Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* NTP adjusted clock multiplier */
29 u32 mult;
30 /* The shift value of the current clocksource. */
31 u32 shift;
32 /* Number of clock cycles in one NTP interval. */
33 cycle_t cycle_interval;
34 /* Number of clock shifted nano seconds in one NTP interval. */
35 u64 xtime_interval;
36 /* shifted nano seconds left over when rounding cycle_interval */
37 s64 xtime_remainder;
38 /* Raw nano seconds accumulated per NTP interval. */
39 u32 raw_interval;
40
41 /* Current CLOCK_REALTIME time in seconds */
42 u64 xtime_sec;
43 /* Clock shifted nano seconds */
44 u64 xtime_nsec;
45
46 /* Difference between accumulated time and NTP time in ntp
47 * shifted nano seconds. */
48 s64 ntp_error;
49 /* Shift conversion between clock shifted nano seconds and
50 * ntp shifted nano seconds. */
51 u32 ntp_error_shift;
52
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
67 struct timespec wall_to_monotonic;
68 /* Offset clock monotonic -> clock realtime */
69 ktime_t offs_real;
70 /* time spent in suspend */
71 struct timespec total_sleep_time;
72 /* Offset clock monotonic -> clock boottime */
73 ktime_t offs_boot;
74 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
75 struct timespec raw_time;
76 /* Seqlock for all timekeeper values */
77 seqlock_t lock;
78 };
79
80 static struct timekeeper timekeeper;
81
82 /*
83 * This read-write spinlock protects us from races in SMP while
84 * playing with xtime.
85 */
86 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87
88 /* flag for if timekeeping is suspended */
89 int __read_mostly timekeeping_suspended;
90
91 static inline void tk_normalize_xtime(struct timekeeper *tk)
92 {
93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 tk->xtime_sec++;
96 }
97 }
98
99 static struct timespec tk_xtime(struct timekeeper *tk)
100 {
101 struct timespec ts;
102
103 ts.tv_sec = tk->xtime_sec;
104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 return ts;
106 }
107
108 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109 {
110 tk->xtime_sec = ts->tv_sec;
111 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
112 }
113
114 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115 {
116 tk->xtime_sec += ts->tv_sec;
117 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
118 tk_normalize_xtime(tk);
119 }
120
121 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
122 {
123 struct timespec tmp;
124
125 /*
126 * Verify consistency of: offset_real = -wall_to_monotonic
127 * before modifying anything
128 */
129 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
130 -tk->wall_to_monotonic.tv_nsec);
131 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
132 tk->wall_to_monotonic = wtm;
133 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
134 tk->offs_real = timespec_to_ktime(tmp);
135 }
136
137 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
138 {
139 /* Verify consistency before modifying */
140 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
141
142 tk->total_sleep_time = t;
143 tk->offs_boot = timespec_to_ktime(t);
144 }
145
146 /**
147 * timekeeper_setup_internals - Set up internals to use clocksource clock.
148 *
149 * @clock: Pointer to clocksource.
150 *
151 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
152 * pair and interval request.
153 *
154 * Unless you're the timekeeping code, you should not be using this!
155 */
156 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
157 {
158 cycle_t interval;
159 u64 tmp, ntpinterval;
160 struct clocksource *old_clock;
161
162 old_clock = tk->clock;
163 tk->clock = clock;
164 clock->cycle_last = clock->read(clock);
165
166 /* Do the ns -> cycle conversion first, using original mult */
167 tmp = NTP_INTERVAL_LENGTH;
168 tmp <<= clock->shift;
169 ntpinterval = tmp;
170 tmp += clock->mult/2;
171 do_div(tmp, clock->mult);
172 if (tmp == 0)
173 tmp = 1;
174
175 interval = (cycle_t) tmp;
176 tk->cycle_interval = interval;
177
178 /* Go back from cycles -> shifted ns */
179 tk->xtime_interval = (u64) interval * clock->mult;
180 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
181 tk->raw_interval =
182 ((u64) interval * clock->mult) >> clock->shift;
183
184 /* if changing clocks, convert xtime_nsec shift units */
185 if (old_clock) {
186 int shift_change = clock->shift - old_clock->shift;
187 if (shift_change < 0)
188 tk->xtime_nsec >>= -shift_change;
189 else
190 tk->xtime_nsec <<= shift_change;
191 }
192 tk->shift = clock->shift;
193
194 tk->ntp_error = 0;
195 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
196
197 /*
198 * The timekeeper keeps its own mult values for the currently
199 * active clocksource. These value will be adjusted via NTP
200 * to counteract clock drifting.
201 */
202 tk->mult = clock->mult;
203 }
204
205 /* Timekeeper helper functions. */
206 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
207 {
208 cycle_t cycle_now, cycle_delta;
209 struct clocksource *clock;
210 s64 nsec;
211
212 /* read clocksource: */
213 clock = tk->clock;
214 cycle_now = clock->read(clock);
215
216 /* calculate the delta since the last update_wall_time: */
217 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218
219 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
220 nsec >>= tk->shift;
221
222 /* If arch requires, add in gettimeoffset() */
223 return nsec + arch_gettimeoffset();
224 }
225
226 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
227 {
228 cycle_t cycle_now, cycle_delta;
229 struct clocksource *clock;
230 s64 nsec;
231
232 /* read clocksource: */
233 clock = tk->clock;
234 cycle_now = clock->read(clock);
235
236 /* calculate the delta since the last update_wall_time: */
237 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
238
239 /* convert delta to nanoseconds. */
240 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
241
242 /* If arch requires, add in gettimeoffset() */
243 return nsec + arch_gettimeoffset();
244 }
245
246 /* must hold write on timekeeper.lock */
247 static void timekeeping_update(struct timekeeper *tk, bool clearntp)
248 {
249 struct timespec xt;
250
251 if (clearntp) {
252 tk->ntp_error = 0;
253 ntp_clear();
254 }
255 xt = tk_xtime(tk);
256 update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
257 }
258
259 /**
260 * timekeeping_forward_now - update clock to the current time
261 *
262 * Forward the current clock to update its state since the last call to
263 * update_wall_time(). This is useful before significant clock changes,
264 * as it avoids having to deal with this time offset explicitly.
265 */
266 static void timekeeping_forward_now(struct timekeeper *tk)
267 {
268 cycle_t cycle_now, cycle_delta;
269 struct clocksource *clock;
270 s64 nsec;
271
272 clock = tk->clock;
273 cycle_now = clock->read(clock);
274 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
275 clock->cycle_last = cycle_now;
276
277 tk->xtime_nsec += cycle_delta * tk->mult;
278
279 /* If arch requires, add in gettimeoffset() */
280 tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
281
282 tk_normalize_xtime(tk);
283
284 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
285 timespec_add_ns(&tk->raw_time, nsec);
286 }
287
288 /**
289 * getnstimeofday - Returns the time of day in a timespec
290 * @ts: pointer to the timespec to be set
291 *
292 * Returns the time of day in a timespec.
293 */
294 void getnstimeofday(struct timespec *ts)
295 {
296 struct timekeeper *tk = &timekeeper;
297 unsigned long seq;
298 s64 nsecs = 0;
299
300 WARN_ON(timekeeping_suspended);
301
302 do {
303 seq = read_seqbegin(&tk->lock);
304
305 ts->tv_sec = tk->xtime_sec;
306 ts->tv_nsec = timekeeping_get_ns(tk);
307
308 } while (read_seqretry(&tk->lock, seq));
309
310 timespec_add_ns(ts, nsecs);
311 }
312 EXPORT_SYMBOL(getnstimeofday);
313
314 ktime_t ktime_get(void)
315 {
316 struct timekeeper *tk = &timekeeper;
317 unsigned int seq;
318 s64 secs, nsecs;
319
320 WARN_ON(timekeeping_suspended);
321
322 do {
323 seq = read_seqbegin(&tk->lock);
324 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
325 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
326
327 } while (read_seqretry(&tk->lock, seq));
328 /*
329 * Use ktime_set/ktime_add_ns to create a proper ktime on
330 * 32-bit architectures without CONFIG_KTIME_SCALAR.
331 */
332 return ktime_add_ns(ktime_set(secs, 0), nsecs);
333 }
334 EXPORT_SYMBOL_GPL(ktime_get);
335
336 /**
337 * ktime_get_ts - get the monotonic clock in timespec format
338 * @ts: pointer to timespec variable
339 *
340 * The function calculates the monotonic clock from the realtime
341 * clock and the wall_to_monotonic offset and stores the result
342 * in normalized timespec format in the variable pointed to by @ts.
343 */
344 void ktime_get_ts(struct timespec *ts)
345 {
346 struct timekeeper *tk = &timekeeper;
347 struct timespec tomono;
348 unsigned int seq;
349
350 WARN_ON(timekeeping_suspended);
351
352 do {
353 seq = read_seqbegin(&tk->lock);
354 ts->tv_sec = tk->xtime_sec;
355 ts->tv_nsec = timekeeping_get_ns(tk);
356 tomono = tk->wall_to_monotonic;
357
358 } while (read_seqretry(&tk->lock, seq));
359
360 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
361 ts->tv_nsec + tomono.tv_nsec);
362 }
363 EXPORT_SYMBOL_GPL(ktime_get_ts);
364
365 #ifdef CONFIG_NTP_PPS
366
367 /**
368 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
369 * @ts_raw: pointer to the timespec to be set to raw monotonic time
370 * @ts_real: pointer to the timespec to be set to the time of day
371 *
372 * This function reads both the time of day and raw monotonic time at the
373 * same time atomically and stores the resulting timestamps in timespec
374 * format.
375 */
376 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
377 {
378 struct timekeeper *tk = &timekeeper;
379 unsigned long seq;
380 s64 nsecs_raw, nsecs_real;
381
382 WARN_ON_ONCE(timekeeping_suspended);
383
384 do {
385 seq = read_seqbegin(&tk->lock);
386
387 *ts_raw = tk->raw_time;
388 ts_real->tv_sec = tk->xtime_sec;
389 ts_real->tv_nsec = 0;
390
391 nsecs_raw = timekeeping_get_ns_raw(tk);
392 nsecs_real = timekeeping_get_ns(tk);
393
394 } while (read_seqretry(&tk->lock, seq));
395
396 timespec_add_ns(ts_raw, nsecs_raw);
397 timespec_add_ns(ts_real, nsecs_real);
398 }
399 EXPORT_SYMBOL(getnstime_raw_and_real);
400
401 #endif /* CONFIG_NTP_PPS */
402
403 /**
404 * do_gettimeofday - Returns the time of day in a timeval
405 * @tv: pointer to the timeval to be set
406 *
407 * NOTE: Users should be converted to using getnstimeofday()
408 */
409 void do_gettimeofday(struct timeval *tv)
410 {
411 struct timespec now;
412
413 getnstimeofday(&now);
414 tv->tv_sec = now.tv_sec;
415 tv->tv_usec = now.tv_nsec/1000;
416 }
417 EXPORT_SYMBOL(do_gettimeofday);
418
419 /**
420 * do_settimeofday - Sets the time of day
421 * @tv: pointer to the timespec variable containing the new time
422 *
423 * Sets the time of day to the new time and update NTP and notify hrtimers
424 */
425 int do_settimeofday(const struct timespec *tv)
426 {
427 struct timekeeper *tk = &timekeeper;
428 struct timespec ts_delta, xt;
429 unsigned long flags;
430
431 if (!timespec_valid(tv))
432 return -EINVAL;
433
434 write_seqlock_irqsave(&tk->lock, flags);
435
436 timekeeping_forward_now(tk);
437
438 xt = tk_xtime(tk);
439 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
440 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
441
442 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
443
444 tk_set_xtime(tk, tv);
445
446 timekeeping_update(tk, true);
447
448 write_sequnlock_irqrestore(&tk->lock, flags);
449
450 /* signal hrtimers about time change */
451 clock_was_set();
452
453 return 0;
454 }
455 EXPORT_SYMBOL(do_settimeofday);
456
457 /**
458 * timekeeping_inject_offset - Adds or subtracts from the current time.
459 * @tv: pointer to the timespec variable containing the offset
460 *
461 * Adds or subtracts an offset value from the current time.
462 */
463 int timekeeping_inject_offset(struct timespec *ts)
464 {
465 struct timekeeper *tk = &timekeeper;
466 unsigned long flags;
467 struct timespec tmp;
468 int ret = 0;
469
470 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
471 return -EINVAL;
472
473 write_seqlock_irqsave(&tk->lock, flags);
474
475 timekeeping_forward_now(tk);
476
477 /* Make sure the proposed value is valid */
478 tmp = timespec_add(tk_xtime(tk), *ts);
479 if (!timespec_valid(&tmp)) {
480 ret = -EINVAL;
481 goto error;
482 }
483
484 tk_xtime_add(tk, ts);
485 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
486
487 error: /* even if we error out, we forwarded the time, so call update */
488 timekeeping_update(tk, true);
489
490 write_sequnlock_irqrestore(&tk->lock, flags);
491
492 /* signal hrtimers about time change */
493 clock_was_set();
494
495 return ret;
496 }
497 EXPORT_SYMBOL(timekeeping_inject_offset);
498
499 /**
500 * change_clocksource - Swaps clocksources if a new one is available
501 *
502 * Accumulates current time interval and initializes new clocksource
503 */
504 static int change_clocksource(void *data)
505 {
506 struct timekeeper *tk = &timekeeper;
507 struct clocksource *new, *old;
508 unsigned long flags;
509
510 new = (struct clocksource *) data;
511
512 write_seqlock_irqsave(&tk->lock, flags);
513
514 timekeeping_forward_now(tk);
515 if (!new->enable || new->enable(new) == 0) {
516 old = tk->clock;
517 tk_setup_internals(tk, new);
518 if (old->disable)
519 old->disable(old);
520 }
521 timekeeping_update(tk, true);
522
523 write_sequnlock_irqrestore(&tk->lock, flags);
524
525 return 0;
526 }
527
528 /**
529 * timekeeping_notify - Install a new clock source
530 * @clock: pointer to the clock source
531 *
532 * This function is called from clocksource.c after a new, better clock
533 * source has been registered. The caller holds the clocksource_mutex.
534 */
535 void timekeeping_notify(struct clocksource *clock)
536 {
537 struct timekeeper *tk = &timekeeper;
538
539 if (tk->clock == clock)
540 return;
541 stop_machine(change_clocksource, clock, NULL);
542 tick_clock_notify();
543 }
544
545 /**
546 * ktime_get_real - get the real (wall-) time in ktime_t format
547 *
548 * returns the time in ktime_t format
549 */
550 ktime_t ktime_get_real(void)
551 {
552 struct timespec now;
553
554 getnstimeofday(&now);
555
556 return timespec_to_ktime(now);
557 }
558 EXPORT_SYMBOL_GPL(ktime_get_real);
559
560 /**
561 * getrawmonotonic - Returns the raw monotonic time in a timespec
562 * @ts: pointer to the timespec to be set
563 *
564 * Returns the raw monotonic time (completely un-modified by ntp)
565 */
566 void getrawmonotonic(struct timespec *ts)
567 {
568 struct timekeeper *tk = &timekeeper;
569 unsigned long seq;
570 s64 nsecs;
571
572 do {
573 seq = read_seqbegin(&tk->lock);
574 nsecs = timekeeping_get_ns_raw(tk);
575 *ts = tk->raw_time;
576
577 } while (read_seqretry(&tk->lock, seq));
578
579 timespec_add_ns(ts, nsecs);
580 }
581 EXPORT_SYMBOL(getrawmonotonic);
582
583 /**
584 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
585 */
586 int timekeeping_valid_for_hres(void)
587 {
588 struct timekeeper *tk = &timekeeper;
589 unsigned long seq;
590 int ret;
591
592 do {
593 seq = read_seqbegin(&tk->lock);
594
595 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
596
597 } while (read_seqretry(&tk->lock, seq));
598
599 return ret;
600 }
601
602 /**
603 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
604 */
605 u64 timekeeping_max_deferment(void)
606 {
607 struct timekeeper *tk = &timekeeper;
608 unsigned long seq;
609 u64 ret;
610
611 do {
612 seq = read_seqbegin(&tk->lock);
613
614 ret = tk->clock->max_idle_ns;
615
616 } while (read_seqretry(&tk->lock, seq));
617
618 return ret;
619 }
620
621 /**
622 * read_persistent_clock - Return time from the persistent clock.
623 *
624 * Weak dummy function for arches that do not yet support it.
625 * Reads the time from the battery backed persistent clock.
626 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
627 *
628 * XXX - Do be sure to remove it once all arches implement it.
629 */
630 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
631 {
632 ts->tv_sec = 0;
633 ts->tv_nsec = 0;
634 }
635
636 /**
637 * read_boot_clock - Return time of the system start.
638 *
639 * Weak dummy function for arches that do not yet support it.
640 * Function to read the exact time the system has been started.
641 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
642 *
643 * XXX - Do be sure to remove it once all arches implement it.
644 */
645 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
646 {
647 ts->tv_sec = 0;
648 ts->tv_nsec = 0;
649 }
650
651 /*
652 * timekeeping_init - Initializes the clocksource and common timekeeping values
653 */
654 void __init timekeeping_init(void)
655 {
656 struct timekeeper *tk = &timekeeper;
657 struct clocksource *clock;
658 unsigned long flags;
659 struct timespec now, boot, tmp;
660
661 read_persistent_clock(&now);
662 if (!timespec_valid(&now)) {
663 pr_warn("WARNING: Persistent clock returned invalid value!\n"
664 " Check your CMOS/BIOS settings.\n");
665 now.tv_sec = 0;
666 now.tv_nsec = 0;
667 }
668
669 read_boot_clock(&boot);
670 if (!timespec_valid(&boot)) {
671 pr_warn("WARNING: Boot clock returned invalid value!\n"
672 " Check your CMOS/BIOS settings.\n");
673 boot.tv_sec = 0;
674 boot.tv_nsec = 0;
675 }
676
677 seqlock_init(&tk->lock);
678
679 ntp_init();
680
681 write_seqlock_irqsave(&tk->lock, flags);
682 clock = clocksource_default_clock();
683 if (clock->enable)
684 clock->enable(clock);
685 tk_setup_internals(tk, clock);
686
687 tk_set_xtime(tk, &now);
688 tk->raw_time.tv_sec = 0;
689 tk->raw_time.tv_nsec = 0;
690 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
691 boot = tk_xtime(tk);
692
693 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
694 tk_set_wall_to_mono(tk, tmp);
695
696 tmp.tv_sec = 0;
697 tmp.tv_nsec = 0;
698 tk_set_sleep_time(tk, tmp);
699
700 write_sequnlock_irqrestore(&tk->lock, flags);
701 }
702
703 /* time in seconds when suspend began */
704 static struct timespec timekeeping_suspend_time;
705
706 /**
707 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
708 * @delta: pointer to a timespec delta value
709 *
710 * Takes a timespec offset measuring a suspend interval and properly
711 * adds the sleep offset to the timekeeping variables.
712 */
713 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
714 struct timespec *delta)
715 {
716 if (!timespec_valid(delta)) {
717 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
718 "sleep delta value!\n");
719 return;
720 }
721 tk_xtime_add(tk, delta);
722 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
723 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
724 }
725
726 /**
727 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
728 * @delta: pointer to a timespec delta value
729 *
730 * This hook is for architectures that cannot support read_persistent_clock
731 * because their RTC/persistent clock is only accessible when irqs are enabled.
732 *
733 * This function should only be called by rtc_resume(), and allows
734 * a suspend offset to be injected into the timekeeping values.
735 */
736 void timekeeping_inject_sleeptime(struct timespec *delta)
737 {
738 struct timekeeper *tk = &timekeeper;
739 unsigned long flags;
740 struct timespec ts;
741
742 /* Make sure we don't set the clock twice */
743 read_persistent_clock(&ts);
744 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
745 return;
746
747 write_seqlock_irqsave(&tk->lock, flags);
748
749 timekeeping_forward_now(tk);
750
751 __timekeeping_inject_sleeptime(tk, delta);
752
753 timekeeping_update(tk, true);
754
755 write_sequnlock_irqrestore(&tk->lock, flags);
756
757 /* signal hrtimers about time change */
758 clock_was_set();
759 }
760
761 /**
762 * timekeeping_resume - Resumes the generic timekeeping subsystem.
763 *
764 * This is for the generic clocksource timekeeping.
765 * xtime/wall_to_monotonic/jiffies/etc are
766 * still managed by arch specific suspend/resume code.
767 */
768 static void timekeeping_resume(void)
769 {
770 struct timekeeper *tk = &timekeeper;
771 unsigned long flags;
772 struct timespec ts;
773
774 read_persistent_clock(&ts);
775
776 clocksource_resume();
777
778 write_seqlock_irqsave(&tk->lock, flags);
779
780 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
781 ts = timespec_sub(ts, timekeeping_suspend_time);
782 __timekeeping_inject_sleeptime(tk, &ts);
783 }
784 /* re-base the last cycle value */
785 tk->clock->cycle_last = tk->clock->read(tk->clock);
786 tk->ntp_error = 0;
787 timekeeping_suspended = 0;
788 timekeeping_update(tk, false);
789 write_sequnlock_irqrestore(&tk->lock, flags);
790
791 touch_softlockup_watchdog();
792
793 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
794
795 /* Resume hrtimers */
796 hrtimers_resume();
797 }
798
799 static int timekeeping_suspend(void)
800 {
801 struct timekeeper *tk = &timekeeper;
802 unsigned long flags;
803 struct timespec delta, delta_delta;
804 static struct timespec old_delta;
805
806 read_persistent_clock(&timekeeping_suspend_time);
807
808 write_seqlock_irqsave(&tk->lock, flags);
809 timekeeping_forward_now(tk);
810 timekeeping_suspended = 1;
811
812 /*
813 * To avoid drift caused by repeated suspend/resumes,
814 * which each can add ~1 second drift error,
815 * try to compensate so the difference in system time
816 * and persistent_clock time stays close to constant.
817 */
818 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
819 delta_delta = timespec_sub(delta, old_delta);
820 if (abs(delta_delta.tv_sec) >= 2) {
821 /*
822 * if delta_delta is too large, assume time correction
823 * has occured and set old_delta to the current delta.
824 */
825 old_delta = delta;
826 } else {
827 /* Otherwise try to adjust old_system to compensate */
828 timekeeping_suspend_time =
829 timespec_add(timekeeping_suspend_time, delta_delta);
830 }
831 write_sequnlock_irqrestore(&tk->lock, flags);
832
833 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
834 clocksource_suspend();
835
836 return 0;
837 }
838
839 /* sysfs resume/suspend bits for timekeeping */
840 static struct syscore_ops timekeeping_syscore_ops = {
841 .resume = timekeeping_resume,
842 .suspend = timekeeping_suspend,
843 };
844
845 static int __init timekeeping_init_ops(void)
846 {
847 register_syscore_ops(&timekeeping_syscore_ops);
848 return 0;
849 }
850
851 device_initcall(timekeeping_init_ops);
852
853 /*
854 * If the error is already larger, we look ahead even further
855 * to compensate for late or lost adjustments.
856 */
857 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
858 s64 error, s64 *interval,
859 s64 *offset)
860 {
861 s64 tick_error, i;
862 u32 look_ahead, adj;
863 s32 error2, mult;
864
865 /*
866 * Use the current error value to determine how much to look ahead.
867 * The larger the error the slower we adjust for it to avoid problems
868 * with losing too many ticks, otherwise we would overadjust and
869 * produce an even larger error. The smaller the adjustment the
870 * faster we try to adjust for it, as lost ticks can do less harm
871 * here. This is tuned so that an error of about 1 msec is adjusted
872 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
873 */
874 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
875 error2 = abs(error2);
876 for (look_ahead = 0; error2 > 0; look_ahead++)
877 error2 >>= 2;
878
879 /*
880 * Now calculate the error in (1 << look_ahead) ticks, but first
881 * remove the single look ahead already included in the error.
882 */
883 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
884 tick_error -= tk->xtime_interval >> 1;
885 error = ((error - tick_error) >> look_ahead) + tick_error;
886
887 /* Finally calculate the adjustment shift value. */
888 i = *interval;
889 mult = 1;
890 if (error < 0) {
891 error = -error;
892 *interval = -*interval;
893 *offset = -*offset;
894 mult = -1;
895 }
896 for (adj = 0; error > i; adj++)
897 error >>= 1;
898
899 *interval <<= adj;
900 *offset <<= adj;
901 return mult << adj;
902 }
903
904 /*
905 * Adjust the multiplier to reduce the error value,
906 * this is optimized for the most common adjustments of -1,0,1,
907 * for other values we can do a bit more work.
908 */
909 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
910 {
911 s64 error, interval = tk->cycle_interval;
912 int adj;
913
914 /*
915 * The point of this is to check if the error is greater than half
916 * an interval.
917 *
918 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
919 *
920 * Note we subtract one in the shift, so that error is really error*2.
921 * This "saves" dividing(shifting) interval twice, but keeps the
922 * (error > interval) comparison as still measuring if error is
923 * larger than half an interval.
924 *
925 * Note: It does not "save" on aggravation when reading the code.
926 */
927 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
928 if (error > interval) {
929 /*
930 * We now divide error by 4(via shift), which checks if
931 * the error is greater than twice the interval.
932 * If it is greater, we need a bigadjust, if its smaller,
933 * we can adjust by 1.
934 */
935 error >>= 2;
936 /*
937 * XXX - In update_wall_time, we round up to the next
938 * nanosecond, and store the amount rounded up into
939 * the error. This causes the likely below to be unlikely.
940 *
941 * The proper fix is to avoid rounding up by using
942 * the high precision tk->xtime_nsec instead of
943 * xtime.tv_nsec everywhere. Fixing this will take some
944 * time.
945 */
946 if (likely(error <= interval))
947 adj = 1;
948 else
949 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
950 } else {
951 if (error < -interval) {
952 /* See comment above, this is just switched for the negative */
953 error >>= 2;
954 if (likely(error >= -interval)) {
955 adj = -1;
956 interval = -interval;
957 offset = -offset;
958 } else {
959 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
960 }
961 } else {
962 goto out_adjust;
963 }
964 }
965
966 if (unlikely(tk->clock->maxadj &&
967 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
968 printk_once(KERN_WARNING
969 "Adjusting %s more than 11%% (%ld vs %ld)\n",
970 tk->clock->name, (long)tk->mult + adj,
971 (long)tk->clock->mult + tk->clock->maxadj);
972 }
973 /*
974 * So the following can be confusing.
975 *
976 * To keep things simple, lets assume adj == 1 for now.
977 *
978 * When adj != 1, remember that the interval and offset values
979 * have been appropriately scaled so the math is the same.
980 *
981 * The basic idea here is that we're increasing the multiplier
982 * by one, this causes the xtime_interval to be incremented by
983 * one cycle_interval. This is because:
984 * xtime_interval = cycle_interval * mult
985 * So if mult is being incremented by one:
986 * xtime_interval = cycle_interval * (mult + 1)
987 * Its the same as:
988 * xtime_interval = (cycle_interval * mult) + cycle_interval
989 * Which can be shortened to:
990 * xtime_interval += cycle_interval
991 *
992 * So offset stores the non-accumulated cycles. Thus the current
993 * time (in shifted nanoseconds) is:
994 * now = (offset * adj) + xtime_nsec
995 * Now, even though we're adjusting the clock frequency, we have
996 * to keep time consistent. In other words, we can't jump back
997 * in time, and we also want to avoid jumping forward in time.
998 *
999 * So given the same offset value, we need the time to be the same
1000 * both before and after the freq adjustment.
1001 * now = (offset * adj_1) + xtime_nsec_1
1002 * now = (offset * adj_2) + xtime_nsec_2
1003 * So:
1004 * (offset * adj_1) + xtime_nsec_1 =
1005 * (offset * adj_2) + xtime_nsec_2
1006 * And we know:
1007 * adj_2 = adj_1 + 1
1008 * So:
1009 * (offset * adj_1) + xtime_nsec_1 =
1010 * (offset * (adj_1+1)) + xtime_nsec_2
1011 * (offset * adj_1) + xtime_nsec_1 =
1012 * (offset * adj_1) + offset + xtime_nsec_2
1013 * Canceling the sides:
1014 * xtime_nsec_1 = offset + xtime_nsec_2
1015 * Which gives us:
1016 * xtime_nsec_2 = xtime_nsec_1 - offset
1017 * Which simplfies to:
1018 * xtime_nsec -= offset
1019 *
1020 * XXX - TODO: Doc ntp_error calculation.
1021 */
1022 tk->mult += adj;
1023 tk->xtime_interval += interval;
1024 tk->xtime_nsec -= offset;
1025 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1026
1027 out_adjust:
1028 /*
1029 * It may be possible that when we entered this function, xtime_nsec
1030 * was very small. Further, if we're slightly speeding the clocksource
1031 * in the code above, its possible the required corrective factor to
1032 * xtime_nsec could cause it to underflow.
1033 *
1034 * Now, since we already accumulated the second, cannot simply roll
1035 * the accumulated second back, since the NTP subsystem has been
1036 * notified via second_overflow. So instead we push xtime_nsec forward
1037 * by the amount we underflowed, and add that amount into the error.
1038 *
1039 * We'll correct this error next time through this function, when
1040 * xtime_nsec is not as small.
1041 */
1042 if (unlikely((s64)tk->xtime_nsec < 0)) {
1043 s64 neg = -(s64)tk->xtime_nsec;
1044 tk->xtime_nsec = 0;
1045 tk->ntp_error += neg << tk->ntp_error_shift;
1046 }
1047
1048 }
1049
1050 /**
1051 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1052 *
1053 * Helper function that accumulates a the nsecs greater then a second
1054 * from the xtime_nsec field to the xtime_secs field.
1055 * It also calls into the NTP code to handle leapsecond processing.
1056 *
1057 */
1058 static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1059 {
1060 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1061
1062 while (tk->xtime_nsec >= nsecps) {
1063 int leap;
1064
1065 tk->xtime_nsec -= nsecps;
1066 tk->xtime_sec++;
1067
1068 /* Figure out if its a leap sec and apply if needed */
1069 leap = second_overflow(tk->xtime_sec);
1070 if (unlikely(leap)) {
1071 struct timespec ts;
1072
1073 tk->xtime_sec += leap;
1074
1075 ts.tv_sec = leap;
1076 ts.tv_nsec = 0;
1077 tk_set_wall_to_mono(tk,
1078 timespec_sub(tk->wall_to_monotonic, ts));
1079
1080 clock_was_set_delayed();
1081 }
1082 }
1083 }
1084
1085 /**
1086 * logarithmic_accumulation - shifted accumulation of cycles
1087 *
1088 * This functions accumulates a shifted interval of cycles into
1089 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1090 * loop.
1091 *
1092 * Returns the unconsumed cycles.
1093 */
1094 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1095 u32 shift)
1096 {
1097 u64 raw_nsecs;
1098
1099 /* If the offset is smaller then a shifted interval, do nothing */
1100 if (offset < tk->cycle_interval<<shift)
1101 return offset;
1102
1103 /* Accumulate one shifted interval */
1104 offset -= tk->cycle_interval << shift;
1105 tk->clock->cycle_last += tk->cycle_interval << shift;
1106
1107 tk->xtime_nsec += tk->xtime_interval << shift;
1108 accumulate_nsecs_to_secs(tk);
1109
1110 /* Accumulate raw time */
1111 raw_nsecs = tk->raw_interval << shift;
1112 raw_nsecs += tk->raw_time.tv_nsec;
1113 if (raw_nsecs >= NSEC_PER_SEC) {
1114 u64 raw_secs = raw_nsecs;
1115 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1116 tk->raw_time.tv_sec += raw_secs;
1117 }
1118 tk->raw_time.tv_nsec = raw_nsecs;
1119
1120 /* Accumulate error between NTP and clock interval */
1121 tk->ntp_error += ntp_tick_length() << shift;
1122 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1123 (tk->ntp_error_shift + shift);
1124
1125 return offset;
1126 }
1127
1128 /**
1129 * update_wall_time - Uses the current clocksource to increment the wall time
1130 *
1131 */
1132 static void update_wall_time(void)
1133 {
1134 struct clocksource *clock;
1135 struct timekeeper *tk = &timekeeper;
1136 cycle_t offset;
1137 int shift = 0, maxshift;
1138 unsigned long flags;
1139 s64 remainder;
1140
1141 write_seqlock_irqsave(&tk->lock, flags);
1142
1143 /* Make sure we're fully resumed: */
1144 if (unlikely(timekeeping_suspended))
1145 goto out;
1146
1147 clock = tk->clock;
1148
1149 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1150 offset = tk->cycle_interval;
1151 #else
1152 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1153 #endif
1154
1155 /* Check if there's really nothing to do */
1156 if (offset < tk->cycle_interval)
1157 goto out;
1158
1159 /*
1160 * With NO_HZ we may have to accumulate many cycle_intervals
1161 * (think "ticks") worth of time at once. To do this efficiently,
1162 * we calculate the largest doubling multiple of cycle_intervals
1163 * that is smaller than the offset. We then accumulate that
1164 * chunk in one go, and then try to consume the next smaller
1165 * doubled multiple.
1166 */
1167 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1168 shift = max(0, shift);
1169 /* Bound shift to one less than what overflows tick_length */
1170 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1171 shift = min(shift, maxshift);
1172 while (offset >= tk->cycle_interval) {
1173 offset = logarithmic_accumulation(tk, offset, shift);
1174 if (offset < tk->cycle_interval<<shift)
1175 shift--;
1176 }
1177
1178 /* correct the clock when NTP error is too big */
1179 timekeeping_adjust(tk, offset);
1180
1181
1182 /*
1183 * Store only full nanoseconds into xtime_nsec after rounding
1184 * it up and add the remainder to the error difference.
1185 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1186 * by truncating the remainder in vsyscalls. However, it causes
1187 * additional work to be done in timekeeping_adjust(). Once
1188 * the vsyscall implementations are converted to use xtime_nsec
1189 * (shifted nanoseconds), this can be killed.
1190 */
1191 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1192 tk->xtime_nsec -= remainder;
1193 tk->xtime_nsec += 1ULL << tk->shift;
1194 tk->ntp_error += remainder << tk->ntp_error_shift;
1195
1196 /*
1197 * Finally, make sure that after the rounding
1198 * xtime_nsec isn't larger than NSEC_PER_SEC
1199 */
1200 accumulate_nsecs_to_secs(tk);
1201
1202 timekeeping_update(tk, false);
1203
1204 out:
1205 write_sequnlock_irqrestore(&tk->lock, flags);
1206
1207 }
1208
1209 /**
1210 * getboottime - Return the real time of system boot.
1211 * @ts: pointer to the timespec to be set
1212 *
1213 * Returns the wall-time of boot in a timespec.
1214 *
1215 * This is based on the wall_to_monotonic offset and the total suspend
1216 * time. Calls to settimeofday will affect the value returned (which
1217 * basically means that however wrong your real time clock is at boot time,
1218 * you get the right time here).
1219 */
1220 void getboottime(struct timespec *ts)
1221 {
1222 struct timekeeper *tk = &timekeeper;
1223 struct timespec boottime = {
1224 .tv_sec = tk->wall_to_monotonic.tv_sec +
1225 tk->total_sleep_time.tv_sec,
1226 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1227 tk->total_sleep_time.tv_nsec
1228 };
1229
1230 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1231 }
1232 EXPORT_SYMBOL_GPL(getboottime);
1233
1234 /**
1235 * get_monotonic_boottime - Returns monotonic time since boot
1236 * @ts: pointer to the timespec to be set
1237 *
1238 * Returns the monotonic time since boot in a timespec.
1239 *
1240 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1241 * includes the time spent in suspend.
1242 */
1243 void get_monotonic_boottime(struct timespec *ts)
1244 {
1245 struct timekeeper *tk = &timekeeper;
1246 struct timespec tomono, sleep;
1247 unsigned int seq;
1248
1249 WARN_ON(timekeeping_suspended);
1250
1251 do {
1252 seq = read_seqbegin(&tk->lock);
1253 ts->tv_sec = tk->xtime_sec;
1254 ts->tv_nsec = timekeeping_get_ns(tk);
1255 tomono = tk->wall_to_monotonic;
1256 sleep = tk->total_sleep_time;
1257
1258 } while (read_seqretry(&tk->lock, seq));
1259
1260 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1261 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1262 }
1263 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1264
1265 /**
1266 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1267 *
1268 * Returns the monotonic time since boot in a ktime
1269 *
1270 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1271 * includes the time spent in suspend.
1272 */
1273 ktime_t ktime_get_boottime(void)
1274 {
1275 struct timespec ts;
1276
1277 get_monotonic_boottime(&ts);
1278 return timespec_to_ktime(ts);
1279 }
1280 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1281
1282 /**
1283 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1284 * @ts: pointer to the timespec to be converted
1285 */
1286 void monotonic_to_bootbased(struct timespec *ts)
1287 {
1288 struct timekeeper *tk = &timekeeper;
1289
1290 *ts = timespec_add(*ts, tk->total_sleep_time);
1291 }
1292 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1293
1294 unsigned long get_seconds(void)
1295 {
1296 struct timekeeper *tk = &timekeeper;
1297
1298 return tk->xtime_sec;
1299 }
1300 EXPORT_SYMBOL(get_seconds);
1301
1302 struct timespec __current_kernel_time(void)
1303 {
1304 struct timekeeper *tk = &timekeeper;
1305
1306 return tk_xtime(tk);
1307 }
1308
1309 struct timespec current_kernel_time(void)
1310 {
1311 struct timekeeper *tk = &timekeeper;
1312 struct timespec now;
1313 unsigned long seq;
1314
1315 do {
1316 seq = read_seqbegin(&tk->lock);
1317
1318 now = tk_xtime(tk);
1319 } while (read_seqretry(&tk->lock, seq));
1320
1321 return now;
1322 }
1323 EXPORT_SYMBOL(current_kernel_time);
1324
1325 struct timespec get_monotonic_coarse(void)
1326 {
1327 struct timekeeper *tk = &timekeeper;
1328 struct timespec now, mono;
1329 unsigned long seq;
1330
1331 do {
1332 seq = read_seqbegin(&tk->lock);
1333
1334 now = tk_xtime(tk);
1335 mono = tk->wall_to_monotonic;
1336 } while (read_seqretry(&tk->lock, seq));
1337
1338 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1339 now.tv_nsec + mono.tv_nsec);
1340 return now;
1341 }
1342
1343 /*
1344 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1345 * without sampling the sequence number in xtime_lock.
1346 * jiffies is defined in the linker script...
1347 */
1348 void do_timer(unsigned long ticks)
1349 {
1350 jiffies_64 += ticks;
1351 update_wall_time();
1352 calc_global_load(ticks);
1353 }
1354
1355 /**
1356 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1357 * and sleep offsets.
1358 * @xtim: pointer to timespec to be set with xtime
1359 * @wtom: pointer to timespec to be set with wall_to_monotonic
1360 * @sleep: pointer to timespec to be set with time in suspend
1361 */
1362 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1363 struct timespec *wtom, struct timespec *sleep)
1364 {
1365 struct timekeeper *tk = &timekeeper;
1366 unsigned long seq;
1367
1368 do {
1369 seq = read_seqbegin(&tk->lock);
1370 *xtim = tk_xtime(tk);
1371 *wtom = tk->wall_to_monotonic;
1372 *sleep = tk->total_sleep_time;
1373 } while (read_seqretry(&tk->lock, seq));
1374 }
1375
1376 #ifdef CONFIG_HIGH_RES_TIMERS
1377 /**
1378 * ktime_get_update_offsets - hrtimer helper
1379 * @offs_real: pointer to storage for monotonic -> realtime offset
1380 * @offs_boot: pointer to storage for monotonic -> boottime offset
1381 *
1382 * Returns current monotonic time and updates the offsets
1383 * Called from hrtimer_interupt() or retrigger_next_event()
1384 */
1385 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1386 {
1387 struct timekeeper *tk = &timekeeper;
1388 ktime_t now;
1389 unsigned int seq;
1390 u64 secs, nsecs;
1391
1392 do {
1393 seq = read_seqbegin(&tk->lock);
1394
1395 secs = tk->xtime_sec;
1396 nsecs = timekeeping_get_ns(tk);
1397
1398 *offs_real = tk->offs_real;
1399 *offs_boot = tk->offs_boot;
1400 } while (read_seqretry(&tk->lock, seq));
1401
1402 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1403 now = ktime_sub(now, *offs_real);
1404 return now;
1405 }
1406 #endif
1407
1408 /**
1409 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1410 */
1411 ktime_t ktime_get_monotonic_offset(void)
1412 {
1413 struct timekeeper *tk = &timekeeper;
1414 unsigned long seq;
1415 struct timespec wtom;
1416
1417 do {
1418 seq = read_seqbegin(&tk->lock);
1419 wtom = tk->wall_to_monotonic;
1420 } while (read_seqretry(&tk->lock, seq));
1421
1422 return timespec_to_ktime(wtom);
1423 }
1424 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1425
1426 /**
1427 * xtime_update() - advances the timekeeping infrastructure
1428 * @ticks: number of ticks, that have elapsed since the last call.
1429 *
1430 * Must be called with interrupts disabled.
1431 */
1432 void xtime_update(unsigned long ticks)
1433 {
1434 write_seqlock(&xtime_lock);
1435 do_timer(ticks);
1436 write_sequnlock(&xtime_lock);
1437 }
This page took 0.062907 seconds and 5 git commands to generate.