27ae01b596b77790d1dbe7226cf7cb4c7144d804
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21
22 /* Structure holding internal timekeeping values. */
23 struct timekeeper {
24 /* Current clocksource used for timekeeping. */
25 struct clocksource *clock;
26 /* The shift value of the current clocksource. */
27 int shift;
28
29 /* Number of clock cycles in one NTP interval. */
30 cycle_t cycle_interval;
31 /* Number of clock shifted nano seconds in one NTP interval. */
32 u64 xtime_interval;
33 /* Raw nano seconds accumulated per NTP interval. */
34 u32 raw_interval;
35
36 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
37 u64 xtime_nsec;
38 /* Difference between accumulated time and NTP time in ntp
39 * shifted nano seconds. */
40 s64 ntp_error;
41 /* Shift conversion between clock shifted nano seconds and
42 * ntp shifted nano seconds. */
43 int ntp_error_shift;
44 /* NTP adjusted clock multiplier */
45 u32 mult;
46 };
47
48 struct timekeeper timekeeper;
49
50 /**
51 * timekeeper_setup_internals - Set up internals to use clocksource clock.
52 *
53 * @clock: Pointer to clocksource.
54 *
55 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
56 * pair and interval request.
57 *
58 * Unless you're the timekeeping code, you should not be using this!
59 */
60 static void timekeeper_setup_internals(struct clocksource *clock)
61 {
62 cycle_t interval;
63 u64 tmp;
64
65 timekeeper.clock = clock;
66 clock->cycle_last = clock->read(clock);
67
68 /* Do the ns -> cycle conversion first, using original mult */
69 tmp = NTP_INTERVAL_LENGTH;
70 tmp <<= clock->shift;
71 tmp += clock->mult/2;
72 do_div(tmp, clock->mult);
73 if (tmp == 0)
74 tmp = 1;
75
76 interval = (cycle_t) tmp;
77 timekeeper.cycle_interval = interval;
78
79 /* Go back from cycles -> shifted ns */
80 timekeeper.xtime_interval = (u64) interval * clock->mult;
81 timekeeper.raw_interval =
82 ((u64) interval * clock->mult) >> clock->shift;
83
84 timekeeper.xtime_nsec = 0;
85 timekeeper.shift = clock->shift;
86
87 timekeeper.ntp_error = 0;
88 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
89
90 /*
91 * The timekeeper keeps its own mult values for the currently
92 * active clocksource. These value will be adjusted via NTP
93 * to counteract clock drifting.
94 */
95 timekeeper.mult = clock->mult;
96 }
97
98 /* Timekeeper helper functions. */
99 static inline s64 timekeeping_get_ns(void)
100 {
101 cycle_t cycle_now, cycle_delta;
102 struct clocksource *clock;
103
104 /* read clocksource: */
105 clock = timekeeper.clock;
106 cycle_now = clock->read(clock);
107
108 /* calculate the delta since the last update_wall_time: */
109 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
110
111 /* return delta convert to nanoseconds using ntp adjusted mult. */
112 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
113 timekeeper.shift);
114 }
115
116 static inline s64 timekeeping_get_ns_raw(void)
117 {
118 cycle_t cycle_now, cycle_delta;
119 struct clocksource *clock;
120
121 /* read clocksource: */
122 clock = timekeeper.clock;
123 cycle_now = clock->read(clock);
124
125 /* calculate the delta since the last update_wall_time: */
126 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
127
128 /* return delta convert to nanoseconds using ntp adjusted mult. */
129 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
130 }
131
132 /*
133 * This read-write spinlock protects us from races in SMP while
134 * playing with xtime.
135 */
136 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
137
138
139 /*
140 * The current time
141 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
142 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
143 * at zero at system boot time, so wall_to_monotonic will be negative,
144 * however, we will ALWAYS keep the tv_nsec part positive so we can use
145 * the usual normalization.
146 *
147 * wall_to_monotonic is moved after resume from suspend for the monotonic
148 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
149 * to get the real boot based time offset.
150 *
151 * - wall_to_monotonic is no longer the boot time, getboottime must be
152 * used instead.
153 */
154 struct timespec xtime __attribute__ ((aligned (16)));
155 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
156 static unsigned long total_sleep_time; /* seconds */
157
158 /*
159 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
160 */
161 struct timespec raw_time;
162
163 /* flag for if timekeeping is suspended */
164 int __read_mostly timekeeping_suspended;
165
166 static struct timespec xtime_cache __attribute__ ((aligned (16)));
167 void update_xtime_cache(u64 nsec)
168 {
169 xtime_cache = xtime;
170 timespec_add_ns(&xtime_cache, nsec);
171 }
172
173 /* must hold xtime_lock */
174 void timekeeping_leap_insert(int leapsecond)
175 {
176 xtime.tv_sec += leapsecond;
177 wall_to_monotonic.tv_sec -= leapsecond;
178 update_vsyscall(&xtime, timekeeper.clock);
179 }
180
181 #ifdef CONFIG_GENERIC_TIME
182 /**
183 * timekeeping_forward_now - update clock to the current time
184 *
185 * Forward the current clock to update its state since the last call to
186 * update_wall_time(). This is useful before significant clock changes,
187 * as it avoids having to deal with this time offset explicitly.
188 */
189 static void timekeeping_forward_now(void)
190 {
191 cycle_t cycle_now, cycle_delta;
192 struct clocksource *clock;
193 s64 nsec;
194
195 clock = timekeeper.clock;
196 cycle_now = clock->read(clock);
197 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
198 clock->cycle_last = cycle_now;
199
200 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
201 timekeeper.shift);
202
203 /* If arch requires, add in gettimeoffset() */
204 nsec += arch_gettimeoffset();
205
206 timespec_add_ns(&xtime, nsec);
207
208 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
209 timespec_add_ns(&raw_time, nsec);
210 }
211
212 /**
213 * getnstimeofday - Returns the time of day in a timespec
214 * @ts: pointer to the timespec to be set
215 *
216 * Returns the time of day in a timespec.
217 */
218 void getnstimeofday(struct timespec *ts)
219 {
220 unsigned long seq;
221 s64 nsecs;
222
223 WARN_ON(timekeeping_suspended);
224
225 do {
226 seq = read_seqbegin(&xtime_lock);
227
228 *ts = xtime;
229 nsecs = timekeeping_get_ns();
230
231 /* If arch requires, add in gettimeoffset() */
232 nsecs += arch_gettimeoffset();
233
234 } while (read_seqretry(&xtime_lock, seq));
235
236 timespec_add_ns(ts, nsecs);
237 }
238
239 EXPORT_SYMBOL(getnstimeofday);
240
241 ktime_t ktime_get(void)
242 {
243 unsigned int seq;
244 s64 secs, nsecs;
245
246 WARN_ON(timekeeping_suspended);
247
248 do {
249 seq = read_seqbegin(&xtime_lock);
250 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
251 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
252 nsecs += timekeeping_get_ns();
253
254 } while (read_seqretry(&xtime_lock, seq));
255 /*
256 * Use ktime_set/ktime_add_ns to create a proper ktime on
257 * 32-bit architectures without CONFIG_KTIME_SCALAR.
258 */
259 return ktime_add_ns(ktime_set(secs, 0), nsecs);
260 }
261 EXPORT_SYMBOL_GPL(ktime_get);
262
263 /**
264 * ktime_get_ts - get the monotonic clock in timespec format
265 * @ts: pointer to timespec variable
266 *
267 * The function calculates the monotonic clock from the realtime
268 * clock and the wall_to_monotonic offset and stores the result
269 * in normalized timespec format in the variable pointed to by @ts.
270 */
271 void ktime_get_ts(struct timespec *ts)
272 {
273 struct timespec tomono;
274 unsigned int seq;
275 s64 nsecs;
276
277 WARN_ON(timekeeping_suspended);
278
279 do {
280 seq = read_seqbegin(&xtime_lock);
281 *ts = xtime;
282 tomono = wall_to_monotonic;
283 nsecs = timekeeping_get_ns();
284
285 } while (read_seqretry(&xtime_lock, seq));
286
287 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
288 ts->tv_nsec + tomono.tv_nsec + nsecs);
289 }
290 EXPORT_SYMBOL_GPL(ktime_get_ts);
291
292 /**
293 * do_gettimeofday - Returns the time of day in a timeval
294 * @tv: pointer to the timeval to be set
295 *
296 * NOTE: Users should be converted to using getnstimeofday()
297 */
298 void do_gettimeofday(struct timeval *tv)
299 {
300 struct timespec now;
301
302 getnstimeofday(&now);
303 tv->tv_sec = now.tv_sec;
304 tv->tv_usec = now.tv_nsec/1000;
305 }
306
307 EXPORT_SYMBOL(do_gettimeofday);
308 /**
309 * do_settimeofday - Sets the time of day
310 * @tv: pointer to the timespec variable containing the new time
311 *
312 * Sets the time of day to the new time and update NTP and notify hrtimers
313 */
314 int do_settimeofday(struct timespec *tv)
315 {
316 struct timespec ts_delta;
317 unsigned long flags;
318
319 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
320 return -EINVAL;
321
322 write_seqlock_irqsave(&xtime_lock, flags);
323
324 timekeeping_forward_now();
325
326 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
327 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
328 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
329
330 xtime = *tv;
331
332 update_xtime_cache(0);
333
334 timekeeper.ntp_error = 0;
335 ntp_clear();
336
337 update_vsyscall(&xtime, timekeeper.clock);
338
339 write_sequnlock_irqrestore(&xtime_lock, flags);
340
341 /* signal hrtimers about time change */
342 clock_was_set();
343
344 return 0;
345 }
346
347 EXPORT_SYMBOL(do_settimeofday);
348
349 /**
350 * change_clocksource - Swaps clocksources if a new one is available
351 *
352 * Accumulates current time interval and initializes new clocksource
353 */
354 static void change_clocksource(void)
355 {
356 struct clocksource *new, *old;
357
358 new = clocksource_get_next();
359
360 if (!new || timekeeper.clock == new)
361 return;
362
363 timekeeping_forward_now();
364
365 if (new->enable && !new->enable(new))
366 return;
367
368 old = timekeeper.clock;
369 timekeeper_setup_internals(new);
370
371 if (old->disable)
372 old->disable(old);
373
374 tick_clock_notify();
375 }
376 #else /* GENERIC_TIME */
377 static inline void timekeeping_forward_now(void) { }
378 static inline void change_clocksource(void) { }
379
380 /**
381 * ktime_get - get the monotonic time in ktime_t format
382 *
383 * returns the time in ktime_t format
384 */
385 ktime_t ktime_get(void)
386 {
387 struct timespec now;
388
389 ktime_get_ts(&now);
390
391 return timespec_to_ktime(now);
392 }
393 EXPORT_SYMBOL_GPL(ktime_get);
394
395 /**
396 * ktime_get_ts - get the monotonic clock in timespec format
397 * @ts: pointer to timespec variable
398 *
399 * The function calculates the monotonic clock from the realtime
400 * clock and the wall_to_monotonic offset and stores the result
401 * in normalized timespec format in the variable pointed to by @ts.
402 */
403 void ktime_get_ts(struct timespec *ts)
404 {
405 struct timespec tomono;
406 unsigned long seq;
407
408 do {
409 seq = read_seqbegin(&xtime_lock);
410 getnstimeofday(ts);
411 tomono = wall_to_monotonic;
412
413 } while (read_seqretry(&xtime_lock, seq));
414
415 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
416 ts->tv_nsec + tomono.tv_nsec);
417 }
418 EXPORT_SYMBOL_GPL(ktime_get_ts);
419 #endif /* !GENERIC_TIME */
420
421 /**
422 * ktime_get_real - get the real (wall-) time in ktime_t format
423 *
424 * returns the time in ktime_t format
425 */
426 ktime_t ktime_get_real(void)
427 {
428 struct timespec now;
429
430 getnstimeofday(&now);
431
432 return timespec_to_ktime(now);
433 }
434 EXPORT_SYMBOL_GPL(ktime_get_real);
435
436 /**
437 * getrawmonotonic - Returns the raw monotonic time in a timespec
438 * @ts: pointer to the timespec to be set
439 *
440 * Returns the raw monotonic time (completely un-modified by ntp)
441 */
442 void getrawmonotonic(struct timespec *ts)
443 {
444 unsigned long seq;
445 s64 nsecs;
446
447 do {
448 seq = read_seqbegin(&xtime_lock);
449 nsecs = timekeeping_get_ns_raw();
450 *ts = raw_time;
451
452 } while (read_seqretry(&xtime_lock, seq));
453
454 timespec_add_ns(ts, nsecs);
455 }
456 EXPORT_SYMBOL(getrawmonotonic);
457
458
459 /**
460 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
461 */
462 int timekeeping_valid_for_hres(void)
463 {
464 unsigned long seq;
465 int ret;
466
467 do {
468 seq = read_seqbegin(&xtime_lock);
469
470 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
471
472 } while (read_seqretry(&xtime_lock, seq));
473
474 return ret;
475 }
476
477 /**
478 * read_persistent_clock - Return time in seconds from the persistent clock.
479 *
480 * Weak dummy function for arches that do not yet support it.
481 * Returns seconds from epoch using the battery backed persistent clock.
482 * Returns zero if unsupported.
483 *
484 * XXX - Do be sure to remove it once all arches implement it.
485 */
486 unsigned long __attribute__((weak)) read_persistent_clock(void)
487 {
488 return 0;
489 }
490
491 /*
492 * timekeeping_init - Initializes the clocksource and common timekeeping values
493 */
494 void __init timekeeping_init(void)
495 {
496 struct clocksource *clock;
497 unsigned long flags;
498 unsigned long sec = read_persistent_clock();
499
500 write_seqlock_irqsave(&xtime_lock, flags);
501
502 ntp_init();
503
504 clock = clocksource_default_clock();
505 if (clock->enable)
506 clock->enable(clock);
507 timekeeper_setup_internals(clock);
508
509 xtime.tv_sec = sec;
510 xtime.tv_nsec = 0;
511 raw_time.tv_sec = 0;
512 raw_time.tv_nsec = 0;
513 set_normalized_timespec(&wall_to_monotonic,
514 -xtime.tv_sec, -xtime.tv_nsec);
515 update_xtime_cache(0);
516 total_sleep_time = 0;
517 write_sequnlock_irqrestore(&xtime_lock, flags);
518 }
519
520 /* time in seconds when suspend began */
521 static unsigned long timekeeping_suspend_time;
522
523 /**
524 * timekeeping_resume - Resumes the generic timekeeping subsystem.
525 * @dev: unused
526 *
527 * This is for the generic clocksource timekeeping.
528 * xtime/wall_to_monotonic/jiffies/etc are
529 * still managed by arch specific suspend/resume code.
530 */
531 static int timekeeping_resume(struct sys_device *dev)
532 {
533 unsigned long flags;
534 unsigned long now = read_persistent_clock();
535
536 clocksource_resume();
537
538 write_seqlock_irqsave(&xtime_lock, flags);
539
540 if (now && (now > timekeeping_suspend_time)) {
541 unsigned long sleep_length = now - timekeeping_suspend_time;
542
543 xtime.tv_sec += sleep_length;
544 wall_to_monotonic.tv_sec -= sleep_length;
545 total_sleep_time += sleep_length;
546 }
547 update_xtime_cache(0);
548 /* re-base the last cycle value */
549 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
550 timekeeper.ntp_error = 0;
551 timekeeping_suspended = 0;
552 write_sequnlock_irqrestore(&xtime_lock, flags);
553
554 touch_softlockup_watchdog();
555
556 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
557
558 /* Resume hrtimers */
559 hres_timers_resume();
560
561 return 0;
562 }
563
564 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
565 {
566 unsigned long flags;
567
568 timekeeping_suspend_time = read_persistent_clock();
569
570 write_seqlock_irqsave(&xtime_lock, flags);
571 timekeeping_forward_now();
572 timekeeping_suspended = 1;
573 write_sequnlock_irqrestore(&xtime_lock, flags);
574
575 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
576
577 return 0;
578 }
579
580 /* sysfs resume/suspend bits for timekeeping */
581 static struct sysdev_class timekeeping_sysclass = {
582 .name = "timekeeping",
583 .resume = timekeeping_resume,
584 .suspend = timekeeping_suspend,
585 };
586
587 static struct sys_device device_timer = {
588 .id = 0,
589 .cls = &timekeeping_sysclass,
590 };
591
592 static int __init timekeeping_init_device(void)
593 {
594 int error = sysdev_class_register(&timekeeping_sysclass);
595 if (!error)
596 error = sysdev_register(&device_timer);
597 return error;
598 }
599
600 device_initcall(timekeeping_init_device);
601
602 /*
603 * If the error is already larger, we look ahead even further
604 * to compensate for late or lost adjustments.
605 */
606 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
607 s64 *offset)
608 {
609 s64 tick_error, i;
610 u32 look_ahead, adj;
611 s32 error2, mult;
612
613 /*
614 * Use the current error value to determine how much to look ahead.
615 * The larger the error the slower we adjust for it to avoid problems
616 * with losing too many ticks, otherwise we would overadjust and
617 * produce an even larger error. The smaller the adjustment the
618 * faster we try to adjust for it, as lost ticks can do less harm
619 * here. This is tuned so that an error of about 1 msec is adjusted
620 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
621 */
622 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
623 error2 = abs(error2);
624 for (look_ahead = 0; error2 > 0; look_ahead++)
625 error2 >>= 2;
626
627 /*
628 * Now calculate the error in (1 << look_ahead) ticks, but first
629 * remove the single look ahead already included in the error.
630 */
631 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
632 tick_error -= timekeeper.xtime_interval >> 1;
633 error = ((error - tick_error) >> look_ahead) + tick_error;
634
635 /* Finally calculate the adjustment shift value. */
636 i = *interval;
637 mult = 1;
638 if (error < 0) {
639 error = -error;
640 *interval = -*interval;
641 *offset = -*offset;
642 mult = -1;
643 }
644 for (adj = 0; error > i; adj++)
645 error >>= 1;
646
647 *interval <<= adj;
648 *offset <<= adj;
649 return mult << adj;
650 }
651
652 /*
653 * Adjust the multiplier to reduce the error value,
654 * this is optimized for the most common adjustments of -1,0,1,
655 * for other values we can do a bit more work.
656 */
657 static void timekeeping_adjust(s64 offset)
658 {
659 s64 error, interval = timekeeper.cycle_interval;
660 int adj;
661
662 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
663 if (error > interval) {
664 error >>= 2;
665 if (likely(error <= interval))
666 adj = 1;
667 else
668 adj = timekeeping_bigadjust(error, &interval, &offset);
669 } else if (error < -interval) {
670 error >>= 2;
671 if (likely(error >= -interval)) {
672 adj = -1;
673 interval = -interval;
674 offset = -offset;
675 } else
676 adj = timekeeping_bigadjust(error, &interval, &offset);
677 } else
678 return;
679
680 timekeeper.mult += adj;
681 timekeeper.xtime_interval += interval;
682 timekeeper.xtime_nsec -= offset;
683 timekeeper.ntp_error -= (interval - offset) <<
684 timekeeper.ntp_error_shift;
685 }
686
687 /**
688 * update_wall_time - Uses the current clocksource to increment the wall time
689 *
690 * Called from the timer interrupt, must hold a write on xtime_lock.
691 */
692 void update_wall_time(void)
693 {
694 struct clocksource *clock;
695 cycle_t offset;
696 u64 nsecs;
697
698 /* Make sure we're fully resumed: */
699 if (unlikely(timekeeping_suspended))
700 return;
701
702 clock = timekeeper.clock;
703 #ifdef CONFIG_GENERIC_TIME
704 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
705 #else
706 offset = timekeeper.cycle_interval;
707 #endif
708 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
709
710 /* normally this loop will run just once, however in the
711 * case of lost or late ticks, it will accumulate correctly.
712 */
713 while (offset >= timekeeper.cycle_interval) {
714 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
715
716 /* accumulate one interval */
717 offset -= timekeeper.cycle_interval;
718 clock->cycle_last += timekeeper.cycle_interval;
719
720 timekeeper.xtime_nsec += timekeeper.xtime_interval;
721 if (timekeeper.xtime_nsec >= nsecps) {
722 timekeeper.xtime_nsec -= nsecps;
723 xtime.tv_sec++;
724 second_overflow();
725 }
726
727 raw_time.tv_nsec += timekeeper.raw_interval;
728 if (raw_time.tv_nsec >= NSEC_PER_SEC) {
729 raw_time.tv_nsec -= NSEC_PER_SEC;
730 raw_time.tv_sec++;
731 }
732
733 /* accumulate error between NTP and clock interval */
734 timekeeper.ntp_error += tick_length;
735 timekeeper.ntp_error -= timekeeper.xtime_interval <<
736 timekeeper.ntp_error_shift;
737 }
738
739 /* correct the clock when NTP error is too big */
740 timekeeping_adjust(offset);
741
742 /*
743 * Since in the loop above, we accumulate any amount of time
744 * in xtime_nsec over a second into xtime.tv_sec, its possible for
745 * xtime_nsec to be fairly small after the loop. Further, if we're
746 * slightly speeding the clocksource up in timekeeping_adjust(),
747 * its possible the required corrective factor to xtime_nsec could
748 * cause it to underflow.
749 *
750 * Now, we cannot simply roll the accumulated second back, since
751 * the NTP subsystem has been notified via second_overflow. So
752 * instead we push xtime_nsec forward by the amount we underflowed,
753 * and add that amount into the error.
754 *
755 * We'll correct this error next time through this function, when
756 * xtime_nsec is not as small.
757 */
758 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
759 s64 neg = -(s64)timekeeper.xtime_nsec;
760 timekeeper.xtime_nsec = 0;
761 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
762 }
763
764 /* store full nanoseconds into xtime after rounding it up and
765 * add the remainder to the error difference.
766 */
767 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
768 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
769 timekeeper.ntp_error += timekeeper.xtime_nsec <<
770 timekeeper.ntp_error_shift;
771
772 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
773 update_xtime_cache(nsecs);
774
775 /* check to see if there is a new clocksource to use */
776 change_clocksource();
777 update_vsyscall(&xtime, timekeeper.clock);
778 }
779
780 /**
781 * getboottime - Return the real time of system boot.
782 * @ts: pointer to the timespec to be set
783 *
784 * Returns the time of day in a timespec.
785 *
786 * This is based on the wall_to_monotonic offset and the total suspend
787 * time. Calls to settimeofday will affect the value returned (which
788 * basically means that however wrong your real time clock is at boot time,
789 * you get the right time here).
790 */
791 void getboottime(struct timespec *ts)
792 {
793 set_normalized_timespec(ts,
794 - (wall_to_monotonic.tv_sec + total_sleep_time),
795 - wall_to_monotonic.tv_nsec);
796 }
797
798 /**
799 * monotonic_to_bootbased - Convert the monotonic time to boot based.
800 * @ts: pointer to the timespec to be converted
801 */
802 void monotonic_to_bootbased(struct timespec *ts)
803 {
804 ts->tv_sec += total_sleep_time;
805 }
806
807 unsigned long get_seconds(void)
808 {
809 return xtime_cache.tv_sec;
810 }
811 EXPORT_SYMBOL(get_seconds);
812
813
814 struct timespec current_kernel_time(void)
815 {
816 struct timespec now;
817 unsigned long seq;
818
819 do {
820 seq = read_seqbegin(&xtime_lock);
821
822 now = xtime_cache;
823 } while (read_seqretry(&xtime_lock, seq));
824
825 return now;
826 }
827 EXPORT_SYMBOL(current_kernel_time);
This page took 0.049806 seconds and 5 git commands to generate.