Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27
28 #include <asm/irq_regs.h>
29
30 #include "tick-internal.h"
31
32 #include <trace/events/timer.h>
33
34 /*
35 * Per cpu nohz control structure
36 */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39 /*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42 static ktime_t last_jiffies_update;
43
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 return &per_cpu(tick_cpu_sched, cpu);
47 }
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93 }
94
95 /*
96 * Initialize and return retrieve the jiffies update.
97 */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109 }
110
111
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 int cpu = smp_processor_id();
115
116 #ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132 }
133
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153 }
154
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159
160 static bool can_stop_full_tick(void)
161 {
162 WARN_ON_ONCE(!irqs_disabled());
163
164 if (!sched_can_stop_tick()) {
165 trace_tick_stop(0, "more than 1 task in runqueue\n");
166 return false;
167 }
168
169 if (!posix_cpu_timers_can_stop_tick(current)) {
170 trace_tick_stop(0, "posix timers running\n");
171 return false;
172 }
173
174 if (!perf_event_can_stop_tick()) {
175 trace_tick_stop(0, "perf events running\n");
176 return false;
177 }
178
179 /* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 /*
182 * TODO: kick full dynticks CPUs when
183 * sched_clock_stable is set.
184 */
185 if (!sched_clock_stable()) {
186 trace_tick_stop(0, "unstable sched clock\n");
187 /*
188 * Don't allow the user to think they can get
189 * full NO_HZ with this machine.
190 */
191 WARN_ONCE(tick_nohz_full_running,
192 "NO_HZ FULL will not work with unstable sched clock");
193 return false;
194 }
195 #endif
196
197 return true;
198 }
199
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201
202 /*
203 * Re-evaluate the need for the tick on the current CPU
204 * and restart it if necessary.
205 */
206 void __tick_nohz_full_check(void)
207 {
208 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209
210 if (tick_nohz_full_cpu(smp_processor_id())) {
211 if (ts->tick_stopped && !is_idle_task(current)) {
212 if (!can_stop_full_tick())
213 tick_nohz_restart_sched_tick(ts, ktime_get());
214 }
215 }
216 }
217
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 __tick_nohz_full_check();
221 }
222
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 .func = nohz_full_kick_work_func,
225 };
226
227 /*
228 * Kick this CPU if it's full dynticks in order to force it to
229 * re-evaluate its dependency on the tick and restart it if necessary.
230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231 * is NMI safe.
232 */
233 void tick_nohz_full_kick(void)
234 {
235 if (!tick_nohz_full_cpu(smp_processor_id()))
236 return;
237
238 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
239 }
240
241 /*
242 * Kick the CPU if it's full dynticks in order to force it to
243 * re-evaluate its dependency on the tick and restart it if necessary.
244 */
245 void tick_nohz_full_kick_cpu(int cpu)
246 {
247 if (!tick_nohz_full_cpu(cpu))
248 return;
249
250 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 }
252
253 static void nohz_full_kick_ipi(void *info)
254 {
255 __tick_nohz_full_check();
256 }
257
258 /*
259 * Kick all full dynticks CPUs in order to force these to re-evaluate
260 * their dependency on the tick and restart it if necessary.
261 */
262 void tick_nohz_full_kick_all(void)
263 {
264 if (!tick_nohz_full_running)
265 return;
266
267 preempt_disable();
268 smp_call_function_many(tick_nohz_full_mask,
269 nohz_full_kick_ipi, NULL, false);
270 tick_nohz_full_kick();
271 preempt_enable();
272 }
273
274 /*
275 * Re-evaluate the need for the tick as we switch the current task.
276 * It might need the tick due to per task/process properties:
277 * perf events, posix cpu timers, ...
278 */
279 void __tick_nohz_task_switch(struct task_struct *tsk)
280 {
281 unsigned long flags;
282
283 local_irq_save(flags);
284
285 if (!tick_nohz_full_cpu(smp_processor_id()))
286 goto out;
287
288 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 tick_nohz_full_kick();
290
291 out:
292 local_irq_restore(flags);
293 }
294
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
297 {
298 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 free_bootmem_cpumask_var(tick_nohz_full_mask);
302 return 1;
303 }
304 tick_nohz_full_running = true;
305
306 return 1;
307 }
308 __setup("nohz_full=", tick_nohz_full_setup);
309
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 unsigned long action,
312 void *hcpu)
313 {
314 unsigned int cpu = (unsigned long)hcpu;
315
316 switch (action & ~CPU_TASKS_FROZEN) {
317 case CPU_DOWN_PREPARE:
318 /*
319 * If we handle the timekeeping duty for full dynticks CPUs,
320 * we can't safely shutdown that CPU.
321 */
322 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 return NOTIFY_BAD;
324 break;
325 }
326 return NOTIFY_OK;
327 }
328
329 static int tick_nohz_init_all(void)
330 {
331 int err = -1;
332
333 #ifdef CONFIG_NO_HZ_FULL_ALL
334 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
335 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
336 return err;
337 }
338 err = 0;
339 cpumask_setall(tick_nohz_full_mask);
340 tick_nohz_full_running = true;
341 #endif
342 return err;
343 }
344
345 void __init tick_nohz_init(void)
346 {
347 int cpu;
348
349 if (!tick_nohz_full_running) {
350 if (tick_nohz_init_all() < 0)
351 return;
352 }
353
354 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
355 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
356 cpumask_clear(tick_nohz_full_mask);
357 tick_nohz_full_running = false;
358 return;
359 }
360
361 /*
362 * Full dynticks uses irq work to drive the tick rescheduling on safe
363 * locking contexts. But then we need irq work to raise its own
364 * interrupts to avoid circular dependency on the tick
365 */
366 if (!arch_irq_work_has_interrupt()) {
367 pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
368 "support irq work self-IPIs\n");
369 cpumask_clear(tick_nohz_full_mask);
370 cpumask_copy(housekeeping_mask, cpu_possible_mask);
371 tick_nohz_full_running = false;
372 return;
373 }
374
375 cpu = smp_processor_id();
376
377 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
378 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
379 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
380 }
381
382 cpumask_andnot(housekeeping_mask,
383 cpu_possible_mask, tick_nohz_full_mask);
384
385 for_each_cpu(cpu, tick_nohz_full_mask)
386 context_tracking_cpu_set(cpu);
387
388 cpu_notifier(tick_nohz_cpu_down_callback, 0);
389 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
390 cpumask_pr_args(tick_nohz_full_mask));
391 }
392 #endif
393
394 /*
395 * NOHZ - aka dynamic tick functionality
396 */
397 #ifdef CONFIG_NO_HZ_COMMON
398 /*
399 * NO HZ enabled ?
400 */
401 static int tick_nohz_enabled __read_mostly = 1;
402 int tick_nohz_active __read_mostly;
403 /*
404 * Enable / Disable tickless mode
405 */
406 static int __init setup_tick_nohz(char *str)
407 {
408 if (!strcmp(str, "off"))
409 tick_nohz_enabled = 0;
410 else if (!strcmp(str, "on"))
411 tick_nohz_enabled = 1;
412 else
413 return 0;
414 return 1;
415 }
416
417 __setup("nohz=", setup_tick_nohz);
418
419 int tick_nohz_tick_stopped(void)
420 {
421 return __this_cpu_read(tick_cpu_sched.tick_stopped);
422 }
423
424 /**
425 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
426 *
427 * Called from interrupt entry when the CPU was idle
428 *
429 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
430 * must be updated. Otherwise an interrupt handler could use a stale jiffy
431 * value. We do this unconditionally on any cpu, as we don't know whether the
432 * cpu, which has the update task assigned is in a long sleep.
433 */
434 static void tick_nohz_update_jiffies(ktime_t now)
435 {
436 unsigned long flags;
437
438 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
439
440 local_irq_save(flags);
441 tick_do_update_jiffies64(now);
442 local_irq_restore(flags);
443
444 touch_softlockup_watchdog();
445 }
446
447 /*
448 * Updates the per cpu time idle statistics counters
449 */
450 static void
451 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
452 {
453 ktime_t delta;
454
455 if (ts->idle_active) {
456 delta = ktime_sub(now, ts->idle_entrytime);
457 if (nr_iowait_cpu(cpu) > 0)
458 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
459 else
460 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
461 ts->idle_entrytime = now;
462 }
463
464 if (last_update_time)
465 *last_update_time = ktime_to_us(now);
466
467 }
468
469 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
470 {
471 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
472 ts->idle_active = 0;
473
474 sched_clock_idle_wakeup_event(0);
475 }
476
477 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
478 {
479 ktime_t now = ktime_get();
480
481 ts->idle_entrytime = now;
482 ts->idle_active = 1;
483 sched_clock_idle_sleep_event();
484 return now;
485 }
486
487 /**
488 * get_cpu_idle_time_us - get the total idle time of a cpu
489 * @cpu: CPU number to query
490 * @last_update_time: variable to store update time in. Do not update
491 * counters if NULL.
492 *
493 * Return the cummulative idle time (since boot) for a given
494 * CPU, in microseconds.
495 *
496 * This time is measured via accounting rather than sampling,
497 * and is as accurate as ktime_get() is.
498 *
499 * This function returns -1 if NOHZ is not enabled.
500 */
501 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
502 {
503 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504 ktime_t now, idle;
505
506 if (!tick_nohz_active)
507 return -1;
508
509 now = ktime_get();
510 if (last_update_time) {
511 update_ts_time_stats(cpu, ts, now, last_update_time);
512 idle = ts->idle_sleeptime;
513 } else {
514 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
515 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
516
517 idle = ktime_add(ts->idle_sleeptime, delta);
518 } else {
519 idle = ts->idle_sleeptime;
520 }
521 }
522
523 return ktime_to_us(idle);
524
525 }
526 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
527
528 /**
529 * get_cpu_iowait_time_us - get the total iowait time of a cpu
530 * @cpu: CPU number to query
531 * @last_update_time: variable to store update time in. Do not update
532 * counters if NULL.
533 *
534 * Return the cummulative iowait time (since boot) for a given
535 * CPU, in microseconds.
536 *
537 * This time is measured via accounting rather than sampling,
538 * and is as accurate as ktime_get() is.
539 *
540 * This function returns -1 if NOHZ is not enabled.
541 */
542 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
543 {
544 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
545 ktime_t now, iowait;
546
547 if (!tick_nohz_active)
548 return -1;
549
550 now = ktime_get();
551 if (last_update_time) {
552 update_ts_time_stats(cpu, ts, now, last_update_time);
553 iowait = ts->iowait_sleeptime;
554 } else {
555 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
556 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
557
558 iowait = ktime_add(ts->iowait_sleeptime, delta);
559 } else {
560 iowait = ts->iowait_sleeptime;
561 }
562 }
563
564 return ktime_to_us(iowait);
565 }
566 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
567
568 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
569 ktime_t now, int cpu)
570 {
571 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
572 ktime_t last_update, expires, ret = { .tv64 = 0 };
573 unsigned long rcu_delta_jiffies;
574 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
575 u64 time_delta;
576
577 time_delta = timekeeping_max_deferment();
578
579 /* Read jiffies and the time when jiffies were updated last */
580 do {
581 seq = read_seqbegin(&jiffies_lock);
582 last_update = last_jiffies_update;
583 last_jiffies = jiffies;
584 } while (read_seqretry(&jiffies_lock, seq));
585
586 if (rcu_needs_cpu(&rcu_delta_jiffies) ||
587 arch_needs_cpu() || irq_work_needs_cpu()) {
588 next_jiffies = last_jiffies + 1;
589 delta_jiffies = 1;
590 } else {
591 /* Get the next timer wheel timer */
592 next_jiffies = get_next_timer_interrupt(last_jiffies);
593 delta_jiffies = next_jiffies - last_jiffies;
594 if (rcu_delta_jiffies < delta_jiffies) {
595 next_jiffies = last_jiffies + rcu_delta_jiffies;
596 delta_jiffies = rcu_delta_jiffies;
597 }
598 }
599
600 /*
601 * Do not stop the tick, if we are only one off (or less)
602 * or if the cpu is required for RCU:
603 */
604 if (!ts->tick_stopped && delta_jiffies <= 1)
605 goto out;
606
607 /* Schedule the tick, if we are at least one jiffie off */
608 if ((long)delta_jiffies >= 1) {
609
610 /*
611 * If this cpu is the one which updates jiffies, then
612 * give up the assignment and let it be taken by the
613 * cpu which runs the tick timer next, which might be
614 * this cpu as well. If we don't drop this here the
615 * jiffies might be stale and do_timer() never
616 * invoked. Keep track of the fact that it was the one
617 * which had the do_timer() duty last. If this cpu is
618 * the one which had the do_timer() duty last, we
619 * limit the sleep time to the timekeeping
620 * max_deferement value which we retrieved
621 * above. Otherwise we can sleep as long as we want.
622 */
623 if (cpu == tick_do_timer_cpu) {
624 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
625 ts->do_timer_last = 1;
626 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
627 time_delta = KTIME_MAX;
628 ts->do_timer_last = 0;
629 } else if (!ts->do_timer_last) {
630 time_delta = KTIME_MAX;
631 }
632
633 #ifdef CONFIG_NO_HZ_FULL
634 if (!ts->inidle) {
635 time_delta = min(time_delta,
636 scheduler_tick_max_deferment());
637 }
638 #endif
639
640 /*
641 * calculate the expiry time for the next timer wheel
642 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
643 * that there is no timer pending or at least extremely
644 * far into the future (12 days for HZ=1000). In this
645 * case we set the expiry to the end of time.
646 */
647 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
648 /*
649 * Calculate the time delta for the next timer event.
650 * If the time delta exceeds the maximum time delta
651 * permitted by the current clocksource then adjust
652 * the time delta accordingly to ensure the
653 * clocksource does not wrap.
654 */
655 time_delta = min_t(u64, time_delta,
656 tick_period.tv64 * delta_jiffies);
657 }
658
659 if (time_delta < KTIME_MAX)
660 expires = ktime_add_ns(last_update, time_delta);
661 else
662 expires.tv64 = KTIME_MAX;
663
664 /* Skip reprogram of event if its not changed */
665 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
666 goto out;
667
668 ret = expires;
669
670 /*
671 * nohz_stop_sched_tick can be called several times before
672 * the nohz_restart_sched_tick is called. This happens when
673 * interrupts arrive which do not cause a reschedule. In the
674 * first call we save the current tick time, so we can restart
675 * the scheduler tick in nohz_restart_sched_tick.
676 */
677 if (!ts->tick_stopped) {
678 nohz_balance_enter_idle(cpu);
679 calc_load_enter_idle();
680
681 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
682 ts->tick_stopped = 1;
683 trace_tick_stop(1, " ");
684 }
685
686 /*
687 * If the expiration time == KTIME_MAX, then
688 * in this case we simply stop the tick timer.
689 */
690 if (unlikely(expires.tv64 == KTIME_MAX)) {
691 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
692 hrtimer_cancel(&ts->sched_timer);
693 goto out;
694 }
695
696 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
697 hrtimer_start(&ts->sched_timer, expires,
698 HRTIMER_MODE_ABS_PINNED);
699 /* Check, if the timer was already in the past */
700 if (hrtimer_active(&ts->sched_timer))
701 goto out;
702 } else if (!tick_program_event(expires, 0))
703 goto out;
704 /*
705 * We are past the event already. So we crossed a
706 * jiffie boundary. Update jiffies and raise the
707 * softirq.
708 */
709 tick_do_update_jiffies64(ktime_get());
710 }
711 raise_softirq_irqoff(TIMER_SOFTIRQ);
712 out:
713 ts->next_jiffies = next_jiffies;
714 ts->last_jiffies = last_jiffies;
715 ts->sleep_length = ktime_sub(dev->next_event, now);
716
717 return ret;
718 }
719
720 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
721 {
722 #ifdef CONFIG_NO_HZ_FULL
723 int cpu = smp_processor_id();
724
725 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
726 return;
727
728 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
729 return;
730
731 if (!can_stop_full_tick())
732 return;
733
734 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
735 #endif
736 }
737
738 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
739 {
740 /*
741 * If this cpu is offline and it is the one which updates
742 * jiffies, then give up the assignment and let it be taken by
743 * the cpu which runs the tick timer next. If we don't drop
744 * this here the jiffies might be stale and do_timer() never
745 * invoked.
746 */
747 if (unlikely(!cpu_online(cpu))) {
748 if (cpu == tick_do_timer_cpu)
749 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
750 return false;
751 }
752
753 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
754 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
755 return false;
756 }
757
758 if (need_resched())
759 return false;
760
761 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
762 static int ratelimit;
763
764 if (ratelimit < 10 &&
765 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
766 pr_warn("NOHZ: local_softirq_pending %02x\n",
767 (unsigned int) local_softirq_pending());
768 ratelimit++;
769 }
770 return false;
771 }
772
773 if (tick_nohz_full_enabled()) {
774 /*
775 * Keep the tick alive to guarantee timekeeping progression
776 * if there are full dynticks CPUs around
777 */
778 if (tick_do_timer_cpu == cpu)
779 return false;
780 /*
781 * Boot safety: make sure the timekeeping duty has been
782 * assigned before entering dyntick-idle mode,
783 */
784 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
785 return false;
786 }
787
788 return true;
789 }
790
791 static void __tick_nohz_idle_enter(struct tick_sched *ts)
792 {
793 ktime_t now, expires;
794 int cpu = smp_processor_id();
795
796 now = tick_nohz_start_idle(ts);
797
798 if (can_stop_idle_tick(cpu, ts)) {
799 int was_stopped = ts->tick_stopped;
800
801 ts->idle_calls++;
802
803 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
804 if (expires.tv64 > 0LL) {
805 ts->idle_sleeps++;
806 ts->idle_expires = expires;
807 }
808
809 if (!was_stopped && ts->tick_stopped)
810 ts->idle_jiffies = ts->last_jiffies;
811 }
812 }
813
814 /**
815 * tick_nohz_idle_enter - stop the idle tick from the idle task
816 *
817 * When the next event is more than a tick into the future, stop the idle tick
818 * Called when we start the idle loop.
819 *
820 * The arch is responsible of calling:
821 *
822 * - rcu_idle_enter() after its last use of RCU before the CPU is put
823 * to sleep.
824 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
825 */
826 void tick_nohz_idle_enter(void)
827 {
828 struct tick_sched *ts;
829
830 WARN_ON_ONCE(irqs_disabled());
831
832 /*
833 * Update the idle state in the scheduler domain hierarchy
834 * when tick_nohz_stop_sched_tick() is called from the idle loop.
835 * State will be updated to busy during the first busy tick after
836 * exiting idle.
837 */
838 set_cpu_sd_state_idle();
839
840 local_irq_disable();
841
842 ts = this_cpu_ptr(&tick_cpu_sched);
843 ts->inidle = 1;
844 __tick_nohz_idle_enter(ts);
845
846 local_irq_enable();
847 }
848
849 /**
850 * tick_nohz_irq_exit - update next tick event from interrupt exit
851 *
852 * When an interrupt fires while we are idle and it doesn't cause
853 * a reschedule, it may still add, modify or delete a timer, enqueue
854 * an RCU callback, etc...
855 * So we need to re-calculate and reprogram the next tick event.
856 */
857 void tick_nohz_irq_exit(void)
858 {
859 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
860
861 if (ts->inidle)
862 __tick_nohz_idle_enter(ts);
863 else
864 tick_nohz_full_stop_tick(ts);
865 }
866
867 /**
868 * tick_nohz_get_sleep_length - return the length of the current sleep
869 *
870 * Called from power state control code with interrupts disabled
871 */
872 ktime_t tick_nohz_get_sleep_length(void)
873 {
874 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
875
876 return ts->sleep_length;
877 }
878
879 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
880 {
881 hrtimer_cancel(&ts->sched_timer);
882 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
883
884 while (1) {
885 /* Forward the time to expire in the future */
886 hrtimer_forward(&ts->sched_timer, now, tick_period);
887
888 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
889 hrtimer_start_expires(&ts->sched_timer,
890 HRTIMER_MODE_ABS_PINNED);
891 /* Check, if the timer was already in the past */
892 if (hrtimer_active(&ts->sched_timer))
893 break;
894 } else {
895 if (!tick_program_event(
896 hrtimer_get_expires(&ts->sched_timer), 0))
897 break;
898 }
899 /* Reread time and update jiffies */
900 now = ktime_get();
901 tick_do_update_jiffies64(now);
902 }
903 }
904
905 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
906 {
907 /* Update jiffies first */
908 tick_do_update_jiffies64(now);
909 update_cpu_load_nohz();
910
911 calc_load_exit_idle();
912 touch_softlockup_watchdog();
913 /*
914 * Cancel the scheduled timer and restore the tick
915 */
916 ts->tick_stopped = 0;
917 ts->idle_exittime = now;
918
919 tick_nohz_restart(ts, now);
920 }
921
922 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
923 {
924 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
925 unsigned long ticks;
926
927 if (vtime_accounting_enabled())
928 return;
929 /*
930 * We stopped the tick in idle. Update process times would miss the
931 * time we slept as update_process_times does only a 1 tick
932 * accounting. Enforce that this is accounted to idle !
933 */
934 ticks = jiffies - ts->idle_jiffies;
935 /*
936 * We might be one off. Do not randomly account a huge number of ticks!
937 */
938 if (ticks && ticks < LONG_MAX)
939 account_idle_ticks(ticks);
940 #endif
941 }
942
943 /**
944 * tick_nohz_idle_exit - restart the idle tick from the idle task
945 *
946 * Restart the idle tick when the CPU is woken up from idle
947 * This also exit the RCU extended quiescent state. The CPU
948 * can use RCU again after this function is called.
949 */
950 void tick_nohz_idle_exit(void)
951 {
952 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
953 ktime_t now;
954
955 local_irq_disable();
956
957 WARN_ON_ONCE(!ts->inidle);
958
959 ts->inidle = 0;
960
961 if (ts->idle_active || ts->tick_stopped)
962 now = ktime_get();
963
964 if (ts->idle_active)
965 tick_nohz_stop_idle(ts, now);
966
967 if (ts->tick_stopped) {
968 tick_nohz_restart_sched_tick(ts, now);
969 tick_nohz_account_idle_ticks(ts);
970 }
971
972 local_irq_enable();
973 }
974
975 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
976 {
977 hrtimer_forward(&ts->sched_timer, now, tick_period);
978 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
979 }
980
981 /*
982 * The nohz low res interrupt handler
983 */
984 static void tick_nohz_handler(struct clock_event_device *dev)
985 {
986 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
987 struct pt_regs *regs = get_irq_regs();
988 ktime_t now = ktime_get();
989
990 dev->next_event.tv64 = KTIME_MAX;
991
992 tick_sched_do_timer(now);
993 tick_sched_handle(ts, regs);
994
995 /* No need to reprogram if we are running tickless */
996 if (unlikely(ts->tick_stopped))
997 return;
998
999 while (tick_nohz_reprogram(ts, now)) {
1000 now = ktime_get();
1001 tick_do_update_jiffies64(now);
1002 }
1003 }
1004
1005 /**
1006 * tick_nohz_switch_to_nohz - switch to nohz mode
1007 */
1008 static void tick_nohz_switch_to_nohz(void)
1009 {
1010 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1011 ktime_t next;
1012
1013 if (!tick_nohz_enabled)
1014 return;
1015
1016 local_irq_disable();
1017 if (tick_switch_to_oneshot(tick_nohz_handler)) {
1018 local_irq_enable();
1019 return;
1020 }
1021 tick_nohz_active = 1;
1022 ts->nohz_mode = NOHZ_MODE_LOWRES;
1023
1024 /*
1025 * Recycle the hrtimer in ts, so we can share the
1026 * hrtimer_forward with the highres code.
1027 */
1028 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1029 /* Get the next period */
1030 next = tick_init_jiffy_update();
1031
1032 for (;;) {
1033 hrtimer_set_expires(&ts->sched_timer, next);
1034 if (!tick_program_event(next, 0))
1035 break;
1036 next = ktime_add(next, tick_period);
1037 }
1038 local_irq_enable();
1039 }
1040
1041 /*
1042 * When NOHZ is enabled and the tick is stopped, we need to kick the
1043 * tick timer from irq_enter() so that the jiffies update is kept
1044 * alive during long running softirqs. That's ugly as hell, but
1045 * correctness is key even if we need to fix the offending softirq in
1046 * the first place.
1047 *
1048 * Note, this is different to tick_nohz_restart. We just kick the
1049 * timer and do not touch the other magic bits which need to be done
1050 * when idle is left.
1051 */
1052 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1053 {
1054 #if 0
1055 /* Switch back to 2.6.27 behaviour */
1056 ktime_t delta;
1057
1058 /*
1059 * Do not touch the tick device, when the next expiry is either
1060 * already reached or less/equal than the tick period.
1061 */
1062 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1063 if (delta.tv64 <= tick_period.tv64)
1064 return;
1065
1066 tick_nohz_restart(ts, now);
1067 #endif
1068 }
1069
1070 static inline void tick_nohz_irq_enter(void)
1071 {
1072 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1073 ktime_t now;
1074
1075 if (!ts->idle_active && !ts->tick_stopped)
1076 return;
1077 now = ktime_get();
1078 if (ts->idle_active)
1079 tick_nohz_stop_idle(ts, now);
1080 if (ts->tick_stopped) {
1081 tick_nohz_update_jiffies(now);
1082 tick_nohz_kick_tick(ts, now);
1083 }
1084 }
1085
1086 #else
1087
1088 static inline void tick_nohz_switch_to_nohz(void) { }
1089 static inline void tick_nohz_irq_enter(void) { }
1090
1091 #endif /* CONFIG_NO_HZ_COMMON */
1092
1093 /*
1094 * Called from irq_enter to notify about the possible interruption of idle()
1095 */
1096 void tick_irq_enter(void)
1097 {
1098 tick_check_oneshot_broadcast_this_cpu();
1099 tick_nohz_irq_enter();
1100 }
1101
1102 /*
1103 * High resolution timer specific code
1104 */
1105 #ifdef CONFIG_HIGH_RES_TIMERS
1106 /*
1107 * We rearm the timer until we get disabled by the idle code.
1108 * Called with interrupts disabled.
1109 */
1110 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1111 {
1112 struct tick_sched *ts =
1113 container_of(timer, struct tick_sched, sched_timer);
1114 struct pt_regs *regs = get_irq_regs();
1115 ktime_t now = ktime_get();
1116
1117 tick_sched_do_timer(now);
1118
1119 /*
1120 * Do not call, when we are not in irq context and have
1121 * no valid regs pointer
1122 */
1123 if (regs)
1124 tick_sched_handle(ts, regs);
1125
1126 /* No need to reprogram if we are in idle or full dynticks mode */
1127 if (unlikely(ts->tick_stopped))
1128 return HRTIMER_NORESTART;
1129
1130 hrtimer_forward(timer, now, tick_period);
1131
1132 return HRTIMER_RESTART;
1133 }
1134
1135 static int sched_skew_tick;
1136
1137 static int __init skew_tick(char *str)
1138 {
1139 get_option(&str, &sched_skew_tick);
1140
1141 return 0;
1142 }
1143 early_param("skew_tick", skew_tick);
1144
1145 /**
1146 * tick_setup_sched_timer - setup the tick emulation timer
1147 */
1148 void tick_setup_sched_timer(void)
1149 {
1150 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1151 ktime_t now = ktime_get();
1152
1153 /*
1154 * Emulate tick processing via per-CPU hrtimers:
1155 */
1156 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1157 ts->sched_timer.function = tick_sched_timer;
1158
1159 /* Get the next period (per cpu) */
1160 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1161
1162 /* Offset the tick to avert jiffies_lock contention. */
1163 if (sched_skew_tick) {
1164 u64 offset = ktime_to_ns(tick_period) >> 1;
1165 do_div(offset, num_possible_cpus());
1166 offset *= smp_processor_id();
1167 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1168 }
1169
1170 for (;;) {
1171 hrtimer_forward(&ts->sched_timer, now, tick_period);
1172 hrtimer_start_expires(&ts->sched_timer,
1173 HRTIMER_MODE_ABS_PINNED);
1174 /* Check, if the timer was already in the past */
1175 if (hrtimer_active(&ts->sched_timer))
1176 break;
1177 now = ktime_get();
1178 }
1179
1180 #ifdef CONFIG_NO_HZ_COMMON
1181 if (tick_nohz_enabled) {
1182 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1183 tick_nohz_active = 1;
1184 }
1185 #endif
1186 }
1187 #endif /* HIGH_RES_TIMERS */
1188
1189 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1190 void tick_cancel_sched_timer(int cpu)
1191 {
1192 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1193
1194 # ifdef CONFIG_HIGH_RES_TIMERS
1195 if (ts->sched_timer.base)
1196 hrtimer_cancel(&ts->sched_timer);
1197 # endif
1198
1199 memset(ts, 0, sizeof(*ts));
1200 }
1201 #endif
1202
1203 /**
1204 * Async notification about clocksource changes
1205 */
1206 void tick_clock_notify(void)
1207 {
1208 int cpu;
1209
1210 for_each_possible_cpu(cpu)
1211 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1212 }
1213
1214 /*
1215 * Async notification about clock event changes
1216 */
1217 void tick_oneshot_notify(void)
1218 {
1219 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1220
1221 set_bit(0, &ts->check_clocks);
1222 }
1223
1224 /**
1225 * Check, if a change happened, which makes oneshot possible.
1226 *
1227 * Called cyclic from the hrtimer softirq (driven by the timer
1228 * softirq) allow_nohz signals, that we can switch into low-res nohz
1229 * mode, because high resolution timers are disabled (either compile
1230 * or runtime).
1231 */
1232 int tick_check_oneshot_change(int allow_nohz)
1233 {
1234 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1235
1236 if (!test_and_clear_bit(0, &ts->check_clocks))
1237 return 0;
1238
1239 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1240 return 0;
1241
1242 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1243 return 0;
1244
1245 if (!allow_nohz)
1246 return 1;
1247
1248 tick_nohz_switch_to_nohz();
1249 return 0;
1250 }
This page took 0.05837 seconds and 5 git commands to generate.