Merge tag 'trace-fixes-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27
28 #include <asm/irq_regs.h>
29
30 #include "tick-internal.h"
31
32 #include <trace/events/timer.h>
33
34 /*
35 * Per cpu nohz control structure
36 */
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39 /*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42 static ktime_t last_jiffies_update;
43
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 return &per_cpu(tick_cpu_sched, cpu);
47 }
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93 }
94
95 /*
96 * Initialize and return retrieve the jiffies update.
97 */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109 }
110
111
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 int cpu = smp_processor_id();
115
116 #ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132 }
133
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153 }
154
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159
160 static bool can_stop_full_tick(void)
161 {
162 WARN_ON_ONCE(!irqs_disabled());
163
164 if (!sched_can_stop_tick()) {
165 trace_tick_stop(0, "more than 1 task in runqueue\n");
166 return false;
167 }
168
169 if (!posix_cpu_timers_can_stop_tick(current)) {
170 trace_tick_stop(0, "posix timers running\n");
171 return false;
172 }
173
174 if (!perf_event_can_stop_tick()) {
175 trace_tick_stop(0, "perf events running\n");
176 return false;
177 }
178
179 /* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 /*
182 * TODO: kick full dynticks CPUs when
183 * sched_clock_stable is set.
184 */
185 if (!sched_clock_stable()) {
186 trace_tick_stop(0, "unstable sched clock\n");
187 /*
188 * Don't allow the user to think they can get
189 * full NO_HZ with this machine.
190 */
191 WARN_ONCE(tick_nohz_full_running,
192 "NO_HZ FULL will not work with unstable sched clock");
193 return false;
194 }
195 #endif
196
197 return true;
198 }
199
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201
202 /*
203 * Re-evaluate the need for the tick on the current CPU
204 * and restart it if necessary.
205 */
206 void __tick_nohz_full_check(void)
207 {
208 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
209
210 if (tick_nohz_full_cpu(smp_processor_id())) {
211 if (ts->tick_stopped && !is_idle_task(current)) {
212 if (!can_stop_full_tick())
213 tick_nohz_restart_sched_tick(ts, ktime_get());
214 }
215 }
216 }
217
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 __tick_nohz_full_check();
221 }
222
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 .func = nohz_full_kick_work_func,
225 };
226
227 /*
228 * Kick the CPU if it's full dynticks in order to force it to
229 * re-evaluate its dependency on the tick and restart it if necessary.
230 */
231 void tick_nohz_full_kick_cpu(int cpu)
232 {
233 if (!tick_nohz_full_cpu(cpu))
234 return;
235
236 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
237 }
238
239 static void nohz_full_kick_ipi(void *info)
240 {
241 __tick_nohz_full_check();
242 }
243
244 /*
245 * Kick all full dynticks CPUs in order to force these to re-evaluate
246 * their dependency on the tick and restart it if necessary.
247 */
248 void tick_nohz_full_kick_all(void)
249 {
250 if (!tick_nohz_full_running)
251 return;
252
253 preempt_disable();
254 smp_call_function_many(tick_nohz_full_mask,
255 nohz_full_kick_ipi, NULL, false);
256 tick_nohz_full_kick();
257 preempt_enable();
258 }
259
260 /*
261 * Re-evaluate the need for the tick as we switch the current task.
262 * It might need the tick due to per task/process properties:
263 * perf events, posix cpu timers, ...
264 */
265 void __tick_nohz_task_switch(struct task_struct *tsk)
266 {
267 unsigned long flags;
268
269 local_irq_save(flags);
270
271 if (!tick_nohz_full_cpu(smp_processor_id()))
272 goto out;
273
274 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
275 tick_nohz_full_kick();
276
277 out:
278 local_irq_restore(flags);
279 }
280
281 /* Parse the boot-time nohz CPU list from the kernel parameters. */
282 static int __init tick_nohz_full_setup(char *str)
283 {
284 int cpu;
285
286 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
287 alloc_bootmem_cpumask_var(&housekeeping_mask);
288 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
289 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
290 return 1;
291 }
292
293 cpu = smp_processor_id();
294 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
295 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
296 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
297 }
298 cpumask_andnot(housekeeping_mask,
299 cpu_possible_mask, tick_nohz_full_mask);
300 tick_nohz_full_running = true;
301
302 return 1;
303 }
304 __setup("nohz_full=", tick_nohz_full_setup);
305
306 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
307 unsigned long action,
308 void *hcpu)
309 {
310 unsigned int cpu = (unsigned long)hcpu;
311
312 switch (action & ~CPU_TASKS_FROZEN) {
313 case CPU_DOWN_PREPARE:
314 /*
315 * If we handle the timekeeping duty for full dynticks CPUs,
316 * we can't safely shutdown that CPU.
317 */
318 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
319 return NOTIFY_BAD;
320 break;
321 }
322 return NOTIFY_OK;
323 }
324
325 /*
326 * Worst case string length in chunks of CPU range seems 2 steps
327 * separations: 0,2,4,6,...
328 * This is NR_CPUS + sizeof('\0')
329 */
330 static char __initdata nohz_full_buf[NR_CPUS + 1];
331
332 static int tick_nohz_init_all(void)
333 {
334 int err = -1;
335
336 #ifdef CONFIG_NO_HZ_FULL_ALL
337 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
338 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
339 return err;
340 }
341 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
342 pr_err("NO_HZ: Can't allocate not-full dynticks cpumask\n");
343 return err;
344 }
345 err = 0;
346 cpumask_setall(tick_nohz_full_mask);
347 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
348 cpumask_clear(housekeeping_mask);
349 cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
350 tick_nohz_full_running = true;
351 #endif
352 return err;
353 }
354
355 void __init tick_nohz_init(void)
356 {
357 int cpu;
358
359 if (!tick_nohz_full_running) {
360 if (tick_nohz_init_all() < 0)
361 return;
362 }
363
364 for_each_cpu(cpu, tick_nohz_full_mask)
365 context_tracking_cpu_set(cpu);
366
367 cpu_notifier(tick_nohz_cpu_down_callback, 0);
368 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
369 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
370 }
371 #endif
372
373 /*
374 * NOHZ - aka dynamic tick functionality
375 */
376 #ifdef CONFIG_NO_HZ_COMMON
377 /*
378 * NO HZ enabled ?
379 */
380 static int tick_nohz_enabled __read_mostly = 1;
381 int tick_nohz_active __read_mostly;
382 /*
383 * Enable / Disable tickless mode
384 */
385 static int __init setup_tick_nohz(char *str)
386 {
387 if (!strcmp(str, "off"))
388 tick_nohz_enabled = 0;
389 else if (!strcmp(str, "on"))
390 tick_nohz_enabled = 1;
391 else
392 return 0;
393 return 1;
394 }
395
396 __setup("nohz=", setup_tick_nohz);
397
398 /**
399 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
400 *
401 * Called from interrupt entry when the CPU was idle
402 *
403 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
404 * must be updated. Otherwise an interrupt handler could use a stale jiffy
405 * value. We do this unconditionally on any cpu, as we don't know whether the
406 * cpu, which has the update task assigned is in a long sleep.
407 */
408 static void tick_nohz_update_jiffies(ktime_t now)
409 {
410 unsigned long flags;
411
412 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
413
414 local_irq_save(flags);
415 tick_do_update_jiffies64(now);
416 local_irq_restore(flags);
417
418 touch_softlockup_watchdog();
419 }
420
421 /*
422 * Updates the per cpu time idle statistics counters
423 */
424 static void
425 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
426 {
427 ktime_t delta;
428
429 if (ts->idle_active) {
430 delta = ktime_sub(now, ts->idle_entrytime);
431 if (nr_iowait_cpu(cpu) > 0)
432 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
433 else
434 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
435 ts->idle_entrytime = now;
436 }
437
438 if (last_update_time)
439 *last_update_time = ktime_to_us(now);
440
441 }
442
443 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
444 {
445 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
446 ts->idle_active = 0;
447
448 sched_clock_idle_wakeup_event(0);
449 }
450
451 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
452 {
453 ktime_t now = ktime_get();
454
455 ts->idle_entrytime = now;
456 ts->idle_active = 1;
457 sched_clock_idle_sleep_event();
458 return now;
459 }
460
461 /**
462 * get_cpu_idle_time_us - get the total idle time of a cpu
463 * @cpu: CPU number to query
464 * @last_update_time: variable to store update time in. Do not update
465 * counters if NULL.
466 *
467 * Return the cummulative idle time (since boot) for a given
468 * CPU, in microseconds.
469 *
470 * This time is measured via accounting rather than sampling,
471 * and is as accurate as ktime_get() is.
472 *
473 * This function returns -1 if NOHZ is not enabled.
474 */
475 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
476 {
477 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
478 ktime_t now, idle;
479
480 if (!tick_nohz_active)
481 return -1;
482
483 now = ktime_get();
484 if (last_update_time) {
485 update_ts_time_stats(cpu, ts, now, last_update_time);
486 idle = ts->idle_sleeptime;
487 } else {
488 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
489 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
490
491 idle = ktime_add(ts->idle_sleeptime, delta);
492 } else {
493 idle = ts->idle_sleeptime;
494 }
495 }
496
497 return ktime_to_us(idle);
498
499 }
500 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
501
502 /**
503 * get_cpu_iowait_time_us - get the total iowait time of a cpu
504 * @cpu: CPU number to query
505 * @last_update_time: variable to store update time in. Do not update
506 * counters if NULL.
507 *
508 * Return the cummulative iowait time (since boot) for a given
509 * CPU, in microseconds.
510 *
511 * This time is measured via accounting rather than sampling,
512 * and is as accurate as ktime_get() is.
513 *
514 * This function returns -1 if NOHZ is not enabled.
515 */
516 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
517 {
518 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
519 ktime_t now, iowait;
520
521 if (!tick_nohz_active)
522 return -1;
523
524 now = ktime_get();
525 if (last_update_time) {
526 update_ts_time_stats(cpu, ts, now, last_update_time);
527 iowait = ts->iowait_sleeptime;
528 } else {
529 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
530 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
531
532 iowait = ktime_add(ts->iowait_sleeptime, delta);
533 } else {
534 iowait = ts->iowait_sleeptime;
535 }
536 }
537
538 return ktime_to_us(iowait);
539 }
540 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
541
542 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
543 ktime_t now, int cpu)
544 {
545 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
546 ktime_t last_update, expires, ret = { .tv64 = 0 };
547 unsigned long rcu_delta_jiffies;
548 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
549 u64 time_delta;
550
551 time_delta = timekeeping_max_deferment();
552
553 /* Read jiffies and the time when jiffies were updated last */
554 do {
555 seq = read_seqbegin(&jiffies_lock);
556 last_update = last_jiffies_update;
557 last_jiffies = jiffies;
558 } while (read_seqretry(&jiffies_lock, seq));
559
560 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
561 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
562 next_jiffies = last_jiffies + 1;
563 delta_jiffies = 1;
564 } else {
565 /* Get the next timer wheel timer */
566 next_jiffies = get_next_timer_interrupt(last_jiffies);
567 delta_jiffies = next_jiffies - last_jiffies;
568 if (rcu_delta_jiffies < delta_jiffies) {
569 next_jiffies = last_jiffies + rcu_delta_jiffies;
570 delta_jiffies = rcu_delta_jiffies;
571 }
572 }
573
574 /*
575 * Do not stop the tick, if we are only one off (or less)
576 * or if the cpu is required for RCU:
577 */
578 if (!ts->tick_stopped && delta_jiffies <= 1)
579 goto out;
580
581 /* Schedule the tick, if we are at least one jiffie off */
582 if ((long)delta_jiffies >= 1) {
583
584 /*
585 * If this cpu is the one which updates jiffies, then
586 * give up the assignment and let it be taken by the
587 * cpu which runs the tick timer next, which might be
588 * this cpu as well. If we don't drop this here the
589 * jiffies might be stale and do_timer() never
590 * invoked. Keep track of the fact that it was the one
591 * which had the do_timer() duty last. If this cpu is
592 * the one which had the do_timer() duty last, we
593 * limit the sleep time to the timekeeping
594 * max_deferement value which we retrieved
595 * above. Otherwise we can sleep as long as we want.
596 */
597 if (cpu == tick_do_timer_cpu) {
598 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
599 ts->do_timer_last = 1;
600 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
601 time_delta = KTIME_MAX;
602 ts->do_timer_last = 0;
603 } else if (!ts->do_timer_last) {
604 time_delta = KTIME_MAX;
605 }
606
607 #ifdef CONFIG_NO_HZ_FULL
608 if (!ts->inidle) {
609 time_delta = min(time_delta,
610 scheduler_tick_max_deferment());
611 }
612 #endif
613
614 /*
615 * calculate the expiry time for the next timer wheel
616 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
617 * that there is no timer pending or at least extremely
618 * far into the future (12 days for HZ=1000). In this
619 * case we set the expiry to the end of time.
620 */
621 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
622 /*
623 * Calculate the time delta for the next timer event.
624 * If the time delta exceeds the maximum time delta
625 * permitted by the current clocksource then adjust
626 * the time delta accordingly to ensure the
627 * clocksource does not wrap.
628 */
629 time_delta = min_t(u64, time_delta,
630 tick_period.tv64 * delta_jiffies);
631 }
632
633 if (time_delta < KTIME_MAX)
634 expires = ktime_add_ns(last_update, time_delta);
635 else
636 expires.tv64 = KTIME_MAX;
637
638 /* Skip reprogram of event if its not changed */
639 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
640 goto out;
641
642 ret = expires;
643
644 /*
645 * nohz_stop_sched_tick can be called several times before
646 * the nohz_restart_sched_tick is called. This happens when
647 * interrupts arrive which do not cause a reschedule. In the
648 * first call we save the current tick time, so we can restart
649 * the scheduler tick in nohz_restart_sched_tick.
650 */
651 if (!ts->tick_stopped) {
652 nohz_balance_enter_idle(cpu);
653 calc_load_enter_idle();
654
655 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
656 ts->tick_stopped = 1;
657 trace_tick_stop(1, " ");
658 }
659
660 /*
661 * If the expiration time == KTIME_MAX, then
662 * in this case we simply stop the tick timer.
663 */
664 if (unlikely(expires.tv64 == KTIME_MAX)) {
665 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
666 hrtimer_cancel(&ts->sched_timer);
667 goto out;
668 }
669
670 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
671 hrtimer_start(&ts->sched_timer, expires,
672 HRTIMER_MODE_ABS_PINNED);
673 /* Check, if the timer was already in the past */
674 if (hrtimer_active(&ts->sched_timer))
675 goto out;
676 } else if (!tick_program_event(expires, 0))
677 goto out;
678 /*
679 * We are past the event already. So we crossed a
680 * jiffie boundary. Update jiffies and raise the
681 * softirq.
682 */
683 tick_do_update_jiffies64(ktime_get());
684 }
685 raise_softirq_irqoff(TIMER_SOFTIRQ);
686 out:
687 ts->next_jiffies = next_jiffies;
688 ts->last_jiffies = last_jiffies;
689 ts->sleep_length = ktime_sub(dev->next_event, now);
690
691 return ret;
692 }
693
694 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
695 {
696 #ifdef CONFIG_NO_HZ_FULL
697 int cpu = smp_processor_id();
698
699 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
700 return;
701
702 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
703 return;
704
705 if (!can_stop_full_tick())
706 return;
707
708 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
709 #endif
710 }
711
712 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
713 {
714 /*
715 * If this cpu is offline and it is the one which updates
716 * jiffies, then give up the assignment and let it be taken by
717 * the cpu which runs the tick timer next. If we don't drop
718 * this here the jiffies might be stale and do_timer() never
719 * invoked.
720 */
721 if (unlikely(!cpu_online(cpu))) {
722 if (cpu == tick_do_timer_cpu)
723 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
724 return false;
725 }
726
727 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
728 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
729 return false;
730 }
731
732 if (need_resched())
733 return false;
734
735 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
736 static int ratelimit;
737
738 if (ratelimit < 10 &&
739 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
740 pr_warn("NOHZ: local_softirq_pending %02x\n",
741 (unsigned int) local_softirq_pending());
742 ratelimit++;
743 }
744 return false;
745 }
746
747 if (tick_nohz_full_enabled()) {
748 /*
749 * Keep the tick alive to guarantee timekeeping progression
750 * if there are full dynticks CPUs around
751 */
752 if (tick_do_timer_cpu == cpu)
753 return false;
754 /*
755 * Boot safety: make sure the timekeeping duty has been
756 * assigned before entering dyntick-idle mode,
757 */
758 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
759 return false;
760 }
761
762 return true;
763 }
764
765 static void __tick_nohz_idle_enter(struct tick_sched *ts)
766 {
767 ktime_t now, expires;
768 int cpu = smp_processor_id();
769
770 now = tick_nohz_start_idle(ts);
771
772 if (can_stop_idle_tick(cpu, ts)) {
773 int was_stopped = ts->tick_stopped;
774
775 ts->idle_calls++;
776
777 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
778 if (expires.tv64 > 0LL) {
779 ts->idle_sleeps++;
780 ts->idle_expires = expires;
781 }
782
783 if (!was_stopped && ts->tick_stopped)
784 ts->idle_jiffies = ts->last_jiffies;
785 }
786 }
787
788 /**
789 * tick_nohz_idle_enter - stop the idle tick from the idle task
790 *
791 * When the next event is more than a tick into the future, stop the idle tick
792 * Called when we start the idle loop.
793 *
794 * The arch is responsible of calling:
795 *
796 * - rcu_idle_enter() after its last use of RCU before the CPU is put
797 * to sleep.
798 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
799 */
800 void tick_nohz_idle_enter(void)
801 {
802 struct tick_sched *ts;
803
804 WARN_ON_ONCE(irqs_disabled());
805
806 /*
807 * Update the idle state in the scheduler domain hierarchy
808 * when tick_nohz_stop_sched_tick() is called from the idle loop.
809 * State will be updated to busy during the first busy tick after
810 * exiting idle.
811 */
812 set_cpu_sd_state_idle();
813
814 local_irq_disable();
815
816 ts = &__get_cpu_var(tick_cpu_sched);
817 ts->inidle = 1;
818 __tick_nohz_idle_enter(ts);
819
820 local_irq_enable();
821 }
822 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
823
824 /**
825 * tick_nohz_irq_exit - update next tick event from interrupt exit
826 *
827 * When an interrupt fires while we are idle and it doesn't cause
828 * a reschedule, it may still add, modify or delete a timer, enqueue
829 * an RCU callback, etc...
830 * So we need to re-calculate and reprogram the next tick event.
831 */
832 void tick_nohz_irq_exit(void)
833 {
834 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
835
836 if (ts->inidle)
837 __tick_nohz_idle_enter(ts);
838 else
839 tick_nohz_full_stop_tick(ts);
840 }
841
842 /**
843 * tick_nohz_get_sleep_length - return the length of the current sleep
844 *
845 * Called from power state control code with interrupts disabled
846 */
847 ktime_t tick_nohz_get_sleep_length(void)
848 {
849 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
850
851 return ts->sleep_length;
852 }
853
854 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
855 {
856 hrtimer_cancel(&ts->sched_timer);
857 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
858
859 while (1) {
860 /* Forward the time to expire in the future */
861 hrtimer_forward(&ts->sched_timer, now, tick_period);
862
863 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
864 hrtimer_start_expires(&ts->sched_timer,
865 HRTIMER_MODE_ABS_PINNED);
866 /* Check, if the timer was already in the past */
867 if (hrtimer_active(&ts->sched_timer))
868 break;
869 } else {
870 if (!tick_program_event(
871 hrtimer_get_expires(&ts->sched_timer), 0))
872 break;
873 }
874 /* Reread time and update jiffies */
875 now = ktime_get();
876 tick_do_update_jiffies64(now);
877 }
878 }
879
880 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
881 {
882 /* Update jiffies first */
883 tick_do_update_jiffies64(now);
884 update_cpu_load_nohz();
885
886 calc_load_exit_idle();
887 touch_softlockup_watchdog();
888 /*
889 * Cancel the scheduled timer and restore the tick
890 */
891 ts->tick_stopped = 0;
892 ts->idle_exittime = now;
893
894 tick_nohz_restart(ts, now);
895 }
896
897 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
898 {
899 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
900 unsigned long ticks;
901
902 if (vtime_accounting_enabled())
903 return;
904 /*
905 * We stopped the tick in idle. Update process times would miss the
906 * time we slept as update_process_times does only a 1 tick
907 * accounting. Enforce that this is accounted to idle !
908 */
909 ticks = jiffies - ts->idle_jiffies;
910 /*
911 * We might be one off. Do not randomly account a huge number of ticks!
912 */
913 if (ticks && ticks < LONG_MAX)
914 account_idle_ticks(ticks);
915 #endif
916 }
917
918 /**
919 * tick_nohz_idle_exit - restart the idle tick from the idle task
920 *
921 * Restart the idle tick when the CPU is woken up from idle
922 * This also exit the RCU extended quiescent state. The CPU
923 * can use RCU again after this function is called.
924 */
925 void tick_nohz_idle_exit(void)
926 {
927 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
928 ktime_t now;
929
930 local_irq_disable();
931
932 WARN_ON_ONCE(!ts->inidle);
933
934 ts->inidle = 0;
935
936 if (ts->idle_active || ts->tick_stopped)
937 now = ktime_get();
938
939 if (ts->idle_active)
940 tick_nohz_stop_idle(ts, now);
941
942 if (ts->tick_stopped) {
943 tick_nohz_restart_sched_tick(ts, now);
944 tick_nohz_account_idle_ticks(ts);
945 }
946
947 local_irq_enable();
948 }
949 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
950
951 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
952 {
953 hrtimer_forward(&ts->sched_timer, now, tick_period);
954 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
955 }
956
957 /*
958 * The nohz low res interrupt handler
959 */
960 static void tick_nohz_handler(struct clock_event_device *dev)
961 {
962 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
963 struct pt_regs *regs = get_irq_regs();
964 ktime_t now = ktime_get();
965
966 dev->next_event.tv64 = KTIME_MAX;
967
968 tick_sched_do_timer(now);
969 tick_sched_handle(ts, regs);
970
971 while (tick_nohz_reprogram(ts, now)) {
972 now = ktime_get();
973 tick_do_update_jiffies64(now);
974 }
975 }
976
977 /**
978 * tick_nohz_switch_to_nohz - switch to nohz mode
979 */
980 static void tick_nohz_switch_to_nohz(void)
981 {
982 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
983 ktime_t next;
984
985 if (!tick_nohz_enabled)
986 return;
987
988 local_irq_disable();
989 if (tick_switch_to_oneshot(tick_nohz_handler)) {
990 local_irq_enable();
991 return;
992 }
993 tick_nohz_active = 1;
994 ts->nohz_mode = NOHZ_MODE_LOWRES;
995
996 /*
997 * Recycle the hrtimer in ts, so we can share the
998 * hrtimer_forward with the highres code.
999 */
1000 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1001 /* Get the next period */
1002 next = tick_init_jiffy_update();
1003
1004 for (;;) {
1005 hrtimer_set_expires(&ts->sched_timer, next);
1006 if (!tick_program_event(next, 0))
1007 break;
1008 next = ktime_add(next, tick_period);
1009 }
1010 local_irq_enable();
1011 }
1012
1013 /*
1014 * When NOHZ is enabled and the tick is stopped, we need to kick the
1015 * tick timer from irq_enter() so that the jiffies update is kept
1016 * alive during long running softirqs. That's ugly as hell, but
1017 * correctness is key even if we need to fix the offending softirq in
1018 * the first place.
1019 *
1020 * Note, this is different to tick_nohz_restart. We just kick the
1021 * timer and do not touch the other magic bits which need to be done
1022 * when idle is left.
1023 */
1024 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1025 {
1026 #if 0
1027 /* Switch back to 2.6.27 behaviour */
1028 ktime_t delta;
1029
1030 /*
1031 * Do not touch the tick device, when the next expiry is either
1032 * already reached or less/equal than the tick period.
1033 */
1034 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1035 if (delta.tv64 <= tick_period.tv64)
1036 return;
1037
1038 tick_nohz_restart(ts, now);
1039 #endif
1040 }
1041
1042 static inline void tick_nohz_irq_enter(void)
1043 {
1044 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1045 ktime_t now;
1046
1047 if (!ts->idle_active && !ts->tick_stopped)
1048 return;
1049 now = ktime_get();
1050 if (ts->idle_active)
1051 tick_nohz_stop_idle(ts, now);
1052 if (ts->tick_stopped) {
1053 tick_nohz_update_jiffies(now);
1054 tick_nohz_kick_tick(ts, now);
1055 }
1056 }
1057
1058 #else
1059
1060 static inline void tick_nohz_switch_to_nohz(void) { }
1061 static inline void tick_nohz_irq_enter(void) { }
1062
1063 #endif /* CONFIG_NO_HZ_COMMON */
1064
1065 /*
1066 * Called from irq_enter to notify about the possible interruption of idle()
1067 */
1068 void tick_irq_enter(void)
1069 {
1070 tick_check_oneshot_broadcast_this_cpu();
1071 tick_nohz_irq_enter();
1072 }
1073
1074 /*
1075 * High resolution timer specific code
1076 */
1077 #ifdef CONFIG_HIGH_RES_TIMERS
1078 /*
1079 * We rearm the timer until we get disabled by the idle code.
1080 * Called with interrupts disabled.
1081 */
1082 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1083 {
1084 struct tick_sched *ts =
1085 container_of(timer, struct tick_sched, sched_timer);
1086 struct pt_regs *regs = get_irq_regs();
1087 ktime_t now = ktime_get();
1088
1089 tick_sched_do_timer(now);
1090
1091 /*
1092 * Do not call, when we are not in irq context and have
1093 * no valid regs pointer
1094 */
1095 if (regs)
1096 tick_sched_handle(ts, regs);
1097
1098 hrtimer_forward(timer, now, tick_period);
1099
1100 return HRTIMER_RESTART;
1101 }
1102
1103 static int sched_skew_tick;
1104
1105 static int __init skew_tick(char *str)
1106 {
1107 get_option(&str, &sched_skew_tick);
1108
1109 return 0;
1110 }
1111 early_param("skew_tick", skew_tick);
1112
1113 /**
1114 * tick_setup_sched_timer - setup the tick emulation timer
1115 */
1116 void tick_setup_sched_timer(void)
1117 {
1118 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1119 ktime_t now = ktime_get();
1120
1121 /*
1122 * Emulate tick processing via per-CPU hrtimers:
1123 */
1124 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1125 ts->sched_timer.function = tick_sched_timer;
1126
1127 /* Get the next period (per cpu) */
1128 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1129
1130 /* Offset the tick to avert jiffies_lock contention. */
1131 if (sched_skew_tick) {
1132 u64 offset = ktime_to_ns(tick_period) >> 1;
1133 do_div(offset, num_possible_cpus());
1134 offset *= smp_processor_id();
1135 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1136 }
1137
1138 for (;;) {
1139 hrtimer_forward(&ts->sched_timer, now, tick_period);
1140 hrtimer_start_expires(&ts->sched_timer,
1141 HRTIMER_MODE_ABS_PINNED);
1142 /* Check, if the timer was already in the past */
1143 if (hrtimer_active(&ts->sched_timer))
1144 break;
1145 now = ktime_get();
1146 }
1147
1148 #ifdef CONFIG_NO_HZ_COMMON
1149 if (tick_nohz_enabled) {
1150 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1151 tick_nohz_active = 1;
1152 }
1153 #endif
1154 }
1155 #endif /* HIGH_RES_TIMERS */
1156
1157 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1158 void tick_cancel_sched_timer(int cpu)
1159 {
1160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1161
1162 # ifdef CONFIG_HIGH_RES_TIMERS
1163 if (ts->sched_timer.base)
1164 hrtimer_cancel(&ts->sched_timer);
1165 # endif
1166
1167 memset(ts, 0, sizeof(*ts));
1168 }
1169 #endif
1170
1171 /**
1172 * Async notification about clocksource changes
1173 */
1174 void tick_clock_notify(void)
1175 {
1176 int cpu;
1177
1178 for_each_possible_cpu(cpu)
1179 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1180 }
1181
1182 /*
1183 * Async notification about clock event changes
1184 */
1185 void tick_oneshot_notify(void)
1186 {
1187 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1188
1189 set_bit(0, &ts->check_clocks);
1190 }
1191
1192 /**
1193 * Check, if a change happened, which makes oneshot possible.
1194 *
1195 * Called cyclic from the hrtimer softirq (driven by the timer
1196 * softirq) allow_nohz signals, that we can switch into low-res nohz
1197 * mode, because high resolution timers are disabled (either compile
1198 * or runtime).
1199 */
1200 int tick_check_oneshot_change(int allow_nohz)
1201 {
1202 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1203
1204 if (!test_and_clear_bit(0, &ts->check_clocks))
1205 return 0;
1206
1207 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1208 return 0;
1209
1210 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1211 return 0;
1212
1213 if (!allow_nohz)
1214 return 1;
1215
1216 tick_nohz_switch_to_nohz();
1217 return 0;
1218 }
This page took 0.07875 seconds and 5 git commands to generate.