nohz: Prevent clocksource wrapping during idle
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24
25 #include <asm/irq_regs.h>
26
27 #include "tick-internal.h"
28
29 /*
30 * Per cpu nohz control structure
31 */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33
34 /*
35 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 */
37 static ktime_t last_jiffies_update;
38
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 return &per_cpu(tick_cpu_sched, cpu);
42 }
43
44 /*
45 * Must be called with interrupts disabled !
46 */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 unsigned long ticks = 0;
50 ktime_t delta;
51
52 /*
53 * Do a quick check without holding xtime_lock:
54 */
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
58
59 /* Reevalute with xtime_lock held */
60 write_seqlock(&xtime_lock);
61
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
64
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
68
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
72
73 ticks = ktime_divns(delta, incr);
74
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
77 }
78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 }
83 write_sequnlock(&xtime_lock);
84 }
85
86 /*
87 * Initialize and return retrieve the jiffies update.
88 */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 ktime_t period;
92
93 write_seqlock(&xtime_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&xtime_lock);
99 return period;
100 }
101
102 /*
103 * NOHZ - aka dynamic tick functionality
104 */
105 #ifdef CONFIG_NO_HZ
106 /*
107 * NO HZ enabled ?
108 */
109 static int tick_nohz_enabled __read_mostly = 1;
110
111 /*
112 * Enable / Disable tickless mode
113 */
114 static int __init setup_tick_nohz(char *str)
115 {
116 if (!strcmp(str, "off"))
117 tick_nohz_enabled = 0;
118 else if (!strcmp(str, "on"))
119 tick_nohz_enabled = 1;
120 else
121 return 0;
122 return 1;
123 }
124
125 __setup("nohz=", setup_tick_nohz);
126
127 /**
128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 *
130 * Called from interrupt entry when the CPU was idle
131 *
132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133 * must be updated. Otherwise an interrupt handler could use a stale jiffy
134 * value. We do this unconditionally on any cpu, as we don't know whether the
135 * cpu, which has the update task assigned is in a long sleep.
136 */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 int cpu = smp_processor_id();
140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 unsigned long flags;
142
143 cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 ts->idle_waketime = now;
145
146 local_irq_save(flags);
147 tick_do_update_jiffies64(now);
148 local_irq_restore(flags);
149
150 touch_softlockup_watchdog();
151 }
152
153 static void tick_nohz_stop_idle(int cpu, ktime_t now)
154 {
155 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 ktime_t delta;
157
158 delta = ktime_sub(now, ts->idle_entrytime);
159 ts->idle_lastupdate = now;
160 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 ts->idle_active = 0;
162
163 sched_clock_idle_wakeup_event(0);
164 }
165
166 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
167 {
168 ktime_t now, delta;
169
170 now = ktime_get();
171 if (ts->idle_active) {
172 delta = ktime_sub(now, ts->idle_entrytime);
173 ts->idle_lastupdate = now;
174 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
175 }
176 ts->idle_entrytime = now;
177 ts->idle_active = 1;
178 sched_clock_idle_sleep_event();
179 return now;
180 }
181
182 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
183 {
184 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
185
186 if (!tick_nohz_enabled)
187 return -1;
188
189 if (ts->idle_active)
190 *last_update_time = ktime_to_us(ts->idle_lastupdate);
191 else
192 *last_update_time = ktime_to_us(ktime_get());
193
194 return ktime_to_us(ts->idle_sleeptime);
195 }
196 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
197
198 /**
199 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
200 *
201 * When the next event is more than a tick into the future, stop the idle tick
202 * Called either from the idle loop or from irq_exit() when an idle period was
203 * just interrupted by an interrupt which did not cause a reschedule.
204 */
205 void tick_nohz_stop_sched_tick(int inidle)
206 {
207 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
208 struct tick_sched *ts;
209 ktime_t last_update, expires, now;
210 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
211 u64 time_delta;
212 int cpu;
213
214 local_irq_save(flags);
215
216 cpu = smp_processor_id();
217 ts = &per_cpu(tick_cpu_sched, cpu);
218
219 /*
220 * Call to tick_nohz_start_idle stops the last_update_time from being
221 * updated. Thus, it must not be called in the event we are called from
222 * irq_exit() with the prior state different than idle.
223 */
224 if (!inidle && !ts->inidle)
225 goto end;
226
227 now = tick_nohz_start_idle(ts);
228
229 /*
230 * If this cpu is offline and it is the one which updates
231 * jiffies, then give up the assignment and let it be taken by
232 * the cpu which runs the tick timer next. If we don't drop
233 * this here the jiffies might be stale and do_timer() never
234 * invoked.
235 */
236 if (unlikely(!cpu_online(cpu))) {
237 if (cpu == tick_do_timer_cpu)
238 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
239 }
240
241 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
242 goto end;
243
244 ts->inidle = 1;
245
246 if (need_resched())
247 goto end;
248
249 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
250 static int ratelimit;
251
252 if (ratelimit < 10) {
253 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
254 (unsigned int) local_softirq_pending());
255 ratelimit++;
256 }
257 goto end;
258 }
259
260 ts->idle_calls++;
261 /* Read jiffies and the time when jiffies were updated last */
262 do {
263 seq = read_seqbegin(&xtime_lock);
264 last_update = last_jiffies_update;
265 last_jiffies = jiffies;
266
267 /*
268 * On SMP we really should only care for the CPU which
269 * has the do_timer duty assigned. All other CPUs can
270 * sleep as long as they want.
271 */
272 if (cpu == tick_do_timer_cpu ||
273 tick_do_timer_cpu == TICK_DO_TIMER_NONE)
274 time_delta = timekeeping_max_deferment();
275 else
276 time_delta = KTIME_MAX;
277 } while (read_seqretry(&xtime_lock, seq));
278
279 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
280 arch_needs_cpu(cpu)) {
281 next_jiffies = last_jiffies + 1;
282 delta_jiffies = 1;
283 } else {
284 /* Get the next timer wheel timer */
285 next_jiffies = get_next_timer_interrupt(last_jiffies);
286 delta_jiffies = next_jiffies - last_jiffies;
287 }
288 /*
289 * Do not stop the tick, if we are only one off
290 * or if the cpu is required for rcu
291 */
292 if (!ts->tick_stopped && delta_jiffies == 1)
293 goto out;
294
295 /* Schedule the tick, if we are at least one jiffie off */
296 if ((long)delta_jiffies >= 1) {
297
298 /*
299 * calculate the expiry time for the next timer wheel
300 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
301 * that there is no timer pending or at least extremely
302 * far into the future (12 days for HZ=1000). In this
303 * case we set the expiry to the end of time.
304 */
305 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
306 /*
307 * Calculate the time delta for the next timer event.
308 * If the time delta exceeds the maximum time delta
309 * permitted by the current clocksource then adjust
310 * the time delta accordingly to ensure the
311 * clocksource does not wrap.
312 */
313 time_delta = min_t(u64, time_delta,
314 tick_period.tv64 * delta_jiffies);
315 expires = ktime_add_ns(last_update, time_delta);
316 } else {
317 expires.tv64 = KTIME_MAX;
318 }
319
320 /*
321 * If this cpu is the one which updates jiffies, then
322 * give up the assignment and let it be taken by the
323 * cpu which runs the tick timer next, which might be
324 * this cpu as well. If we don't drop this here the
325 * jiffies might be stale and do_timer() never
326 * invoked.
327 */
328 if (cpu == tick_do_timer_cpu)
329 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
330
331 if (delta_jiffies > 1)
332 cpumask_set_cpu(cpu, nohz_cpu_mask);
333
334 /* Skip reprogram of event if its not changed */
335 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
336 goto out;
337
338 /*
339 * nohz_stop_sched_tick can be called several times before
340 * the nohz_restart_sched_tick is called. This happens when
341 * interrupts arrive which do not cause a reschedule. In the
342 * first call we save the current tick time, so we can restart
343 * the scheduler tick in nohz_restart_sched_tick.
344 */
345 if (!ts->tick_stopped) {
346 if (select_nohz_load_balancer(1)) {
347 /*
348 * sched tick not stopped!
349 */
350 cpumask_clear_cpu(cpu, nohz_cpu_mask);
351 goto out;
352 }
353
354 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
355 ts->tick_stopped = 1;
356 ts->idle_jiffies = last_jiffies;
357 rcu_enter_nohz();
358 }
359
360 ts->idle_sleeps++;
361
362 /* Mark expires */
363 ts->idle_expires = expires;
364
365 /*
366 * If the expiration time == KTIME_MAX, then
367 * in this case we simply stop the tick timer.
368 */
369 if (unlikely(expires.tv64 == KTIME_MAX)) {
370 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
371 hrtimer_cancel(&ts->sched_timer);
372 goto out;
373 }
374
375 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
376 hrtimer_start(&ts->sched_timer, expires,
377 HRTIMER_MODE_ABS_PINNED);
378 /* Check, if the timer was already in the past */
379 if (hrtimer_active(&ts->sched_timer))
380 goto out;
381 } else if (!tick_program_event(expires, 0))
382 goto out;
383 /*
384 * We are past the event already. So we crossed a
385 * jiffie boundary. Update jiffies and raise the
386 * softirq.
387 */
388 tick_do_update_jiffies64(ktime_get());
389 cpumask_clear_cpu(cpu, nohz_cpu_mask);
390 }
391 raise_softirq_irqoff(TIMER_SOFTIRQ);
392 out:
393 ts->next_jiffies = next_jiffies;
394 ts->last_jiffies = last_jiffies;
395 ts->sleep_length = ktime_sub(dev->next_event, now);
396 end:
397 local_irq_restore(flags);
398 }
399
400 /**
401 * tick_nohz_get_sleep_length - return the length of the current sleep
402 *
403 * Called from power state control code with interrupts disabled
404 */
405 ktime_t tick_nohz_get_sleep_length(void)
406 {
407 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
408
409 return ts->sleep_length;
410 }
411
412 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
413 {
414 hrtimer_cancel(&ts->sched_timer);
415 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
416
417 while (1) {
418 /* Forward the time to expire in the future */
419 hrtimer_forward(&ts->sched_timer, now, tick_period);
420
421 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
422 hrtimer_start_expires(&ts->sched_timer,
423 HRTIMER_MODE_ABS_PINNED);
424 /* Check, if the timer was already in the past */
425 if (hrtimer_active(&ts->sched_timer))
426 break;
427 } else {
428 if (!tick_program_event(
429 hrtimer_get_expires(&ts->sched_timer), 0))
430 break;
431 }
432 /* Update jiffies and reread time */
433 tick_do_update_jiffies64(now);
434 now = ktime_get();
435 }
436 }
437
438 /**
439 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
440 *
441 * Restart the idle tick when the CPU is woken up from idle
442 */
443 void tick_nohz_restart_sched_tick(void)
444 {
445 int cpu = smp_processor_id();
446 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
447 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
448 unsigned long ticks;
449 #endif
450 ktime_t now;
451
452 local_irq_disable();
453 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
454 now = ktime_get();
455
456 if (ts->idle_active)
457 tick_nohz_stop_idle(cpu, now);
458
459 if (!ts->inidle || !ts->tick_stopped) {
460 ts->inidle = 0;
461 local_irq_enable();
462 return;
463 }
464
465 ts->inidle = 0;
466
467 rcu_exit_nohz();
468
469 /* Update jiffies first */
470 select_nohz_load_balancer(0);
471 tick_do_update_jiffies64(now);
472 cpumask_clear_cpu(cpu, nohz_cpu_mask);
473
474 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
475 /*
476 * We stopped the tick in idle. Update process times would miss the
477 * time we slept as update_process_times does only a 1 tick
478 * accounting. Enforce that this is accounted to idle !
479 */
480 ticks = jiffies - ts->idle_jiffies;
481 /*
482 * We might be one off. Do not randomly account a huge number of ticks!
483 */
484 if (ticks && ticks < LONG_MAX)
485 account_idle_ticks(ticks);
486 #endif
487
488 touch_softlockup_watchdog();
489 /*
490 * Cancel the scheduled timer and restore the tick
491 */
492 ts->tick_stopped = 0;
493 ts->idle_exittime = now;
494
495 tick_nohz_restart(ts, now);
496
497 local_irq_enable();
498 }
499
500 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
501 {
502 hrtimer_forward(&ts->sched_timer, now, tick_period);
503 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
504 }
505
506 /*
507 * The nohz low res interrupt handler
508 */
509 static void tick_nohz_handler(struct clock_event_device *dev)
510 {
511 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
512 struct pt_regs *regs = get_irq_regs();
513 int cpu = smp_processor_id();
514 ktime_t now = ktime_get();
515
516 dev->next_event.tv64 = KTIME_MAX;
517
518 /*
519 * Check if the do_timer duty was dropped. We don't care about
520 * concurrency: This happens only when the cpu in charge went
521 * into a long sleep. If two cpus happen to assign themself to
522 * this duty, then the jiffies update is still serialized by
523 * xtime_lock.
524 */
525 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
526 tick_do_timer_cpu = cpu;
527
528 /* Check, if the jiffies need an update */
529 if (tick_do_timer_cpu == cpu)
530 tick_do_update_jiffies64(now);
531
532 /*
533 * When we are idle and the tick is stopped, we have to touch
534 * the watchdog as we might not schedule for a really long
535 * time. This happens on complete idle SMP systems while
536 * waiting on the login prompt. We also increment the "start
537 * of idle" jiffy stamp so the idle accounting adjustment we
538 * do when we go busy again does not account too much ticks.
539 */
540 if (ts->tick_stopped) {
541 touch_softlockup_watchdog();
542 ts->idle_jiffies++;
543 }
544
545 update_process_times(user_mode(regs));
546 profile_tick(CPU_PROFILING);
547
548 while (tick_nohz_reprogram(ts, now)) {
549 now = ktime_get();
550 tick_do_update_jiffies64(now);
551 }
552 }
553
554 /**
555 * tick_nohz_switch_to_nohz - switch to nohz mode
556 */
557 static void tick_nohz_switch_to_nohz(void)
558 {
559 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
560 ktime_t next;
561
562 if (!tick_nohz_enabled)
563 return;
564
565 local_irq_disable();
566 if (tick_switch_to_oneshot(tick_nohz_handler)) {
567 local_irq_enable();
568 return;
569 }
570
571 ts->nohz_mode = NOHZ_MODE_LOWRES;
572
573 /*
574 * Recycle the hrtimer in ts, so we can share the
575 * hrtimer_forward with the highres code.
576 */
577 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
578 /* Get the next period */
579 next = tick_init_jiffy_update();
580
581 for (;;) {
582 hrtimer_set_expires(&ts->sched_timer, next);
583 if (!tick_program_event(next, 0))
584 break;
585 next = ktime_add(next, tick_period);
586 }
587 local_irq_enable();
588
589 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
590 smp_processor_id());
591 }
592
593 /*
594 * When NOHZ is enabled and the tick is stopped, we need to kick the
595 * tick timer from irq_enter() so that the jiffies update is kept
596 * alive during long running softirqs. That's ugly as hell, but
597 * correctness is key even if we need to fix the offending softirq in
598 * the first place.
599 *
600 * Note, this is different to tick_nohz_restart. We just kick the
601 * timer and do not touch the other magic bits which need to be done
602 * when idle is left.
603 */
604 static void tick_nohz_kick_tick(int cpu, ktime_t now)
605 {
606 #if 0
607 /* Switch back to 2.6.27 behaviour */
608
609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 ktime_t delta;
611
612 /*
613 * Do not touch the tick device, when the next expiry is either
614 * already reached or less/equal than the tick period.
615 */
616 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
617 if (delta.tv64 <= tick_period.tv64)
618 return;
619
620 tick_nohz_restart(ts, now);
621 #endif
622 }
623
624 static inline void tick_check_nohz(int cpu)
625 {
626 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
627 ktime_t now;
628
629 if (!ts->idle_active && !ts->tick_stopped)
630 return;
631 now = ktime_get();
632 if (ts->idle_active)
633 tick_nohz_stop_idle(cpu, now);
634 if (ts->tick_stopped) {
635 tick_nohz_update_jiffies(now);
636 tick_nohz_kick_tick(cpu, now);
637 }
638 }
639
640 #else
641
642 static inline void tick_nohz_switch_to_nohz(void) { }
643 static inline void tick_check_nohz(int cpu) { }
644
645 #endif /* NO_HZ */
646
647 /*
648 * Called from irq_enter to notify about the possible interruption of idle()
649 */
650 void tick_check_idle(int cpu)
651 {
652 tick_check_oneshot_broadcast(cpu);
653 tick_check_nohz(cpu);
654 }
655
656 /*
657 * High resolution timer specific code
658 */
659 #ifdef CONFIG_HIGH_RES_TIMERS
660 /*
661 * We rearm the timer until we get disabled by the idle code.
662 * Called with interrupts disabled and timer->base->cpu_base->lock held.
663 */
664 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
665 {
666 struct tick_sched *ts =
667 container_of(timer, struct tick_sched, sched_timer);
668 struct pt_regs *regs = get_irq_regs();
669 ktime_t now = ktime_get();
670 int cpu = smp_processor_id();
671
672 #ifdef CONFIG_NO_HZ
673 /*
674 * Check if the do_timer duty was dropped. We don't care about
675 * concurrency: This happens only when the cpu in charge went
676 * into a long sleep. If two cpus happen to assign themself to
677 * this duty, then the jiffies update is still serialized by
678 * xtime_lock.
679 */
680 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
681 tick_do_timer_cpu = cpu;
682 #endif
683
684 /* Check, if the jiffies need an update */
685 if (tick_do_timer_cpu == cpu)
686 tick_do_update_jiffies64(now);
687
688 /*
689 * Do not call, when we are not in irq context and have
690 * no valid regs pointer
691 */
692 if (regs) {
693 /*
694 * When we are idle and the tick is stopped, we have to touch
695 * the watchdog as we might not schedule for a really long
696 * time. This happens on complete idle SMP systems while
697 * waiting on the login prompt. We also increment the "start of
698 * idle" jiffy stamp so the idle accounting adjustment we do
699 * when we go busy again does not account too much ticks.
700 */
701 if (ts->tick_stopped) {
702 touch_softlockup_watchdog();
703 ts->idle_jiffies++;
704 }
705 update_process_times(user_mode(regs));
706 profile_tick(CPU_PROFILING);
707 }
708
709 hrtimer_forward(timer, now, tick_period);
710
711 return HRTIMER_RESTART;
712 }
713
714 /**
715 * tick_setup_sched_timer - setup the tick emulation timer
716 */
717 void tick_setup_sched_timer(void)
718 {
719 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
720 ktime_t now = ktime_get();
721 u64 offset;
722
723 /*
724 * Emulate tick processing via per-CPU hrtimers:
725 */
726 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
727 ts->sched_timer.function = tick_sched_timer;
728
729 /* Get the next period (per cpu) */
730 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
731 offset = ktime_to_ns(tick_period) >> 1;
732 do_div(offset, num_possible_cpus());
733 offset *= smp_processor_id();
734 hrtimer_add_expires_ns(&ts->sched_timer, offset);
735
736 for (;;) {
737 hrtimer_forward(&ts->sched_timer, now, tick_period);
738 hrtimer_start_expires(&ts->sched_timer,
739 HRTIMER_MODE_ABS_PINNED);
740 /* Check, if the timer was already in the past */
741 if (hrtimer_active(&ts->sched_timer))
742 break;
743 now = ktime_get();
744 }
745
746 #ifdef CONFIG_NO_HZ
747 if (tick_nohz_enabled)
748 ts->nohz_mode = NOHZ_MODE_HIGHRES;
749 #endif
750 }
751 #endif /* HIGH_RES_TIMERS */
752
753 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
754 void tick_cancel_sched_timer(int cpu)
755 {
756 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
757
758 # ifdef CONFIG_HIGH_RES_TIMERS
759 if (ts->sched_timer.base)
760 hrtimer_cancel(&ts->sched_timer);
761 # endif
762
763 ts->nohz_mode = NOHZ_MODE_INACTIVE;
764 }
765 #endif
766
767 /**
768 * Async notification about clocksource changes
769 */
770 void tick_clock_notify(void)
771 {
772 int cpu;
773
774 for_each_possible_cpu(cpu)
775 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
776 }
777
778 /*
779 * Async notification about clock event changes
780 */
781 void tick_oneshot_notify(void)
782 {
783 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
784
785 set_bit(0, &ts->check_clocks);
786 }
787
788 /**
789 * Check, if a change happened, which makes oneshot possible.
790 *
791 * Called cyclic from the hrtimer softirq (driven by the timer
792 * softirq) allow_nohz signals, that we can switch into low-res nohz
793 * mode, because high resolution timers are disabled (either compile
794 * or runtime).
795 */
796 int tick_check_oneshot_change(int allow_nohz)
797 {
798 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
799
800 if (!test_and_clear_bit(0, &ts->check_clocks))
801 return 0;
802
803 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
804 return 0;
805
806 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
807 return 0;
808
809 if (!allow_nohz)
810 return 1;
811
812 tick_nohz_switch_to_nohz();
813 return 0;
814 }
This page took 0.046504 seconds and 5 git commands to generate.