nohz: Reuse ktime in sub-functions of tick_check_idle.
[deliverable/linux.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24
25 #include <asm/irq_regs.h>
26
27 #include "tick-internal.h"
28
29 /*
30 * Per cpu nohz control structure
31 */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33
34 /*
35 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 */
37 static ktime_t last_jiffies_update;
38
39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 return &per_cpu(tick_cpu_sched, cpu);
42 }
43
44 /*
45 * Must be called with interrupts disabled !
46 */
47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 unsigned long ticks = 0;
50 ktime_t delta;
51
52 /*
53 * Do a quick check without holding xtime_lock:
54 */
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
58
59 /* Reevalute with xtime_lock held */
60 write_seqlock(&xtime_lock);
61
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
64
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
68
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
72
73 ticks = ktime_divns(delta, incr);
74
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
77 }
78 do_timer(++ticks);
79
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 }
83 write_sequnlock(&xtime_lock);
84 }
85
86 /*
87 * Initialize and return retrieve the jiffies update.
88 */
89 static ktime_t tick_init_jiffy_update(void)
90 {
91 ktime_t period;
92
93 write_seqlock(&xtime_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&xtime_lock);
99 return period;
100 }
101
102 /*
103 * NOHZ - aka dynamic tick functionality
104 */
105 #ifdef CONFIG_NO_HZ
106 /*
107 * NO HZ enabled ?
108 */
109 static int tick_nohz_enabled __read_mostly = 1;
110
111 /*
112 * Enable / Disable tickless mode
113 */
114 static int __init setup_tick_nohz(char *str)
115 {
116 if (!strcmp(str, "off"))
117 tick_nohz_enabled = 0;
118 else if (!strcmp(str, "on"))
119 tick_nohz_enabled = 1;
120 else
121 return 0;
122 return 1;
123 }
124
125 __setup("nohz=", setup_tick_nohz);
126
127 /**
128 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 *
130 * Called from interrupt entry when the CPU was idle
131 *
132 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133 * must be updated. Otherwise an interrupt handler could use a stale jiffy
134 * value. We do this unconditionally on any cpu, as we don't know whether the
135 * cpu, which has the update task assigned is in a long sleep.
136 */
137 static void tick_nohz_update_jiffies(ktime_t now)
138 {
139 int cpu = smp_processor_id();
140 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 unsigned long flags;
142
143 cpumask_clear_cpu(cpu, nohz_cpu_mask);
144 ts->idle_waketime = now;
145
146 local_irq_save(flags);
147 tick_do_update_jiffies64(now);
148 local_irq_restore(flags);
149
150 touch_softlockup_watchdog();
151 }
152
153 static void tick_nohz_stop_idle(int cpu, ktime_t now)
154 {
155 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
156 ktime_t delta;
157
158 delta = ktime_sub(now, ts->idle_entrytime);
159 ts->idle_lastupdate = now;
160 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
161 ts->idle_active = 0;
162
163 sched_clock_idle_wakeup_event(0);
164 }
165
166 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
167 {
168 ktime_t now, delta;
169
170 now = ktime_get();
171 if (ts->idle_active) {
172 delta = ktime_sub(now, ts->idle_entrytime);
173 ts->idle_lastupdate = now;
174 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
175 }
176 ts->idle_entrytime = now;
177 ts->idle_active = 1;
178 sched_clock_idle_sleep_event();
179 return now;
180 }
181
182 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
183 {
184 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
185
186 if (!tick_nohz_enabled)
187 return -1;
188
189 if (ts->idle_active)
190 *last_update_time = ktime_to_us(ts->idle_lastupdate);
191 else
192 *last_update_time = ktime_to_us(ktime_get());
193
194 return ktime_to_us(ts->idle_sleeptime);
195 }
196 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
197
198 /**
199 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
200 *
201 * When the next event is more than a tick into the future, stop the idle tick
202 * Called either from the idle loop or from irq_exit() when an idle period was
203 * just interrupted by an interrupt which did not cause a reschedule.
204 */
205 void tick_nohz_stop_sched_tick(int inidle)
206 {
207 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
208 struct tick_sched *ts;
209 ktime_t last_update, expires, now;
210 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
211 int cpu;
212
213 local_irq_save(flags);
214
215 cpu = smp_processor_id();
216 ts = &per_cpu(tick_cpu_sched, cpu);
217
218 /*
219 * Call to tick_nohz_start_idle stops the last_update_time from being
220 * updated. Thus, it must not be called in the event we are called from
221 * irq_exit() with the prior state different than idle.
222 */
223 if (!inidle && !ts->inidle)
224 goto end;
225
226 now = tick_nohz_start_idle(ts);
227
228 /*
229 * If this cpu is offline and it is the one which updates
230 * jiffies, then give up the assignment and let it be taken by
231 * the cpu which runs the tick timer next. If we don't drop
232 * this here the jiffies might be stale and do_timer() never
233 * invoked.
234 */
235 if (unlikely(!cpu_online(cpu))) {
236 if (cpu == tick_do_timer_cpu)
237 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
238 }
239
240 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
241 goto end;
242
243 ts->inidle = 1;
244
245 if (need_resched())
246 goto end;
247
248 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
249 static int ratelimit;
250
251 if (ratelimit < 10) {
252 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
253 local_softirq_pending());
254 ratelimit++;
255 }
256 goto end;
257 }
258
259 ts->idle_calls++;
260 /* Read jiffies and the time when jiffies were updated last */
261 do {
262 seq = read_seqbegin(&xtime_lock);
263 last_update = last_jiffies_update;
264 last_jiffies = jiffies;
265 } while (read_seqretry(&xtime_lock, seq));
266
267 /* Get the next timer wheel timer */
268 next_jiffies = get_next_timer_interrupt(last_jiffies);
269 delta_jiffies = next_jiffies - last_jiffies;
270
271 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu))
272 delta_jiffies = 1;
273 /*
274 * Do not stop the tick, if we are only one off
275 * or if the cpu is required for rcu
276 */
277 if (!ts->tick_stopped && delta_jiffies == 1)
278 goto out;
279
280 /* Schedule the tick, if we are at least one jiffie off */
281 if ((long)delta_jiffies >= 1) {
282
283 /*
284 * calculate the expiry time for the next timer wheel
285 * timer
286 */
287 expires = ktime_add_ns(last_update, tick_period.tv64 *
288 delta_jiffies);
289
290 /*
291 * If this cpu is the one which updates jiffies, then
292 * give up the assignment and let it be taken by the
293 * cpu which runs the tick timer next, which might be
294 * this cpu as well. If we don't drop this here the
295 * jiffies might be stale and do_timer() never
296 * invoked.
297 */
298 if (cpu == tick_do_timer_cpu)
299 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
300
301 if (delta_jiffies > 1)
302 cpumask_set_cpu(cpu, nohz_cpu_mask);
303
304 /* Skip reprogram of event if its not changed */
305 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
306 goto out;
307
308 /*
309 * nohz_stop_sched_tick can be called several times before
310 * the nohz_restart_sched_tick is called. This happens when
311 * interrupts arrive which do not cause a reschedule. In the
312 * first call we save the current tick time, so we can restart
313 * the scheduler tick in nohz_restart_sched_tick.
314 */
315 if (!ts->tick_stopped) {
316 if (select_nohz_load_balancer(1)) {
317 /*
318 * sched tick not stopped!
319 */
320 cpumask_clear_cpu(cpu, nohz_cpu_mask);
321 goto out;
322 }
323
324 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
325 ts->tick_stopped = 1;
326 ts->idle_jiffies = last_jiffies;
327 rcu_enter_nohz();
328 }
329
330 ts->idle_sleeps++;
331
332 /*
333 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
334 * there is no timer pending or at least extremly far
335 * into the future (12 days for HZ=1000). In this case
336 * we simply stop the tick timer:
337 */
338 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
339 ts->idle_expires.tv64 = KTIME_MAX;
340 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
341 hrtimer_cancel(&ts->sched_timer);
342 goto out;
343 }
344
345 /* Mark expiries */
346 ts->idle_expires = expires;
347
348 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
349 hrtimer_start(&ts->sched_timer, expires,
350 HRTIMER_MODE_ABS_PINNED);
351 /* Check, if the timer was already in the past */
352 if (hrtimer_active(&ts->sched_timer))
353 goto out;
354 } else if (!tick_program_event(expires, 0))
355 goto out;
356 /*
357 * We are past the event already. So we crossed a
358 * jiffie boundary. Update jiffies and raise the
359 * softirq.
360 */
361 tick_do_update_jiffies64(ktime_get());
362 cpumask_clear_cpu(cpu, nohz_cpu_mask);
363 }
364 raise_softirq_irqoff(TIMER_SOFTIRQ);
365 out:
366 ts->next_jiffies = next_jiffies;
367 ts->last_jiffies = last_jiffies;
368 ts->sleep_length = ktime_sub(dev->next_event, now);
369 end:
370 local_irq_restore(flags);
371 }
372
373 /**
374 * tick_nohz_get_sleep_length - return the length of the current sleep
375 *
376 * Called from power state control code with interrupts disabled
377 */
378 ktime_t tick_nohz_get_sleep_length(void)
379 {
380 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
381
382 return ts->sleep_length;
383 }
384
385 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
386 {
387 hrtimer_cancel(&ts->sched_timer);
388 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
389
390 while (1) {
391 /* Forward the time to expire in the future */
392 hrtimer_forward(&ts->sched_timer, now, tick_period);
393
394 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
395 hrtimer_start_expires(&ts->sched_timer,
396 HRTIMER_MODE_ABS_PINNED);
397 /* Check, if the timer was already in the past */
398 if (hrtimer_active(&ts->sched_timer))
399 break;
400 } else {
401 if (!tick_program_event(
402 hrtimer_get_expires(&ts->sched_timer), 0))
403 break;
404 }
405 /* Update jiffies and reread time */
406 tick_do_update_jiffies64(now);
407 now = ktime_get();
408 }
409 }
410
411 /**
412 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
413 *
414 * Restart the idle tick when the CPU is woken up from idle
415 */
416 void tick_nohz_restart_sched_tick(void)
417 {
418 int cpu = smp_processor_id();
419 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
420 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
421 unsigned long ticks;
422 #endif
423 ktime_t now;
424
425 local_irq_disable();
426 if (ts->idle_active || (ts->inidle && ts->tick_stopped))
427 now = ktime_get();
428
429 if (ts->idle_active)
430 tick_nohz_stop_idle(cpu, now);
431
432 if (!ts->inidle || !ts->tick_stopped) {
433 ts->inidle = 0;
434 local_irq_enable();
435 return;
436 }
437
438 ts->inidle = 0;
439
440 rcu_exit_nohz();
441
442 /* Update jiffies first */
443 select_nohz_load_balancer(0);
444 tick_do_update_jiffies64(now);
445 cpumask_clear_cpu(cpu, nohz_cpu_mask);
446
447 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
448 /*
449 * We stopped the tick in idle. Update process times would miss the
450 * time we slept as update_process_times does only a 1 tick
451 * accounting. Enforce that this is accounted to idle !
452 */
453 ticks = jiffies - ts->idle_jiffies;
454 /*
455 * We might be one off. Do not randomly account a huge number of ticks!
456 */
457 if (ticks && ticks < LONG_MAX)
458 account_idle_ticks(ticks);
459 #endif
460
461 touch_softlockup_watchdog();
462 /*
463 * Cancel the scheduled timer and restore the tick
464 */
465 ts->tick_stopped = 0;
466 ts->idle_exittime = now;
467
468 tick_nohz_restart(ts, now);
469
470 local_irq_enable();
471 }
472
473 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
474 {
475 hrtimer_forward(&ts->sched_timer, now, tick_period);
476 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
477 }
478
479 /*
480 * The nohz low res interrupt handler
481 */
482 static void tick_nohz_handler(struct clock_event_device *dev)
483 {
484 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
485 struct pt_regs *regs = get_irq_regs();
486 int cpu = smp_processor_id();
487 ktime_t now = ktime_get();
488
489 dev->next_event.tv64 = KTIME_MAX;
490
491 /*
492 * Check if the do_timer duty was dropped. We don't care about
493 * concurrency: This happens only when the cpu in charge went
494 * into a long sleep. If two cpus happen to assign themself to
495 * this duty, then the jiffies update is still serialized by
496 * xtime_lock.
497 */
498 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
499 tick_do_timer_cpu = cpu;
500
501 /* Check, if the jiffies need an update */
502 if (tick_do_timer_cpu == cpu)
503 tick_do_update_jiffies64(now);
504
505 /*
506 * When we are idle and the tick is stopped, we have to touch
507 * the watchdog as we might not schedule for a really long
508 * time. This happens on complete idle SMP systems while
509 * waiting on the login prompt. We also increment the "start
510 * of idle" jiffy stamp so the idle accounting adjustment we
511 * do when we go busy again does not account too much ticks.
512 */
513 if (ts->tick_stopped) {
514 touch_softlockup_watchdog();
515 ts->idle_jiffies++;
516 }
517
518 update_process_times(user_mode(regs));
519 profile_tick(CPU_PROFILING);
520
521 while (tick_nohz_reprogram(ts, now)) {
522 now = ktime_get();
523 tick_do_update_jiffies64(now);
524 }
525 }
526
527 /**
528 * tick_nohz_switch_to_nohz - switch to nohz mode
529 */
530 static void tick_nohz_switch_to_nohz(void)
531 {
532 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
533 ktime_t next;
534
535 if (!tick_nohz_enabled)
536 return;
537
538 local_irq_disable();
539 if (tick_switch_to_oneshot(tick_nohz_handler)) {
540 local_irq_enable();
541 return;
542 }
543
544 ts->nohz_mode = NOHZ_MODE_LOWRES;
545
546 /*
547 * Recycle the hrtimer in ts, so we can share the
548 * hrtimer_forward with the highres code.
549 */
550 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
551 /* Get the next period */
552 next = tick_init_jiffy_update();
553
554 for (;;) {
555 hrtimer_set_expires(&ts->sched_timer, next);
556 if (!tick_program_event(next, 0))
557 break;
558 next = ktime_add(next, tick_period);
559 }
560 local_irq_enable();
561
562 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
563 smp_processor_id());
564 }
565
566 /*
567 * When NOHZ is enabled and the tick is stopped, we need to kick the
568 * tick timer from irq_enter() so that the jiffies update is kept
569 * alive during long running softirqs. That's ugly as hell, but
570 * correctness is key even if we need to fix the offending softirq in
571 * the first place.
572 *
573 * Note, this is different to tick_nohz_restart. We just kick the
574 * timer and do not touch the other magic bits which need to be done
575 * when idle is left.
576 */
577 static void tick_nohz_kick_tick(int cpu, ktime_t now)
578 {
579 #if 0
580 /* Switch back to 2.6.27 behaviour */
581
582 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
583 ktime_t delta;
584
585 /*
586 * Do not touch the tick device, when the next expiry is either
587 * already reached or less/equal than the tick period.
588 */
589 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
590 if (delta.tv64 <= tick_period.tv64)
591 return;
592
593 tick_nohz_restart(ts, now);
594 #endif
595 }
596
597 static inline void tick_check_nohz(int cpu)
598 {
599 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
600 ktime_t now;
601
602 if (!ts->idle_active && !ts->tick_stopped)
603 return;
604 now = ktime_get();
605 if (ts->idle_active)
606 tick_nohz_stop_idle(cpu, now);
607 if (ts->tick_stopped) {
608 tick_nohz_update_jiffies(now);
609 tick_nohz_kick_tick(cpu, now);
610 }
611 }
612
613 #else
614
615 static inline void tick_nohz_switch_to_nohz(void) { }
616 static inline void tick_check_nohz(int cpu) { }
617
618 #endif /* NO_HZ */
619
620 /*
621 * Called from irq_enter to notify about the possible interruption of idle()
622 */
623 void tick_check_idle(int cpu)
624 {
625 tick_check_oneshot_broadcast(cpu);
626 tick_check_nohz(cpu);
627 }
628
629 /*
630 * High resolution timer specific code
631 */
632 #ifdef CONFIG_HIGH_RES_TIMERS
633 /*
634 * We rearm the timer until we get disabled by the idle code.
635 * Called with interrupts disabled and timer->base->cpu_base->lock held.
636 */
637 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
638 {
639 struct tick_sched *ts =
640 container_of(timer, struct tick_sched, sched_timer);
641 struct pt_regs *regs = get_irq_regs();
642 ktime_t now = ktime_get();
643 int cpu = smp_processor_id();
644
645 #ifdef CONFIG_NO_HZ
646 /*
647 * Check if the do_timer duty was dropped. We don't care about
648 * concurrency: This happens only when the cpu in charge went
649 * into a long sleep. If two cpus happen to assign themself to
650 * this duty, then the jiffies update is still serialized by
651 * xtime_lock.
652 */
653 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
654 tick_do_timer_cpu = cpu;
655 #endif
656
657 /* Check, if the jiffies need an update */
658 if (tick_do_timer_cpu == cpu)
659 tick_do_update_jiffies64(now);
660
661 /*
662 * Do not call, when we are not in irq context and have
663 * no valid regs pointer
664 */
665 if (regs) {
666 /*
667 * When we are idle and the tick is stopped, we have to touch
668 * the watchdog as we might not schedule for a really long
669 * time. This happens on complete idle SMP systems while
670 * waiting on the login prompt. We also increment the "start of
671 * idle" jiffy stamp so the idle accounting adjustment we do
672 * when we go busy again does not account too much ticks.
673 */
674 if (ts->tick_stopped) {
675 touch_softlockup_watchdog();
676 ts->idle_jiffies++;
677 }
678 update_process_times(user_mode(regs));
679 profile_tick(CPU_PROFILING);
680 }
681
682 hrtimer_forward(timer, now, tick_period);
683
684 return HRTIMER_RESTART;
685 }
686
687 /**
688 * tick_setup_sched_timer - setup the tick emulation timer
689 */
690 void tick_setup_sched_timer(void)
691 {
692 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
693 ktime_t now = ktime_get();
694 u64 offset;
695
696 /*
697 * Emulate tick processing via per-CPU hrtimers:
698 */
699 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
700 ts->sched_timer.function = tick_sched_timer;
701
702 /* Get the next period (per cpu) */
703 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
704 offset = ktime_to_ns(tick_period) >> 1;
705 do_div(offset, num_possible_cpus());
706 offset *= smp_processor_id();
707 hrtimer_add_expires_ns(&ts->sched_timer, offset);
708
709 for (;;) {
710 hrtimer_forward(&ts->sched_timer, now, tick_period);
711 hrtimer_start_expires(&ts->sched_timer,
712 HRTIMER_MODE_ABS_PINNED);
713 /* Check, if the timer was already in the past */
714 if (hrtimer_active(&ts->sched_timer))
715 break;
716 now = ktime_get();
717 }
718
719 #ifdef CONFIG_NO_HZ
720 if (tick_nohz_enabled)
721 ts->nohz_mode = NOHZ_MODE_HIGHRES;
722 #endif
723 }
724 #endif /* HIGH_RES_TIMERS */
725
726 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
727 void tick_cancel_sched_timer(int cpu)
728 {
729 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
730
731 # ifdef CONFIG_HIGH_RES_TIMERS
732 if (ts->sched_timer.base)
733 hrtimer_cancel(&ts->sched_timer);
734 # endif
735
736 ts->nohz_mode = NOHZ_MODE_INACTIVE;
737 }
738 #endif
739
740 /**
741 * Async notification about clocksource changes
742 */
743 void tick_clock_notify(void)
744 {
745 int cpu;
746
747 for_each_possible_cpu(cpu)
748 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
749 }
750
751 /*
752 * Async notification about clock event changes
753 */
754 void tick_oneshot_notify(void)
755 {
756 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
757
758 set_bit(0, &ts->check_clocks);
759 }
760
761 /**
762 * Check, if a change happened, which makes oneshot possible.
763 *
764 * Called cyclic from the hrtimer softirq (driven by the timer
765 * softirq) allow_nohz signals, that we can switch into low-res nohz
766 * mode, because high resolution timers are disabled (either compile
767 * or runtime).
768 */
769 int tick_check_oneshot_change(int allow_nohz)
770 {
771 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
772
773 if (!test_and_clear_bit(0, &ts->check_clocks))
774 return 0;
775
776 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
777 return 0;
778
779 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
780 return 0;
781
782 if (!allow_nohz)
783 return 1;
784
785 tick_nohz_switch_to_nohz();
786 return 0;
787 }
This page took 0.046053 seconds and 6 git commands to generate.