timekeeping: Use ktime_t based data for ktime_get_real()
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /* flag for if timekeeping is suspended */
48 int __read_mostly timekeeping_suspended;
49
50 /* Flag for if there is a persistent clock on this platform */
51 bool __read_mostly persistent_clock_exist = false;
52
53 static inline void tk_normalize_xtime(struct timekeeper *tk)
54 {
55 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
56 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
57 tk->xtime_sec++;
58 }
59 }
60
61 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
62 {
63 struct timespec64 ts;
64
65 ts.tv_sec = tk->xtime_sec;
66 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
67 return ts;
68 }
69
70 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
71 {
72 tk->xtime_sec = ts->tv_sec;
73 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
74 }
75
76 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
77 {
78 tk->xtime_sec += ts->tv_sec;
79 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
80 tk_normalize_xtime(tk);
81 }
82
83 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
84 {
85 struct timespec64 tmp;
86
87 /*
88 * Verify consistency of: offset_real = -wall_to_monotonic
89 * before modifying anything
90 */
91 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92 -tk->wall_to_monotonic.tv_nsec);
93 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94 tk->wall_to_monotonic = wtm;
95 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
96 tk->offs_real = timespec64_to_ktime(tmp);
97 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
98 }
99
100 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
101 {
102 /* Verify consistency before modifying */
103 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
104
105 tk->total_sleep_time = t;
106 tk->offs_boot = timespec64_to_ktime(t);
107 }
108
109 /**
110 * tk_setup_internals - Set up internals to use clocksource clock.
111 *
112 * @tk: The target timekeeper to setup.
113 * @clock: Pointer to clocksource.
114 *
115 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
116 * pair and interval request.
117 *
118 * Unless you're the timekeeping code, you should not be using this!
119 */
120 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
121 {
122 cycle_t interval;
123 u64 tmp, ntpinterval;
124 struct clocksource *old_clock;
125
126 old_clock = tk->clock;
127 tk->clock = clock;
128 tk->cycle_last = clock->cycle_last = clock->read(clock);
129
130 /* Do the ns -> cycle conversion first, using original mult */
131 tmp = NTP_INTERVAL_LENGTH;
132 tmp <<= clock->shift;
133 ntpinterval = tmp;
134 tmp += clock->mult/2;
135 do_div(tmp, clock->mult);
136 if (tmp == 0)
137 tmp = 1;
138
139 interval = (cycle_t) tmp;
140 tk->cycle_interval = interval;
141
142 /* Go back from cycles -> shifted ns */
143 tk->xtime_interval = (u64) interval * clock->mult;
144 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
145 tk->raw_interval =
146 ((u64) interval * clock->mult) >> clock->shift;
147
148 /* if changing clocks, convert xtime_nsec shift units */
149 if (old_clock) {
150 int shift_change = clock->shift - old_clock->shift;
151 if (shift_change < 0)
152 tk->xtime_nsec >>= -shift_change;
153 else
154 tk->xtime_nsec <<= shift_change;
155 }
156 tk->shift = clock->shift;
157
158 tk->ntp_error = 0;
159 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
160
161 /*
162 * The timekeeper keeps its own mult values for the currently
163 * active clocksource. These value will be adjusted via NTP
164 * to counteract clock drifting.
165 */
166 tk->mult = clock->mult;
167 }
168
169 /* Timekeeper helper functions. */
170
171 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
172 static u32 default_arch_gettimeoffset(void) { return 0; }
173 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
174 #else
175 static inline u32 arch_gettimeoffset(void) { return 0; }
176 #endif
177
178 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
179 {
180 cycle_t cycle_now, cycle_delta;
181 struct clocksource *clock;
182 s64 nsec;
183
184 /* read clocksource: */
185 clock = tk->clock;
186 cycle_now = clock->read(clock);
187
188 /* calculate the delta since the last update_wall_time: */
189 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
190
191 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
192 nsec >>= tk->shift;
193
194 /* If arch requires, add in get_arch_timeoffset() */
195 return nsec + arch_gettimeoffset();
196 }
197
198 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
199 {
200 cycle_t cycle_now, cycle_delta;
201 struct clocksource *clock;
202 s64 nsec;
203
204 /* read clocksource: */
205 clock = tk->clock;
206 cycle_now = clock->read(clock);
207
208 /* calculate the delta since the last update_wall_time: */
209 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
210
211 /* convert delta to nanoseconds. */
212 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
213
214 /* If arch requires, add in get_arch_timeoffset() */
215 return nsec + arch_gettimeoffset();
216 }
217
218 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
219
220 static inline void update_vsyscall(struct timekeeper *tk)
221 {
222 struct timespec xt;
223
224 xt = tk_xtime(tk);
225 update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
226 }
227
228 static inline void old_vsyscall_fixup(struct timekeeper *tk)
229 {
230 s64 remainder;
231
232 /*
233 * Store only full nanoseconds into xtime_nsec after rounding
234 * it up and add the remainder to the error difference.
235 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
236 * by truncating the remainder in vsyscalls. However, it causes
237 * additional work to be done in timekeeping_adjust(). Once
238 * the vsyscall implementations are converted to use xtime_nsec
239 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
240 * users are removed, this can be killed.
241 */
242 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
243 tk->xtime_nsec -= remainder;
244 tk->xtime_nsec += 1ULL << tk->shift;
245 tk->ntp_error += remainder << tk->ntp_error_shift;
246 tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
247 }
248 #else
249 #define old_vsyscall_fixup(tk)
250 #endif
251
252 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
253
254 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
255 {
256 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
257 }
258
259 /**
260 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
261 */
262 int pvclock_gtod_register_notifier(struct notifier_block *nb)
263 {
264 struct timekeeper *tk = &tk_core.timekeeper;
265 unsigned long flags;
266 int ret;
267
268 raw_spin_lock_irqsave(&timekeeper_lock, flags);
269 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
270 update_pvclock_gtod(tk, true);
271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
272
273 return ret;
274 }
275 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
276
277 /**
278 * pvclock_gtod_unregister_notifier - unregister a pvclock
279 * timedata update listener
280 */
281 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
282 {
283 unsigned long flags;
284 int ret;
285
286 raw_spin_lock_irqsave(&timekeeper_lock, flags);
287 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
289
290 return ret;
291 }
292 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
293
294 /*
295 * Update the ktime_t based scalar nsec members of the timekeeper
296 */
297 static inline void tk_update_ktime_data(struct timekeeper *tk)
298 {
299 s64 nsec;
300
301 /*
302 * The xtime based monotonic readout is:
303 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
304 * The ktime based monotonic readout is:
305 * nsec = base_mono + now();
306 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
307 */
308 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
309 nsec *= NSEC_PER_SEC;
310 nsec += tk->wall_to_monotonic.tv_nsec;
311 tk->base_mono = ns_to_ktime(nsec);
312 }
313
314 /* must hold timekeeper_lock */
315 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
316 {
317 if (action & TK_CLEAR_NTP) {
318 tk->ntp_error = 0;
319 ntp_clear();
320 }
321 update_vsyscall(tk);
322 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
323
324 tk_update_ktime_data(tk);
325
326 if (action & TK_MIRROR)
327 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
328 sizeof(tk_core.timekeeper));
329 }
330
331 /**
332 * timekeeping_forward_now - update clock to the current time
333 *
334 * Forward the current clock to update its state since the last call to
335 * update_wall_time(). This is useful before significant clock changes,
336 * as it avoids having to deal with this time offset explicitly.
337 */
338 static void timekeeping_forward_now(struct timekeeper *tk)
339 {
340 cycle_t cycle_now, cycle_delta;
341 struct clocksource *clock;
342 s64 nsec;
343
344 clock = tk->clock;
345 cycle_now = clock->read(clock);
346 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
347 tk->cycle_last = clock->cycle_last = cycle_now;
348
349 tk->xtime_nsec += cycle_delta * tk->mult;
350
351 /* If arch requires, add in get_arch_timeoffset() */
352 tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
353
354 tk_normalize_xtime(tk);
355
356 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
357 timespec64_add_ns(&tk->raw_time, nsec);
358 }
359
360 /**
361 * __getnstimeofday64 - Returns the time of day in a timespec64.
362 * @ts: pointer to the timespec to be set
363 *
364 * Updates the time of day in the timespec.
365 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
366 */
367 int __getnstimeofday64(struct timespec64 *ts)
368 {
369 struct timekeeper *tk = &tk_core.timekeeper;
370 unsigned long seq;
371 s64 nsecs = 0;
372
373 do {
374 seq = read_seqcount_begin(&tk_core.seq);
375
376 ts->tv_sec = tk->xtime_sec;
377 nsecs = timekeeping_get_ns(tk);
378
379 } while (read_seqcount_retry(&tk_core.seq, seq));
380
381 ts->tv_nsec = 0;
382 timespec64_add_ns(ts, nsecs);
383
384 /*
385 * Do not bail out early, in case there were callers still using
386 * the value, even in the face of the WARN_ON.
387 */
388 if (unlikely(timekeeping_suspended))
389 return -EAGAIN;
390 return 0;
391 }
392 EXPORT_SYMBOL(__getnstimeofday64);
393
394 /**
395 * getnstimeofday64 - Returns the time of day in a timespec64.
396 * @ts: pointer to the timespec to be set
397 *
398 * Returns the time of day in a timespec (WARN if suspended).
399 */
400 void getnstimeofday64(struct timespec64 *ts)
401 {
402 WARN_ON(__getnstimeofday64(ts));
403 }
404 EXPORT_SYMBOL(getnstimeofday64);
405
406 ktime_t ktime_get(void)
407 {
408 struct timekeeper *tk = &tk_core.timekeeper;
409 unsigned int seq;
410 ktime_t base;
411 s64 nsecs;
412
413 WARN_ON(timekeeping_suspended);
414
415 do {
416 seq = read_seqcount_begin(&tk_core.seq);
417 base = tk->base_mono;
418 nsecs = timekeeping_get_ns(tk);
419
420 } while (read_seqcount_retry(&tk_core.seq, seq));
421
422 return ktime_add_ns(base, nsecs);
423 }
424 EXPORT_SYMBOL_GPL(ktime_get);
425
426 static ktime_t *offsets[TK_OFFS_MAX] = {
427 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
428 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
429 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
430 };
431
432 ktime_t ktime_get_with_offset(enum tk_offsets offs)
433 {
434 struct timekeeper *tk = &tk_core.timekeeper;
435 unsigned int seq;
436 ktime_t base, *offset = offsets[offs];
437 s64 nsecs;
438
439 WARN_ON(timekeeping_suspended);
440
441 do {
442 seq = read_seqcount_begin(&tk_core.seq);
443 base = ktime_add(tk->base_mono, *offset);
444 nsecs = timekeeping_get_ns(tk);
445
446 } while (read_seqcount_retry(&tk_core.seq, seq));
447
448 return ktime_add_ns(base, nsecs);
449
450 }
451 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
452
453 /**
454 * ktime_get_ts64 - get the monotonic clock in timespec64 format
455 * @ts: pointer to timespec variable
456 *
457 * The function calculates the monotonic clock from the realtime
458 * clock and the wall_to_monotonic offset and stores the result
459 * in normalized timespec format in the variable pointed to by @ts.
460 */
461 void ktime_get_ts64(struct timespec64 *ts)
462 {
463 struct timekeeper *tk = &tk_core.timekeeper;
464 struct timespec64 tomono;
465 s64 nsec;
466 unsigned int seq;
467
468 WARN_ON(timekeeping_suspended);
469
470 do {
471 seq = read_seqcount_begin(&tk_core.seq);
472 ts->tv_sec = tk->xtime_sec;
473 nsec = timekeeping_get_ns(tk);
474 tomono = tk->wall_to_monotonic;
475
476 } while (read_seqcount_retry(&tk_core.seq, seq));
477
478 ts->tv_sec += tomono.tv_sec;
479 ts->tv_nsec = 0;
480 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
481 }
482 EXPORT_SYMBOL_GPL(ktime_get_ts64);
483
484
485 /**
486 * timekeeping_clocktai - Returns the TAI time of day in a timespec
487 * @ts: pointer to the timespec to be set
488 *
489 * Returns the time of day in a timespec.
490 */
491 void timekeeping_clocktai(struct timespec *ts)
492 {
493 struct timekeeper *tk = &tk_core.timekeeper;
494 struct timespec64 ts64;
495 unsigned long seq;
496 u64 nsecs;
497
498 WARN_ON(timekeeping_suspended);
499
500 do {
501 seq = read_seqcount_begin(&tk_core.seq);
502
503 ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
504 nsecs = timekeeping_get_ns(tk);
505
506 } while (read_seqcount_retry(&tk_core.seq, seq));
507
508 ts64.tv_nsec = 0;
509 timespec64_add_ns(&ts64, nsecs);
510 *ts = timespec64_to_timespec(ts64);
511
512 }
513 EXPORT_SYMBOL(timekeeping_clocktai);
514
515
516 /**
517 * ktime_get_clocktai - Returns the TAI time of day in a ktime
518 *
519 * Returns the time of day in a ktime.
520 */
521 ktime_t ktime_get_clocktai(void)
522 {
523 struct timespec ts;
524
525 timekeeping_clocktai(&ts);
526 return timespec_to_ktime(ts);
527 }
528 EXPORT_SYMBOL(ktime_get_clocktai);
529
530 #ifdef CONFIG_NTP_PPS
531
532 /**
533 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
534 * @ts_raw: pointer to the timespec to be set to raw monotonic time
535 * @ts_real: pointer to the timespec to be set to the time of day
536 *
537 * This function reads both the time of day and raw monotonic time at the
538 * same time atomically and stores the resulting timestamps in timespec
539 * format.
540 */
541 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
542 {
543 struct timekeeper *tk = &tk_core.timekeeper;
544 unsigned long seq;
545 s64 nsecs_raw, nsecs_real;
546
547 WARN_ON_ONCE(timekeeping_suspended);
548
549 do {
550 seq = read_seqcount_begin(&tk_core.seq);
551
552 *ts_raw = timespec64_to_timespec(tk->raw_time);
553 ts_real->tv_sec = tk->xtime_sec;
554 ts_real->tv_nsec = 0;
555
556 nsecs_raw = timekeeping_get_ns_raw(tk);
557 nsecs_real = timekeeping_get_ns(tk);
558
559 } while (read_seqcount_retry(&tk_core.seq, seq));
560
561 timespec_add_ns(ts_raw, nsecs_raw);
562 timespec_add_ns(ts_real, nsecs_real);
563 }
564 EXPORT_SYMBOL(getnstime_raw_and_real);
565
566 #endif /* CONFIG_NTP_PPS */
567
568 /**
569 * do_gettimeofday - Returns the time of day in a timeval
570 * @tv: pointer to the timeval to be set
571 *
572 * NOTE: Users should be converted to using getnstimeofday()
573 */
574 void do_gettimeofday(struct timeval *tv)
575 {
576 struct timespec64 now;
577
578 getnstimeofday64(&now);
579 tv->tv_sec = now.tv_sec;
580 tv->tv_usec = now.tv_nsec/1000;
581 }
582 EXPORT_SYMBOL(do_gettimeofday);
583
584 /**
585 * do_settimeofday - Sets the time of day
586 * @tv: pointer to the timespec variable containing the new time
587 *
588 * Sets the time of day to the new time and update NTP and notify hrtimers
589 */
590 int do_settimeofday(const struct timespec *tv)
591 {
592 struct timekeeper *tk = &tk_core.timekeeper;
593 struct timespec64 ts_delta, xt, tmp;
594 unsigned long flags;
595
596 if (!timespec_valid_strict(tv))
597 return -EINVAL;
598
599 raw_spin_lock_irqsave(&timekeeper_lock, flags);
600 write_seqcount_begin(&tk_core.seq);
601
602 timekeeping_forward_now(tk);
603
604 xt = tk_xtime(tk);
605 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
606 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
607
608 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
609
610 tmp = timespec_to_timespec64(*tv);
611 tk_set_xtime(tk, &tmp);
612
613 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
614
615 write_seqcount_end(&tk_core.seq);
616 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
617
618 /* signal hrtimers about time change */
619 clock_was_set();
620
621 return 0;
622 }
623 EXPORT_SYMBOL(do_settimeofday);
624
625 /**
626 * timekeeping_inject_offset - Adds or subtracts from the current time.
627 * @tv: pointer to the timespec variable containing the offset
628 *
629 * Adds or subtracts an offset value from the current time.
630 */
631 int timekeeping_inject_offset(struct timespec *ts)
632 {
633 struct timekeeper *tk = &tk_core.timekeeper;
634 unsigned long flags;
635 struct timespec64 ts64, tmp;
636 int ret = 0;
637
638 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
639 return -EINVAL;
640
641 ts64 = timespec_to_timespec64(*ts);
642
643 raw_spin_lock_irqsave(&timekeeper_lock, flags);
644 write_seqcount_begin(&tk_core.seq);
645
646 timekeeping_forward_now(tk);
647
648 /* Make sure the proposed value is valid */
649 tmp = timespec64_add(tk_xtime(tk), ts64);
650 if (!timespec64_valid_strict(&tmp)) {
651 ret = -EINVAL;
652 goto error;
653 }
654
655 tk_xtime_add(tk, &ts64);
656 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
657
658 error: /* even if we error out, we forwarded the time, so call update */
659 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
660
661 write_seqcount_end(&tk_core.seq);
662 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
663
664 /* signal hrtimers about time change */
665 clock_was_set();
666
667 return ret;
668 }
669 EXPORT_SYMBOL(timekeeping_inject_offset);
670
671
672 /**
673 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
674 *
675 */
676 s32 timekeeping_get_tai_offset(void)
677 {
678 struct timekeeper *tk = &tk_core.timekeeper;
679 unsigned int seq;
680 s32 ret;
681
682 do {
683 seq = read_seqcount_begin(&tk_core.seq);
684 ret = tk->tai_offset;
685 } while (read_seqcount_retry(&tk_core.seq, seq));
686
687 return ret;
688 }
689
690 /**
691 * __timekeeping_set_tai_offset - Lock free worker function
692 *
693 */
694 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
695 {
696 tk->tai_offset = tai_offset;
697 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
698 }
699
700 /**
701 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
702 *
703 */
704 void timekeeping_set_tai_offset(s32 tai_offset)
705 {
706 struct timekeeper *tk = &tk_core.timekeeper;
707 unsigned long flags;
708
709 raw_spin_lock_irqsave(&timekeeper_lock, flags);
710 write_seqcount_begin(&tk_core.seq);
711 __timekeeping_set_tai_offset(tk, tai_offset);
712 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
713 write_seqcount_end(&tk_core.seq);
714 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
715 clock_was_set();
716 }
717
718 /**
719 * change_clocksource - Swaps clocksources if a new one is available
720 *
721 * Accumulates current time interval and initializes new clocksource
722 */
723 static int change_clocksource(void *data)
724 {
725 struct timekeeper *tk = &tk_core.timekeeper;
726 struct clocksource *new, *old;
727 unsigned long flags;
728
729 new = (struct clocksource *) data;
730
731 raw_spin_lock_irqsave(&timekeeper_lock, flags);
732 write_seqcount_begin(&tk_core.seq);
733
734 timekeeping_forward_now(tk);
735 /*
736 * If the cs is in module, get a module reference. Succeeds
737 * for built-in code (owner == NULL) as well.
738 */
739 if (try_module_get(new->owner)) {
740 if (!new->enable || new->enable(new) == 0) {
741 old = tk->clock;
742 tk_setup_internals(tk, new);
743 if (old->disable)
744 old->disable(old);
745 module_put(old->owner);
746 } else {
747 module_put(new->owner);
748 }
749 }
750 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
751
752 write_seqcount_end(&tk_core.seq);
753 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
754
755 return 0;
756 }
757
758 /**
759 * timekeeping_notify - Install a new clock source
760 * @clock: pointer to the clock source
761 *
762 * This function is called from clocksource.c after a new, better clock
763 * source has been registered. The caller holds the clocksource_mutex.
764 */
765 int timekeeping_notify(struct clocksource *clock)
766 {
767 struct timekeeper *tk = &tk_core.timekeeper;
768
769 if (tk->clock == clock)
770 return 0;
771 stop_machine(change_clocksource, clock, NULL);
772 tick_clock_notify();
773 return tk->clock == clock ? 0 : -1;
774 }
775
776 /**
777 * getrawmonotonic - Returns the raw monotonic time in a timespec
778 * @ts: pointer to the timespec to be set
779 *
780 * Returns the raw monotonic time (completely un-modified by ntp)
781 */
782 void getrawmonotonic(struct timespec *ts)
783 {
784 struct timekeeper *tk = &tk_core.timekeeper;
785 struct timespec64 ts64;
786 unsigned long seq;
787 s64 nsecs;
788
789 do {
790 seq = read_seqcount_begin(&tk_core.seq);
791 nsecs = timekeeping_get_ns_raw(tk);
792 ts64 = tk->raw_time;
793
794 } while (read_seqcount_retry(&tk_core.seq, seq));
795
796 timespec64_add_ns(&ts64, nsecs);
797 *ts = timespec64_to_timespec(ts64);
798 }
799 EXPORT_SYMBOL(getrawmonotonic);
800
801 /**
802 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
803 */
804 int timekeeping_valid_for_hres(void)
805 {
806 struct timekeeper *tk = &tk_core.timekeeper;
807 unsigned long seq;
808 int ret;
809
810 do {
811 seq = read_seqcount_begin(&tk_core.seq);
812
813 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
814
815 } while (read_seqcount_retry(&tk_core.seq, seq));
816
817 return ret;
818 }
819
820 /**
821 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
822 */
823 u64 timekeeping_max_deferment(void)
824 {
825 struct timekeeper *tk = &tk_core.timekeeper;
826 unsigned long seq;
827 u64 ret;
828
829 do {
830 seq = read_seqcount_begin(&tk_core.seq);
831
832 ret = tk->clock->max_idle_ns;
833
834 } while (read_seqcount_retry(&tk_core.seq, seq));
835
836 return ret;
837 }
838
839 /**
840 * read_persistent_clock - Return time from the persistent clock.
841 *
842 * Weak dummy function for arches that do not yet support it.
843 * Reads the time from the battery backed persistent clock.
844 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
845 *
846 * XXX - Do be sure to remove it once all arches implement it.
847 */
848 void __weak read_persistent_clock(struct timespec *ts)
849 {
850 ts->tv_sec = 0;
851 ts->tv_nsec = 0;
852 }
853
854 /**
855 * read_boot_clock - Return time of the system start.
856 *
857 * Weak dummy function for arches that do not yet support it.
858 * Function to read the exact time the system has been started.
859 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
860 *
861 * XXX - Do be sure to remove it once all arches implement it.
862 */
863 void __weak read_boot_clock(struct timespec *ts)
864 {
865 ts->tv_sec = 0;
866 ts->tv_nsec = 0;
867 }
868
869 /*
870 * timekeeping_init - Initializes the clocksource and common timekeeping values
871 */
872 void __init timekeeping_init(void)
873 {
874 struct timekeeper *tk = &tk_core.timekeeper;
875 struct clocksource *clock;
876 unsigned long flags;
877 struct timespec64 now, boot, tmp;
878 struct timespec ts;
879
880 read_persistent_clock(&ts);
881 now = timespec_to_timespec64(ts);
882 if (!timespec64_valid_strict(&now)) {
883 pr_warn("WARNING: Persistent clock returned invalid value!\n"
884 " Check your CMOS/BIOS settings.\n");
885 now.tv_sec = 0;
886 now.tv_nsec = 0;
887 } else if (now.tv_sec || now.tv_nsec)
888 persistent_clock_exist = true;
889
890 read_boot_clock(&ts);
891 boot = timespec_to_timespec64(ts);
892 if (!timespec64_valid_strict(&boot)) {
893 pr_warn("WARNING: Boot clock returned invalid value!\n"
894 " Check your CMOS/BIOS settings.\n");
895 boot.tv_sec = 0;
896 boot.tv_nsec = 0;
897 }
898
899 raw_spin_lock_irqsave(&timekeeper_lock, flags);
900 write_seqcount_begin(&tk_core.seq);
901 ntp_init();
902
903 clock = clocksource_default_clock();
904 if (clock->enable)
905 clock->enable(clock);
906 tk_setup_internals(tk, clock);
907
908 tk_set_xtime(tk, &now);
909 tk->raw_time.tv_sec = 0;
910 tk->raw_time.tv_nsec = 0;
911 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
912 boot = tk_xtime(tk);
913
914 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
915 tk_set_wall_to_mono(tk, tmp);
916
917 tmp.tv_sec = 0;
918 tmp.tv_nsec = 0;
919 tk_set_sleep_time(tk, tmp);
920
921 timekeeping_update(tk, TK_MIRROR);
922
923 write_seqcount_end(&tk_core.seq);
924 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
925 }
926
927 /* time in seconds when suspend began */
928 static struct timespec64 timekeeping_suspend_time;
929
930 /**
931 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
932 * @delta: pointer to a timespec delta value
933 *
934 * Takes a timespec offset measuring a suspend interval and properly
935 * adds the sleep offset to the timekeeping variables.
936 */
937 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
938 struct timespec64 *delta)
939 {
940 if (!timespec64_valid_strict(delta)) {
941 printk_deferred(KERN_WARNING
942 "__timekeeping_inject_sleeptime: Invalid "
943 "sleep delta value!\n");
944 return;
945 }
946 tk_xtime_add(tk, delta);
947 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
948 tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
949 tk_debug_account_sleep_time(delta);
950 }
951
952 /**
953 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
954 * @delta: pointer to a timespec delta value
955 *
956 * This hook is for architectures that cannot support read_persistent_clock
957 * because their RTC/persistent clock is only accessible when irqs are enabled.
958 *
959 * This function should only be called by rtc_resume(), and allows
960 * a suspend offset to be injected into the timekeeping values.
961 */
962 void timekeeping_inject_sleeptime(struct timespec *delta)
963 {
964 struct timekeeper *tk = &tk_core.timekeeper;
965 struct timespec64 tmp;
966 unsigned long flags;
967
968 /*
969 * Make sure we don't set the clock twice, as timekeeping_resume()
970 * already did it
971 */
972 if (has_persistent_clock())
973 return;
974
975 raw_spin_lock_irqsave(&timekeeper_lock, flags);
976 write_seqcount_begin(&tk_core.seq);
977
978 timekeeping_forward_now(tk);
979
980 tmp = timespec_to_timespec64(*delta);
981 __timekeeping_inject_sleeptime(tk, &tmp);
982
983 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
984
985 write_seqcount_end(&tk_core.seq);
986 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
987
988 /* signal hrtimers about time change */
989 clock_was_set();
990 }
991
992 /**
993 * timekeeping_resume - Resumes the generic timekeeping subsystem.
994 *
995 * This is for the generic clocksource timekeeping.
996 * xtime/wall_to_monotonic/jiffies/etc are
997 * still managed by arch specific suspend/resume code.
998 */
999 static void timekeeping_resume(void)
1000 {
1001 struct timekeeper *tk = &tk_core.timekeeper;
1002 struct clocksource *clock = tk->clock;
1003 unsigned long flags;
1004 struct timespec64 ts_new, ts_delta;
1005 struct timespec tmp;
1006 cycle_t cycle_now, cycle_delta;
1007 bool suspendtime_found = false;
1008
1009 read_persistent_clock(&tmp);
1010 ts_new = timespec_to_timespec64(tmp);
1011
1012 clockevents_resume();
1013 clocksource_resume();
1014
1015 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1016 write_seqcount_begin(&tk_core.seq);
1017
1018 /*
1019 * After system resumes, we need to calculate the suspended time and
1020 * compensate it for the OS time. There are 3 sources that could be
1021 * used: Nonstop clocksource during suspend, persistent clock and rtc
1022 * device.
1023 *
1024 * One specific platform may have 1 or 2 or all of them, and the
1025 * preference will be:
1026 * suspend-nonstop clocksource -> persistent clock -> rtc
1027 * The less preferred source will only be tried if there is no better
1028 * usable source. The rtc part is handled separately in rtc core code.
1029 */
1030 cycle_now = clock->read(clock);
1031 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1032 cycle_now > clock->cycle_last) {
1033 u64 num, max = ULLONG_MAX;
1034 u32 mult = clock->mult;
1035 u32 shift = clock->shift;
1036 s64 nsec = 0;
1037
1038 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
1039
1040 /*
1041 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1042 * suspended time is too long. In that case we need do the
1043 * 64 bits math carefully
1044 */
1045 do_div(max, mult);
1046 if (cycle_delta > max) {
1047 num = div64_u64(cycle_delta, max);
1048 nsec = (((u64) max * mult) >> shift) * num;
1049 cycle_delta -= num * max;
1050 }
1051 nsec += ((u64) cycle_delta * mult) >> shift;
1052
1053 ts_delta = ns_to_timespec64(nsec);
1054 suspendtime_found = true;
1055 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1056 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1057 suspendtime_found = true;
1058 }
1059
1060 if (suspendtime_found)
1061 __timekeeping_inject_sleeptime(tk, &ts_delta);
1062
1063 /* Re-base the last cycle value */
1064 tk->cycle_last = clock->cycle_last = cycle_now;
1065 tk->ntp_error = 0;
1066 timekeeping_suspended = 0;
1067 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1068 write_seqcount_end(&tk_core.seq);
1069 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1070
1071 touch_softlockup_watchdog();
1072
1073 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1074
1075 /* Resume hrtimers */
1076 hrtimers_resume();
1077 }
1078
1079 static int timekeeping_suspend(void)
1080 {
1081 struct timekeeper *tk = &tk_core.timekeeper;
1082 unsigned long flags;
1083 struct timespec64 delta, delta_delta;
1084 static struct timespec64 old_delta;
1085 struct timespec tmp;
1086
1087 read_persistent_clock(&tmp);
1088 timekeeping_suspend_time = timespec_to_timespec64(tmp);
1089
1090 /*
1091 * On some systems the persistent_clock can not be detected at
1092 * timekeeping_init by its return value, so if we see a valid
1093 * value returned, update the persistent_clock_exists flag.
1094 */
1095 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1096 persistent_clock_exist = true;
1097
1098 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1099 write_seqcount_begin(&tk_core.seq);
1100 timekeeping_forward_now(tk);
1101 timekeeping_suspended = 1;
1102
1103 /*
1104 * To avoid drift caused by repeated suspend/resumes,
1105 * which each can add ~1 second drift error,
1106 * try to compensate so the difference in system time
1107 * and persistent_clock time stays close to constant.
1108 */
1109 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1110 delta_delta = timespec64_sub(delta, old_delta);
1111 if (abs(delta_delta.tv_sec) >= 2) {
1112 /*
1113 * if delta_delta is too large, assume time correction
1114 * has occured and set old_delta to the current delta.
1115 */
1116 old_delta = delta;
1117 } else {
1118 /* Otherwise try to adjust old_system to compensate */
1119 timekeeping_suspend_time =
1120 timespec64_add(timekeeping_suspend_time, delta_delta);
1121 }
1122
1123 timekeeping_update(tk, TK_MIRROR);
1124 write_seqcount_end(&tk_core.seq);
1125 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1126
1127 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1128 clocksource_suspend();
1129 clockevents_suspend();
1130
1131 return 0;
1132 }
1133
1134 /* sysfs resume/suspend bits for timekeeping */
1135 static struct syscore_ops timekeeping_syscore_ops = {
1136 .resume = timekeeping_resume,
1137 .suspend = timekeeping_suspend,
1138 };
1139
1140 static int __init timekeeping_init_ops(void)
1141 {
1142 register_syscore_ops(&timekeeping_syscore_ops);
1143 return 0;
1144 }
1145
1146 device_initcall(timekeeping_init_ops);
1147
1148 /*
1149 * If the error is already larger, we look ahead even further
1150 * to compensate for late or lost adjustments.
1151 */
1152 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1153 s64 error, s64 *interval,
1154 s64 *offset)
1155 {
1156 s64 tick_error, i;
1157 u32 look_ahead, adj;
1158 s32 error2, mult;
1159
1160 /*
1161 * Use the current error value to determine how much to look ahead.
1162 * The larger the error the slower we adjust for it to avoid problems
1163 * with losing too many ticks, otherwise we would overadjust and
1164 * produce an even larger error. The smaller the adjustment the
1165 * faster we try to adjust for it, as lost ticks can do less harm
1166 * here. This is tuned so that an error of about 1 msec is adjusted
1167 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1168 */
1169 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1170 error2 = abs(error2);
1171 for (look_ahead = 0; error2 > 0; look_ahead++)
1172 error2 >>= 2;
1173
1174 /*
1175 * Now calculate the error in (1 << look_ahead) ticks, but first
1176 * remove the single look ahead already included in the error.
1177 */
1178 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1179 tick_error -= tk->xtime_interval >> 1;
1180 error = ((error - tick_error) >> look_ahead) + tick_error;
1181
1182 /* Finally calculate the adjustment shift value. */
1183 i = *interval;
1184 mult = 1;
1185 if (error < 0) {
1186 error = -error;
1187 *interval = -*interval;
1188 *offset = -*offset;
1189 mult = -1;
1190 }
1191 for (adj = 0; error > i; adj++)
1192 error >>= 1;
1193
1194 *interval <<= adj;
1195 *offset <<= adj;
1196 return mult << adj;
1197 }
1198
1199 /*
1200 * Adjust the multiplier to reduce the error value,
1201 * this is optimized for the most common adjustments of -1,0,1,
1202 * for other values we can do a bit more work.
1203 */
1204 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1205 {
1206 s64 error, interval = tk->cycle_interval;
1207 int adj;
1208
1209 /*
1210 * The point of this is to check if the error is greater than half
1211 * an interval.
1212 *
1213 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1214 *
1215 * Note we subtract one in the shift, so that error is really error*2.
1216 * This "saves" dividing(shifting) interval twice, but keeps the
1217 * (error > interval) comparison as still measuring if error is
1218 * larger than half an interval.
1219 *
1220 * Note: It does not "save" on aggravation when reading the code.
1221 */
1222 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1223 if (error > interval) {
1224 /*
1225 * We now divide error by 4(via shift), which checks if
1226 * the error is greater than twice the interval.
1227 * If it is greater, we need a bigadjust, if its smaller,
1228 * we can adjust by 1.
1229 */
1230 error >>= 2;
1231 if (likely(error <= interval))
1232 adj = 1;
1233 else
1234 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1235 } else {
1236 if (error < -interval) {
1237 /* See comment above, this is just switched for the negative */
1238 error >>= 2;
1239 if (likely(error >= -interval)) {
1240 adj = -1;
1241 interval = -interval;
1242 offset = -offset;
1243 } else {
1244 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1245 }
1246 } else {
1247 goto out_adjust;
1248 }
1249 }
1250
1251 if (unlikely(tk->clock->maxadj &&
1252 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1253 printk_deferred_once(KERN_WARNING
1254 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1255 tk->clock->name, (long)tk->mult + adj,
1256 (long)tk->clock->mult + tk->clock->maxadj);
1257 }
1258 /*
1259 * So the following can be confusing.
1260 *
1261 * To keep things simple, lets assume adj == 1 for now.
1262 *
1263 * When adj != 1, remember that the interval and offset values
1264 * have been appropriately scaled so the math is the same.
1265 *
1266 * The basic idea here is that we're increasing the multiplier
1267 * by one, this causes the xtime_interval to be incremented by
1268 * one cycle_interval. This is because:
1269 * xtime_interval = cycle_interval * mult
1270 * So if mult is being incremented by one:
1271 * xtime_interval = cycle_interval * (mult + 1)
1272 * Its the same as:
1273 * xtime_interval = (cycle_interval * mult) + cycle_interval
1274 * Which can be shortened to:
1275 * xtime_interval += cycle_interval
1276 *
1277 * So offset stores the non-accumulated cycles. Thus the current
1278 * time (in shifted nanoseconds) is:
1279 * now = (offset * adj) + xtime_nsec
1280 * Now, even though we're adjusting the clock frequency, we have
1281 * to keep time consistent. In other words, we can't jump back
1282 * in time, and we also want to avoid jumping forward in time.
1283 *
1284 * So given the same offset value, we need the time to be the same
1285 * both before and after the freq adjustment.
1286 * now = (offset * adj_1) + xtime_nsec_1
1287 * now = (offset * adj_2) + xtime_nsec_2
1288 * So:
1289 * (offset * adj_1) + xtime_nsec_1 =
1290 * (offset * adj_2) + xtime_nsec_2
1291 * And we know:
1292 * adj_2 = adj_1 + 1
1293 * So:
1294 * (offset * adj_1) + xtime_nsec_1 =
1295 * (offset * (adj_1+1)) + xtime_nsec_2
1296 * (offset * adj_1) + xtime_nsec_1 =
1297 * (offset * adj_1) + offset + xtime_nsec_2
1298 * Canceling the sides:
1299 * xtime_nsec_1 = offset + xtime_nsec_2
1300 * Which gives us:
1301 * xtime_nsec_2 = xtime_nsec_1 - offset
1302 * Which simplfies to:
1303 * xtime_nsec -= offset
1304 *
1305 * XXX - TODO: Doc ntp_error calculation.
1306 */
1307 tk->mult += adj;
1308 tk->xtime_interval += interval;
1309 tk->xtime_nsec -= offset;
1310 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1311
1312 out_adjust:
1313 /*
1314 * It may be possible that when we entered this function, xtime_nsec
1315 * was very small. Further, if we're slightly speeding the clocksource
1316 * in the code above, its possible the required corrective factor to
1317 * xtime_nsec could cause it to underflow.
1318 *
1319 * Now, since we already accumulated the second, cannot simply roll
1320 * the accumulated second back, since the NTP subsystem has been
1321 * notified via second_overflow. So instead we push xtime_nsec forward
1322 * by the amount we underflowed, and add that amount into the error.
1323 *
1324 * We'll correct this error next time through this function, when
1325 * xtime_nsec is not as small.
1326 */
1327 if (unlikely((s64)tk->xtime_nsec < 0)) {
1328 s64 neg = -(s64)tk->xtime_nsec;
1329 tk->xtime_nsec = 0;
1330 tk->ntp_error += neg << tk->ntp_error_shift;
1331 }
1332
1333 }
1334
1335 /**
1336 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1337 *
1338 * Helper function that accumulates a the nsecs greater then a second
1339 * from the xtime_nsec field to the xtime_secs field.
1340 * It also calls into the NTP code to handle leapsecond processing.
1341 *
1342 */
1343 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1344 {
1345 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1346 unsigned int clock_set = 0;
1347
1348 while (tk->xtime_nsec >= nsecps) {
1349 int leap;
1350
1351 tk->xtime_nsec -= nsecps;
1352 tk->xtime_sec++;
1353
1354 /* Figure out if its a leap sec and apply if needed */
1355 leap = second_overflow(tk->xtime_sec);
1356 if (unlikely(leap)) {
1357 struct timespec64 ts;
1358
1359 tk->xtime_sec += leap;
1360
1361 ts.tv_sec = leap;
1362 ts.tv_nsec = 0;
1363 tk_set_wall_to_mono(tk,
1364 timespec64_sub(tk->wall_to_monotonic, ts));
1365
1366 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1367
1368 clock_set = TK_CLOCK_WAS_SET;
1369 }
1370 }
1371 return clock_set;
1372 }
1373
1374 /**
1375 * logarithmic_accumulation - shifted accumulation of cycles
1376 *
1377 * This functions accumulates a shifted interval of cycles into
1378 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1379 * loop.
1380 *
1381 * Returns the unconsumed cycles.
1382 */
1383 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1384 u32 shift,
1385 unsigned int *clock_set)
1386 {
1387 cycle_t interval = tk->cycle_interval << shift;
1388 u64 raw_nsecs;
1389
1390 /* If the offset is smaller then a shifted interval, do nothing */
1391 if (offset < interval)
1392 return offset;
1393
1394 /* Accumulate one shifted interval */
1395 offset -= interval;
1396 tk->cycle_last += interval;
1397
1398 tk->xtime_nsec += tk->xtime_interval << shift;
1399 *clock_set |= accumulate_nsecs_to_secs(tk);
1400
1401 /* Accumulate raw time */
1402 raw_nsecs = (u64)tk->raw_interval << shift;
1403 raw_nsecs += tk->raw_time.tv_nsec;
1404 if (raw_nsecs >= NSEC_PER_SEC) {
1405 u64 raw_secs = raw_nsecs;
1406 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1407 tk->raw_time.tv_sec += raw_secs;
1408 }
1409 tk->raw_time.tv_nsec = raw_nsecs;
1410
1411 /* Accumulate error between NTP and clock interval */
1412 tk->ntp_error += ntp_tick_length() << shift;
1413 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1414 (tk->ntp_error_shift + shift);
1415
1416 return offset;
1417 }
1418
1419 /**
1420 * update_wall_time - Uses the current clocksource to increment the wall time
1421 *
1422 */
1423 void update_wall_time(void)
1424 {
1425 struct clocksource *clock;
1426 struct timekeeper *real_tk = &tk_core.timekeeper;
1427 struct timekeeper *tk = &shadow_timekeeper;
1428 cycle_t offset;
1429 int shift = 0, maxshift;
1430 unsigned int clock_set = 0;
1431 unsigned long flags;
1432
1433 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1434
1435 /* Make sure we're fully resumed: */
1436 if (unlikely(timekeeping_suspended))
1437 goto out;
1438
1439 clock = real_tk->clock;
1440
1441 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1442 offset = real_tk->cycle_interval;
1443 #else
1444 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1445 #endif
1446
1447 /* Check if there's really nothing to do */
1448 if (offset < real_tk->cycle_interval)
1449 goto out;
1450
1451 /*
1452 * With NO_HZ we may have to accumulate many cycle_intervals
1453 * (think "ticks") worth of time at once. To do this efficiently,
1454 * we calculate the largest doubling multiple of cycle_intervals
1455 * that is smaller than the offset. We then accumulate that
1456 * chunk in one go, and then try to consume the next smaller
1457 * doubled multiple.
1458 */
1459 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1460 shift = max(0, shift);
1461 /* Bound shift to one less than what overflows tick_length */
1462 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1463 shift = min(shift, maxshift);
1464 while (offset >= tk->cycle_interval) {
1465 offset = logarithmic_accumulation(tk, offset, shift,
1466 &clock_set);
1467 if (offset < tk->cycle_interval<<shift)
1468 shift--;
1469 }
1470
1471 /* correct the clock when NTP error is too big */
1472 timekeeping_adjust(tk, offset);
1473
1474 /*
1475 * XXX This can be killed once everyone converts
1476 * to the new update_vsyscall.
1477 */
1478 old_vsyscall_fixup(tk);
1479
1480 /*
1481 * Finally, make sure that after the rounding
1482 * xtime_nsec isn't larger than NSEC_PER_SEC
1483 */
1484 clock_set |= accumulate_nsecs_to_secs(tk);
1485
1486 write_seqcount_begin(&tk_core.seq);
1487 /* Update clock->cycle_last with the new value */
1488 clock->cycle_last = tk->cycle_last;
1489 /*
1490 * Update the real timekeeper.
1491 *
1492 * We could avoid this memcpy by switching pointers, but that
1493 * requires changes to all other timekeeper usage sites as
1494 * well, i.e. move the timekeeper pointer getter into the
1495 * spinlocked/seqcount protected sections. And we trade this
1496 * memcpy under the tk_core.seq against one before we start
1497 * updating.
1498 */
1499 memcpy(real_tk, tk, sizeof(*tk));
1500 timekeeping_update(real_tk, clock_set);
1501 write_seqcount_end(&tk_core.seq);
1502 out:
1503 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1504 if (clock_set)
1505 /* Have to call _delayed version, since in irq context*/
1506 clock_was_set_delayed();
1507 }
1508
1509 /**
1510 * getboottime - Return the real time of system boot.
1511 * @ts: pointer to the timespec to be set
1512 *
1513 * Returns the wall-time of boot in a timespec.
1514 *
1515 * This is based on the wall_to_monotonic offset and the total suspend
1516 * time. Calls to settimeofday will affect the value returned (which
1517 * basically means that however wrong your real time clock is at boot time,
1518 * you get the right time here).
1519 */
1520 void getboottime(struct timespec *ts)
1521 {
1522 struct timekeeper *tk = &tk_core.timekeeper;
1523 struct timespec boottime = {
1524 .tv_sec = tk->wall_to_monotonic.tv_sec +
1525 tk->total_sleep_time.tv_sec,
1526 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1527 tk->total_sleep_time.tv_nsec
1528 };
1529
1530 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1531 }
1532 EXPORT_SYMBOL_GPL(getboottime);
1533
1534 /**
1535 * get_monotonic_boottime - Returns monotonic time since boot
1536 * @ts: pointer to the timespec to be set
1537 *
1538 * Returns the monotonic time since boot in a timespec.
1539 *
1540 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1541 * includes the time spent in suspend.
1542 */
1543 void get_monotonic_boottime(struct timespec *ts)
1544 {
1545 struct timekeeper *tk = &tk_core.timekeeper;
1546 struct timespec64 tomono, sleep, ret;
1547 s64 nsec;
1548 unsigned int seq;
1549
1550 WARN_ON(timekeeping_suspended);
1551
1552 do {
1553 seq = read_seqcount_begin(&tk_core.seq);
1554 ret.tv_sec = tk->xtime_sec;
1555 nsec = timekeeping_get_ns(tk);
1556 tomono = tk->wall_to_monotonic;
1557 sleep = tk->total_sleep_time;
1558
1559 } while (read_seqcount_retry(&tk_core.seq, seq));
1560
1561 ret.tv_sec += tomono.tv_sec + sleep.tv_sec;
1562 ret.tv_nsec = 0;
1563 timespec64_add_ns(&ret, nsec + tomono.tv_nsec + sleep.tv_nsec);
1564 *ts = timespec64_to_timespec(ret);
1565 }
1566 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1567
1568 /**
1569 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1570 *
1571 * Returns the monotonic time since boot in a ktime
1572 *
1573 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1574 * includes the time spent in suspend.
1575 */
1576 ktime_t ktime_get_boottime(void)
1577 {
1578 struct timespec ts;
1579
1580 get_monotonic_boottime(&ts);
1581 return timespec_to_ktime(ts);
1582 }
1583 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1584
1585 /**
1586 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1587 * @ts: pointer to the timespec to be converted
1588 */
1589 void monotonic_to_bootbased(struct timespec *ts)
1590 {
1591 struct timekeeper *tk = &tk_core.timekeeper;
1592 struct timespec64 ts64;
1593
1594 ts64 = timespec_to_timespec64(*ts);
1595 ts64 = timespec64_add(ts64, tk->total_sleep_time);
1596 *ts = timespec64_to_timespec(ts64);
1597 }
1598 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1599
1600 unsigned long get_seconds(void)
1601 {
1602 struct timekeeper *tk = &tk_core.timekeeper;
1603
1604 return tk->xtime_sec;
1605 }
1606 EXPORT_SYMBOL(get_seconds);
1607
1608 struct timespec __current_kernel_time(void)
1609 {
1610 struct timekeeper *tk = &tk_core.timekeeper;
1611
1612 return timespec64_to_timespec(tk_xtime(tk));
1613 }
1614
1615 struct timespec current_kernel_time(void)
1616 {
1617 struct timekeeper *tk = &tk_core.timekeeper;
1618 struct timespec64 now;
1619 unsigned long seq;
1620
1621 do {
1622 seq = read_seqcount_begin(&tk_core.seq);
1623
1624 now = tk_xtime(tk);
1625 } while (read_seqcount_retry(&tk_core.seq, seq));
1626
1627 return timespec64_to_timespec(now);
1628 }
1629 EXPORT_SYMBOL(current_kernel_time);
1630
1631 struct timespec get_monotonic_coarse(void)
1632 {
1633 struct timekeeper *tk = &tk_core.timekeeper;
1634 struct timespec64 now, mono;
1635 unsigned long seq;
1636
1637 do {
1638 seq = read_seqcount_begin(&tk_core.seq);
1639
1640 now = tk_xtime(tk);
1641 mono = tk->wall_to_monotonic;
1642 } while (read_seqcount_retry(&tk_core.seq, seq));
1643
1644 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1645 now.tv_nsec + mono.tv_nsec);
1646
1647 return timespec64_to_timespec(now);
1648 }
1649
1650 /*
1651 * Must hold jiffies_lock
1652 */
1653 void do_timer(unsigned long ticks)
1654 {
1655 jiffies_64 += ticks;
1656 calc_global_load(ticks);
1657 }
1658
1659 /**
1660 * ktime_get_update_offsets_tick - hrtimer helper
1661 * @offs_real: pointer to storage for monotonic -> realtime offset
1662 * @offs_boot: pointer to storage for monotonic -> boottime offset
1663 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1664 *
1665 * Returns monotonic time at last tick and various offsets
1666 */
1667 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1668 ktime_t *offs_tai)
1669 {
1670 struct timekeeper *tk = &tk_core.timekeeper;
1671 struct timespec64 ts;
1672 ktime_t now;
1673 unsigned int seq;
1674
1675 do {
1676 seq = read_seqcount_begin(&tk_core.seq);
1677
1678 ts = tk_xtime(tk);
1679 *offs_real = tk->offs_real;
1680 *offs_boot = tk->offs_boot;
1681 *offs_tai = tk->offs_tai;
1682 } while (read_seqcount_retry(&tk_core.seq, seq));
1683
1684 now = ktime_set(ts.tv_sec, ts.tv_nsec);
1685 now = ktime_sub(now, *offs_real);
1686 return now;
1687 }
1688
1689 #ifdef CONFIG_HIGH_RES_TIMERS
1690 /**
1691 * ktime_get_update_offsets_now - hrtimer helper
1692 * @offs_real: pointer to storage for monotonic -> realtime offset
1693 * @offs_boot: pointer to storage for monotonic -> boottime offset
1694 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1695 *
1696 * Returns current monotonic time and updates the offsets
1697 * Called from hrtimer_interrupt() or retrigger_next_event()
1698 */
1699 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1700 ktime_t *offs_tai)
1701 {
1702 struct timekeeper *tk = &tk_core.timekeeper;
1703 ktime_t now;
1704 unsigned int seq;
1705 u64 secs, nsecs;
1706
1707 do {
1708 seq = read_seqcount_begin(&tk_core.seq);
1709
1710 secs = tk->xtime_sec;
1711 nsecs = timekeeping_get_ns(tk);
1712
1713 *offs_real = tk->offs_real;
1714 *offs_boot = tk->offs_boot;
1715 *offs_tai = tk->offs_tai;
1716 } while (read_seqcount_retry(&tk_core.seq, seq));
1717
1718 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1719 now = ktime_sub(now, *offs_real);
1720 return now;
1721 }
1722 #endif
1723
1724 /**
1725 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1726 */
1727 ktime_t ktime_get_monotonic_offset(void)
1728 {
1729 struct timekeeper *tk = &tk_core.timekeeper;
1730 unsigned long seq;
1731 struct timespec64 wtom;
1732
1733 do {
1734 seq = read_seqcount_begin(&tk_core.seq);
1735 wtom = tk->wall_to_monotonic;
1736 } while (read_seqcount_retry(&tk_core.seq, seq));
1737
1738 return timespec64_to_ktime(wtom);
1739 }
1740 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1741
1742 /**
1743 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1744 */
1745 int do_adjtimex(struct timex *txc)
1746 {
1747 struct timekeeper *tk = &tk_core.timekeeper;
1748 unsigned long flags;
1749 struct timespec64 ts;
1750 s32 orig_tai, tai;
1751 int ret;
1752
1753 /* Validate the data before disabling interrupts */
1754 ret = ntp_validate_timex(txc);
1755 if (ret)
1756 return ret;
1757
1758 if (txc->modes & ADJ_SETOFFSET) {
1759 struct timespec delta;
1760 delta.tv_sec = txc->time.tv_sec;
1761 delta.tv_nsec = txc->time.tv_usec;
1762 if (!(txc->modes & ADJ_NANO))
1763 delta.tv_nsec *= 1000;
1764 ret = timekeeping_inject_offset(&delta);
1765 if (ret)
1766 return ret;
1767 }
1768
1769 getnstimeofday64(&ts);
1770
1771 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1772 write_seqcount_begin(&tk_core.seq);
1773
1774 orig_tai = tai = tk->tai_offset;
1775 ret = __do_adjtimex(txc, &ts, &tai);
1776
1777 if (tai != orig_tai) {
1778 __timekeeping_set_tai_offset(tk, tai);
1779 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1780 }
1781 write_seqcount_end(&tk_core.seq);
1782 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1783
1784 if (tai != orig_tai)
1785 clock_was_set();
1786
1787 ntp_notify_cmos_timer();
1788
1789 return ret;
1790 }
1791
1792 #ifdef CONFIG_NTP_PPS
1793 /**
1794 * hardpps() - Accessor function to NTP __hardpps function
1795 */
1796 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1797 {
1798 unsigned long flags;
1799
1800 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1801 write_seqcount_begin(&tk_core.seq);
1802
1803 __hardpps(phase_ts, raw_ts);
1804
1805 write_seqcount_end(&tk_core.seq);
1806 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1807 }
1808 EXPORT_SYMBOL(hardpps);
1809 #endif
1810
1811 /**
1812 * xtime_update() - advances the timekeeping infrastructure
1813 * @ticks: number of ticks, that have elapsed since the last call.
1814 *
1815 * Must be called with interrupts disabled.
1816 */
1817 void xtime_update(unsigned long ticks)
1818 {
1819 write_seqlock(&jiffies_lock);
1820 do_timer(ticks);
1821 write_sequnlock(&jiffies_lock);
1822 update_wall_time();
1823 }
This page took 0.075962 seconds and 5 git commands to generate.