Merge branch 'timers/nohz-posix-timers-v2' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24
25 #include <asm/irq_regs.h>
26
27 #include "tick-internal.h"
28
29 /*
30 * Per cpu nohz control structure
31 */
32 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33
34 /*
35 * The time, when the last jiffy update happened. Protected by jiffies_lock.
36 */
37 static ktime_t last_jiffies_update;
38
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 return &per_cpu(tick_cpu_sched, cpu);
42 }
43
44 /*
45 * Must be called with interrupts disabled !
46 */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 unsigned long ticks = 0;
50 ktime_t delta;
51
52 /*
53 * Do a quick check without holding jiffies_lock:
54 */
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
58
59 /* Reevalute with jiffies_lock held */
60 write_seqlock(&jiffies_lock);
61
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
64
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
68
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
72
73 ticks = ktime_divns(delta, incr);
74
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
77 }
78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 }
83 write_sequnlock(&jiffies_lock);
84 }
85
86 /*
87 * Initialize and return retrieve the jiffies update.
88 */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 ktime_t period;
92
93 write_seqlock(&jiffies_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&jiffies_lock);
99 return period;
100 }
101
102
103 static void tick_sched_do_timer(ktime_t now)
104 {
105 int cpu = smp_processor_id();
106
107 #ifdef CONFIG_NO_HZ_COMMON
108 /*
109 * Check if the do_timer duty was dropped. We don't care about
110 * concurrency: This happens only when the cpu in charge went
111 * into a long sleep. If two cpus happen to assign themself to
112 * this duty, then the jiffies update is still serialized by
113 * jiffies_lock.
114 */
115 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
116 && !tick_nohz_full_cpu(cpu))
117 tick_do_timer_cpu = cpu;
118 #endif
119
120 /* Check, if the jiffies need an update */
121 if (tick_do_timer_cpu == cpu)
122 tick_do_update_jiffies64(now);
123 }
124
125 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
126 {
127 #ifdef CONFIG_NO_HZ_COMMON
128 /*
129 * When we are idle and the tick is stopped, we have to touch
130 * the watchdog as we might not schedule for a really long
131 * time. This happens on complete idle SMP systems while
132 * waiting on the login prompt. We also increment the "start of
133 * idle" jiffy stamp so the idle accounting adjustment we do
134 * when we go busy again does not account too much ticks.
135 */
136 if (ts->tick_stopped) {
137 touch_softlockup_watchdog();
138 if (is_idle_task(current))
139 ts->idle_jiffies++;
140 }
141 #endif
142 update_process_times(user_mode(regs));
143 profile_tick(CPU_PROFILING);
144 }
145
146 #ifdef CONFIG_NO_HZ_FULL
147 static cpumask_var_t nohz_full_mask;
148 bool have_nohz_full_mask;
149
150 /*
151 * Re-evaluate the need for the tick on the current CPU
152 * and restart it if necessary.
153 */
154 static void tick_nohz_full_check(void)
155 {
156 /*
157 * STUB for now, will be filled with the full tick stop/restart
158 * infrastructure patches
159 */
160 }
161
162 static void nohz_full_kick_work_func(struct irq_work *work)
163 {
164 tick_nohz_full_check();
165 }
166
167 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
168 .func = nohz_full_kick_work_func,
169 };
170
171 /*
172 * Kick the current CPU if it's full dynticks in order to force it to
173 * re-evaluate its dependency on the tick and restart it if necessary.
174 */
175 void tick_nohz_full_kick(void)
176 {
177 if (tick_nohz_full_cpu(smp_processor_id()))
178 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
179 }
180
181 static void nohz_full_kick_ipi(void *info)
182 {
183 tick_nohz_full_check();
184 }
185
186 /*
187 * Kick all full dynticks CPUs in order to force these to re-evaluate
188 * their dependency on the tick and restart it if necessary.
189 */
190 void tick_nohz_full_kick_all(void)
191 {
192 if (!have_nohz_full_mask)
193 return;
194
195 preempt_disable();
196 smp_call_function_many(nohz_full_mask,
197 nohz_full_kick_ipi, NULL, false);
198 preempt_enable();
199 }
200
201 int tick_nohz_full_cpu(int cpu)
202 {
203 if (!have_nohz_full_mask)
204 return 0;
205
206 return cpumask_test_cpu(cpu, nohz_full_mask);
207 }
208
209 /* Parse the boot-time nohz CPU list from the kernel parameters. */
210 static int __init tick_nohz_full_setup(char *str)
211 {
212 int cpu;
213
214 alloc_bootmem_cpumask_var(&nohz_full_mask);
215 if (cpulist_parse(str, nohz_full_mask) < 0) {
216 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
217 return 1;
218 }
219
220 cpu = smp_processor_id();
221 if (cpumask_test_cpu(cpu, nohz_full_mask)) {
222 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
223 cpumask_clear_cpu(cpu, nohz_full_mask);
224 }
225 have_nohz_full_mask = true;
226
227 return 1;
228 }
229 __setup("nohz_full=", tick_nohz_full_setup);
230
231 static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
232 unsigned long action,
233 void *hcpu)
234 {
235 unsigned int cpu = (unsigned long)hcpu;
236
237 switch (action & ~CPU_TASKS_FROZEN) {
238 case CPU_DOWN_PREPARE:
239 /*
240 * If we handle the timekeeping duty for full dynticks CPUs,
241 * we can't safely shutdown that CPU.
242 */
243 if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
244 return -EINVAL;
245 break;
246 }
247 return NOTIFY_OK;
248 }
249
250 /*
251 * Worst case string length in chunks of CPU range seems 2 steps
252 * separations: 0,2,4,6,...
253 * This is NR_CPUS + sizeof('\0')
254 */
255 static char __initdata nohz_full_buf[NR_CPUS + 1];
256
257 static int tick_nohz_init_all(void)
258 {
259 int err = -1;
260
261 #ifdef CONFIG_NO_HZ_FULL_ALL
262 if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
263 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
264 return err;
265 }
266 err = 0;
267 cpumask_setall(nohz_full_mask);
268 cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
269 have_nohz_full_mask = true;
270 #endif
271 return err;
272 }
273
274 void __init tick_nohz_init(void)
275 {
276 int cpu;
277
278 if (!have_nohz_full_mask) {
279 if (tick_nohz_init_all() < 0)
280 return;
281 }
282
283 cpu_notifier(tick_nohz_cpu_down_callback, 0);
284
285 /* Make sure full dynticks CPU are also RCU nocbs */
286 for_each_cpu(cpu, nohz_full_mask) {
287 if (!rcu_is_nocb_cpu(cpu)) {
288 pr_warning("NO_HZ: CPU %d is not RCU nocb: "
289 "cleared from nohz_full range", cpu);
290 cpumask_clear_cpu(cpu, nohz_full_mask);
291 }
292 }
293
294 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
295 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
296 }
297 #else
298 #define have_nohz_full_mask (0)
299 #endif
300
301 /*
302 * NOHZ - aka dynamic tick functionality
303 */
304 #ifdef CONFIG_NO_HZ_COMMON
305 /*
306 * NO HZ enabled ?
307 */
308 int tick_nohz_enabled __read_mostly = 1;
309
310 /*
311 * Enable / Disable tickless mode
312 */
313 static int __init setup_tick_nohz(char *str)
314 {
315 if (!strcmp(str, "off"))
316 tick_nohz_enabled = 0;
317 else if (!strcmp(str, "on"))
318 tick_nohz_enabled = 1;
319 else
320 return 0;
321 return 1;
322 }
323
324 __setup("nohz=", setup_tick_nohz);
325
326 /**
327 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
328 *
329 * Called from interrupt entry when the CPU was idle
330 *
331 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
332 * must be updated. Otherwise an interrupt handler could use a stale jiffy
333 * value. We do this unconditionally on any cpu, as we don't know whether the
334 * cpu, which has the update task assigned is in a long sleep.
335 */
336 static void tick_nohz_update_jiffies(ktime_t now)
337 {
338 int cpu = smp_processor_id();
339 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
340 unsigned long flags;
341
342 ts->idle_waketime = now;
343
344 local_irq_save(flags);
345 tick_do_update_jiffies64(now);
346 local_irq_restore(flags);
347
348 touch_softlockup_watchdog();
349 }
350
351 /*
352 * Updates the per cpu time idle statistics counters
353 */
354 static void
355 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
356 {
357 ktime_t delta;
358
359 if (ts->idle_active) {
360 delta = ktime_sub(now, ts->idle_entrytime);
361 if (nr_iowait_cpu(cpu) > 0)
362 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
363 else
364 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
365 ts->idle_entrytime = now;
366 }
367
368 if (last_update_time)
369 *last_update_time = ktime_to_us(now);
370
371 }
372
373 static void tick_nohz_stop_idle(int cpu, ktime_t now)
374 {
375 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
376
377 update_ts_time_stats(cpu, ts, now, NULL);
378 ts->idle_active = 0;
379
380 sched_clock_idle_wakeup_event(0);
381 }
382
383 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
384 {
385 ktime_t now = ktime_get();
386
387 ts->idle_entrytime = now;
388 ts->idle_active = 1;
389 sched_clock_idle_sleep_event();
390 return now;
391 }
392
393 /**
394 * get_cpu_idle_time_us - get the total idle time of a cpu
395 * @cpu: CPU number to query
396 * @last_update_time: variable to store update time in. Do not update
397 * counters if NULL.
398 *
399 * Return the cummulative idle time (since boot) for a given
400 * CPU, in microseconds.
401 *
402 * This time is measured via accounting rather than sampling,
403 * and is as accurate as ktime_get() is.
404 *
405 * This function returns -1 if NOHZ is not enabled.
406 */
407 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
408 {
409 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
410 ktime_t now, idle;
411
412 if (!tick_nohz_enabled)
413 return -1;
414
415 now = ktime_get();
416 if (last_update_time) {
417 update_ts_time_stats(cpu, ts, now, last_update_time);
418 idle = ts->idle_sleeptime;
419 } else {
420 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
421 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
422
423 idle = ktime_add(ts->idle_sleeptime, delta);
424 } else {
425 idle = ts->idle_sleeptime;
426 }
427 }
428
429 return ktime_to_us(idle);
430
431 }
432 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
433
434 /**
435 * get_cpu_iowait_time_us - get the total iowait time of a cpu
436 * @cpu: CPU number to query
437 * @last_update_time: variable to store update time in. Do not update
438 * counters if NULL.
439 *
440 * Return the cummulative iowait time (since boot) for a given
441 * CPU, in microseconds.
442 *
443 * This time is measured via accounting rather than sampling,
444 * and is as accurate as ktime_get() is.
445 *
446 * This function returns -1 if NOHZ is not enabled.
447 */
448 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
449 {
450 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
451 ktime_t now, iowait;
452
453 if (!tick_nohz_enabled)
454 return -1;
455
456 now = ktime_get();
457 if (last_update_time) {
458 update_ts_time_stats(cpu, ts, now, last_update_time);
459 iowait = ts->iowait_sleeptime;
460 } else {
461 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
462 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
463
464 iowait = ktime_add(ts->iowait_sleeptime, delta);
465 } else {
466 iowait = ts->iowait_sleeptime;
467 }
468 }
469
470 return ktime_to_us(iowait);
471 }
472 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
473
474 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
475 ktime_t now, int cpu)
476 {
477 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
478 ktime_t last_update, expires, ret = { .tv64 = 0 };
479 unsigned long rcu_delta_jiffies;
480 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
481 u64 time_delta;
482
483 /* Read jiffies and the time when jiffies were updated last */
484 do {
485 seq = read_seqbegin(&jiffies_lock);
486 last_update = last_jiffies_update;
487 last_jiffies = jiffies;
488 time_delta = timekeeping_max_deferment();
489 } while (read_seqretry(&jiffies_lock, seq));
490
491 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
492 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
493 next_jiffies = last_jiffies + 1;
494 delta_jiffies = 1;
495 } else {
496 /* Get the next timer wheel timer */
497 next_jiffies = get_next_timer_interrupt(last_jiffies);
498 delta_jiffies = next_jiffies - last_jiffies;
499 if (rcu_delta_jiffies < delta_jiffies) {
500 next_jiffies = last_jiffies + rcu_delta_jiffies;
501 delta_jiffies = rcu_delta_jiffies;
502 }
503 }
504 /*
505 * Do not stop the tick, if we are only one off
506 * or if the cpu is required for rcu
507 */
508 if (!ts->tick_stopped && delta_jiffies == 1)
509 goto out;
510
511 /* Schedule the tick, if we are at least one jiffie off */
512 if ((long)delta_jiffies >= 1) {
513
514 /*
515 * If this cpu is the one which updates jiffies, then
516 * give up the assignment and let it be taken by the
517 * cpu which runs the tick timer next, which might be
518 * this cpu as well. If we don't drop this here the
519 * jiffies might be stale and do_timer() never
520 * invoked. Keep track of the fact that it was the one
521 * which had the do_timer() duty last. If this cpu is
522 * the one which had the do_timer() duty last, we
523 * limit the sleep time to the timekeeping
524 * max_deferement value which we retrieved
525 * above. Otherwise we can sleep as long as we want.
526 */
527 if (cpu == tick_do_timer_cpu) {
528 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
529 ts->do_timer_last = 1;
530 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
531 time_delta = KTIME_MAX;
532 ts->do_timer_last = 0;
533 } else if (!ts->do_timer_last) {
534 time_delta = KTIME_MAX;
535 }
536
537 /*
538 * calculate the expiry time for the next timer wheel
539 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
540 * that there is no timer pending or at least extremely
541 * far into the future (12 days for HZ=1000). In this
542 * case we set the expiry to the end of time.
543 */
544 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
545 /*
546 * Calculate the time delta for the next timer event.
547 * If the time delta exceeds the maximum time delta
548 * permitted by the current clocksource then adjust
549 * the time delta accordingly to ensure the
550 * clocksource does not wrap.
551 */
552 time_delta = min_t(u64, time_delta,
553 tick_period.tv64 * delta_jiffies);
554 }
555
556 if (time_delta < KTIME_MAX)
557 expires = ktime_add_ns(last_update, time_delta);
558 else
559 expires.tv64 = KTIME_MAX;
560
561 /* Skip reprogram of event if its not changed */
562 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
563 goto out;
564
565 ret = expires;
566
567 /*
568 * nohz_stop_sched_tick can be called several times before
569 * the nohz_restart_sched_tick is called. This happens when
570 * interrupts arrive which do not cause a reschedule. In the
571 * first call we save the current tick time, so we can restart
572 * the scheduler tick in nohz_restart_sched_tick.
573 */
574 if (!ts->tick_stopped) {
575 nohz_balance_enter_idle(cpu);
576 calc_load_enter_idle();
577
578 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
579 ts->tick_stopped = 1;
580 }
581
582 /*
583 * If the expiration time == KTIME_MAX, then
584 * in this case we simply stop the tick timer.
585 */
586 if (unlikely(expires.tv64 == KTIME_MAX)) {
587 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
588 hrtimer_cancel(&ts->sched_timer);
589 goto out;
590 }
591
592 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
593 hrtimer_start(&ts->sched_timer, expires,
594 HRTIMER_MODE_ABS_PINNED);
595 /* Check, if the timer was already in the past */
596 if (hrtimer_active(&ts->sched_timer))
597 goto out;
598 } else if (!tick_program_event(expires, 0))
599 goto out;
600 /*
601 * We are past the event already. So we crossed a
602 * jiffie boundary. Update jiffies and raise the
603 * softirq.
604 */
605 tick_do_update_jiffies64(ktime_get());
606 }
607 raise_softirq_irqoff(TIMER_SOFTIRQ);
608 out:
609 ts->next_jiffies = next_jiffies;
610 ts->last_jiffies = last_jiffies;
611 ts->sleep_length = ktime_sub(dev->next_event, now);
612
613 return ret;
614 }
615
616 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
617 {
618 /*
619 * If this cpu is offline and it is the one which updates
620 * jiffies, then give up the assignment and let it be taken by
621 * the cpu which runs the tick timer next. If we don't drop
622 * this here the jiffies might be stale and do_timer() never
623 * invoked.
624 */
625 if (unlikely(!cpu_online(cpu))) {
626 if (cpu == tick_do_timer_cpu)
627 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
628 }
629
630 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
631 return false;
632
633 if (need_resched())
634 return false;
635
636 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
637 static int ratelimit;
638
639 if (ratelimit < 10 &&
640 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
641 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
642 (unsigned int) local_softirq_pending());
643 ratelimit++;
644 }
645 return false;
646 }
647
648 if (have_nohz_full_mask) {
649 /*
650 * Keep the tick alive to guarantee timekeeping progression
651 * if there are full dynticks CPUs around
652 */
653 if (tick_do_timer_cpu == cpu)
654 return false;
655 /*
656 * Boot safety: make sure the timekeeping duty has been
657 * assigned before entering dyntick-idle mode,
658 */
659 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
660 return false;
661 }
662
663 return true;
664 }
665
666 static void __tick_nohz_idle_enter(struct tick_sched *ts)
667 {
668 ktime_t now, expires;
669 int cpu = smp_processor_id();
670
671 now = tick_nohz_start_idle(cpu, ts);
672
673 if (can_stop_idle_tick(cpu, ts)) {
674 int was_stopped = ts->tick_stopped;
675
676 ts->idle_calls++;
677
678 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
679 if (expires.tv64 > 0LL) {
680 ts->idle_sleeps++;
681 ts->idle_expires = expires;
682 }
683
684 if (!was_stopped && ts->tick_stopped)
685 ts->idle_jiffies = ts->last_jiffies;
686 }
687 }
688
689 /**
690 * tick_nohz_idle_enter - stop the idle tick from the idle task
691 *
692 * When the next event is more than a tick into the future, stop the idle tick
693 * Called when we start the idle loop.
694 *
695 * The arch is responsible of calling:
696 *
697 * - rcu_idle_enter() after its last use of RCU before the CPU is put
698 * to sleep.
699 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
700 */
701 void tick_nohz_idle_enter(void)
702 {
703 struct tick_sched *ts;
704
705 WARN_ON_ONCE(irqs_disabled());
706
707 /*
708 * Update the idle state in the scheduler domain hierarchy
709 * when tick_nohz_stop_sched_tick() is called from the idle loop.
710 * State will be updated to busy during the first busy tick after
711 * exiting idle.
712 */
713 set_cpu_sd_state_idle();
714
715 local_irq_disable();
716
717 ts = &__get_cpu_var(tick_cpu_sched);
718 /*
719 * set ts->inidle unconditionally. even if the system did not
720 * switch to nohz mode the cpu frequency governers rely on the
721 * update of the idle time accounting in tick_nohz_start_idle().
722 */
723 ts->inidle = 1;
724 __tick_nohz_idle_enter(ts);
725
726 local_irq_enable();
727 }
728 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
729
730 /**
731 * tick_nohz_irq_exit - update next tick event from interrupt exit
732 *
733 * When an interrupt fires while we are idle and it doesn't cause
734 * a reschedule, it may still add, modify or delete a timer, enqueue
735 * an RCU callback, etc...
736 * So we need to re-calculate and reprogram the next tick event.
737 */
738 void tick_nohz_irq_exit(void)
739 {
740 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
741
742 if (!ts->inidle)
743 return;
744
745 /* Cancel the timer because CPU already waken up from the C-states*/
746 menu_hrtimer_cancel();
747 __tick_nohz_idle_enter(ts);
748 }
749
750 /**
751 * tick_nohz_get_sleep_length - return the length of the current sleep
752 *
753 * Called from power state control code with interrupts disabled
754 */
755 ktime_t tick_nohz_get_sleep_length(void)
756 {
757 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
758
759 return ts->sleep_length;
760 }
761
762 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
763 {
764 hrtimer_cancel(&ts->sched_timer);
765 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
766
767 while (1) {
768 /* Forward the time to expire in the future */
769 hrtimer_forward(&ts->sched_timer, now, tick_period);
770
771 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
772 hrtimer_start_expires(&ts->sched_timer,
773 HRTIMER_MODE_ABS_PINNED);
774 /* Check, if the timer was already in the past */
775 if (hrtimer_active(&ts->sched_timer))
776 break;
777 } else {
778 if (!tick_program_event(
779 hrtimer_get_expires(&ts->sched_timer), 0))
780 break;
781 }
782 /* Reread time and update jiffies */
783 now = ktime_get();
784 tick_do_update_jiffies64(now);
785 }
786 }
787
788 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
789 {
790 /* Update jiffies first */
791 tick_do_update_jiffies64(now);
792 update_cpu_load_nohz();
793
794 calc_load_exit_idle();
795 touch_softlockup_watchdog();
796 /*
797 * Cancel the scheduled timer and restore the tick
798 */
799 ts->tick_stopped = 0;
800 ts->idle_exittime = now;
801
802 tick_nohz_restart(ts, now);
803 }
804
805 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
806 {
807 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
808 unsigned long ticks;
809
810 if (vtime_accounting_enabled())
811 return;
812 /*
813 * We stopped the tick in idle. Update process times would miss the
814 * time we slept as update_process_times does only a 1 tick
815 * accounting. Enforce that this is accounted to idle !
816 */
817 ticks = jiffies - ts->idle_jiffies;
818 /*
819 * We might be one off. Do not randomly account a huge number of ticks!
820 */
821 if (ticks && ticks < LONG_MAX)
822 account_idle_ticks(ticks);
823 #endif
824 }
825
826 /**
827 * tick_nohz_idle_exit - restart the idle tick from the idle task
828 *
829 * Restart the idle tick when the CPU is woken up from idle
830 * This also exit the RCU extended quiescent state. The CPU
831 * can use RCU again after this function is called.
832 */
833 void tick_nohz_idle_exit(void)
834 {
835 int cpu = smp_processor_id();
836 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
837 ktime_t now;
838
839 local_irq_disable();
840
841 WARN_ON_ONCE(!ts->inidle);
842
843 ts->inidle = 0;
844
845 /* Cancel the timer because CPU already waken up from the C-states*/
846 menu_hrtimer_cancel();
847 if (ts->idle_active || ts->tick_stopped)
848 now = ktime_get();
849
850 if (ts->idle_active)
851 tick_nohz_stop_idle(cpu, now);
852
853 if (ts->tick_stopped) {
854 tick_nohz_restart_sched_tick(ts, now);
855 tick_nohz_account_idle_ticks(ts);
856 }
857
858 local_irq_enable();
859 }
860 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
861
862 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
863 {
864 hrtimer_forward(&ts->sched_timer, now, tick_period);
865 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
866 }
867
868 /*
869 * The nohz low res interrupt handler
870 */
871 static void tick_nohz_handler(struct clock_event_device *dev)
872 {
873 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
874 struct pt_regs *regs = get_irq_regs();
875 ktime_t now = ktime_get();
876
877 dev->next_event.tv64 = KTIME_MAX;
878
879 tick_sched_do_timer(now);
880 tick_sched_handle(ts, regs);
881
882 while (tick_nohz_reprogram(ts, now)) {
883 now = ktime_get();
884 tick_do_update_jiffies64(now);
885 }
886 }
887
888 /**
889 * tick_nohz_switch_to_nohz - switch to nohz mode
890 */
891 static void tick_nohz_switch_to_nohz(void)
892 {
893 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
894 ktime_t next;
895
896 if (!tick_nohz_enabled)
897 return;
898
899 local_irq_disable();
900 if (tick_switch_to_oneshot(tick_nohz_handler)) {
901 local_irq_enable();
902 return;
903 }
904
905 ts->nohz_mode = NOHZ_MODE_LOWRES;
906
907 /*
908 * Recycle the hrtimer in ts, so we can share the
909 * hrtimer_forward with the highres code.
910 */
911 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
912 /* Get the next period */
913 next = tick_init_jiffy_update();
914
915 for (;;) {
916 hrtimer_set_expires(&ts->sched_timer, next);
917 if (!tick_program_event(next, 0))
918 break;
919 next = ktime_add(next, tick_period);
920 }
921 local_irq_enable();
922 }
923
924 /*
925 * When NOHZ is enabled and the tick is stopped, we need to kick the
926 * tick timer from irq_enter() so that the jiffies update is kept
927 * alive during long running softirqs. That's ugly as hell, but
928 * correctness is key even if we need to fix the offending softirq in
929 * the first place.
930 *
931 * Note, this is different to tick_nohz_restart. We just kick the
932 * timer and do not touch the other magic bits which need to be done
933 * when idle is left.
934 */
935 static void tick_nohz_kick_tick(int cpu, ktime_t now)
936 {
937 #if 0
938 /* Switch back to 2.6.27 behaviour */
939
940 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
941 ktime_t delta;
942
943 /*
944 * Do not touch the tick device, when the next expiry is either
945 * already reached or less/equal than the tick period.
946 */
947 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
948 if (delta.tv64 <= tick_period.tv64)
949 return;
950
951 tick_nohz_restart(ts, now);
952 #endif
953 }
954
955 static inline void tick_check_nohz(int cpu)
956 {
957 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
958 ktime_t now;
959
960 if (!ts->idle_active && !ts->tick_stopped)
961 return;
962 now = ktime_get();
963 if (ts->idle_active)
964 tick_nohz_stop_idle(cpu, now);
965 if (ts->tick_stopped) {
966 tick_nohz_update_jiffies(now);
967 tick_nohz_kick_tick(cpu, now);
968 }
969 }
970
971 #else
972
973 static inline void tick_nohz_switch_to_nohz(void) { }
974 static inline void tick_check_nohz(int cpu) { }
975
976 #endif /* CONFIG_NO_HZ_COMMON */
977
978 /*
979 * Called from irq_enter to notify about the possible interruption of idle()
980 */
981 void tick_check_idle(int cpu)
982 {
983 tick_check_oneshot_broadcast(cpu);
984 tick_check_nohz(cpu);
985 }
986
987 /*
988 * High resolution timer specific code
989 */
990 #ifdef CONFIG_HIGH_RES_TIMERS
991 /*
992 * We rearm the timer until we get disabled by the idle code.
993 * Called with interrupts disabled.
994 */
995 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
996 {
997 struct tick_sched *ts =
998 container_of(timer, struct tick_sched, sched_timer);
999 struct pt_regs *regs = get_irq_regs();
1000 ktime_t now = ktime_get();
1001
1002 tick_sched_do_timer(now);
1003
1004 /*
1005 * Do not call, when we are not in irq context and have
1006 * no valid regs pointer
1007 */
1008 if (regs)
1009 tick_sched_handle(ts, regs);
1010
1011 hrtimer_forward(timer, now, tick_period);
1012
1013 return HRTIMER_RESTART;
1014 }
1015
1016 static int sched_skew_tick;
1017
1018 static int __init skew_tick(char *str)
1019 {
1020 get_option(&str, &sched_skew_tick);
1021
1022 return 0;
1023 }
1024 early_param("skew_tick", skew_tick);
1025
1026 /**
1027 * tick_setup_sched_timer - setup the tick emulation timer
1028 */
1029 void tick_setup_sched_timer(void)
1030 {
1031 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1032 ktime_t now = ktime_get();
1033
1034 /*
1035 * Emulate tick processing via per-CPU hrtimers:
1036 */
1037 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1038 ts->sched_timer.function = tick_sched_timer;
1039
1040 /* Get the next period (per cpu) */
1041 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1042
1043 /* Offset the tick to avert jiffies_lock contention. */
1044 if (sched_skew_tick) {
1045 u64 offset = ktime_to_ns(tick_period) >> 1;
1046 do_div(offset, num_possible_cpus());
1047 offset *= smp_processor_id();
1048 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1049 }
1050
1051 for (;;) {
1052 hrtimer_forward(&ts->sched_timer, now, tick_period);
1053 hrtimer_start_expires(&ts->sched_timer,
1054 HRTIMER_MODE_ABS_PINNED);
1055 /* Check, if the timer was already in the past */
1056 if (hrtimer_active(&ts->sched_timer))
1057 break;
1058 now = ktime_get();
1059 }
1060
1061 #ifdef CONFIG_NO_HZ_COMMON
1062 if (tick_nohz_enabled)
1063 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1064 #endif
1065 }
1066 #endif /* HIGH_RES_TIMERS */
1067
1068 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1069 void tick_cancel_sched_timer(int cpu)
1070 {
1071 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1072
1073 # ifdef CONFIG_HIGH_RES_TIMERS
1074 if (ts->sched_timer.base)
1075 hrtimer_cancel(&ts->sched_timer);
1076 # endif
1077
1078 ts->nohz_mode = NOHZ_MODE_INACTIVE;
1079 }
1080 #endif
1081
1082 /**
1083 * Async notification about clocksource changes
1084 */
1085 void tick_clock_notify(void)
1086 {
1087 int cpu;
1088
1089 for_each_possible_cpu(cpu)
1090 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1091 }
1092
1093 /*
1094 * Async notification about clock event changes
1095 */
1096 void tick_oneshot_notify(void)
1097 {
1098 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1099
1100 set_bit(0, &ts->check_clocks);
1101 }
1102
1103 /**
1104 * Check, if a change happened, which makes oneshot possible.
1105 *
1106 * Called cyclic from the hrtimer softirq (driven by the timer
1107 * softirq) allow_nohz signals, that we can switch into low-res nohz
1108 * mode, because high resolution timers are disabled (either compile
1109 * or runtime).
1110 */
1111 int tick_check_oneshot_change(int allow_nohz)
1112 {
1113 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1114
1115 if (!test_and_clear_bit(0, &ts->check_clocks))
1116 return 0;
1117
1118 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1119 return 0;
1120
1121 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1122 return 0;
1123
1124 if (!allow_nohz)
1125 return 1;
1126
1127 tick_nohz_switch_to_nohz();
1128 return 0;
1129 }
This page took 0.230856 seconds and 5 git commands to generate.