Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty...
[deliverable/linux.git] / kernel / time / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include <generated/timeconst.h>
45 #include "timekeeping.h"
46
47 /*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51 struct timezone sys_tz;
52
53 EXPORT_SYMBOL(sys_tz);
54
55 #ifdef __ARCH_WANT_SYS_TIME
56
57 /*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73 }
74
75 /*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98 }
99
100 #endif /* __ARCH_WANT_SYS_TIME */
101
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104 {
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116 }
117
118 /*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122 int persistent_clock_is_local;
123
124 /*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140 static inline void warp_clock(void)
141 {
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150 }
151
152 /*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
170
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
179
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
186 }
187 }
188 if (tv)
189 return do_settimeofday(tv);
190 return 0;
191 }
192
193 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
195 {
196 struct timeval user_tv;
197 struct timespec new_ts;
198 struct timezone new_tz;
199
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
203
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
206
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 }
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
213 }
214
215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216 }
217
218 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219 {
220 struct timex txc; /* Local copy of parameter */
221 int ret;
222
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
226 */
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231 }
232
233 /**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240 struct timespec current_fs_time(struct super_block *sb)
241 {
242 struct timespec now = current_kernel_time();
243 return timespec_trunc(now, sb->s_time_gran);
244 }
245 EXPORT_SYMBOL(current_fs_time);
246
247 /*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253 unsigned int jiffies_to_msecs(const unsigned long j)
254 {
255 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC / HZ) * j;
257 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259 #else
260 # if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 # else
263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264 # endif
265 #endif
266 }
267 EXPORT_SYMBOL(jiffies_to_msecs);
268
269 unsigned int jiffies_to_usecs(const unsigned long j)
270 {
271 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
272 return (USEC_PER_SEC / HZ) * j;
273 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
274 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
275 #else
276 # if BITS_PER_LONG == 32
277 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
278 # else
279 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
280 # endif
281 #endif
282 }
283 EXPORT_SYMBOL(jiffies_to_usecs);
284
285 /**
286 * timespec_trunc - Truncate timespec to a granularity
287 * @t: Timespec
288 * @gran: Granularity in ns.
289 *
290 * Truncate a timespec to a granularity. gran must be smaller than a second.
291 * Always rounds down.
292 *
293 * This function should be only used for timestamps returned by
294 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
295 * it doesn't handle the better resolution of the latter.
296 */
297 struct timespec timespec_trunc(struct timespec t, unsigned gran)
298 {
299 /*
300 * Division is pretty slow so avoid it for common cases.
301 * Currently current_kernel_time() never returns better than
302 * jiffies resolution. Exploit that.
303 */
304 if (gran <= jiffies_to_usecs(1) * 1000) {
305 /* nothing */
306 } else if (gran == 1000000000) {
307 t.tv_nsec = 0;
308 } else {
309 t.tv_nsec -= t.tv_nsec % gran;
310 }
311 return t;
312 }
313 EXPORT_SYMBOL(timespec_trunc);
314
315 /*
316 * mktime64 - Converts date to seconds.
317 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
320 *
321 * [For the Julian calendar (which was used in Russia before 1917,
322 * Britain & colonies before 1752, anywhere else before 1582,
323 * and is still in use by some communities) leave out the
324 * -year/100+year/400 terms, and add 10.]
325 *
326 * This algorithm was first published by Gauss (I think).
327 */
328 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
329 const unsigned int day, const unsigned int hour,
330 const unsigned int min, const unsigned int sec)
331 {
332 unsigned int mon = mon0, year = year0;
333
334 /* 1..12 -> 11,12,1..10 */
335 if (0 >= (int) (mon -= 2)) {
336 mon += 12; /* Puts Feb last since it has leap day */
337 year -= 1;
338 }
339
340 return ((((time64_t)
341 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
342 year*365 - 719499
343 )*24 + hour /* now have hours */
344 )*60 + min /* now have minutes */
345 )*60 + sec; /* finally seconds */
346 }
347 EXPORT_SYMBOL(mktime64);
348
349 /**
350 * set_normalized_timespec - set timespec sec and nsec parts and normalize
351 *
352 * @ts: pointer to timespec variable to be set
353 * @sec: seconds to set
354 * @nsec: nanoseconds to set
355 *
356 * Set seconds and nanoseconds field of a timespec variable and
357 * normalize to the timespec storage format
358 *
359 * Note: The tv_nsec part is always in the range of
360 * 0 <= tv_nsec < NSEC_PER_SEC
361 * For negative values only the tv_sec field is negative !
362 */
363 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
364 {
365 while (nsec >= NSEC_PER_SEC) {
366 /*
367 * The following asm() prevents the compiler from
368 * optimising this loop into a modulo operation. See
369 * also __iter_div_u64_rem() in include/linux/time.h
370 */
371 asm("" : "+rm"(nsec));
372 nsec -= NSEC_PER_SEC;
373 ++sec;
374 }
375 while (nsec < 0) {
376 asm("" : "+rm"(nsec));
377 nsec += NSEC_PER_SEC;
378 --sec;
379 }
380 ts->tv_sec = sec;
381 ts->tv_nsec = nsec;
382 }
383 EXPORT_SYMBOL(set_normalized_timespec);
384
385 /**
386 * ns_to_timespec - Convert nanoseconds to timespec
387 * @nsec: the nanoseconds value to be converted
388 *
389 * Returns the timespec representation of the nsec parameter.
390 */
391 struct timespec ns_to_timespec(const s64 nsec)
392 {
393 struct timespec ts;
394 s32 rem;
395
396 if (!nsec)
397 return (struct timespec) {0, 0};
398
399 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
400 if (unlikely(rem < 0)) {
401 ts.tv_sec--;
402 rem += NSEC_PER_SEC;
403 }
404 ts.tv_nsec = rem;
405
406 return ts;
407 }
408 EXPORT_SYMBOL(ns_to_timespec);
409
410 /**
411 * ns_to_timeval - Convert nanoseconds to timeval
412 * @nsec: the nanoseconds value to be converted
413 *
414 * Returns the timeval representation of the nsec parameter.
415 */
416 struct timeval ns_to_timeval(const s64 nsec)
417 {
418 struct timespec ts = ns_to_timespec(nsec);
419 struct timeval tv;
420
421 tv.tv_sec = ts.tv_sec;
422 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
423
424 return tv;
425 }
426 EXPORT_SYMBOL(ns_to_timeval);
427
428 #if BITS_PER_LONG == 32
429 /**
430 * set_normalized_timespec - set timespec sec and nsec parts and normalize
431 *
432 * @ts: pointer to timespec variable to be set
433 * @sec: seconds to set
434 * @nsec: nanoseconds to set
435 *
436 * Set seconds and nanoseconds field of a timespec variable and
437 * normalize to the timespec storage format
438 *
439 * Note: The tv_nsec part is always in the range of
440 * 0 <= tv_nsec < NSEC_PER_SEC
441 * For negative values only the tv_sec field is negative !
442 */
443 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
444 {
445 while (nsec >= NSEC_PER_SEC) {
446 /*
447 * The following asm() prevents the compiler from
448 * optimising this loop into a modulo operation. See
449 * also __iter_div_u64_rem() in include/linux/time.h
450 */
451 asm("" : "+rm"(nsec));
452 nsec -= NSEC_PER_SEC;
453 ++sec;
454 }
455 while (nsec < 0) {
456 asm("" : "+rm"(nsec));
457 nsec += NSEC_PER_SEC;
458 --sec;
459 }
460 ts->tv_sec = sec;
461 ts->tv_nsec = nsec;
462 }
463 EXPORT_SYMBOL(set_normalized_timespec64);
464
465 /**
466 * ns_to_timespec64 - Convert nanoseconds to timespec64
467 * @nsec: the nanoseconds value to be converted
468 *
469 * Returns the timespec64 representation of the nsec parameter.
470 */
471 struct timespec64 ns_to_timespec64(const s64 nsec)
472 {
473 struct timespec64 ts;
474 s32 rem;
475
476 if (!nsec)
477 return (struct timespec64) {0, 0};
478
479 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
480 if (unlikely(rem < 0)) {
481 ts.tv_sec--;
482 rem += NSEC_PER_SEC;
483 }
484 ts.tv_nsec = rem;
485
486 return ts;
487 }
488 EXPORT_SYMBOL(ns_to_timespec64);
489 #endif
490 /**
491 * msecs_to_jiffies: - convert milliseconds to jiffies
492 * @m: time in milliseconds
493 *
494 * conversion is done as follows:
495 *
496 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
497 *
498 * - 'too large' values [that would result in larger than
499 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
500 *
501 * - all other values are converted to jiffies by either multiplying
502 * the input value by a factor or dividing it with a factor and
503 * handling any 32-bit overflows.
504 * for the details see __msecs_to_jiffies()
505 *
506 * msecs_to_jiffies() checks for the passed in value being a constant
507 * via __builtin_constant_p() allowing gcc to eliminate most of the
508 * code, __msecs_to_jiffies() is called if the value passed does not
509 * allow constant folding and the actual conversion must be done at
510 * runtime.
511 * the _msecs_to_jiffies helpers are the HZ dependent conversion
512 * routines found in include/linux/jiffies.h
513 */
514 unsigned long __msecs_to_jiffies(const unsigned int m)
515 {
516 /*
517 * Negative value, means infinite timeout:
518 */
519 if ((int)m < 0)
520 return MAX_JIFFY_OFFSET;
521 return _msecs_to_jiffies(m);
522 }
523 EXPORT_SYMBOL(__msecs_to_jiffies);
524
525 unsigned long __usecs_to_jiffies(const unsigned int u)
526 {
527 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
528 return MAX_JIFFY_OFFSET;
529 return _usecs_to_jiffies(u);
530 }
531 EXPORT_SYMBOL(__usecs_to_jiffies);
532
533 /*
534 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
535 * that a remainder subtract here would not do the right thing as the
536 * resolution values don't fall on second boundries. I.e. the line:
537 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
538 * Note that due to the small error in the multiplier here, this
539 * rounding is incorrect for sufficiently large values of tv_nsec, but
540 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
541 * OK.
542 *
543 * Rather, we just shift the bits off the right.
544 *
545 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
546 * value to a scaled second value.
547 */
548 static unsigned long
549 __timespec_to_jiffies(unsigned long sec, long nsec)
550 {
551 nsec = nsec + TICK_NSEC - 1;
552
553 if (sec >= MAX_SEC_IN_JIFFIES){
554 sec = MAX_SEC_IN_JIFFIES;
555 nsec = 0;
556 }
557 return (((u64)sec * SEC_CONVERSION) +
558 (((u64)nsec * NSEC_CONVERSION) >>
559 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
560
561 }
562
563 unsigned long
564 timespec_to_jiffies(const struct timespec *value)
565 {
566 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
567 }
568
569 EXPORT_SYMBOL(timespec_to_jiffies);
570
571 void
572 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
573 {
574 /*
575 * Convert jiffies to nanoseconds and separate with
576 * one divide.
577 */
578 u32 rem;
579 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
580 NSEC_PER_SEC, &rem);
581 value->tv_nsec = rem;
582 }
583 EXPORT_SYMBOL(jiffies_to_timespec);
584
585 /*
586 * We could use a similar algorithm to timespec_to_jiffies (with a
587 * different multiplier for usec instead of nsec). But this has a
588 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
589 * usec value, since it's not necessarily integral.
590 *
591 * We could instead round in the intermediate scaled representation
592 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
593 * perilous: the scaling introduces a small positive error, which
594 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
595 * units to the intermediate before shifting) leads to accidental
596 * overflow and overestimates.
597 *
598 * At the cost of one additional multiplication by a constant, just
599 * use the timespec implementation.
600 */
601 unsigned long
602 timeval_to_jiffies(const struct timeval *value)
603 {
604 return __timespec_to_jiffies(value->tv_sec,
605 value->tv_usec * NSEC_PER_USEC);
606 }
607 EXPORT_SYMBOL(timeval_to_jiffies);
608
609 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
610 {
611 /*
612 * Convert jiffies to nanoseconds and separate with
613 * one divide.
614 */
615 u32 rem;
616
617 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
618 NSEC_PER_SEC, &rem);
619 value->tv_usec = rem / NSEC_PER_USEC;
620 }
621 EXPORT_SYMBOL(jiffies_to_timeval);
622
623 /*
624 * Convert jiffies/jiffies_64 to clock_t and back.
625 */
626 clock_t jiffies_to_clock_t(unsigned long x)
627 {
628 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
629 # if HZ < USER_HZ
630 return x * (USER_HZ / HZ);
631 # else
632 return x / (HZ / USER_HZ);
633 # endif
634 #else
635 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
636 #endif
637 }
638 EXPORT_SYMBOL(jiffies_to_clock_t);
639
640 unsigned long clock_t_to_jiffies(unsigned long x)
641 {
642 #if (HZ % USER_HZ)==0
643 if (x >= ~0UL / (HZ / USER_HZ))
644 return ~0UL;
645 return x * (HZ / USER_HZ);
646 #else
647 /* Don't worry about loss of precision here .. */
648 if (x >= ~0UL / HZ * USER_HZ)
649 return ~0UL;
650
651 /* .. but do try to contain it here */
652 return div_u64((u64)x * HZ, USER_HZ);
653 #endif
654 }
655 EXPORT_SYMBOL(clock_t_to_jiffies);
656
657 u64 jiffies_64_to_clock_t(u64 x)
658 {
659 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
660 # if HZ < USER_HZ
661 x = div_u64(x * USER_HZ, HZ);
662 # elif HZ > USER_HZ
663 x = div_u64(x, HZ / USER_HZ);
664 # else
665 /* Nothing to do */
666 # endif
667 #else
668 /*
669 * There are better ways that don't overflow early,
670 * but even this doesn't overflow in hundreds of years
671 * in 64 bits, so..
672 */
673 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
674 #endif
675 return x;
676 }
677 EXPORT_SYMBOL(jiffies_64_to_clock_t);
678
679 u64 nsec_to_clock_t(u64 x)
680 {
681 #if (NSEC_PER_SEC % USER_HZ) == 0
682 return div_u64(x, NSEC_PER_SEC / USER_HZ);
683 #elif (USER_HZ % 512) == 0
684 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
685 #else
686 /*
687 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
688 * overflow after 64.99 years.
689 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
690 */
691 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
692 #endif
693 }
694
695 /**
696 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
697 *
698 * @n: nsecs in u64
699 *
700 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
701 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
702 * for scheduler, not for use in device drivers to calculate timeout value.
703 *
704 * note:
705 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
706 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
707 */
708 u64 nsecs_to_jiffies64(u64 n)
709 {
710 #if (NSEC_PER_SEC % HZ) == 0
711 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
712 return div_u64(n, NSEC_PER_SEC / HZ);
713 #elif (HZ % 512) == 0
714 /* overflow after 292 years if HZ = 1024 */
715 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
716 #else
717 /*
718 * Generic case - optimized for cases where HZ is a multiple of 3.
719 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
720 */
721 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
722 #endif
723 }
724 EXPORT_SYMBOL(nsecs_to_jiffies64);
725
726 /**
727 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
728 *
729 * @n: nsecs in u64
730 *
731 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
732 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
733 * for scheduler, not for use in device drivers to calculate timeout value.
734 *
735 * note:
736 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
737 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
738 */
739 unsigned long nsecs_to_jiffies(u64 n)
740 {
741 return (unsigned long)nsecs_to_jiffies64(n);
742 }
743 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
744
745 /*
746 * Add two timespec values and do a safety check for overflow.
747 * It's assumed that both values are valid (>= 0)
748 */
749 struct timespec timespec_add_safe(const struct timespec lhs,
750 const struct timespec rhs)
751 {
752 struct timespec res;
753
754 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
755 lhs.tv_nsec + rhs.tv_nsec);
756
757 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
758 res.tv_sec = TIME_T_MAX;
759
760 return res;
761 }
This page took 0.070917 seconds and 5 git commands to generate.