Merge tag 'mfd-for-linus-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
26
27 #include <asm/irq_regs.h>
28
29 #include "tick-internal.h"
30
31 #include <trace/events/timer.h>
32
33 /*
34 * Per cpu nohz control structure
35 */
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44 /*
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
46 */
47 static ktime_t last_jiffies_update;
48
49 /*
50 * Must be called with interrupts disabled !
51 */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93 }
94
95 /*
96 * Initialize and return retrieve the jiffies update.
97 */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109 }
110
111
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 int cpu = smp_processor_id();
115
116 #ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132 }
133
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153 }
154 #endif
155
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static unsigned long tick_dep_mask;
161
162 static void trace_tick_dependency(unsigned long dep)
163 {
164 if (dep & TICK_DEP_MASK_POSIX_TIMER) {
165 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
166 return;
167 }
168
169 if (dep & TICK_DEP_MASK_PERF_EVENTS) {
170 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
171 return;
172 }
173
174 if (dep & TICK_DEP_MASK_SCHED) {
175 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
176 return;
177 }
178
179 if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
180 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
181 }
182
183 static bool can_stop_full_tick(struct tick_sched *ts)
184 {
185 WARN_ON_ONCE(!irqs_disabled());
186
187 if (tick_dep_mask) {
188 trace_tick_dependency(tick_dep_mask);
189 return false;
190 }
191
192 if (ts->tick_dep_mask) {
193 trace_tick_dependency(ts->tick_dep_mask);
194 return false;
195 }
196
197 if (current->tick_dep_mask) {
198 trace_tick_dependency(current->tick_dep_mask);
199 return false;
200 }
201
202 if (current->signal->tick_dep_mask) {
203 trace_tick_dependency(current->signal->tick_dep_mask);
204 return false;
205 }
206
207 return true;
208 }
209
210 static void nohz_full_kick_func(struct irq_work *work)
211 {
212 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
213 }
214
215 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
216 .func = nohz_full_kick_func,
217 };
218
219 /*
220 * Kick this CPU if it's full dynticks in order to force it to
221 * re-evaluate its dependency on the tick and restart it if necessary.
222 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
223 * is NMI safe.
224 */
225 static void tick_nohz_full_kick(void)
226 {
227 if (!tick_nohz_full_cpu(smp_processor_id()))
228 return;
229
230 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
231 }
232
233 /*
234 * Kick the CPU if it's full dynticks in order to force it to
235 * re-evaluate its dependency on the tick and restart it if necessary.
236 */
237 void tick_nohz_full_kick_cpu(int cpu)
238 {
239 if (!tick_nohz_full_cpu(cpu))
240 return;
241
242 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
243 }
244
245 /*
246 * Kick all full dynticks CPUs in order to force these to re-evaluate
247 * their dependency on the tick and restart it if necessary.
248 */
249 static void tick_nohz_full_kick_all(void)
250 {
251 int cpu;
252
253 if (!tick_nohz_full_running)
254 return;
255
256 preempt_disable();
257 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
258 tick_nohz_full_kick_cpu(cpu);
259 preempt_enable();
260 }
261
262 static void tick_nohz_dep_set_all(unsigned long *dep,
263 enum tick_dep_bits bit)
264 {
265 unsigned long prev;
266
267 prev = fetch_or(dep, BIT_MASK(bit));
268 if (!prev)
269 tick_nohz_full_kick_all();
270 }
271
272 /*
273 * Set a global tick dependency. Used by perf events that rely on freq and
274 * by unstable clock.
275 */
276 void tick_nohz_dep_set(enum tick_dep_bits bit)
277 {
278 tick_nohz_dep_set_all(&tick_dep_mask, bit);
279 }
280
281 void tick_nohz_dep_clear(enum tick_dep_bits bit)
282 {
283 clear_bit(bit, &tick_dep_mask);
284 }
285
286 /*
287 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
288 * manage events throttling.
289 */
290 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
291 {
292 unsigned long prev;
293 struct tick_sched *ts;
294
295 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
296
297 prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
298 if (!prev) {
299 preempt_disable();
300 /* Perf needs local kick that is NMI safe */
301 if (cpu == smp_processor_id()) {
302 tick_nohz_full_kick();
303 } else {
304 /* Remote irq work not NMI-safe */
305 if (!WARN_ON_ONCE(in_nmi()))
306 tick_nohz_full_kick_cpu(cpu);
307 }
308 preempt_enable();
309 }
310 }
311
312 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
313 {
314 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
315
316 clear_bit(bit, &ts->tick_dep_mask);
317 }
318
319 /*
320 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
321 * per task timers.
322 */
323 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
324 {
325 /*
326 * We could optimize this with just kicking the target running the task
327 * if that noise matters for nohz full users.
328 */
329 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
330 }
331
332 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
333 {
334 clear_bit(bit, &tsk->tick_dep_mask);
335 }
336
337 /*
338 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
339 * per process timers.
340 */
341 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
342 {
343 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
344 }
345
346 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
347 {
348 clear_bit(bit, &sig->tick_dep_mask);
349 }
350
351 /*
352 * Re-evaluate the need for the tick as we switch the current task.
353 * It might need the tick due to per task/process properties:
354 * perf events, posix cpu timers, ...
355 */
356 void __tick_nohz_task_switch(void)
357 {
358 unsigned long flags;
359 struct tick_sched *ts;
360
361 local_irq_save(flags);
362
363 if (!tick_nohz_full_cpu(smp_processor_id()))
364 goto out;
365
366 ts = this_cpu_ptr(&tick_cpu_sched);
367
368 if (ts->tick_stopped) {
369 if (current->tick_dep_mask || current->signal->tick_dep_mask)
370 tick_nohz_full_kick();
371 }
372 out:
373 local_irq_restore(flags);
374 }
375
376 /* Parse the boot-time nohz CPU list from the kernel parameters. */
377 static int __init tick_nohz_full_setup(char *str)
378 {
379 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
380 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
381 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
382 free_bootmem_cpumask_var(tick_nohz_full_mask);
383 return 1;
384 }
385 tick_nohz_full_running = true;
386
387 return 1;
388 }
389 __setup("nohz_full=", tick_nohz_full_setup);
390
391 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
392 unsigned long action,
393 void *hcpu)
394 {
395 unsigned int cpu = (unsigned long)hcpu;
396
397 switch (action & ~CPU_TASKS_FROZEN) {
398 case CPU_DOWN_PREPARE:
399 /*
400 * The boot CPU handles housekeeping duty (unbound timers,
401 * workqueues, timekeeping, ...) on behalf of full dynticks
402 * CPUs. It must remain online when nohz full is enabled.
403 */
404 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
405 return NOTIFY_BAD;
406 break;
407 }
408 return NOTIFY_OK;
409 }
410
411 static int tick_nohz_init_all(void)
412 {
413 int err = -1;
414
415 #ifdef CONFIG_NO_HZ_FULL_ALL
416 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
417 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
418 return err;
419 }
420 err = 0;
421 cpumask_setall(tick_nohz_full_mask);
422 tick_nohz_full_running = true;
423 #endif
424 return err;
425 }
426
427 void __init tick_nohz_init(void)
428 {
429 int cpu;
430
431 if (!tick_nohz_full_running) {
432 if (tick_nohz_init_all() < 0)
433 return;
434 }
435
436 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
437 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
438 cpumask_clear(tick_nohz_full_mask);
439 tick_nohz_full_running = false;
440 return;
441 }
442
443 /*
444 * Full dynticks uses irq work to drive the tick rescheduling on safe
445 * locking contexts. But then we need irq work to raise its own
446 * interrupts to avoid circular dependency on the tick
447 */
448 if (!arch_irq_work_has_interrupt()) {
449 pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
450 "support irq work self-IPIs\n");
451 cpumask_clear(tick_nohz_full_mask);
452 cpumask_copy(housekeeping_mask, cpu_possible_mask);
453 tick_nohz_full_running = false;
454 return;
455 }
456
457 cpu = smp_processor_id();
458
459 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
460 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
461 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
462 }
463
464 cpumask_andnot(housekeeping_mask,
465 cpu_possible_mask, tick_nohz_full_mask);
466
467 for_each_cpu(cpu, tick_nohz_full_mask)
468 context_tracking_cpu_set(cpu);
469
470 cpu_notifier(tick_nohz_cpu_down_callback, 0);
471 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
472 cpumask_pr_args(tick_nohz_full_mask));
473
474 /*
475 * We need at least one CPU to handle housekeeping work such
476 * as timekeeping, unbound timers, workqueues, ...
477 */
478 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
479 }
480 #endif
481
482 /*
483 * NOHZ - aka dynamic tick functionality
484 */
485 #ifdef CONFIG_NO_HZ_COMMON
486 /*
487 * NO HZ enabled ?
488 */
489 int tick_nohz_enabled __read_mostly = 1;
490 unsigned long tick_nohz_active __read_mostly;
491 /*
492 * Enable / Disable tickless mode
493 */
494 static int __init setup_tick_nohz(char *str)
495 {
496 if (!strcmp(str, "off"))
497 tick_nohz_enabled = 0;
498 else if (!strcmp(str, "on"))
499 tick_nohz_enabled = 1;
500 else
501 return 0;
502 return 1;
503 }
504
505 __setup("nohz=", setup_tick_nohz);
506
507 int tick_nohz_tick_stopped(void)
508 {
509 return __this_cpu_read(tick_cpu_sched.tick_stopped);
510 }
511
512 /**
513 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
514 *
515 * Called from interrupt entry when the CPU was idle
516 *
517 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
518 * must be updated. Otherwise an interrupt handler could use a stale jiffy
519 * value. We do this unconditionally on any cpu, as we don't know whether the
520 * cpu, which has the update task assigned is in a long sleep.
521 */
522 static void tick_nohz_update_jiffies(ktime_t now)
523 {
524 unsigned long flags;
525
526 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
527
528 local_irq_save(flags);
529 tick_do_update_jiffies64(now);
530 local_irq_restore(flags);
531
532 touch_softlockup_watchdog_sched();
533 }
534
535 /*
536 * Updates the per cpu time idle statistics counters
537 */
538 static void
539 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
540 {
541 ktime_t delta;
542
543 if (ts->idle_active) {
544 delta = ktime_sub(now, ts->idle_entrytime);
545 if (nr_iowait_cpu(cpu) > 0)
546 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
547 else
548 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
549 ts->idle_entrytime = now;
550 }
551
552 if (last_update_time)
553 *last_update_time = ktime_to_us(now);
554
555 }
556
557 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
558 {
559 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
560 ts->idle_active = 0;
561
562 sched_clock_idle_wakeup_event(0);
563 }
564
565 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
566 {
567 ktime_t now = ktime_get();
568
569 ts->idle_entrytime = now;
570 ts->idle_active = 1;
571 sched_clock_idle_sleep_event();
572 return now;
573 }
574
575 /**
576 * get_cpu_idle_time_us - get the total idle time of a cpu
577 * @cpu: CPU number to query
578 * @last_update_time: variable to store update time in. Do not update
579 * counters if NULL.
580 *
581 * Return the cummulative idle time (since boot) for a given
582 * CPU, in microseconds.
583 *
584 * This time is measured via accounting rather than sampling,
585 * and is as accurate as ktime_get() is.
586 *
587 * This function returns -1 if NOHZ is not enabled.
588 */
589 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
590 {
591 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
592 ktime_t now, idle;
593
594 if (!tick_nohz_active)
595 return -1;
596
597 now = ktime_get();
598 if (last_update_time) {
599 update_ts_time_stats(cpu, ts, now, last_update_time);
600 idle = ts->idle_sleeptime;
601 } else {
602 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
603 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
604
605 idle = ktime_add(ts->idle_sleeptime, delta);
606 } else {
607 idle = ts->idle_sleeptime;
608 }
609 }
610
611 return ktime_to_us(idle);
612
613 }
614 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
615
616 /**
617 * get_cpu_iowait_time_us - get the total iowait time of a cpu
618 * @cpu: CPU number to query
619 * @last_update_time: variable to store update time in. Do not update
620 * counters if NULL.
621 *
622 * Return the cummulative iowait time (since boot) for a given
623 * CPU, in microseconds.
624 *
625 * This time is measured via accounting rather than sampling,
626 * and is as accurate as ktime_get() is.
627 *
628 * This function returns -1 if NOHZ is not enabled.
629 */
630 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
631 {
632 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
633 ktime_t now, iowait;
634
635 if (!tick_nohz_active)
636 return -1;
637
638 now = ktime_get();
639 if (last_update_time) {
640 update_ts_time_stats(cpu, ts, now, last_update_time);
641 iowait = ts->iowait_sleeptime;
642 } else {
643 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
644 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
645
646 iowait = ktime_add(ts->iowait_sleeptime, delta);
647 } else {
648 iowait = ts->iowait_sleeptime;
649 }
650 }
651
652 return ktime_to_us(iowait);
653 }
654 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
655
656 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
657 {
658 hrtimer_cancel(&ts->sched_timer);
659 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
660
661 /* Forward the time to expire in the future */
662 hrtimer_forward(&ts->sched_timer, now, tick_period);
663
664 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
665 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
666 else
667 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
668 }
669
670 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
671 ktime_t now, int cpu)
672 {
673 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
674 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
675 unsigned long seq, basejiff;
676 ktime_t tick;
677
678 /* Read jiffies and the time when jiffies were updated last */
679 do {
680 seq = read_seqbegin(&jiffies_lock);
681 basemono = last_jiffies_update.tv64;
682 basejiff = jiffies;
683 } while (read_seqretry(&jiffies_lock, seq));
684 ts->last_jiffies = basejiff;
685
686 if (rcu_needs_cpu(basemono, &next_rcu) ||
687 arch_needs_cpu() || irq_work_needs_cpu()) {
688 next_tick = basemono + TICK_NSEC;
689 } else {
690 /*
691 * Get the next pending timer. If high resolution
692 * timers are enabled this only takes the timer wheel
693 * timers into account. If high resolution timers are
694 * disabled this also looks at the next expiring
695 * hrtimer.
696 */
697 next_tmr = get_next_timer_interrupt(basejiff, basemono);
698 ts->next_timer = next_tmr;
699 /* Take the next rcu event into account */
700 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
701 }
702
703 /*
704 * If the tick is due in the next period, keep it ticking or
705 * force prod the timer.
706 */
707 delta = next_tick - basemono;
708 if (delta <= (u64)TICK_NSEC) {
709 tick.tv64 = 0;
710 /*
711 * We've not stopped the tick yet, and there's a timer in the
712 * next period, so no point in stopping it either, bail.
713 */
714 if (!ts->tick_stopped)
715 goto out;
716
717 /*
718 * If, OTOH, we did stop it, but there's a pending (expired)
719 * timer reprogram the timer hardware to fire now.
720 *
721 * We will not restart the tick proper, just prod the timer
722 * hardware into firing an interrupt to process the pending
723 * timers. Just like tick_irq_exit() will not restart the tick
724 * for 'normal' interrupts.
725 *
726 * Only once we exit the idle loop will we re-enable the tick,
727 * see tick_nohz_idle_exit().
728 */
729 if (delta == 0) {
730 tick_nohz_restart(ts, now);
731 goto out;
732 }
733 }
734
735 /*
736 * If this cpu is the one which updates jiffies, then give up
737 * the assignment and let it be taken by the cpu which runs
738 * the tick timer next, which might be this cpu as well. If we
739 * don't drop this here the jiffies might be stale and
740 * do_timer() never invoked. Keep track of the fact that it
741 * was the one which had the do_timer() duty last. If this cpu
742 * is the one which had the do_timer() duty last, we limit the
743 * sleep time to the timekeeping max_deferement value.
744 * Otherwise we can sleep as long as we want.
745 */
746 delta = timekeeping_max_deferment();
747 if (cpu == tick_do_timer_cpu) {
748 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
749 ts->do_timer_last = 1;
750 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
751 delta = KTIME_MAX;
752 ts->do_timer_last = 0;
753 } else if (!ts->do_timer_last) {
754 delta = KTIME_MAX;
755 }
756
757 #ifdef CONFIG_NO_HZ_FULL
758 /* Limit the tick delta to the maximum scheduler deferment */
759 if (!ts->inidle)
760 delta = min(delta, scheduler_tick_max_deferment());
761 #endif
762
763 /* Calculate the next expiry time */
764 if (delta < (KTIME_MAX - basemono))
765 expires = basemono + delta;
766 else
767 expires = KTIME_MAX;
768
769 expires = min_t(u64, expires, next_tick);
770 tick.tv64 = expires;
771
772 /* Skip reprogram of event if its not changed */
773 if (ts->tick_stopped && (expires == dev->next_event.tv64))
774 goto out;
775
776 /*
777 * nohz_stop_sched_tick can be called several times before
778 * the nohz_restart_sched_tick is called. This happens when
779 * interrupts arrive which do not cause a reschedule. In the
780 * first call we save the current tick time, so we can restart
781 * the scheduler tick in nohz_restart_sched_tick.
782 */
783 if (!ts->tick_stopped) {
784 nohz_balance_enter_idle(cpu);
785 calc_load_enter_idle();
786
787 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
788 ts->tick_stopped = 1;
789 trace_tick_stop(1, TICK_DEP_MASK_NONE);
790 }
791
792 /*
793 * If the expiration time == KTIME_MAX, then we simply stop
794 * the tick timer.
795 */
796 if (unlikely(expires == KTIME_MAX)) {
797 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
798 hrtimer_cancel(&ts->sched_timer);
799 goto out;
800 }
801
802 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
803 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
804 else
805 tick_program_event(tick, 1);
806 out:
807 /* Update the estimated sleep length */
808 ts->sleep_length = ktime_sub(dev->next_event, now);
809 return tick;
810 }
811
812 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
813 {
814 /* Update jiffies first */
815 tick_do_update_jiffies64(now);
816 update_cpu_load_nohz(active);
817
818 calc_load_exit_idle();
819 touch_softlockup_watchdog_sched();
820 /*
821 * Cancel the scheduled timer and restore the tick
822 */
823 ts->tick_stopped = 0;
824 ts->idle_exittime = now;
825
826 tick_nohz_restart(ts, now);
827 }
828
829 static void tick_nohz_full_update_tick(struct tick_sched *ts)
830 {
831 #ifdef CONFIG_NO_HZ_FULL
832 int cpu = smp_processor_id();
833
834 if (!tick_nohz_full_cpu(cpu))
835 return;
836
837 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
838 return;
839
840 if (can_stop_full_tick(ts))
841 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
842 else if (ts->tick_stopped)
843 tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
844 #endif
845 }
846
847 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
848 {
849 /*
850 * If this cpu is offline and it is the one which updates
851 * jiffies, then give up the assignment and let it be taken by
852 * the cpu which runs the tick timer next. If we don't drop
853 * this here the jiffies might be stale and do_timer() never
854 * invoked.
855 */
856 if (unlikely(!cpu_online(cpu))) {
857 if (cpu == tick_do_timer_cpu)
858 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
859 return false;
860 }
861
862 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
863 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
864 return false;
865 }
866
867 if (need_resched())
868 return false;
869
870 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
871 static int ratelimit;
872
873 if (ratelimit < 10 &&
874 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
875 pr_warn("NOHZ: local_softirq_pending %02x\n",
876 (unsigned int) local_softirq_pending());
877 ratelimit++;
878 }
879 return false;
880 }
881
882 if (tick_nohz_full_enabled()) {
883 /*
884 * Keep the tick alive to guarantee timekeeping progression
885 * if there are full dynticks CPUs around
886 */
887 if (tick_do_timer_cpu == cpu)
888 return false;
889 /*
890 * Boot safety: make sure the timekeeping duty has been
891 * assigned before entering dyntick-idle mode,
892 */
893 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
894 return false;
895 }
896
897 return true;
898 }
899
900 static void __tick_nohz_idle_enter(struct tick_sched *ts)
901 {
902 ktime_t now, expires;
903 int cpu = smp_processor_id();
904
905 now = tick_nohz_start_idle(ts);
906
907 if (can_stop_idle_tick(cpu, ts)) {
908 int was_stopped = ts->tick_stopped;
909
910 ts->idle_calls++;
911
912 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
913 if (expires.tv64 > 0LL) {
914 ts->idle_sleeps++;
915 ts->idle_expires = expires;
916 }
917
918 if (!was_stopped && ts->tick_stopped)
919 ts->idle_jiffies = ts->last_jiffies;
920 }
921 }
922
923 /**
924 * tick_nohz_idle_enter - stop the idle tick from the idle task
925 *
926 * When the next event is more than a tick into the future, stop the idle tick
927 * Called when we start the idle loop.
928 *
929 * The arch is responsible of calling:
930 *
931 * - rcu_idle_enter() after its last use of RCU before the CPU is put
932 * to sleep.
933 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
934 */
935 void tick_nohz_idle_enter(void)
936 {
937 struct tick_sched *ts;
938
939 WARN_ON_ONCE(irqs_disabled());
940
941 /*
942 * Update the idle state in the scheduler domain hierarchy
943 * when tick_nohz_stop_sched_tick() is called from the idle loop.
944 * State will be updated to busy during the first busy tick after
945 * exiting idle.
946 */
947 set_cpu_sd_state_idle();
948
949 local_irq_disable();
950
951 ts = this_cpu_ptr(&tick_cpu_sched);
952 ts->inidle = 1;
953 __tick_nohz_idle_enter(ts);
954
955 local_irq_enable();
956 }
957
958 /**
959 * tick_nohz_irq_exit - update next tick event from interrupt exit
960 *
961 * When an interrupt fires while we are idle and it doesn't cause
962 * a reschedule, it may still add, modify or delete a timer, enqueue
963 * an RCU callback, etc...
964 * So we need to re-calculate and reprogram the next tick event.
965 */
966 void tick_nohz_irq_exit(void)
967 {
968 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
969
970 if (ts->inidle)
971 __tick_nohz_idle_enter(ts);
972 else
973 tick_nohz_full_update_tick(ts);
974 }
975
976 /**
977 * tick_nohz_get_sleep_length - return the length of the current sleep
978 *
979 * Called from power state control code with interrupts disabled
980 */
981 ktime_t tick_nohz_get_sleep_length(void)
982 {
983 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
984
985 return ts->sleep_length;
986 }
987
988 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
989 {
990 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
991 unsigned long ticks;
992
993 if (vtime_accounting_cpu_enabled())
994 return;
995 /*
996 * We stopped the tick in idle. Update process times would miss the
997 * time we slept as update_process_times does only a 1 tick
998 * accounting. Enforce that this is accounted to idle !
999 */
1000 ticks = jiffies - ts->idle_jiffies;
1001 /*
1002 * We might be one off. Do not randomly account a huge number of ticks!
1003 */
1004 if (ticks && ticks < LONG_MAX)
1005 account_idle_ticks(ticks);
1006 #endif
1007 }
1008
1009 /**
1010 * tick_nohz_idle_exit - restart the idle tick from the idle task
1011 *
1012 * Restart the idle tick when the CPU is woken up from idle
1013 * This also exit the RCU extended quiescent state. The CPU
1014 * can use RCU again after this function is called.
1015 */
1016 void tick_nohz_idle_exit(void)
1017 {
1018 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1019 ktime_t now;
1020
1021 local_irq_disable();
1022
1023 WARN_ON_ONCE(!ts->inidle);
1024
1025 ts->inidle = 0;
1026
1027 if (ts->idle_active || ts->tick_stopped)
1028 now = ktime_get();
1029
1030 if (ts->idle_active)
1031 tick_nohz_stop_idle(ts, now);
1032
1033 if (ts->tick_stopped) {
1034 tick_nohz_restart_sched_tick(ts, now, 0);
1035 tick_nohz_account_idle_ticks(ts);
1036 }
1037
1038 local_irq_enable();
1039 }
1040
1041 /*
1042 * The nohz low res interrupt handler
1043 */
1044 static void tick_nohz_handler(struct clock_event_device *dev)
1045 {
1046 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1047 struct pt_regs *regs = get_irq_regs();
1048 ktime_t now = ktime_get();
1049
1050 dev->next_event.tv64 = KTIME_MAX;
1051
1052 tick_sched_do_timer(now);
1053 tick_sched_handle(ts, regs);
1054
1055 /* No need to reprogram if we are running tickless */
1056 if (unlikely(ts->tick_stopped))
1057 return;
1058
1059 hrtimer_forward(&ts->sched_timer, now, tick_period);
1060 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1061 }
1062
1063 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1064 {
1065 if (!tick_nohz_enabled)
1066 return;
1067 ts->nohz_mode = mode;
1068 /* One update is enough */
1069 if (!test_and_set_bit(0, &tick_nohz_active))
1070 timers_update_migration(true);
1071 }
1072
1073 /**
1074 * tick_nohz_switch_to_nohz - switch to nohz mode
1075 */
1076 static void tick_nohz_switch_to_nohz(void)
1077 {
1078 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1079 ktime_t next;
1080
1081 if (!tick_nohz_enabled)
1082 return;
1083
1084 if (tick_switch_to_oneshot(tick_nohz_handler))
1085 return;
1086
1087 /*
1088 * Recycle the hrtimer in ts, so we can share the
1089 * hrtimer_forward with the highres code.
1090 */
1091 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1092 /* Get the next period */
1093 next = tick_init_jiffy_update();
1094
1095 hrtimer_set_expires(&ts->sched_timer, next);
1096 hrtimer_forward_now(&ts->sched_timer, tick_period);
1097 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1098 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1099 }
1100
1101 /*
1102 * When NOHZ is enabled and the tick is stopped, we need to kick the
1103 * tick timer from irq_enter() so that the jiffies update is kept
1104 * alive during long running softirqs. That's ugly as hell, but
1105 * correctness is key even if we need to fix the offending softirq in
1106 * the first place.
1107 *
1108 * Note, this is different to tick_nohz_restart. We just kick the
1109 * timer and do not touch the other magic bits which need to be done
1110 * when idle is left.
1111 */
1112 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1113 {
1114 #if 0
1115 /* Switch back to 2.6.27 behaviour */
1116 ktime_t delta;
1117
1118 /*
1119 * Do not touch the tick device, when the next expiry is either
1120 * already reached or less/equal than the tick period.
1121 */
1122 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1123 if (delta.tv64 <= tick_period.tv64)
1124 return;
1125
1126 tick_nohz_restart(ts, now);
1127 #endif
1128 }
1129
1130 static inline void tick_nohz_irq_enter(void)
1131 {
1132 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1133 ktime_t now;
1134
1135 if (!ts->idle_active && !ts->tick_stopped)
1136 return;
1137 now = ktime_get();
1138 if (ts->idle_active)
1139 tick_nohz_stop_idle(ts, now);
1140 if (ts->tick_stopped) {
1141 tick_nohz_update_jiffies(now);
1142 tick_nohz_kick_tick(ts, now);
1143 }
1144 }
1145
1146 #else
1147
1148 static inline void tick_nohz_switch_to_nohz(void) { }
1149 static inline void tick_nohz_irq_enter(void) { }
1150 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1151
1152 #endif /* CONFIG_NO_HZ_COMMON */
1153
1154 /*
1155 * Called from irq_enter to notify about the possible interruption of idle()
1156 */
1157 void tick_irq_enter(void)
1158 {
1159 tick_check_oneshot_broadcast_this_cpu();
1160 tick_nohz_irq_enter();
1161 }
1162
1163 /*
1164 * High resolution timer specific code
1165 */
1166 #ifdef CONFIG_HIGH_RES_TIMERS
1167 /*
1168 * We rearm the timer until we get disabled by the idle code.
1169 * Called with interrupts disabled.
1170 */
1171 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1172 {
1173 struct tick_sched *ts =
1174 container_of(timer, struct tick_sched, sched_timer);
1175 struct pt_regs *regs = get_irq_regs();
1176 ktime_t now = ktime_get();
1177
1178 tick_sched_do_timer(now);
1179
1180 /*
1181 * Do not call, when we are not in irq context and have
1182 * no valid regs pointer
1183 */
1184 if (regs)
1185 tick_sched_handle(ts, regs);
1186
1187 /* No need to reprogram if we are in idle or full dynticks mode */
1188 if (unlikely(ts->tick_stopped))
1189 return HRTIMER_NORESTART;
1190
1191 hrtimer_forward(timer, now, tick_period);
1192
1193 return HRTIMER_RESTART;
1194 }
1195
1196 static int sched_skew_tick;
1197
1198 static int __init skew_tick(char *str)
1199 {
1200 get_option(&str, &sched_skew_tick);
1201
1202 return 0;
1203 }
1204 early_param("skew_tick", skew_tick);
1205
1206 /**
1207 * tick_setup_sched_timer - setup the tick emulation timer
1208 */
1209 void tick_setup_sched_timer(void)
1210 {
1211 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1212 ktime_t now = ktime_get();
1213
1214 /*
1215 * Emulate tick processing via per-CPU hrtimers:
1216 */
1217 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1218 ts->sched_timer.function = tick_sched_timer;
1219
1220 /* Get the next period (per cpu) */
1221 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1222
1223 /* Offset the tick to avert jiffies_lock contention. */
1224 if (sched_skew_tick) {
1225 u64 offset = ktime_to_ns(tick_period) >> 1;
1226 do_div(offset, num_possible_cpus());
1227 offset *= smp_processor_id();
1228 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1229 }
1230
1231 hrtimer_forward(&ts->sched_timer, now, tick_period);
1232 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1233 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1234 }
1235 #endif /* HIGH_RES_TIMERS */
1236
1237 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1238 void tick_cancel_sched_timer(int cpu)
1239 {
1240 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1241
1242 # ifdef CONFIG_HIGH_RES_TIMERS
1243 if (ts->sched_timer.base)
1244 hrtimer_cancel(&ts->sched_timer);
1245 # endif
1246
1247 memset(ts, 0, sizeof(*ts));
1248 }
1249 #endif
1250
1251 /**
1252 * Async notification about clocksource changes
1253 */
1254 void tick_clock_notify(void)
1255 {
1256 int cpu;
1257
1258 for_each_possible_cpu(cpu)
1259 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1260 }
1261
1262 /*
1263 * Async notification about clock event changes
1264 */
1265 void tick_oneshot_notify(void)
1266 {
1267 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1268
1269 set_bit(0, &ts->check_clocks);
1270 }
1271
1272 /**
1273 * Check, if a change happened, which makes oneshot possible.
1274 *
1275 * Called cyclic from the hrtimer softirq (driven by the timer
1276 * softirq) allow_nohz signals, that we can switch into low-res nohz
1277 * mode, because high resolution timers are disabled (either compile
1278 * or runtime). Called with interrupts disabled.
1279 */
1280 int tick_check_oneshot_change(int allow_nohz)
1281 {
1282 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1283
1284 if (!test_and_clear_bit(0, &ts->check_clocks))
1285 return 0;
1286
1287 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1288 return 0;
1289
1290 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1291 return 0;
1292
1293 if (!allow_nohz)
1294 return 1;
1295
1296 tick_nohz_switch_to_nohz();
1297 return 0;
1298 }
This page took 0.084968 seconds and 6 git commands to generate.