nohz: Make nohz API agnostic against idle ticks cputime accounting
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 }
82 write_sequnlock(&xtime_lock);
83 }
84
85 /*
86 * Initialize and return retrieve the jiffies update.
87 */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99 }
100
101 /*
102 * NOHZ - aka dynamic tick functionality
103 */
104 #ifdef CONFIG_NO_HZ
105 /*
106 * NO HZ enabled ?
107 */
108 static int tick_nohz_enabled __read_mostly = 1;
109
110 /*
111 * Enable / Disable tickless mode
112 */
113 static int __init setup_tick_nohz(char *str)
114 {
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
122 }
123
124 __setup("nohz=", setup_tick_nohz);
125
126 /**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
141
142 ts->idle_waketime = now;
143
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
147
148 touch_softlockup_watchdog();
149 }
150
151 /*
152 * Updates the per cpu time idle statistics counters
153 */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 ktime_t delta;
158
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
161 if (nr_iowait_cpu(cpu) > 0)
162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 ts->idle_entrytime = now;
166 }
167
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
170
171 }
172
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
179
180 sched_clock_idle_wakeup_event(0);
181 }
182
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 ktime_t now = ktime_get();
186
187 ts->idle_entrytime = now;
188 ts->idle_active = 1;
189 sched_clock_idle_sleep_event();
190 return now;
191 }
192
193 /**
194 * get_cpu_idle_time_us - get the total idle time of a cpu
195 * @cpu: CPU number to query
196 * @last_update_time: variable to store update time in. Do not update
197 * counters if NULL.
198 *
199 * Return the cummulative idle time (since boot) for a given
200 * CPU, in microseconds.
201 *
202 * This time is measured via accounting rather than sampling,
203 * and is as accurate as ktime_get() is.
204 *
205 * This function returns -1 if NOHZ is not enabled.
206 */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 ktime_t now, idle;
211
212 if (!tick_nohz_enabled)
213 return -1;
214
215 now = ktime_get();
216 if (last_update_time) {
217 update_ts_time_stats(cpu, ts, now, last_update_time);
218 idle = ts->idle_sleeptime;
219 } else {
220 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222
223 idle = ktime_add(ts->idle_sleeptime, delta);
224 } else {
225 idle = ts->idle_sleeptime;
226 }
227 }
228
229 return ktime_to_us(idle);
230
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233
234 /**
235 * get_cpu_iowait_time_us - get the total iowait time of a cpu
236 * @cpu: CPU number to query
237 * @last_update_time: variable to store update time in. Do not update
238 * counters if NULL.
239 *
240 * Return the cummulative iowait time (since boot) for a given
241 * CPU, in microseconds.
242 *
243 * This time is measured via accounting rather than sampling,
244 * and is as accurate as ktime_get() is.
245 *
246 * This function returns -1 if NOHZ is not enabled.
247 */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 ktime_t now, iowait;
252
253 if (!tick_nohz_enabled)
254 return -1;
255
256 now = ktime_get();
257 if (last_update_time) {
258 update_ts_time_stats(cpu, ts, now, last_update_time);
259 iowait = ts->iowait_sleeptime;
260 } else {
261 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263
264 iowait = ktime_add(ts->iowait_sleeptime, delta);
265 } else {
266 iowait = ts->iowait_sleeptime;
267 }
268 }
269
270 return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273
274 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, ktime_t now)
275 {
276 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
277 ktime_t last_update, expires;
278 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
279 u64 time_delta;
280 int cpu;
281
282 cpu = smp_processor_id();
283 ts = &per_cpu(tick_cpu_sched, cpu);
284
285 /*
286 * If this cpu is offline and it is the one which updates
287 * jiffies, then give up the assignment and let it be taken by
288 * the cpu which runs the tick timer next. If we don't drop
289 * this here the jiffies might be stale and do_timer() never
290 * invoked.
291 */
292 if (unlikely(!cpu_online(cpu))) {
293 if (cpu == tick_do_timer_cpu)
294 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
295 }
296
297 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
298 return;
299
300 if (need_resched())
301 return;
302
303 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
304 static int ratelimit;
305
306 if (ratelimit < 10) {
307 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
308 (unsigned int) local_softirq_pending());
309 ratelimit++;
310 }
311 return;
312 }
313
314 ts->idle_calls++;
315 /* Read jiffies and the time when jiffies were updated last */
316 do {
317 seq = read_seqbegin(&xtime_lock);
318 last_update = last_jiffies_update;
319 last_jiffies = jiffies;
320 time_delta = timekeeping_max_deferment();
321 } while (read_seqretry(&xtime_lock, seq));
322
323 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
324 arch_needs_cpu(cpu)) {
325 next_jiffies = last_jiffies + 1;
326 delta_jiffies = 1;
327 } else {
328 /* Get the next timer wheel timer */
329 next_jiffies = get_next_timer_interrupt(last_jiffies);
330 delta_jiffies = next_jiffies - last_jiffies;
331 }
332 /*
333 * Do not stop the tick, if we are only one off
334 * or if the cpu is required for rcu
335 */
336 if (!ts->tick_stopped && delta_jiffies == 1)
337 goto out;
338
339 /* Schedule the tick, if we are at least one jiffie off */
340 if ((long)delta_jiffies >= 1) {
341
342 /*
343 * If this cpu is the one which updates jiffies, then
344 * give up the assignment and let it be taken by the
345 * cpu which runs the tick timer next, which might be
346 * this cpu as well. If we don't drop this here the
347 * jiffies might be stale and do_timer() never
348 * invoked. Keep track of the fact that it was the one
349 * which had the do_timer() duty last. If this cpu is
350 * the one which had the do_timer() duty last, we
351 * limit the sleep time to the timekeeping
352 * max_deferement value which we retrieved
353 * above. Otherwise we can sleep as long as we want.
354 */
355 if (cpu == tick_do_timer_cpu) {
356 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
357 ts->do_timer_last = 1;
358 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
359 time_delta = KTIME_MAX;
360 ts->do_timer_last = 0;
361 } else if (!ts->do_timer_last) {
362 time_delta = KTIME_MAX;
363 }
364
365 /*
366 * calculate the expiry time for the next timer wheel
367 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
368 * that there is no timer pending or at least extremely
369 * far into the future (12 days for HZ=1000). In this
370 * case we set the expiry to the end of time.
371 */
372 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
373 /*
374 * Calculate the time delta for the next timer event.
375 * If the time delta exceeds the maximum time delta
376 * permitted by the current clocksource then adjust
377 * the time delta accordingly to ensure the
378 * clocksource does not wrap.
379 */
380 time_delta = min_t(u64, time_delta,
381 tick_period.tv64 * delta_jiffies);
382 }
383
384 if (time_delta < KTIME_MAX)
385 expires = ktime_add_ns(last_update, time_delta);
386 else
387 expires.tv64 = KTIME_MAX;
388
389 /* Skip reprogram of event if its not changed */
390 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
391 goto out;
392
393 /*
394 * nohz_stop_sched_tick can be called several times before
395 * the nohz_restart_sched_tick is called. This happens when
396 * interrupts arrive which do not cause a reschedule. In the
397 * first call we save the current tick time, so we can restart
398 * the scheduler tick in nohz_restart_sched_tick.
399 */
400 if (!ts->tick_stopped) {
401 select_nohz_load_balancer(1);
402
403 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
404 ts->tick_stopped = 1;
405 }
406
407 ts->idle_sleeps++;
408
409 /* Mark expires */
410 ts->idle_expires = expires;
411
412 /*
413 * If the expiration time == KTIME_MAX, then
414 * in this case we simply stop the tick timer.
415 */
416 if (unlikely(expires.tv64 == KTIME_MAX)) {
417 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
418 hrtimer_cancel(&ts->sched_timer);
419 goto out;
420 }
421
422 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
423 hrtimer_start(&ts->sched_timer, expires,
424 HRTIMER_MODE_ABS_PINNED);
425 /* Check, if the timer was already in the past */
426 if (hrtimer_active(&ts->sched_timer))
427 goto out;
428 } else if (!tick_program_event(expires, 0))
429 goto out;
430 /*
431 * We are past the event already. So we crossed a
432 * jiffie boundary. Update jiffies and raise the
433 * softirq.
434 */
435 tick_do_update_jiffies64(ktime_get());
436 }
437 raise_softirq_irqoff(TIMER_SOFTIRQ);
438 out:
439 ts->next_jiffies = next_jiffies;
440 ts->last_jiffies = last_jiffies;
441 ts->sleep_length = ktime_sub(dev->next_event, now);
442 }
443
444 static void __tick_nohz_idle_enter(struct tick_sched *ts)
445 {
446 ktime_t now;
447 int was_stopped = ts->tick_stopped;
448
449 now = tick_nohz_start_idle(smp_processor_id(), ts);
450 tick_nohz_stop_sched_tick(ts, now);
451
452 if (!was_stopped && ts->tick_stopped)
453 ts->idle_jiffies = ts->last_jiffies;
454 }
455
456 /**
457 * tick_nohz_idle_enter - stop the idle tick from the idle task
458 *
459 * When the next event is more than a tick into the future, stop the idle tick
460 * Called when we start the idle loop.
461 *
462 * The arch is responsible of calling:
463 *
464 * - rcu_idle_enter() after its last use of RCU before the CPU is put
465 * to sleep.
466 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
467 */
468 void tick_nohz_idle_enter(void)
469 {
470 struct tick_sched *ts;
471
472 WARN_ON_ONCE(irqs_disabled());
473
474 /*
475 * Update the idle state in the scheduler domain hierarchy
476 * when tick_nohz_stop_sched_tick() is called from the idle loop.
477 * State will be updated to busy during the first busy tick after
478 * exiting idle.
479 */
480 set_cpu_sd_state_idle();
481
482 local_irq_disable();
483
484 ts = &__get_cpu_var(tick_cpu_sched);
485 /*
486 * set ts->inidle unconditionally. even if the system did not
487 * switch to nohz mode the cpu frequency governers rely on the
488 * update of the idle time accounting in tick_nohz_start_idle().
489 */
490 ts->inidle = 1;
491 __tick_nohz_idle_enter(ts);
492
493 local_irq_enable();
494 }
495
496 /**
497 * tick_nohz_irq_exit - update next tick event from interrupt exit
498 *
499 * When an interrupt fires while we are idle and it doesn't cause
500 * a reschedule, it may still add, modify or delete a timer, enqueue
501 * an RCU callback, etc...
502 * So we need to re-calculate and reprogram the next tick event.
503 */
504 void tick_nohz_irq_exit(void)
505 {
506 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
507
508 if (!ts->inidle)
509 return;
510
511 __tick_nohz_idle_enter(ts);
512 }
513
514 /**
515 * tick_nohz_get_sleep_length - return the length of the current sleep
516 *
517 * Called from power state control code with interrupts disabled
518 */
519 ktime_t tick_nohz_get_sleep_length(void)
520 {
521 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
522
523 return ts->sleep_length;
524 }
525
526 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
527 {
528 hrtimer_cancel(&ts->sched_timer);
529 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
530
531 while (1) {
532 /* Forward the time to expire in the future */
533 hrtimer_forward(&ts->sched_timer, now, tick_period);
534
535 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
536 hrtimer_start_expires(&ts->sched_timer,
537 HRTIMER_MODE_ABS_PINNED);
538 /* Check, if the timer was already in the past */
539 if (hrtimer_active(&ts->sched_timer))
540 break;
541 } else {
542 if (!tick_program_event(
543 hrtimer_get_expires(&ts->sched_timer), 0))
544 break;
545 }
546 /* Reread time and update jiffies */
547 now = ktime_get();
548 tick_do_update_jiffies64(now);
549 }
550 }
551
552 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
553 {
554 /* Update jiffies first */
555 select_nohz_load_balancer(0);
556 tick_do_update_jiffies64(now);
557 update_cpu_load_nohz();
558
559 touch_softlockup_watchdog();
560 /*
561 * Cancel the scheduled timer and restore the tick
562 */
563 ts->tick_stopped = 0;
564 ts->idle_exittime = now;
565
566 tick_nohz_restart(ts, now);
567 }
568
569 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
570 {
571 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
572 unsigned long ticks;
573 /*
574 * We stopped the tick in idle. Update process times would miss the
575 * time we slept as update_process_times does only a 1 tick
576 * accounting. Enforce that this is accounted to idle !
577 */
578 ticks = jiffies - ts->idle_jiffies;
579 /*
580 * We might be one off. Do not randomly account a huge number of ticks!
581 */
582 if (ticks && ticks < LONG_MAX)
583 account_idle_ticks(ticks);
584 #endif
585 }
586
587 /**
588 * tick_nohz_idle_exit - restart the idle tick from the idle task
589 *
590 * Restart the idle tick when the CPU is woken up from idle
591 * This also exit the RCU extended quiescent state. The CPU
592 * can use RCU again after this function is called.
593 */
594 void tick_nohz_idle_exit(void)
595 {
596 int cpu = smp_processor_id();
597 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
598 ktime_t now;
599
600 local_irq_disable();
601
602 WARN_ON_ONCE(!ts->inidle);
603
604 ts->inidle = 0;
605
606 if (ts->idle_active || ts->tick_stopped)
607 now = ktime_get();
608
609 if (ts->idle_active)
610 tick_nohz_stop_idle(cpu, now);
611
612 if (ts->tick_stopped) {
613 tick_nohz_restart_sched_tick(ts, now);
614 tick_nohz_account_idle_ticks(ts);
615 }
616
617 local_irq_enable();
618 }
619
620 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
621 {
622 hrtimer_forward(&ts->sched_timer, now, tick_period);
623 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
624 }
625
626 /*
627 * The nohz low res interrupt handler
628 */
629 static void tick_nohz_handler(struct clock_event_device *dev)
630 {
631 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
632 struct pt_regs *regs = get_irq_regs();
633 int cpu = smp_processor_id();
634 ktime_t now = ktime_get();
635
636 dev->next_event.tv64 = KTIME_MAX;
637
638 /*
639 * Check if the do_timer duty was dropped. We don't care about
640 * concurrency: This happens only when the cpu in charge went
641 * into a long sleep. If two cpus happen to assign themself to
642 * this duty, then the jiffies update is still serialized by
643 * xtime_lock.
644 */
645 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
646 tick_do_timer_cpu = cpu;
647
648 /* Check, if the jiffies need an update */
649 if (tick_do_timer_cpu == cpu)
650 tick_do_update_jiffies64(now);
651
652 /*
653 * When we are idle and the tick is stopped, we have to touch
654 * the watchdog as we might not schedule for a really long
655 * time. This happens on complete idle SMP systems while
656 * waiting on the login prompt. We also increment the "start
657 * of idle" jiffy stamp so the idle accounting adjustment we
658 * do when we go busy again does not account too much ticks.
659 */
660 if (ts->tick_stopped) {
661 touch_softlockup_watchdog();
662 ts->idle_jiffies++;
663 }
664
665 update_process_times(user_mode(regs));
666 profile_tick(CPU_PROFILING);
667
668 while (tick_nohz_reprogram(ts, now)) {
669 now = ktime_get();
670 tick_do_update_jiffies64(now);
671 }
672 }
673
674 /**
675 * tick_nohz_switch_to_nohz - switch to nohz mode
676 */
677 static void tick_nohz_switch_to_nohz(void)
678 {
679 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
680 ktime_t next;
681
682 if (!tick_nohz_enabled)
683 return;
684
685 local_irq_disable();
686 if (tick_switch_to_oneshot(tick_nohz_handler)) {
687 local_irq_enable();
688 return;
689 }
690
691 ts->nohz_mode = NOHZ_MODE_LOWRES;
692
693 /*
694 * Recycle the hrtimer in ts, so we can share the
695 * hrtimer_forward with the highres code.
696 */
697 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
698 /* Get the next period */
699 next = tick_init_jiffy_update();
700
701 for (;;) {
702 hrtimer_set_expires(&ts->sched_timer, next);
703 if (!tick_program_event(next, 0))
704 break;
705 next = ktime_add(next, tick_period);
706 }
707 local_irq_enable();
708 }
709
710 /*
711 * When NOHZ is enabled and the tick is stopped, we need to kick the
712 * tick timer from irq_enter() so that the jiffies update is kept
713 * alive during long running softirqs. That's ugly as hell, but
714 * correctness is key even if we need to fix the offending softirq in
715 * the first place.
716 *
717 * Note, this is different to tick_nohz_restart. We just kick the
718 * timer and do not touch the other magic bits which need to be done
719 * when idle is left.
720 */
721 static void tick_nohz_kick_tick(int cpu, ktime_t now)
722 {
723 #if 0
724 /* Switch back to 2.6.27 behaviour */
725
726 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
727 ktime_t delta;
728
729 /*
730 * Do not touch the tick device, when the next expiry is either
731 * already reached or less/equal than the tick period.
732 */
733 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
734 if (delta.tv64 <= tick_period.tv64)
735 return;
736
737 tick_nohz_restart(ts, now);
738 #endif
739 }
740
741 static inline void tick_check_nohz(int cpu)
742 {
743 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
744 ktime_t now;
745
746 if (!ts->idle_active && !ts->tick_stopped)
747 return;
748 now = ktime_get();
749 if (ts->idle_active)
750 tick_nohz_stop_idle(cpu, now);
751 if (ts->tick_stopped) {
752 tick_nohz_update_jiffies(now);
753 tick_nohz_kick_tick(cpu, now);
754 }
755 }
756
757 #else
758
759 static inline void tick_nohz_switch_to_nohz(void) { }
760 static inline void tick_check_nohz(int cpu) { }
761
762 #endif /* NO_HZ */
763
764 /*
765 * Called from irq_enter to notify about the possible interruption of idle()
766 */
767 void tick_check_idle(int cpu)
768 {
769 tick_check_oneshot_broadcast(cpu);
770 tick_check_nohz(cpu);
771 }
772
773 /*
774 * High resolution timer specific code
775 */
776 #ifdef CONFIG_HIGH_RES_TIMERS
777 /*
778 * We rearm the timer until we get disabled by the idle code.
779 * Called with interrupts disabled and timer->base->cpu_base->lock held.
780 */
781 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
782 {
783 struct tick_sched *ts =
784 container_of(timer, struct tick_sched, sched_timer);
785 struct pt_regs *regs = get_irq_regs();
786 ktime_t now = ktime_get();
787 int cpu = smp_processor_id();
788
789 #ifdef CONFIG_NO_HZ
790 /*
791 * Check if the do_timer duty was dropped. We don't care about
792 * concurrency: This happens only when the cpu in charge went
793 * into a long sleep. If two cpus happen to assign themself to
794 * this duty, then the jiffies update is still serialized by
795 * xtime_lock.
796 */
797 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
798 tick_do_timer_cpu = cpu;
799 #endif
800
801 /* Check, if the jiffies need an update */
802 if (tick_do_timer_cpu == cpu)
803 tick_do_update_jiffies64(now);
804
805 /*
806 * Do not call, when we are not in irq context and have
807 * no valid regs pointer
808 */
809 if (regs) {
810 /*
811 * When we are idle and the tick is stopped, we have to touch
812 * the watchdog as we might not schedule for a really long
813 * time. This happens on complete idle SMP systems while
814 * waiting on the login prompt. We also increment the "start of
815 * idle" jiffy stamp so the idle accounting adjustment we do
816 * when we go busy again does not account too much ticks.
817 */
818 if (ts->tick_stopped) {
819 touch_softlockup_watchdog();
820 if (idle_cpu(cpu))
821 ts->idle_jiffies++;
822 }
823 update_process_times(user_mode(regs));
824 profile_tick(CPU_PROFILING);
825 }
826
827 hrtimer_forward(timer, now, tick_period);
828
829 return HRTIMER_RESTART;
830 }
831
832 static int sched_skew_tick;
833
834 static int __init skew_tick(char *str)
835 {
836 get_option(&str, &sched_skew_tick);
837
838 return 0;
839 }
840 early_param("skew_tick", skew_tick);
841
842 /**
843 * tick_setup_sched_timer - setup the tick emulation timer
844 */
845 void tick_setup_sched_timer(void)
846 {
847 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
848 ktime_t now = ktime_get();
849
850 /*
851 * Emulate tick processing via per-CPU hrtimers:
852 */
853 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
854 ts->sched_timer.function = tick_sched_timer;
855
856 /* Get the next period (per cpu) */
857 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
858
859 /* Offset the tick to avert xtime_lock contention. */
860 if (sched_skew_tick) {
861 u64 offset = ktime_to_ns(tick_period) >> 1;
862 do_div(offset, num_possible_cpus());
863 offset *= smp_processor_id();
864 hrtimer_add_expires_ns(&ts->sched_timer, offset);
865 }
866
867 for (;;) {
868 hrtimer_forward(&ts->sched_timer, now, tick_period);
869 hrtimer_start_expires(&ts->sched_timer,
870 HRTIMER_MODE_ABS_PINNED);
871 /* Check, if the timer was already in the past */
872 if (hrtimer_active(&ts->sched_timer))
873 break;
874 now = ktime_get();
875 }
876
877 #ifdef CONFIG_NO_HZ
878 if (tick_nohz_enabled)
879 ts->nohz_mode = NOHZ_MODE_HIGHRES;
880 #endif
881 }
882 #endif /* HIGH_RES_TIMERS */
883
884 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
885 void tick_cancel_sched_timer(int cpu)
886 {
887 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
888
889 # ifdef CONFIG_HIGH_RES_TIMERS
890 if (ts->sched_timer.base)
891 hrtimer_cancel(&ts->sched_timer);
892 # endif
893
894 ts->nohz_mode = NOHZ_MODE_INACTIVE;
895 }
896 #endif
897
898 /**
899 * Async notification about clocksource changes
900 */
901 void tick_clock_notify(void)
902 {
903 int cpu;
904
905 for_each_possible_cpu(cpu)
906 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
907 }
908
909 /*
910 * Async notification about clock event changes
911 */
912 void tick_oneshot_notify(void)
913 {
914 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
915
916 set_bit(0, &ts->check_clocks);
917 }
918
919 /**
920 * Check, if a change happened, which makes oneshot possible.
921 *
922 * Called cyclic from the hrtimer softirq (driven by the timer
923 * softirq) allow_nohz signals, that we can switch into low-res nohz
924 * mode, because high resolution timers are disabled (either compile
925 * or runtime).
926 */
927 int tick_check_oneshot_change(int allow_nohz)
928 {
929 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
930
931 if (!test_and_clear_bit(0, &ts->check_clocks))
932 return 0;
933
934 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
935 return 0;
936
937 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
938 return 0;
939
940 if (!allow_nohz)
941 return 1;
942
943 tick_nohz_switch_to_nohz();
944 return 0;
945 }
This page took 0.087754 seconds and 5 git commands to generate.