Merge branch 'for-3.16' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 static struct timekeeper timekeeper;
36 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
37 static seqcount_t timekeeper_seq;
38 static struct timekeeper shadow_timekeeper;
39
40 /* flag for if timekeeping is suspended */
41 int __read_mostly timekeeping_suspended;
42
43 /* Flag for if there is a persistent clock on this platform */
44 bool __read_mostly persistent_clock_exist = false;
45
46 static inline void tk_normalize_xtime(struct timekeeper *tk)
47 {
48 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
49 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
50 tk->xtime_sec++;
51 }
52 }
53
54 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
55 {
56 tk->xtime_sec = ts->tv_sec;
57 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
58 }
59
60 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
61 {
62 tk->xtime_sec += ts->tv_sec;
63 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
64 tk_normalize_xtime(tk);
65 }
66
67 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
68 {
69 struct timespec tmp;
70
71 /*
72 * Verify consistency of: offset_real = -wall_to_monotonic
73 * before modifying anything
74 */
75 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
76 -tk->wall_to_monotonic.tv_nsec);
77 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
78 tk->wall_to_monotonic = wtm;
79 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
80 tk->offs_real = timespec_to_ktime(tmp);
81 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
82 }
83
84 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
85 {
86 /* Verify consistency before modifying */
87 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
88
89 tk->total_sleep_time = t;
90 tk->offs_boot = timespec_to_ktime(t);
91 }
92
93 /**
94 * tk_setup_internals - Set up internals to use clocksource clock.
95 *
96 * @tk: The target timekeeper to setup.
97 * @clock: Pointer to clocksource.
98 *
99 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
100 * pair and interval request.
101 *
102 * Unless you're the timekeeping code, you should not be using this!
103 */
104 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
105 {
106 cycle_t interval;
107 u64 tmp, ntpinterval;
108 struct clocksource *old_clock;
109
110 old_clock = tk->clock;
111 tk->clock = clock;
112 tk->cycle_last = clock->cycle_last = clock->read(clock);
113
114 /* Do the ns -> cycle conversion first, using original mult */
115 tmp = NTP_INTERVAL_LENGTH;
116 tmp <<= clock->shift;
117 ntpinterval = tmp;
118 tmp += clock->mult/2;
119 do_div(tmp, clock->mult);
120 if (tmp == 0)
121 tmp = 1;
122
123 interval = (cycle_t) tmp;
124 tk->cycle_interval = interval;
125
126 /* Go back from cycles -> shifted ns */
127 tk->xtime_interval = (u64) interval * clock->mult;
128 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
129 tk->raw_interval =
130 ((u64) interval * clock->mult) >> clock->shift;
131
132 /* if changing clocks, convert xtime_nsec shift units */
133 if (old_clock) {
134 int shift_change = clock->shift - old_clock->shift;
135 if (shift_change < 0)
136 tk->xtime_nsec >>= -shift_change;
137 else
138 tk->xtime_nsec <<= shift_change;
139 }
140 tk->shift = clock->shift;
141
142 tk->ntp_error = 0;
143 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
144
145 /*
146 * The timekeeper keeps its own mult values for the currently
147 * active clocksource. These value will be adjusted via NTP
148 * to counteract clock drifting.
149 */
150 tk->mult = clock->mult;
151 }
152
153 /* Timekeeper helper functions. */
154
155 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
156 u32 (*arch_gettimeoffset)(void);
157
158 u32 get_arch_timeoffset(void)
159 {
160 if (likely(arch_gettimeoffset))
161 return arch_gettimeoffset();
162 return 0;
163 }
164 #else
165 static inline u32 get_arch_timeoffset(void) { return 0; }
166 #endif
167
168 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
169 {
170 cycle_t cycle_now, cycle_delta;
171 struct clocksource *clock;
172 s64 nsec;
173
174 /* read clocksource: */
175 clock = tk->clock;
176 cycle_now = clock->read(clock);
177
178 /* calculate the delta since the last update_wall_time: */
179 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
180
181 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
182 nsec >>= tk->shift;
183
184 /* If arch requires, add in get_arch_timeoffset() */
185 return nsec + get_arch_timeoffset();
186 }
187
188 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
189 {
190 cycle_t cycle_now, cycle_delta;
191 struct clocksource *clock;
192 s64 nsec;
193
194 /* read clocksource: */
195 clock = tk->clock;
196 cycle_now = clock->read(clock);
197
198 /* calculate the delta since the last update_wall_time: */
199 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
200
201 /* convert delta to nanoseconds. */
202 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
203
204 /* If arch requires, add in get_arch_timeoffset() */
205 return nsec + get_arch_timeoffset();
206 }
207
208 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
209
210 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
211 {
212 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
213 }
214
215 /**
216 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
217 */
218 int pvclock_gtod_register_notifier(struct notifier_block *nb)
219 {
220 struct timekeeper *tk = &timekeeper;
221 unsigned long flags;
222 int ret;
223
224 raw_spin_lock_irqsave(&timekeeper_lock, flags);
225 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
226 update_pvclock_gtod(tk, true);
227 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
228
229 return ret;
230 }
231 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
232
233 /**
234 * pvclock_gtod_unregister_notifier - unregister a pvclock
235 * timedata update listener
236 */
237 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
238 {
239 unsigned long flags;
240 int ret;
241
242 raw_spin_lock_irqsave(&timekeeper_lock, flags);
243 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
244 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
245
246 return ret;
247 }
248 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
249
250 /* must hold timekeeper_lock */
251 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
252 {
253 if (action & TK_CLEAR_NTP) {
254 tk->ntp_error = 0;
255 ntp_clear();
256 }
257 update_vsyscall(tk);
258 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
259
260 if (action & TK_MIRROR)
261 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
262 }
263
264 /**
265 * timekeeping_forward_now - update clock to the current time
266 *
267 * Forward the current clock to update its state since the last call to
268 * update_wall_time(). This is useful before significant clock changes,
269 * as it avoids having to deal with this time offset explicitly.
270 */
271 static void timekeeping_forward_now(struct timekeeper *tk)
272 {
273 cycle_t cycle_now, cycle_delta;
274 struct clocksource *clock;
275 s64 nsec;
276
277 clock = tk->clock;
278 cycle_now = clock->read(clock);
279 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
280 tk->cycle_last = clock->cycle_last = cycle_now;
281
282 tk->xtime_nsec += cycle_delta * tk->mult;
283
284 /* If arch requires, add in get_arch_timeoffset() */
285 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
286
287 tk_normalize_xtime(tk);
288
289 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
290 timespec_add_ns(&tk->raw_time, nsec);
291 }
292
293 /**
294 * __getnstimeofday - Returns the time of day in a timespec.
295 * @ts: pointer to the timespec to be set
296 *
297 * Updates the time of day in the timespec.
298 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
299 */
300 int __getnstimeofday(struct timespec *ts)
301 {
302 struct timekeeper *tk = &timekeeper;
303 unsigned long seq;
304 s64 nsecs = 0;
305
306 do {
307 seq = read_seqcount_begin(&timekeeper_seq);
308
309 ts->tv_sec = tk->xtime_sec;
310 nsecs = timekeeping_get_ns(tk);
311
312 } while (read_seqcount_retry(&timekeeper_seq, seq));
313
314 ts->tv_nsec = 0;
315 timespec_add_ns(ts, nsecs);
316
317 /*
318 * Do not bail out early, in case there were callers still using
319 * the value, even in the face of the WARN_ON.
320 */
321 if (unlikely(timekeeping_suspended))
322 return -EAGAIN;
323 return 0;
324 }
325 EXPORT_SYMBOL(__getnstimeofday);
326
327 /**
328 * getnstimeofday - Returns the time of day in a timespec.
329 * @ts: pointer to the timespec to be set
330 *
331 * Returns the time of day in a timespec (WARN if suspended).
332 */
333 void getnstimeofday(struct timespec *ts)
334 {
335 WARN_ON(__getnstimeofday(ts));
336 }
337 EXPORT_SYMBOL(getnstimeofday);
338
339 ktime_t ktime_get(void)
340 {
341 struct timekeeper *tk = &timekeeper;
342 unsigned int seq;
343 s64 secs, nsecs;
344
345 WARN_ON(timekeeping_suspended);
346
347 do {
348 seq = read_seqcount_begin(&timekeeper_seq);
349 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
350 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
351
352 } while (read_seqcount_retry(&timekeeper_seq, seq));
353 /*
354 * Use ktime_set/ktime_add_ns to create a proper ktime on
355 * 32-bit architectures without CONFIG_KTIME_SCALAR.
356 */
357 return ktime_add_ns(ktime_set(secs, 0), nsecs);
358 }
359 EXPORT_SYMBOL_GPL(ktime_get);
360
361 /**
362 * ktime_get_ts - get the monotonic clock in timespec format
363 * @ts: pointer to timespec variable
364 *
365 * The function calculates the monotonic clock from the realtime
366 * clock and the wall_to_monotonic offset and stores the result
367 * in normalized timespec format in the variable pointed to by @ts.
368 */
369 void ktime_get_ts(struct timespec *ts)
370 {
371 struct timekeeper *tk = &timekeeper;
372 struct timespec tomono;
373 s64 nsec;
374 unsigned int seq;
375
376 WARN_ON(timekeeping_suspended);
377
378 do {
379 seq = read_seqcount_begin(&timekeeper_seq);
380 ts->tv_sec = tk->xtime_sec;
381 nsec = timekeeping_get_ns(tk);
382 tomono = tk->wall_to_monotonic;
383
384 } while (read_seqcount_retry(&timekeeper_seq, seq));
385
386 ts->tv_sec += tomono.tv_sec;
387 ts->tv_nsec = 0;
388 timespec_add_ns(ts, nsec + tomono.tv_nsec);
389 }
390 EXPORT_SYMBOL_GPL(ktime_get_ts);
391
392
393 /**
394 * timekeeping_clocktai - Returns the TAI time of day in a timespec
395 * @ts: pointer to the timespec to be set
396 *
397 * Returns the time of day in a timespec.
398 */
399 void timekeeping_clocktai(struct timespec *ts)
400 {
401 struct timekeeper *tk = &timekeeper;
402 unsigned long seq;
403 u64 nsecs;
404
405 WARN_ON(timekeeping_suspended);
406
407 do {
408 seq = read_seqcount_begin(&timekeeper_seq);
409
410 ts->tv_sec = tk->xtime_sec + tk->tai_offset;
411 nsecs = timekeeping_get_ns(tk);
412
413 } while (read_seqcount_retry(&timekeeper_seq, seq));
414
415 ts->tv_nsec = 0;
416 timespec_add_ns(ts, nsecs);
417
418 }
419 EXPORT_SYMBOL(timekeeping_clocktai);
420
421
422 /**
423 * ktime_get_clocktai - Returns the TAI time of day in a ktime
424 *
425 * Returns the time of day in a ktime.
426 */
427 ktime_t ktime_get_clocktai(void)
428 {
429 struct timespec ts;
430
431 timekeeping_clocktai(&ts);
432 return timespec_to_ktime(ts);
433 }
434 EXPORT_SYMBOL(ktime_get_clocktai);
435
436 #ifdef CONFIG_NTP_PPS
437
438 /**
439 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
440 * @ts_raw: pointer to the timespec to be set to raw monotonic time
441 * @ts_real: pointer to the timespec to be set to the time of day
442 *
443 * This function reads both the time of day and raw monotonic time at the
444 * same time atomically and stores the resulting timestamps in timespec
445 * format.
446 */
447 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
448 {
449 struct timekeeper *tk = &timekeeper;
450 unsigned long seq;
451 s64 nsecs_raw, nsecs_real;
452
453 WARN_ON_ONCE(timekeeping_suspended);
454
455 do {
456 seq = read_seqcount_begin(&timekeeper_seq);
457
458 *ts_raw = tk->raw_time;
459 ts_real->tv_sec = tk->xtime_sec;
460 ts_real->tv_nsec = 0;
461
462 nsecs_raw = timekeeping_get_ns_raw(tk);
463 nsecs_real = timekeeping_get_ns(tk);
464
465 } while (read_seqcount_retry(&timekeeper_seq, seq));
466
467 timespec_add_ns(ts_raw, nsecs_raw);
468 timespec_add_ns(ts_real, nsecs_real);
469 }
470 EXPORT_SYMBOL(getnstime_raw_and_real);
471
472 #endif /* CONFIG_NTP_PPS */
473
474 /**
475 * do_gettimeofday - Returns the time of day in a timeval
476 * @tv: pointer to the timeval to be set
477 *
478 * NOTE: Users should be converted to using getnstimeofday()
479 */
480 void do_gettimeofday(struct timeval *tv)
481 {
482 struct timespec now;
483
484 getnstimeofday(&now);
485 tv->tv_sec = now.tv_sec;
486 tv->tv_usec = now.tv_nsec/1000;
487 }
488 EXPORT_SYMBOL(do_gettimeofday);
489
490 /**
491 * do_settimeofday - Sets the time of day
492 * @tv: pointer to the timespec variable containing the new time
493 *
494 * Sets the time of day to the new time and update NTP and notify hrtimers
495 */
496 int do_settimeofday(const struct timespec *tv)
497 {
498 struct timekeeper *tk = &timekeeper;
499 struct timespec ts_delta, xt;
500 unsigned long flags;
501
502 if (!timespec_valid_strict(tv))
503 return -EINVAL;
504
505 raw_spin_lock_irqsave(&timekeeper_lock, flags);
506 write_seqcount_begin(&timekeeper_seq);
507
508 timekeeping_forward_now(tk);
509
510 xt = tk_xtime(tk);
511 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
512 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
513
514 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
515
516 tk_set_xtime(tk, tv);
517
518 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
519
520 write_seqcount_end(&timekeeper_seq);
521 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
522
523 /* signal hrtimers about time change */
524 clock_was_set();
525
526 return 0;
527 }
528 EXPORT_SYMBOL(do_settimeofday);
529
530 /**
531 * timekeeping_inject_offset - Adds or subtracts from the current time.
532 * @tv: pointer to the timespec variable containing the offset
533 *
534 * Adds or subtracts an offset value from the current time.
535 */
536 int timekeeping_inject_offset(struct timespec *ts)
537 {
538 struct timekeeper *tk = &timekeeper;
539 unsigned long flags;
540 struct timespec tmp;
541 int ret = 0;
542
543 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
544 return -EINVAL;
545
546 raw_spin_lock_irqsave(&timekeeper_lock, flags);
547 write_seqcount_begin(&timekeeper_seq);
548
549 timekeeping_forward_now(tk);
550
551 /* Make sure the proposed value is valid */
552 tmp = timespec_add(tk_xtime(tk), *ts);
553 if (!timespec_valid_strict(&tmp)) {
554 ret = -EINVAL;
555 goto error;
556 }
557
558 tk_xtime_add(tk, ts);
559 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
560
561 error: /* even if we error out, we forwarded the time, so call update */
562 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
563
564 write_seqcount_end(&timekeeper_seq);
565 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
566
567 /* signal hrtimers about time change */
568 clock_was_set();
569
570 return ret;
571 }
572 EXPORT_SYMBOL(timekeeping_inject_offset);
573
574
575 /**
576 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
577 *
578 */
579 s32 timekeeping_get_tai_offset(void)
580 {
581 struct timekeeper *tk = &timekeeper;
582 unsigned int seq;
583 s32 ret;
584
585 do {
586 seq = read_seqcount_begin(&timekeeper_seq);
587 ret = tk->tai_offset;
588 } while (read_seqcount_retry(&timekeeper_seq, seq));
589
590 return ret;
591 }
592
593 /**
594 * __timekeeping_set_tai_offset - Lock free worker function
595 *
596 */
597 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
598 {
599 tk->tai_offset = tai_offset;
600 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
601 }
602
603 /**
604 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
605 *
606 */
607 void timekeeping_set_tai_offset(s32 tai_offset)
608 {
609 struct timekeeper *tk = &timekeeper;
610 unsigned long flags;
611
612 raw_spin_lock_irqsave(&timekeeper_lock, flags);
613 write_seqcount_begin(&timekeeper_seq);
614 __timekeeping_set_tai_offset(tk, tai_offset);
615 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
616 write_seqcount_end(&timekeeper_seq);
617 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
618 clock_was_set();
619 }
620
621 /**
622 * change_clocksource - Swaps clocksources if a new one is available
623 *
624 * Accumulates current time interval and initializes new clocksource
625 */
626 static int change_clocksource(void *data)
627 {
628 struct timekeeper *tk = &timekeeper;
629 struct clocksource *new, *old;
630 unsigned long flags;
631
632 new = (struct clocksource *) data;
633
634 raw_spin_lock_irqsave(&timekeeper_lock, flags);
635 write_seqcount_begin(&timekeeper_seq);
636
637 timekeeping_forward_now(tk);
638 /*
639 * If the cs is in module, get a module reference. Succeeds
640 * for built-in code (owner == NULL) as well.
641 */
642 if (try_module_get(new->owner)) {
643 if (!new->enable || new->enable(new) == 0) {
644 old = tk->clock;
645 tk_setup_internals(tk, new);
646 if (old->disable)
647 old->disable(old);
648 module_put(old->owner);
649 } else {
650 module_put(new->owner);
651 }
652 }
653 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
654
655 write_seqcount_end(&timekeeper_seq);
656 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
657
658 return 0;
659 }
660
661 /**
662 * timekeeping_notify - Install a new clock source
663 * @clock: pointer to the clock source
664 *
665 * This function is called from clocksource.c after a new, better clock
666 * source has been registered. The caller holds the clocksource_mutex.
667 */
668 int timekeeping_notify(struct clocksource *clock)
669 {
670 struct timekeeper *tk = &timekeeper;
671
672 if (tk->clock == clock)
673 return 0;
674 stop_machine(change_clocksource, clock, NULL);
675 tick_clock_notify();
676 return tk->clock == clock ? 0 : -1;
677 }
678
679 /**
680 * ktime_get_real - get the real (wall-) time in ktime_t format
681 *
682 * returns the time in ktime_t format
683 */
684 ktime_t ktime_get_real(void)
685 {
686 struct timespec now;
687
688 getnstimeofday(&now);
689
690 return timespec_to_ktime(now);
691 }
692 EXPORT_SYMBOL_GPL(ktime_get_real);
693
694 /**
695 * getrawmonotonic - Returns the raw monotonic time in a timespec
696 * @ts: pointer to the timespec to be set
697 *
698 * Returns the raw monotonic time (completely un-modified by ntp)
699 */
700 void getrawmonotonic(struct timespec *ts)
701 {
702 struct timekeeper *tk = &timekeeper;
703 unsigned long seq;
704 s64 nsecs;
705
706 do {
707 seq = read_seqcount_begin(&timekeeper_seq);
708 nsecs = timekeeping_get_ns_raw(tk);
709 *ts = tk->raw_time;
710
711 } while (read_seqcount_retry(&timekeeper_seq, seq));
712
713 timespec_add_ns(ts, nsecs);
714 }
715 EXPORT_SYMBOL(getrawmonotonic);
716
717 /**
718 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
719 */
720 int timekeeping_valid_for_hres(void)
721 {
722 struct timekeeper *tk = &timekeeper;
723 unsigned long seq;
724 int ret;
725
726 do {
727 seq = read_seqcount_begin(&timekeeper_seq);
728
729 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
730
731 } while (read_seqcount_retry(&timekeeper_seq, seq));
732
733 return ret;
734 }
735
736 /**
737 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
738 */
739 u64 timekeeping_max_deferment(void)
740 {
741 struct timekeeper *tk = &timekeeper;
742 unsigned long seq;
743 u64 ret;
744
745 do {
746 seq = read_seqcount_begin(&timekeeper_seq);
747
748 ret = tk->clock->max_idle_ns;
749
750 } while (read_seqcount_retry(&timekeeper_seq, seq));
751
752 return ret;
753 }
754
755 /**
756 * read_persistent_clock - Return time from the persistent clock.
757 *
758 * Weak dummy function for arches that do not yet support it.
759 * Reads the time from the battery backed persistent clock.
760 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
761 *
762 * XXX - Do be sure to remove it once all arches implement it.
763 */
764 void __weak read_persistent_clock(struct timespec *ts)
765 {
766 ts->tv_sec = 0;
767 ts->tv_nsec = 0;
768 }
769
770 /**
771 * read_boot_clock - Return time of the system start.
772 *
773 * Weak dummy function for arches that do not yet support it.
774 * Function to read the exact time the system has been started.
775 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
776 *
777 * XXX - Do be sure to remove it once all arches implement it.
778 */
779 void __weak read_boot_clock(struct timespec *ts)
780 {
781 ts->tv_sec = 0;
782 ts->tv_nsec = 0;
783 }
784
785 /*
786 * timekeeping_init - Initializes the clocksource and common timekeeping values
787 */
788 void __init timekeeping_init(void)
789 {
790 struct timekeeper *tk = &timekeeper;
791 struct clocksource *clock;
792 unsigned long flags;
793 struct timespec now, boot, tmp;
794
795 read_persistent_clock(&now);
796
797 if (!timespec_valid_strict(&now)) {
798 pr_warn("WARNING: Persistent clock returned invalid value!\n"
799 " Check your CMOS/BIOS settings.\n");
800 now.tv_sec = 0;
801 now.tv_nsec = 0;
802 } else if (now.tv_sec || now.tv_nsec)
803 persistent_clock_exist = true;
804
805 read_boot_clock(&boot);
806 if (!timespec_valid_strict(&boot)) {
807 pr_warn("WARNING: Boot clock returned invalid value!\n"
808 " Check your CMOS/BIOS settings.\n");
809 boot.tv_sec = 0;
810 boot.tv_nsec = 0;
811 }
812
813 raw_spin_lock_irqsave(&timekeeper_lock, flags);
814 write_seqcount_begin(&timekeeper_seq);
815 ntp_init();
816
817 clock = clocksource_default_clock();
818 if (clock->enable)
819 clock->enable(clock);
820 tk_setup_internals(tk, clock);
821
822 tk_set_xtime(tk, &now);
823 tk->raw_time.tv_sec = 0;
824 tk->raw_time.tv_nsec = 0;
825 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
826 boot = tk_xtime(tk);
827
828 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
829 tk_set_wall_to_mono(tk, tmp);
830
831 tmp.tv_sec = 0;
832 tmp.tv_nsec = 0;
833 tk_set_sleep_time(tk, tmp);
834
835 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
836
837 write_seqcount_end(&timekeeper_seq);
838 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
839 }
840
841 /* time in seconds when suspend began */
842 static struct timespec timekeeping_suspend_time;
843
844 /**
845 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
846 * @delta: pointer to a timespec delta value
847 *
848 * Takes a timespec offset measuring a suspend interval and properly
849 * adds the sleep offset to the timekeeping variables.
850 */
851 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
852 struct timespec *delta)
853 {
854 if (!timespec_valid_strict(delta)) {
855 printk_deferred(KERN_WARNING
856 "__timekeeping_inject_sleeptime: Invalid "
857 "sleep delta value!\n");
858 return;
859 }
860 tk_xtime_add(tk, delta);
861 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
862 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
863 tk_debug_account_sleep_time(delta);
864 }
865
866 /**
867 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
868 * @delta: pointer to a timespec delta value
869 *
870 * This hook is for architectures that cannot support read_persistent_clock
871 * because their RTC/persistent clock is only accessible when irqs are enabled.
872 *
873 * This function should only be called by rtc_resume(), and allows
874 * a suspend offset to be injected into the timekeeping values.
875 */
876 void timekeeping_inject_sleeptime(struct timespec *delta)
877 {
878 struct timekeeper *tk = &timekeeper;
879 unsigned long flags;
880
881 /*
882 * Make sure we don't set the clock twice, as timekeeping_resume()
883 * already did it
884 */
885 if (has_persistent_clock())
886 return;
887
888 raw_spin_lock_irqsave(&timekeeper_lock, flags);
889 write_seqcount_begin(&timekeeper_seq);
890
891 timekeeping_forward_now(tk);
892
893 __timekeeping_inject_sleeptime(tk, delta);
894
895 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
896
897 write_seqcount_end(&timekeeper_seq);
898 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
899
900 /* signal hrtimers about time change */
901 clock_was_set();
902 }
903
904 /**
905 * timekeeping_resume - Resumes the generic timekeeping subsystem.
906 *
907 * This is for the generic clocksource timekeeping.
908 * xtime/wall_to_monotonic/jiffies/etc are
909 * still managed by arch specific suspend/resume code.
910 */
911 static void timekeeping_resume(void)
912 {
913 struct timekeeper *tk = &timekeeper;
914 struct clocksource *clock = tk->clock;
915 unsigned long flags;
916 struct timespec ts_new, ts_delta;
917 cycle_t cycle_now, cycle_delta;
918 bool suspendtime_found = false;
919
920 read_persistent_clock(&ts_new);
921
922 clockevents_resume();
923 clocksource_resume();
924
925 raw_spin_lock_irqsave(&timekeeper_lock, flags);
926 write_seqcount_begin(&timekeeper_seq);
927
928 /*
929 * After system resumes, we need to calculate the suspended time and
930 * compensate it for the OS time. There are 3 sources that could be
931 * used: Nonstop clocksource during suspend, persistent clock and rtc
932 * device.
933 *
934 * One specific platform may have 1 or 2 or all of them, and the
935 * preference will be:
936 * suspend-nonstop clocksource -> persistent clock -> rtc
937 * The less preferred source will only be tried if there is no better
938 * usable source. The rtc part is handled separately in rtc core code.
939 */
940 cycle_now = clock->read(clock);
941 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
942 cycle_now > clock->cycle_last) {
943 u64 num, max = ULLONG_MAX;
944 u32 mult = clock->mult;
945 u32 shift = clock->shift;
946 s64 nsec = 0;
947
948 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
949
950 /*
951 * "cycle_delta * mutl" may cause 64 bits overflow, if the
952 * suspended time is too long. In that case we need do the
953 * 64 bits math carefully
954 */
955 do_div(max, mult);
956 if (cycle_delta > max) {
957 num = div64_u64(cycle_delta, max);
958 nsec = (((u64) max * mult) >> shift) * num;
959 cycle_delta -= num * max;
960 }
961 nsec += ((u64) cycle_delta * mult) >> shift;
962
963 ts_delta = ns_to_timespec(nsec);
964 suspendtime_found = true;
965 } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
966 ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
967 suspendtime_found = true;
968 }
969
970 if (suspendtime_found)
971 __timekeeping_inject_sleeptime(tk, &ts_delta);
972
973 /* Re-base the last cycle value */
974 tk->cycle_last = clock->cycle_last = cycle_now;
975 tk->ntp_error = 0;
976 timekeeping_suspended = 0;
977 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
978 write_seqcount_end(&timekeeper_seq);
979 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
980
981 touch_softlockup_watchdog();
982
983 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
984
985 /* Resume hrtimers */
986 hrtimers_resume();
987 }
988
989 static int timekeeping_suspend(void)
990 {
991 struct timekeeper *tk = &timekeeper;
992 unsigned long flags;
993 struct timespec delta, delta_delta;
994 static struct timespec old_delta;
995
996 read_persistent_clock(&timekeeping_suspend_time);
997
998 /*
999 * On some systems the persistent_clock can not be detected at
1000 * timekeeping_init by its return value, so if we see a valid
1001 * value returned, update the persistent_clock_exists flag.
1002 */
1003 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1004 persistent_clock_exist = true;
1005
1006 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1007 write_seqcount_begin(&timekeeper_seq);
1008 timekeeping_forward_now(tk);
1009 timekeeping_suspended = 1;
1010
1011 /*
1012 * To avoid drift caused by repeated suspend/resumes,
1013 * which each can add ~1 second drift error,
1014 * try to compensate so the difference in system time
1015 * and persistent_clock time stays close to constant.
1016 */
1017 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1018 delta_delta = timespec_sub(delta, old_delta);
1019 if (abs(delta_delta.tv_sec) >= 2) {
1020 /*
1021 * if delta_delta is too large, assume time correction
1022 * has occured and set old_delta to the current delta.
1023 */
1024 old_delta = delta;
1025 } else {
1026 /* Otherwise try to adjust old_system to compensate */
1027 timekeeping_suspend_time =
1028 timespec_add(timekeeping_suspend_time, delta_delta);
1029 }
1030
1031 timekeeping_update(tk, TK_MIRROR);
1032 write_seqcount_end(&timekeeper_seq);
1033 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1034
1035 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1036 clocksource_suspend();
1037 clockevents_suspend();
1038
1039 return 0;
1040 }
1041
1042 /* sysfs resume/suspend bits for timekeeping */
1043 static struct syscore_ops timekeeping_syscore_ops = {
1044 .resume = timekeeping_resume,
1045 .suspend = timekeeping_suspend,
1046 };
1047
1048 static int __init timekeeping_init_ops(void)
1049 {
1050 register_syscore_ops(&timekeeping_syscore_ops);
1051 return 0;
1052 }
1053
1054 device_initcall(timekeeping_init_ops);
1055
1056 /*
1057 * If the error is already larger, we look ahead even further
1058 * to compensate for late or lost adjustments.
1059 */
1060 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1061 s64 error, s64 *interval,
1062 s64 *offset)
1063 {
1064 s64 tick_error, i;
1065 u32 look_ahead, adj;
1066 s32 error2, mult;
1067
1068 /*
1069 * Use the current error value to determine how much to look ahead.
1070 * The larger the error the slower we adjust for it to avoid problems
1071 * with losing too many ticks, otherwise we would overadjust and
1072 * produce an even larger error. The smaller the adjustment the
1073 * faster we try to adjust for it, as lost ticks can do less harm
1074 * here. This is tuned so that an error of about 1 msec is adjusted
1075 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1076 */
1077 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1078 error2 = abs(error2);
1079 for (look_ahead = 0; error2 > 0; look_ahead++)
1080 error2 >>= 2;
1081
1082 /*
1083 * Now calculate the error in (1 << look_ahead) ticks, but first
1084 * remove the single look ahead already included in the error.
1085 */
1086 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1087 tick_error -= tk->xtime_interval >> 1;
1088 error = ((error - tick_error) >> look_ahead) + tick_error;
1089
1090 /* Finally calculate the adjustment shift value. */
1091 i = *interval;
1092 mult = 1;
1093 if (error < 0) {
1094 error = -error;
1095 *interval = -*interval;
1096 *offset = -*offset;
1097 mult = -1;
1098 }
1099 for (adj = 0; error > i; adj++)
1100 error >>= 1;
1101
1102 *interval <<= adj;
1103 *offset <<= adj;
1104 return mult << adj;
1105 }
1106
1107 /*
1108 * Adjust the multiplier to reduce the error value,
1109 * this is optimized for the most common adjustments of -1,0,1,
1110 * for other values we can do a bit more work.
1111 */
1112 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1113 {
1114 s64 error, interval = tk->cycle_interval;
1115 int adj;
1116
1117 /*
1118 * The point of this is to check if the error is greater than half
1119 * an interval.
1120 *
1121 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1122 *
1123 * Note we subtract one in the shift, so that error is really error*2.
1124 * This "saves" dividing(shifting) interval twice, but keeps the
1125 * (error > interval) comparison as still measuring if error is
1126 * larger than half an interval.
1127 *
1128 * Note: It does not "save" on aggravation when reading the code.
1129 */
1130 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1131 if (error > interval) {
1132 /*
1133 * We now divide error by 4(via shift), which checks if
1134 * the error is greater than twice the interval.
1135 * If it is greater, we need a bigadjust, if its smaller,
1136 * we can adjust by 1.
1137 */
1138 error >>= 2;
1139 if (likely(error <= interval))
1140 adj = 1;
1141 else
1142 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1143 } else {
1144 if (error < -interval) {
1145 /* See comment above, this is just switched for the negative */
1146 error >>= 2;
1147 if (likely(error >= -interval)) {
1148 adj = -1;
1149 interval = -interval;
1150 offset = -offset;
1151 } else {
1152 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1153 }
1154 } else {
1155 goto out_adjust;
1156 }
1157 }
1158
1159 if (unlikely(tk->clock->maxadj &&
1160 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1161 printk_deferred_once(KERN_WARNING
1162 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1163 tk->clock->name, (long)tk->mult + adj,
1164 (long)tk->clock->mult + tk->clock->maxadj);
1165 }
1166 /*
1167 * So the following can be confusing.
1168 *
1169 * To keep things simple, lets assume adj == 1 for now.
1170 *
1171 * When adj != 1, remember that the interval and offset values
1172 * have been appropriately scaled so the math is the same.
1173 *
1174 * The basic idea here is that we're increasing the multiplier
1175 * by one, this causes the xtime_interval to be incremented by
1176 * one cycle_interval. This is because:
1177 * xtime_interval = cycle_interval * mult
1178 * So if mult is being incremented by one:
1179 * xtime_interval = cycle_interval * (mult + 1)
1180 * Its the same as:
1181 * xtime_interval = (cycle_interval * mult) + cycle_interval
1182 * Which can be shortened to:
1183 * xtime_interval += cycle_interval
1184 *
1185 * So offset stores the non-accumulated cycles. Thus the current
1186 * time (in shifted nanoseconds) is:
1187 * now = (offset * adj) + xtime_nsec
1188 * Now, even though we're adjusting the clock frequency, we have
1189 * to keep time consistent. In other words, we can't jump back
1190 * in time, and we also want to avoid jumping forward in time.
1191 *
1192 * So given the same offset value, we need the time to be the same
1193 * both before and after the freq adjustment.
1194 * now = (offset * adj_1) + xtime_nsec_1
1195 * now = (offset * adj_2) + xtime_nsec_2
1196 * So:
1197 * (offset * adj_1) + xtime_nsec_1 =
1198 * (offset * adj_2) + xtime_nsec_2
1199 * And we know:
1200 * adj_2 = adj_1 + 1
1201 * So:
1202 * (offset * adj_1) + xtime_nsec_1 =
1203 * (offset * (adj_1+1)) + xtime_nsec_2
1204 * (offset * adj_1) + xtime_nsec_1 =
1205 * (offset * adj_1) + offset + xtime_nsec_2
1206 * Canceling the sides:
1207 * xtime_nsec_1 = offset + xtime_nsec_2
1208 * Which gives us:
1209 * xtime_nsec_2 = xtime_nsec_1 - offset
1210 * Which simplfies to:
1211 * xtime_nsec -= offset
1212 *
1213 * XXX - TODO: Doc ntp_error calculation.
1214 */
1215 tk->mult += adj;
1216 tk->xtime_interval += interval;
1217 tk->xtime_nsec -= offset;
1218 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1219
1220 out_adjust:
1221 /*
1222 * It may be possible that when we entered this function, xtime_nsec
1223 * was very small. Further, if we're slightly speeding the clocksource
1224 * in the code above, its possible the required corrective factor to
1225 * xtime_nsec could cause it to underflow.
1226 *
1227 * Now, since we already accumulated the second, cannot simply roll
1228 * the accumulated second back, since the NTP subsystem has been
1229 * notified via second_overflow. So instead we push xtime_nsec forward
1230 * by the amount we underflowed, and add that amount into the error.
1231 *
1232 * We'll correct this error next time through this function, when
1233 * xtime_nsec is not as small.
1234 */
1235 if (unlikely((s64)tk->xtime_nsec < 0)) {
1236 s64 neg = -(s64)tk->xtime_nsec;
1237 tk->xtime_nsec = 0;
1238 tk->ntp_error += neg << tk->ntp_error_shift;
1239 }
1240
1241 }
1242
1243 /**
1244 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1245 *
1246 * Helper function that accumulates a the nsecs greater then a second
1247 * from the xtime_nsec field to the xtime_secs field.
1248 * It also calls into the NTP code to handle leapsecond processing.
1249 *
1250 */
1251 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1252 {
1253 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1254 unsigned int clock_set = 0;
1255
1256 while (tk->xtime_nsec >= nsecps) {
1257 int leap;
1258
1259 tk->xtime_nsec -= nsecps;
1260 tk->xtime_sec++;
1261
1262 /* Figure out if its a leap sec and apply if needed */
1263 leap = second_overflow(tk->xtime_sec);
1264 if (unlikely(leap)) {
1265 struct timespec ts;
1266
1267 tk->xtime_sec += leap;
1268
1269 ts.tv_sec = leap;
1270 ts.tv_nsec = 0;
1271 tk_set_wall_to_mono(tk,
1272 timespec_sub(tk->wall_to_monotonic, ts));
1273
1274 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1275
1276 clock_set = TK_CLOCK_WAS_SET;
1277 }
1278 }
1279 return clock_set;
1280 }
1281
1282 /**
1283 * logarithmic_accumulation - shifted accumulation of cycles
1284 *
1285 * This functions accumulates a shifted interval of cycles into
1286 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1287 * loop.
1288 *
1289 * Returns the unconsumed cycles.
1290 */
1291 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1292 u32 shift,
1293 unsigned int *clock_set)
1294 {
1295 cycle_t interval = tk->cycle_interval << shift;
1296 u64 raw_nsecs;
1297
1298 /* If the offset is smaller then a shifted interval, do nothing */
1299 if (offset < interval)
1300 return offset;
1301
1302 /* Accumulate one shifted interval */
1303 offset -= interval;
1304 tk->cycle_last += interval;
1305
1306 tk->xtime_nsec += tk->xtime_interval << shift;
1307 *clock_set |= accumulate_nsecs_to_secs(tk);
1308
1309 /* Accumulate raw time */
1310 raw_nsecs = (u64)tk->raw_interval << shift;
1311 raw_nsecs += tk->raw_time.tv_nsec;
1312 if (raw_nsecs >= NSEC_PER_SEC) {
1313 u64 raw_secs = raw_nsecs;
1314 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1315 tk->raw_time.tv_sec += raw_secs;
1316 }
1317 tk->raw_time.tv_nsec = raw_nsecs;
1318
1319 /* Accumulate error between NTP and clock interval */
1320 tk->ntp_error += ntp_tick_length() << shift;
1321 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1322 (tk->ntp_error_shift + shift);
1323
1324 return offset;
1325 }
1326
1327 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1328 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1329 {
1330 s64 remainder;
1331
1332 /*
1333 * Store only full nanoseconds into xtime_nsec after rounding
1334 * it up and add the remainder to the error difference.
1335 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1336 * by truncating the remainder in vsyscalls. However, it causes
1337 * additional work to be done in timekeeping_adjust(). Once
1338 * the vsyscall implementations are converted to use xtime_nsec
1339 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1340 * users are removed, this can be killed.
1341 */
1342 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1343 tk->xtime_nsec -= remainder;
1344 tk->xtime_nsec += 1ULL << tk->shift;
1345 tk->ntp_error += remainder << tk->ntp_error_shift;
1346 tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
1347 }
1348 #else
1349 #define old_vsyscall_fixup(tk)
1350 #endif
1351
1352
1353
1354 /**
1355 * update_wall_time - Uses the current clocksource to increment the wall time
1356 *
1357 */
1358 void update_wall_time(void)
1359 {
1360 struct clocksource *clock;
1361 struct timekeeper *real_tk = &timekeeper;
1362 struct timekeeper *tk = &shadow_timekeeper;
1363 cycle_t offset;
1364 int shift = 0, maxshift;
1365 unsigned int clock_set = 0;
1366 unsigned long flags;
1367
1368 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369
1370 /* Make sure we're fully resumed: */
1371 if (unlikely(timekeeping_suspended))
1372 goto out;
1373
1374 clock = real_tk->clock;
1375
1376 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1377 offset = real_tk->cycle_interval;
1378 #else
1379 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1380 #endif
1381
1382 /* Check if there's really nothing to do */
1383 if (offset < real_tk->cycle_interval)
1384 goto out;
1385
1386 /*
1387 * With NO_HZ we may have to accumulate many cycle_intervals
1388 * (think "ticks") worth of time at once. To do this efficiently,
1389 * we calculate the largest doubling multiple of cycle_intervals
1390 * that is smaller than the offset. We then accumulate that
1391 * chunk in one go, and then try to consume the next smaller
1392 * doubled multiple.
1393 */
1394 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1395 shift = max(0, shift);
1396 /* Bound shift to one less than what overflows tick_length */
1397 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1398 shift = min(shift, maxshift);
1399 while (offset >= tk->cycle_interval) {
1400 offset = logarithmic_accumulation(tk, offset, shift,
1401 &clock_set);
1402 if (offset < tk->cycle_interval<<shift)
1403 shift--;
1404 }
1405
1406 /* correct the clock when NTP error is too big */
1407 timekeeping_adjust(tk, offset);
1408
1409 /*
1410 * XXX This can be killed once everyone converts
1411 * to the new update_vsyscall.
1412 */
1413 old_vsyscall_fixup(tk);
1414
1415 /*
1416 * Finally, make sure that after the rounding
1417 * xtime_nsec isn't larger than NSEC_PER_SEC
1418 */
1419 clock_set |= accumulate_nsecs_to_secs(tk);
1420
1421 write_seqcount_begin(&timekeeper_seq);
1422 /* Update clock->cycle_last with the new value */
1423 clock->cycle_last = tk->cycle_last;
1424 /*
1425 * Update the real timekeeper.
1426 *
1427 * We could avoid this memcpy by switching pointers, but that
1428 * requires changes to all other timekeeper usage sites as
1429 * well, i.e. move the timekeeper pointer getter into the
1430 * spinlocked/seqcount protected sections. And we trade this
1431 * memcpy under the timekeeper_seq against one before we start
1432 * updating.
1433 */
1434 memcpy(real_tk, tk, sizeof(*tk));
1435 timekeeping_update(real_tk, clock_set);
1436 write_seqcount_end(&timekeeper_seq);
1437 out:
1438 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1439 if (clock_set)
1440 /* Have to call _delayed version, since in irq context*/
1441 clock_was_set_delayed();
1442 }
1443
1444 /**
1445 * getboottime - Return the real time of system boot.
1446 * @ts: pointer to the timespec to be set
1447 *
1448 * Returns the wall-time of boot in a timespec.
1449 *
1450 * This is based on the wall_to_monotonic offset and the total suspend
1451 * time. Calls to settimeofday will affect the value returned (which
1452 * basically means that however wrong your real time clock is at boot time,
1453 * you get the right time here).
1454 */
1455 void getboottime(struct timespec *ts)
1456 {
1457 struct timekeeper *tk = &timekeeper;
1458 struct timespec boottime = {
1459 .tv_sec = tk->wall_to_monotonic.tv_sec +
1460 tk->total_sleep_time.tv_sec,
1461 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1462 tk->total_sleep_time.tv_nsec
1463 };
1464
1465 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1466 }
1467 EXPORT_SYMBOL_GPL(getboottime);
1468
1469 /**
1470 * get_monotonic_boottime - Returns monotonic time since boot
1471 * @ts: pointer to the timespec to be set
1472 *
1473 * Returns the monotonic time since boot in a timespec.
1474 *
1475 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1476 * includes the time spent in suspend.
1477 */
1478 void get_monotonic_boottime(struct timespec *ts)
1479 {
1480 struct timekeeper *tk = &timekeeper;
1481 struct timespec tomono, sleep;
1482 s64 nsec;
1483 unsigned int seq;
1484
1485 WARN_ON(timekeeping_suspended);
1486
1487 do {
1488 seq = read_seqcount_begin(&timekeeper_seq);
1489 ts->tv_sec = tk->xtime_sec;
1490 nsec = timekeeping_get_ns(tk);
1491 tomono = tk->wall_to_monotonic;
1492 sleep = tk->total_sleep_time;
1493
1494 } while (read_seqcount_retry(&timekeeper_seq, seq));
1495
1496 ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1497 ts->tv_nsec = 0;
1498 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1499 }
1500 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1501
1502 /**
1503 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1504 *
1505 * Returns the monotonic time since boot in a ktime
1506 *
1507 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1508 * includes the time spent in suspend.
1509 */
1510 ktime_t ktime_get_boottime(void)
1511 {
1512 struct timespec ts;
1513
1514 get_monotonic_boottime(&ts);
1515 return timespec_to_ktime(ts);
1516 }
1517 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1518
1519 /**
1520 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1521 * @ts: pointer to the timespec to be converted
1522 */
1523 void monotonic_to_bootbased(struct timespec *ts)
1524 {
1525 struct timekeeper *tk = &timekeeper;
1526
1527 *ts = timespec_add(*ts, tk->total_sleep_time);
1528 }
1529 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1530
1531 unsigned long get_seconds(void)
1532 {
1533 struct timekeeper *tk = &timekeeper;
1534
1535 return tk->xtime_sec;
1536 }
1537 EXPORT_SYMBOL(get_seconds);
1538
1539 struct timespec __current_kernel_time(void)
1540 {
1541 struct timekeeper *tk = &timekeeper;
1542
1543 return tk_xtime(tk);
1544 }
1545
1546 struct timespec current_kernel_time(void)
1547 {
1548 struct timekeeper *tk = &timekeeper;
1549 struct timespec now;
1550 unsigned long seq;
1551
1552 do {
1553 seq = read_seqcount_begin(&timekeeper_seq);
1554
1555 now = tk_xtime(tk);
1556 } while (read_seqcount_retry(&timekeeper_seq, seq));
1557
1558 return now;
1559 }
1560 EXPORT_SYMBOL(current_kernel_time);
1561
1562 struct timespec get_monotonic_coarse(void)
1563 {
1564 struct timekeeper *tk = &timekeeper;
1565 struct timespec now, mono;
1566 unsigned long seq;
1567
1568 do {
1569 seq = read_seqcount_begin(&timekeeper_seq);
1570
1571 now = tk_xtime(tk);
1572 mono = tk->wall_to_monotonic;
1573 } while (read_seqcount_retry(&timekeeper_seq, seq));
1574
1575 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1576 now.tv_nsec + mono.tv_nsec);
1577 return now;
1578 }
1579
1580 /*
1581 * Must hold jiffies_lock
1582 */
1583 void do_timer(unsigned long ticks)
1584 {
1585 jiffies_64 += ticks;
1586 calc_global_load(ticks);
1587 }
1588
1589 /**
1590 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1591 * and sleep offsets.
1592 * @xtim: pointer to timespec to be set with xtime
1593 * @wtom: pointer to timespec to be set with wall_to_monotonic
1594 * @sleep: pointer to timespec to be set with time in suspend
1595 */
1596 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1597 struct timespec *wtom, struct timespec *sleep)
1598 {
1599 struct timekeeper *tk = &timekeeper;
1600 unsigned long seq;
1601
1602 do {
1603 seq = read_seqcount_begin(&timekeeper_seq);
1604 *xtim = tk_xtime(tk);
1605 *wtom = tk->wall_to_monotonic;
1606 *sleep = tk->total_sleep_time;
1607 } while (read_seqcount_retry(&timekeeper_seq, seq));
1608 }
1609
1610 #ifdef CONFIG_HIGH_RES_TIMERS
1611 /**
1612 * ktime_get_update_offsets - hrtimer helper
1613 * @offs_real: pointer to storage for monotonic -> realtime offset
1614 * @offs_boot: pointer to storage for monotonic -> boottime offset
1615 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1616 *
1617 * Returns current monotonic time and updates the offsets
1618 * Called from hrtimer_interrupt() or retrigger_next_event()
1619 */
1620 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
1621 ktime_t *offs_tai)
1622 {
1623 struct timekeeper *tk = &timekeeper;
1624 ktime_t now;
1625 unsigned int seq;
1626 u64 secs, nsecs;
1627
1628 do {
1629 seq = read_seqcount_begin(&timekeeper_seq);
1630
1631 secs = tk->xtime_sec;
1632 nsecs = timekeeping_get_ns(tk);
1633
1634 *offs_real = tk->offs_real;
1635 *offs_boot = tk->offs_boot;
1636 *offs_tai = tk->offs_tai;
1637 } while (read_seqcount_retry(&timekeeper_seq, seq));
1638
1639 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1640 now = ktime_sub(now, *offs_real);
1641 return now;
1642 }
1643 #endif
1644
1645 /**
1646 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1647 */
1648 ktime_t ktime_get_monotonic_offset(void)
1649 {
1650 struct timekeeper *tk = &timekeeper;
1651 unsigned long seq;
1652 struct timespec wtom;
1653
1654 do {
1655 seq = read_seqcount_begin(&timekeeper_seq);
1656 wtom = tk->wall_to_monotonic;
1657 } while (read_seqcount_retry(&timekeeper_seq, seq));
1658
1659 return timespec_to_ktime(wtom);
1660 }
1661 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1662
1663 /**
1664 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1665 */
1666 int do_adjtimex(struct timex *txc)
1667 {
1668 struct timekeeper *tk = &timekeeper;
1669 unsigned long flags;
1670 struct timespec ts;
1671 s32 orig_tai, tai;
1672 int ret;
1673
1674 /* Validate the data before disabling interrupts */
1675 ret = ntp_validate_timex(txc);
1676 if (ret)
1677 return ret;
1678
1679 if (txc->modes & ADJ_SETOFFSET) {
1680 struct timespec delta;
1681 delta.tv_sec = txc->time.tv_sec;
1682 delta.tv_nsec = txc->time.tv_usec;
1683 if (!(txc->modes & ADJ_NANO))
1684 delta.tv_nsec *= 1000;
1685 ret = timekeeping_inject_offset(&delta);
1686 if (ret)
1687 return ret;
1688 }
1689
1690 getnstimeofday(&ts);
1691
1692 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1693 write_seqcount_begin(&timekeeper_seq);
1694
1695 orig_tai = tai = tk->tai_offset;
1696 ret = __do_adjtimex(txc, &ts, &tai);
1697
1698 if (tai != orig_tai) {
1699 __timekeeping_set_tai_offset(tk, tai);
1700 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1701 }
1702 write_seqcount_end(&timekeeper_seq);
1703 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1704
1705 if (tai != orig_tai)
1706 clock_was_set();
1707
1708 ntp_notify_cmos_timer();
1709
1710 return ret;
1711 }
1712
1713 #ifdef CONFIG_NTP_PPS
1714 /**
1715 * hardpps() - Accessor function to NTP __hardpps function
1716 */
1717 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1718 {
1719 unsigned long flags;
1720
1721 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1722 write_seqcount_begin(&timekeeper_seq);
1723
1724 __hardpps(phase_ts, raw_ts);
1725
1726 write_seqcount_end(&timekeeper_seq);
1727 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1728 }
1729 EXPORT_SYMBOL(hardpps);
1730 #endif
1731
1732 /**
1733 * xtime_update() - advances the timekeeping infrastructure
1734 * @ticks: number of ticks, that have elapsed since the last call.
1735 *
1736 * Must be called with interrupts disabled.
1737 */
1738 void xtime_update(unsigned long ticks)
1739 {
1740 write_seqlock(&jiffies_lock);
1741 do_timer(ticks);
1742 write_sequnlock(&jiffies_lock);
1743 update_wall_time();
1744 }
This page took 0.076683 seconds and 5 git commands to generate.