick the
1021 * timer and do not touch the other magic bits which need to be done
1022 * when idle is left.
1023 */
1024 static void tick_nohz_kick_tick(int cpu, ktime_t now)
1025 {
1026 #if 0
1027 /* Switch back to 2.6.27 behaviour */
1028
1029 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1030 ktime_t delta;
1031
1032 /*
1033 * Do not touch the tick device, when the next expiry is either
1034 * already reached or less/equal than the tick period.
1035 */
1036 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1037 if (delta.tv64 <= tick_period.tv64)
1038 return;
1039
1040 tick_nohz_restart(ts, now);
1041 #endif
1042 }
1043
1044 static inline void tick_check_nohz(int cpu)
1045 {
1046 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1047 ktime_t now;
1048
1049 if (!ts->idle_active && !ts->tick_stopped)
1050 return;
1051 now = ktime_get();
1052 if (ts->idle_active)
1053 tick_nohz_stop_idle(cpu, now);
1054 if (ts->tick_stopped) {
1055 tick_nohz_update_jiffies(now);
1056 tick_nohz_kick_tick(cpu, now);
1057 }
1058 }
1059
1060 #else
1061
1062 static inline void tick_nohz_switch_to_nohz(void) { }
1063 static inline void tick_check_nohz(int cpu) { }
1064
1065 #endif /* CONFIG_NO_HZ_COMMON */
1066
1067 /*
1068 * Called from irq_enter to notify about the possible interruption of idle()
1069 */
1070 void tick_check_idle(int cpu)
1071 {
1072 tick_check_oneshot_broadcast(cpu);
1073 tick_check_nohz(cpu);
1074 }
1075
1076 /*
1077 * High resolution timer specific code
1078 */
1079 #ifdef CONFIG_HIGH_RES_TIMERS
1080 /*
1081 * We rearm the timer until we get disabled by the idle code.
1082 * Called with interrupts disabled.
1083 */
1084 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1085 {
1086 struct tick_sched *ts =
1087 container_of(timer, struct tick_sched, sched_timer);
1088 struct pt_regs *regs = get_irq_regs();
1089 ktime_t now = ktime_get();
1090
1091 tick_sched_do_timer(now);
1092
1093 /*
1094 * Do not call, when we are not in irq context and have
1095 * no valid regs pointer
1096 */
1097 if (regs)
1098 tick_sched_handle(ts, regs);
1099
1100 hrtimer_forward(timer, now, tick_period);
1101
1102 return HRTIMER_RESTART;
1103 }
1104
1105 static int sched_skew_tick;
1106
1107 static int __init skew_tick(char *str)
1108 {
1109 get_option(&str, &sched_skew_tick);
1110
1111 return 0;
1112 }
1113 early_param("skew_tick", skew_tick);
1114
1115 /**
1116 * tick_setup_sched_timer - setup the tick emulation timer
1117 */
1118 void tick_setup_sched_timer(void)
1119 {
1120 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1121 ktime_t now = ktime_get();
1122
1123 /*
1124 * Emulate tick processing via per-CPU hrtimers:
1125 */
1126 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1127 ts->sched_timer.function = tick_sched_timer;
1128
1129 /* Get the next period (per cpu) */
1130 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1131
1132 /* Offset the tick to avert jiffies_lock contention. */
1133 if (sched_skew_tick) {
1134 u64 offset = ktime_to_ns(tick_period) >> 1;
1135 do_div(offset, num_possible_cpus());
1136 offset *= smp_processor_id();
1137 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1138 }
1139
1140 for (;;) {
1141 hrtimer_forward(&ts->sched_timer, now, tick_period);
1142 hrtimer_start_expires(&ts->sched_timer,
1143 HRTIMER_MODE_ABS_PINNED);
1144 /* Check, if the timer was already in the past */
1145 if (hrtimer_active(&ts->sched_timer))
1146 break;
1147 now = ktime_get();
1148 }
1149
1150 #ifdef CONFIG_NO_HZ_COMMON
1151 if (tick_nohz_enabled)
1152 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1153 #endif
1154 }
1155 #endif /* HIGH_RES_TIMERS */
1156
1157 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1158 void tick_cancel_sched_timer(int cpu)
1159 {
1160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1161
1162 # ifdef CONFIG_HIGH_RES_TIMERS
1163 if (ts->sched_timer.base)
1164 hrtimer_cancel(&ts->sched_timer);
1165 # endif
1166
1167 memset(ts, 0, sizeof(*ts));
1168 }
1169 #endif
1170
1171 /**
1172 * Async notification about clocksource changes
1173 */
1174 void tick_clock_notify(void)
1175 {
1176 int cpu;
1177
1178 for_each_possible_cpu(cpu)
1179 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1180 }
1181
1182 /*
1183 * Async notification about clock event changes
1184 */
1185 void tick_oneshot_notify(void)
1186 {
1187 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1188
1189 set_bit(0, &ts->check_clocks);
1190 }
1191
1192 /**
1193 * Check, if a change happened, which makes oneshot possible.
1194 *
1195 * Called cyclic from the hrtimer softirq (driven by the timer
1196 * softirq) allow_nohz signals, that we can switch into low-res nohz
1197 * mode, because high resolution timers are disabled (either compile
1198 * or runtime).
1199 */
1200 int tick_check_oneshot_change(int allow_nohz)
1201 {
1202 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1203
1204 if (!test_and_clear_bit(0, &ts->check_clocks))
1205 return 0;
1206
1207 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1208 return 0;
1209
1210 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1211 return 0;
1212
1213 if (!allow_nohz)
1214 return 1;
1215
1216 tick_nohz_switch_to_nohz();
1217 return 0;
1218 }
This page took 0.078836 seconds and 5 git commands to generate.