nohz: Allow rcu extended quiescent state handling seperately from tick stop
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 }
82 write_sequnlock(&xtime_lock);
83 }
84
85 /*
86 * Initialize and return retrieve the jiffies update.
87 */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99 }
100
101 /*
102 * NOHZ - aka dynamic tick functionality
103 */
104 #ifdef CONFIG_NO_HZ
105 /*
106 * NO HZ enabled ?
107 */
108 static int tick_nohz_enabled __read_mostly = 1;
109
110 /*
111 * Enable / Disable tickless mode
112 */
113 static int __init setup_tick_nohz(char *str)
114 {
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
122 }
123
124 __setup("nohz=", setup_tick_nohz);
125
126 /**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
141
142 ts->idle_waketime = now;
143
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
147
148 touch_softlockup_watchdog();
149 }
150
151 /*
152 * Updates the per cpu time idle statistics counters
153 */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 ktime_t delta;
158
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
161 if (nr_iowait_cpu(cpu) > 0)
162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 ts->idle_entrytime = now;
166 }
167
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
170
171 }
172
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
179
180 sched_clock_idle_wakeup_event(0);
181 }
182
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 ktime_t now;
186
187 now = ktime_get();
188
189 update_ts_time_stats(cpu, ts, now, NULL);
190
191 ts->idle_entrytime = now;
192 ts->idle_active = 1;
193 sched_clock_idle_sleep_event();
194 return now;
195 }
196
197 /**
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in. Do not update
201 * counters if NULL.
202 *
203 * Return the cummulative idle time (since boot) for a given
204 * CPU, in microseconds.
205 *
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
208 *
209 * This function returns -1 if NOHZ is not enabled.
210 */
211 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212 {
213 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214 ktime_t now, idle;
215
216 if (!tick_nohz_enabled)
217 return -1;
218
219 now = ktime_get();
220 if (last_update_time) {
221 update_ts_time_stats(cpu, ts, now, last_update_time);
222 idle = ts->idle_sleeptime;
223 } else {
224 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
225 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
226
227 idle = ktime_add(ts->idle_sleeptime, delta);
228 } else {
229 idle = ts->idle_sleeptime;
230 }
231 }
232
233 return ktime_to_us(idle);
234
235 }
236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
237
238 /**
239 * get_cpu_iowait_time_us - get the total iowait time of a cpu
240 * @cpu: CPU number to query
241 * @last_update_time: variable to store update time in. Do not update
242 * counters if NULL.
243 *
244 * Return the cummulative iowait time (since boot) for a given
245 * CPU, in microseconds.
246 *
247 * This time is measured via accounting rather than sampling,
248 * and is as accurate as ktime_get() is.
249 *
250 * This function returns -1 if NOHZ is not enabled.
251 */
252 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
253 {
254 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
255 ktime_t now, iowait;
256
257 if (!tick_nohz_enabled)
258 return -1;
259
260 now = ktime_get();
261 if (last_update_time) {
262 update_ts_time_stats(cpu, ts, now, last_update_time);
263 iowait = ts->iowait_sleeptime;
264 } else {
265 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
266 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
267
268 iowait = ktime_add(ts->iowait_sleeptime, delta);
269 } else {
270 iowait = ts->iowait_sleeptime;
271 }
272 }
273
274 return ktime_to_us(iowait);
275 }
276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
277
278 static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
279 {
280 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
281 ktime_t last_update, expires, now;
282 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
283 u64 time_delta;
284 int cpu;
285
286 cpu = smp_processor_id();
287 ts = &per_cpu(tick_cpu_sched, cpu);
288
289 now = tick_nohz_start_idle(cpu, ts);
290
291 /*
292 * If this cpu is offline and it is the one which updates
293 * jiffies, then give up the assignment and let it be taken by
294 * the cpu which runs the tick timer next. If we don't drop
295 * this here the jiffies might be stale and do_timer() never
296 * invoked.
297 */
298 if (unlikely(!cpu_online(cpu))) {
299 if (cpu == tick_do_timer_cpu)
300 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
301 }
302
303 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
304 return;
305
306 if (need_resched())
307 return;
308
309 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
310 static int ratelimit;
311
312 if (ratelimit < 10) {
313 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
314 (unsigned int) local_softirq_pending());
315 ratelimit++;
316 }
317 return;
318 }
319
320 ts->idle_calls++;
321 /* Read jiffies and the time when jiffies were updated last */
322 do {
323 seq = read_seqbegin(&xtime_lock);
324 last_update = last_jiffies_update;
325 last_jiffies = jiffies;
326 time_delta = timekeeping_max_deferment();
327 } while (read_seqretry(&xtime_lock, seq));
328
329 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
330 arch_needs_cpu(cpu)) {
331 next_jiffies = last_jiffies + 1;
332 delta_jiffies = 1;
333 } else {
334 /* Get the next timer wheel timer */
335 next_jiffies = get_next_timer_interrupt(last_jiffies);
336 delta_jiffies = next_jiffies - last_jiffies;
337 }
338 /*
339 * Do not stop the tick, if we are only one off
340 * or if the cpu is required for rcu
341 */
342 if (!ts->tick_stopped && delta_jiffies == 1)
343 goto out;
344
345 /* Schedule the tick, if we are at least one jiffie off */
346 if ((long)delta_jiffies >= 1) {
347
348 /*
349 * If this cpu is the one which updates jiffies, then
350 * give up the assignment and let it be taken by the
351 * cpu which runs the tick timer next, which might be
352 * this cpu as well. If we don't drop this here the
353 * jiffies might be stale and do_timer() never
354 * invoked. Keep track of the fact that it was the one
355 * which had the do_timer() duty last. If this cpu is
356 * the one which had the do_timer() duty last, we
357 * limit the sleep time to the timekeeping
358 * max_deferement value which we retrieved
359 * above. Otherwise we can sleep as long as we want.
360 */
361 if (cpu == tick_do_timer_cpu) {
362 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
363 ts->do_timer_last = 1;
364 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
365 time_delta = KTIME_MAX;
366 ts->do_timer_last = 0;
367 } else if (!ts->do_timer_last) {
368 time_delta = KTIME_MAX;
369 }
370
371 /*
372 * calculate the expiry time for the next timer wheel
373 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
374 * that there is no timer pending or at least extremely
375 * far into the future (12 days for HZ=1000). In this
376 * case we set the expiry to the end of time.
377 */
378 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
379 /*
380 * Calculate the time delta for the next timer event.
381 * If the time delta exceeds the maximum time delta
382 * permitted by the current clocksource then adjust
383 * the time delta accordingly to ensure the
384 * clocksource does not wrap.
385 */
386 time_delta = min_t(u64, time_delta,
387 tick_period.tv64 * delta_jiffies);
388 }
389
390 if (time_delta < KTIME_MAX)
391 expires = ktime_add_ns(last_update, time_delta);
392 else
393 expires.tv64 = KTIME_MAX;
394
395 /* Skip reprogram of event if its not changed */
396 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
397 goto out;
398
399 /*
400 * nohz_stop_sched_tick can be called several times before
401 * the nohz_restart_sched_tick is called. This happens when
402 * interrupts arrive which do not cause a reschedule. In the
403 * first call we save the current tick time, so we can restart
404 * the scheduler tick in nohz_restart_sched_tick.
405 */
406 if (!ts->tick_stopped) {
407 select_nohz_load_balancer(1);
408
409 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410 ts->tick_stopped = 1;
411 ts->idle_jiffies = last_jiffies;
412 }
413
414 ts->idle_sleeps++;
415
416 /* Mark expires */
417 ts->idle_expires = expires;
418
419 /*
420 * If the expiration time == KTIME_MAX, then
421 * in this case we simply stop the tick timer.
422 */
423 if (unlikely(expires.tv64 == KTIME_MAX)) {
424 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
425 hrtimer_cancel(&ts->sched_timer);
426 goto out;
427 }
428
429 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
430 hrtimer_start(&ts->sched_timer, expires,
431 HRTIMER_MODE_ABS_PINNED);
432 /* Check, if the timer was already in the past */
433 if (hrtimer_active(&ts->sched_timer))
434 goto out;
435 } else if (!tick_program_event(expires, 0))
436 goto out;
437 /*
438 * We are past the event already. So we crossed a
439 * jiffie boundary. Update jiffies and raise the
440 * softirq.
441 */
442 tick_do_update_jiffies64(ktime_get());
443 }
444 raise_softirq_irqoff(TIMER_SOFTIRQ);
445 out:
446 ts->next_jiffies = next_jiffies;
447 ts->last_jiffies = last_jiffies;
448 ts->sleep_length = ktime_sub(dev->next_event, now);
449 }
450
451 /**
452 * tick_nohz_idle_enter - stop the idle tick from the idle task
453 *
454 * When the next event is more than a tick into the future, stop the idle tick
455 * Called when we start the idle loop.
456 *
457 * If no use of RCU is made in the idle loop between
458 * tick_nohz_idle_enter() and tick_nohz_idle_exit() calls, then
459 * tick_nohz_idle_enter_norcu() should be called instead and the arch
460 * doesn't need to call rcu_idle_enter() and rcu_idle_exit() explicitly.
461 *
462 * Otherwise the arch is responsible of calling:
463 *
464 * - rcu_idle_enter() after its last use of RCU before the CPU is put
465 * to sleep.
466 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
467 */
468 void __tick_nohz_idle_enter(void)
469 {
470 struct tick_sched *ts;
471
472 ts = &__get_cpu_var(tick_cpu_sched);
473 /*
474 * set ts->inidle unconditionally. even if the system did not
475 * switch to nohz mode the cpu frequency governers rely on the
476 * update of the idle time accounting in tick_nohz_start_idle().
477 */
478 ts->inidle = 1;
479 tick_nohz_stop_sched_tick(ts);
480 }
481
482 /**
483 * tick_nohz_irq_exit - update next tick event from interrupt exit
484 *
485 * When an interrupt fires while we are idle and it doesn't cause
486 * a reschedule, it may still add, modify or delete a timer, enqueue
487 * an RCU callback, etc...
488 * So we need to re-calculate and reprogram the next tick event.
489 */
490 void tick_nohz_irq_exit(void)
491 {
492 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
493
494 if (!ts->inidle)
495 return;
496
497 tick_nohz_stop_sched_tick(ts);
498 }
499
500 /**
501 * tick_nohz_get_sleep_length - return the length of the current sleep
502 *
503 * Called from power state control code with interrupts disabled
504 */
505 ktime_t tick_nohz_get_sleep_length(void)
506 {
507 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
508
509 return ts->sleep_length;
510 }
511
512 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
513 {
514 hrtimer_cancel(&ts->sched_timer);
515 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
516
517 while (1) {
518 /* Forward the time to expire in the future */
519 hrtimer_forward(&ts->sched_timer, now, tick_period);
520
521 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
522 hrtimer_start_expires(&ts->sched_timer,
523 HRTIMER_MODE_ABS_PINNED);
524 /* Check, if the timer was already in the past */
525 if (hrtimer_active(&ts->sched_timer))
526 break;
527 } else {
528 if (!tick_program_event(
529 hrtimer_get_expires(&ts->sched_timer), 0))
530 break;
531 }
532 /* Update jiffies and reread time */
533 tick_do_update_jiffies64(now);
534 now = ktime_get();
535 }
536 }
537
538 /**
539 * tick_nohz_idle_exit - restart the idle tick from the idle task
540 *
541 * Restart the idle tick when the CPU is woken up from idle
542 * This also exit the RCU extended quiescent state. The CPU
543 * can use RCU again after this function is called.
544 */
545 void tick_nohz_idle_exit(void)
546 {
547 int cpu = smp_processor_id();
548 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
550 unsigned long ticks;
551 #endif
552 ktime_t now;
553
554 local_irq_disable();
555
556 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
557 now = ktime_get();
558
559 if (ts->idle_active)
560 tick_nohz_stop_idle(cpu, now);
561
562 if (!ts->inidle || !ts->tick_stopped) {
563 ts->inidle = 0;
564 local_irq_enable();
565 return;
566 }
567
568 ts->inidle = 0;
569
570 /* Update jiffies first */
571 select_nohz_load_balancer(0);
572 tick_do_update_jiffies64(now);
573
574 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
575 /*
576 * We stopped the tick in idle. Update process times would miss the
577 * time we slept as update_process_times does only a 1 tick
578 * accounting. Enforce that this is accounted to idle !
579 */
580 ticks = jiffies - ts->idle_jiffies;
581 /*
582 * We might be one off. Do not randomly account a huge number of ticks!
583 */
584 if (ticks && ticks < LONG_MAX)
585 account_idle_ticks(ticks);
586 #endif
587
588 touch_softlockup_watchdog();
589 /*
590 * Cancel the scheduled timer and restore the tick
591 */
592 ts->tick_stopped = 0;
593 ts->idle_exittime = now;
594
595 tick_nohz_restart(ts, now);
596
597 local_irq_enable();
598 }
599
600 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
601 {
602 hrtimer_forward(&ts->sched_timer, now, tick_period);
603 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
604 }
605
606 /*
607 * The nohz low res interrupt handler
608 */
609 static void tick_nohz_handler(struct clock_event_device *dev)
610 {
611 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
612 struct pt_regs *regs = get_irq_regs();
613 int cpu = smp_processor_id();
614 ktime_t now = ktime_get();
615
616 dev->next_event.tv64 = KTIME_MAX;
617
618 /*
619 * Check if the do_timer duty was dropped. We don't care about
620 * concurrency: This happens only when the cpu in charge went
621 * into a long sleep. If two cpus happen to assign themself to
622 * this duty, then the jiffies update is still serialized by
623 * xtime_lock.
624 */
625 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
626 tick_do_timer_cpu = cpu;
627
628 /* Check, if the jiffies need an update */
629 if (tick_do_timer_cpu == cpu)
630 tick_do_update_jiffies64(now);
631
632 /*
633 * When we are idle and the tick is stopped, we have to touch
634 * the watchdog as we might not schedule for a really long
635 * time. This happens on complete idle SMP systems while
636 * waiting on the login prompt. We also increment the "start
637 * of idle" jiffy stamp so the idle accounting adjustment we
638 * do when we go busy again does not account too much ticks.
639 */
640 if (ts->tick_stopped) {
641 touch_softlockup_watchdog();
642 ts->idle_jiffies++;
643 }
644
645 update_process_times(user_mode(regs));
646 profile_tick(CPU_PROFILING);
647
648 while (tick_nohz_reprogram(ts, now)) {
649 now = ktime_get();
650 tick_do_update_jiffies64(now);
651 }
652 }
653
654 /**
655 * tick_nohz_switch_to_nohz - switch to nohz mode
656 */
657 static void tick_nohz_switch_to_nohz(void)
658 {
659 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
660 ktime_t next;
661
662 if (!tick_nohz_enabled)
663 return;
664
665 local_irq_disable();
666 if (tick_switch_to_oneshot(tick_nohz_handler)) {
667 local_irq_enable();
668 return;
669 }
670
671 ts->nohz_mode = NOHZ_MODE_LOWRES;
672
673 /*
674 * Recycle the hrtimer in ts, so we can share the
675 * hrtimer_forward with the highres code.
676 */
677 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
678 /* Get the next period */
679 next = tick_init_jiffy_update();
680
681 for (;;) {
682 hrtimer_set_expires(&ts->sched_timer, next);
683 if (!tick_program_event(next, 0))
684 break;
685 next = ktime_add(next, tick_period);
686 }
687 local_irq_enable();
688 }
689
690 /*
691 * When NOHZ is enabled and the tick is stopped, we need to kick the
692 * tick timer from irq_enter() so that the jiffies update is kept
693 * alive during long running softirqs. That's ugly as hell, but
694 * correctness is key even if we need to fix the offending softirq in
695 * the first place.
696 *
697 * Note, this is different to tick_nohz_restart. We just kick the
698 * timer and do not touch the other magic bits which need to be done
699 * when idle is left.
700 */
701 static void tick_nohz_kick_tick(int cpu, ktime_t now)
702 {
703 #if 0
704 /* Switch back to 2.6.27 behaviour */
705
706 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
707 ktime_t delta;
708
709 /*
710 * Do not touch the tick device, when the next expiry is either
711 * already reached or less/equal than the tick period.
712 */
713 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
714 if (delta.tv64 <= tick_period.tv64)
715 return;
716
717 tick_nohz_restart(ts, now);
718 #endif
719 }
720
721 static inline void tick_check_nohz(int cpu)
722 {
723 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
724 ktime_t now;
725
726 if (!ts->idle_active && !ts->tick_stopped)
727 return;
728 now = ktime_get();
729 if (ts->idle_active)
730 tick_nohz_stop_idle(cpu, now);
731 if (ts->tick_stopped) {
732 tick_nohz_update_jiffies(now);
733 tick_nohz_kick_tick(cpu, now);
734 }
735 }
736
737 #else
738
739 static inline void tick_nohz_switch_to_nohz(void) { }
740 static inline void tick_check_nohz(int cpu) { }
741
742 #endif /* NO_HZ */
743
744 /*
745 * Called from irq_enter to notify about the possible interruption of idle()
746 */
747 void tick_check_idle(int cpu)
748 {
749 tick_check_oneshot_broadcast(cpu);
750 tick_check_nohz(cpu);
751 }
752
753 /*
754 * High resolution timer specific code
755 */
756 #ifdef CONFIG_HIGH_RES_TIMERS
757 /*
758 * We rearm the timer until we get disabled by the idle code.
759 * Called with interrupts disabled and timer->base->cpu_base->lock held.
760 */
761 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
762 {
763 struct tick_sched *ts =
764 container_of(timer, struct tick_sched, sched_timer);
765 struct pt_regs *regs = get_irq_regs();
766 ktime_t now = ktime_get();
767 int cpu = smp_processor_id();
768
769 #ifdef CONFIG_NO_HZ
770 /*
771 * Check if the do_timer duty was dropped. We don't care about
772 * concurrency: This happens only when the cpu in charge went
773 * into a long sleep. If two cpus happen to assign themself to
774 * this duty, then the jiffies update is still serialized by
775 * xtime_lock.
776 */
777 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
778 tick_do_timer_cpu = cpu;
779 #endif
780
781 /* Check, if the jiffies need an update */
782 if (tick_do_timer_cpu == cpu)
783 tick_do_update_jiffies64(now);
784
785 /*
786 * Do not call, when we are not in irq context and have
787 * no valid regs pointer
788 */
789 if (regs) {
790 /*
791 * When we are idle and the tick is stopped, we have to touch
792 * the watchdog as we might not schedule for a really long
793 * time. This happens on complete idle SMP systems while
794 * waiting on the login prompt. We also increment the "start of
795 * idle" jiffy stamp so the idle accounting adjustment we do
796 * when we go busy again does not account too much ticks.
797 */
798 if (ts->tick_stopped) {
799 touch_softlockup_watchdog();
800 ts->idle_jiffies++;
801 }
802 update_process_times(user_mode(regs));
803 profile_tick(CPU_PROFILING);
804 }
805
806 hrtimer_forward(timer, now, tick_period);
807
808 return HRTIMER_RESTART;
809 }
810
811 /**
812 * tick_setup_sched_timer - setup the tick emulation timer
813 */
814 void tick_setup_sched_timer(void)
815 {
816 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
817 ktime_t now = ktime_get();
818
819 /*
820 * Emulate tick processing via per-CPU hrtimers:
821 */
822 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
823 ts->sched_timer.function = tick_sched_timer;
824
825 /* Get the next period (per cpu) */
826 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
827
828 for (;;) {
829 hrtimer_forward(&ts->sched_timer, now, tick_period);
830 hrtimer_start_expires(&ts->sched_timer,
831 HRTIMER_MODE_ABS_PINNED);
832 /* Check, if the timer was already in the past */
833 if (hrtimer_active(&ts->sched_timer))
834 break;
835 now = ktime_get();
836 }
837
838 #ifdef CONFIG_NO_HZ
839 if (tick_nohz_enabled)
840 ts->nohz_mode = NOHZ_MODE_HIGHRES;
841 #endif
842 }
843 #endif /* HIGH_RES_TIMERS */
844
845 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
846 void tick_cancel_sched_timer(int cpu)
847 {
848 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
849
850 # ifdef CONFIG_HIGH_RES_TIMERS
851 if (ts->sched_timer.base)
852 hrtimer_cancel(&ts->sched_timer);
853 # endif
854
855 ts->nohz_mode = NOHZ_MODE_INACTIVE;
856 }
857 #endif
858
859 /**
860 * Async notification about clocksource changes
861 */
862 void tick_clock_notify(void)
863 {
864 int cpu;
865
866 for_each_possible_cpu(cpu)
867 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
868 }
869
870 /*
871 * Async notification about clock event changes
872 */
873 void tick_oneshot_notify(void)
874 {
875 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
876
877 set_bit(0, &ts->check_clocks);
878 }
879
880 /**
881 * Check, if a change happened, which makes oneshot possible.
882 *
883 * Called cyclic from the hrtimer softirq (driven by the timer
884 * softirq) allow_nohz signals, that we can switch into low-res nohz
885 * mode, because high resolution timers are disabled (either compile
886 * or runtime).
887 */
888 int tick_check_oneshot_change(int allow_nohz)
889 {
890 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
891
892 if (!test_and_clear_bit(0, &ts->check_clocks))
893 return 0;
894
895 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
896 return 0;
897
898 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
899 return 0;
900
901 if (!allow_nohz)
902 return 1;
903
904 tick_nohz_switch_to_nohz();
905 return 0;
906 }
This page took 0.091638 seconds and 5 git commands to generate.