5b12292b343ad20067c0431bba8b4a3c6c5514e7
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 /* Flag for if there is a persistent clock on this platform */
68 bool __read_mostly persistent_clock_exist = false;
69
70 static inline void tk_normalize_xtime(struct timekeeper *tk)
71 {
72 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
73 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
74 tk->xtime_sec++;
75 }
76 }
77
78 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
79 {
80 struct timespec64 ts;
81
82 ts.tv_sec = tk->xtime_sec;
83 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
84 return ts;
85 }
86
87 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
88 {
89 tk->xtime_sec = ts->tv_sec;
90 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
91 }
92
93 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
94 {
95 tk->xtime_sec += ts->tv_sec;
96 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
97 tk_normalize_xtime(tk);
98 }
99
100 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
101 {
102 struct timespec64 tmp;
103
104 /*
105 * Verify consistency of: offset_real = -wall_to_monotonic
106 * before modifying anything
107 */
108 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
109 -tk->wall_to_monotonic.tv_nsec);
110 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
111 tk->wall_to_monotonic = wtm;
112 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
113 tk->offs_real = timespec64_to_ktime(tmp);
114 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
115 }
116
117 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
118 {
119 tk->offs_boot = ktime_add(tk->offs_boot, delta);
120 }
121
122 #ifdef CONFIG_DEBUG_TIMEKEEPING
123 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
124 /*
125 * These simple flag variables are managed
126 * without locks, which is racy, but ok since
127 * we don't really care about being super
128 * precise about how many events were seen,
129 * just that a problem was observed.
130 */
131 static int timekeeping_underflow_seen;
132 static int timekeeping_overflow_seen;
133
134 /* last_warning is only modified under the timekeeping lock */
135 static long timekeeping_last_warning;
136
137 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
138 {
139
140 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
141 const char *name = tk->tkr_mono.clock->name;
142
143 if (offset > max_cycles) {
144 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
145 offset, name, max_cycles);
146 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
147 } else {
148 if (offset > (max_cycles >> 1)) {
149 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
150 offset, name, max_cycles >> 1);
151 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
152 }
153 }
154
155 if (timekeeping_underflow_seen) {
156 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
157 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
158 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
159 printk_deferred(" Your kernel is probably still fine.\n");
160 timekeeping_last_warning = jiffies;
161 }
162 timekeeping_underflow_seen = 0;
163 }
164
165 if (timekeeping_overflow_seen) {
166 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
167 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
168 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
169 printk_deferred(" Your kernel is probably still fine.\n");
170 timekeeping_last_warning = jiffies;
171 }
172 timekeeping_overflow_seen = 0;
173 }
174 }
175
176 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
177 {
178 cycle_t now, last, mask, max, delta;
179 unsigned int seq;
180
181 /*
182 * Since we're called holding a seqlock, the data may shift
183 * under us while we're doing the calculation. This can cause
184 * false positives, since we'd note a problem but throw the
185 * results away. So nest another seqlock here to atomically
186 * grab the points we are checking with.
187 */
188 do {
189 seq = read_seqcount_begin(&tk_core.seq);
190 now = tkr->read(tkr->clock);
191 last = tkr->cycle_last;
192 mask = tkr->mask;
193 max = tkr->clock->max_cycles;
194 } while (read_seqcount_retry(&tk_core.seq, seq));
195
196 delta = clocksource_delta(now, last, mask);
197
198 /*
199 * Try to catch underflows by checking if we are seeing small
200 * mask-relative negative values.
201 */
202 if (unlikely((~delta & mask) < (mask >> 3))) {
203 timekeeping_underflow_seen = 1;
204 delta = 0;
205 }
206
207 /* Cap delta value to the max_cycles values to avoid mult overflows */
208 if (unlikely(delta > max)) {
209 timekeeping_overflow_seen = 1;
210 delta = tkr->clock->max_cycles;
211 }
212
213 return delta;
214 }
215 #else
216 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
217 {
218 }
219 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
220 {
221 cycle_t cycle_now, delta;
222
223 /* read clocksource */
224 cycle_now = tkr->read(tkr->clock);
225
226 /* calculate the delta since the last update_wall_time */
227 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
228
229 return delta;
230 }
231 #endif
232
233 /**
234 * tk_setup_internals - Set up internals to use clocksource clock.
235 *
236 * @tk: The target timekeeper to setup.
237 * @clock: Pointer to clocksource.
238 *
239 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
240 * pair and interval request.
241 *
242 * Unless you're the timekeeping code, you should not be using this!
243 */
244 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
245 {
246 cycle_t interval;
247 u64 tmp, ntpinterval;
248 struct clocksource *old_clock;
249
250 old_clock = tk->tkr_mono.clock;
251 tk->tkr_mono.clock = clock;
252 tk->tkr_mono.read = clock->read;
253 tk->tkr_mono.mask = clock->mask;
254 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
255
256 tk->tkr_raw.clock = clock;
257 tk->tkr_raw.read = clock->read;
258 tk->tkr_raw.mask = clock->mask;
259 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
260
261 /* Do the ns -> cycle conversion first, using original mult */
262 tmp = NTP_INTERVAL_LENGTH;
263 tmp <<= clock->shift;
264 ntpinterval = tmp;
265 tmp += clock->mult/2;
266 do_div(tmp, clock->mult);
267 if (tmp == 0)
268 tmp = 1;
269
270 interval = (cycle_t) tmp;
271 tk->cycle_interval = interval;
272
273 /* Go back from cycles -> shifted ns */
274 tk->xtime_interval = (u64) interval * clock->mult;
275 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
276 tk->raw_interval =
277 ((u64) interval * clock->mult) >> clock->shift;
278
279 /* if changing clocks, convert xtime_nsec shift units */
280 if (old_clock) {
281 int shift_change = clock->shift - old_clock->shift;
282 if (shift_change < 0)
283 tk->tkr_mono.xtime_nsec >>= -shift_change;
284 else
285 tk->tkr_mono.xtime_nsec <<= shift_change;
286 }
287 tk->tkr_raw.xtime_nsec = 0;
288
289 tk->tkr_mono.shift = clock->shift;
290 tk->tkr_raw.shift = clock->shift;
291
292 tk->ntp_error = 0;
293 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
294 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
295
296 /*
297 * The timekeeper keeps its own mult values for the currently
298 * active clocksource. These value will be adjusted via NTP
299 * to counteract clock drifting.
300 */
301 tk->tkr_mono.mult = clock->mult;
302 tk->tkr_raw.mult = clock->mult;
303 tk->ntp_err_mult = 0;
304 }
305
306 /* Timekeeper helper functions. */
307
308 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
309 static u32 default_arch_gettimeoffset(void) { return 0; }
310 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
311 #else
312 static inline u32 arch_gettimeoffset(void) { return 0; }
313 #endif
314
315 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
316 {
317 cycle_t delta;
318 s64 nsec;
319
320 delta = timekeeping_get_delta(tkr);
321
322 nsec = delta * tkr->mult + tkr->xtime_nsec;
323 nsec >>= tkr->shift;
324
325 /* If arch requires, add in get_arch_timeoffset() */
326 return nsec + arch_gettimeoffset();
327 }
328
329 /**
330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331 * @tkr: Timekeeping readout base from which we take the update
332 *
333 * We want to use this from any context including NMI and tracing /
334 * instrumenting the timekeeping code itself.
335 *
336 * So we handle this differently than the other timekeeping accessor
337 * functions which retry when the sequence count has changed. The
338 * update side does:
339 *
340 * smp_wmb(); <- Ensure that the last base[1] update is visible
341 * tkf->seq++;
342 * smp_wmb(); <- Ensure that the seqcount update is visible
343 * update(tkf->base[0], tkr);
344 * smp_wmb(); <- Ensure that the base[0] update is visible
345 * tkf->seq++;
346 * smp_wmb(); <- Ensure that the seqcount update is visible
347 * update(tkf->base[1], tkr);
348 *
349 * The reader side does:
350 *
351 * do {
352 * seq = tkf->seq;
353 * smp_rmb();
354 * idx = seq & 0x01;
355 * now = now(tkf->base[idx]);
356 * smp_rmb();
357 * } while (seq != tkf->seq)
358 *
359 * As long as we update base[0] readers are forced off to
360 * base[1]. Once base[0] is updated readers are redirected to base[0]
361 * and the base[1] update takes place.
362 *
363 * So if a NMI hits the update of base[0] then it will use base[1]
364 * which is still consistent. In the worst case this can result is a
365 * slightly wrong timestamp (a few nanoseconds). See
366 * @ktime_get_mono_fast_ns.
367 */
368 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
369 {
370 struct tk_read_base *base = tkf->base;
371
372 /* Force readers off to base[1] */
373 raw_write_seqcount_latch(&tkf->seq);
374
375 /* Update base[0] */
376 memcpy(base, tkr, sizeof(*base));
377
378 /* Force readers back to base[0] */
379 raw_write_seqcount_latch(&tkf->seq);
380
381 /* Update base[1] */
382 memcpy(base + 1, base, sizeof(*base));
383 }
384
385 /**
386 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
387 *
388 * This timestamp is not guaranteed to be monotonic across an update.
389 * The timestamp is calculated by:
390 *
391 * now = base_mono + clock_delta * slope
392 *
393 * So if the update lowers the slope, readers who are forced to the
394 * not yet updated second array are still using the old steeper slope.
395 *
396 * tmono
397 * ^
398 * | o n
399 * | o n
400 * | u
401 * | o
402 * |o
403 * |12345678---> reader order
404 *
405 * o = old slope
406 * u = update
407 * n = new slope
408 *
409 * So reader 6 will observe time going backwards versus reader 5.
410 *
411 * While other CPUs are likely to be able observe that, the only way
412 * for a CPU local observation is when an NMI hits in the middle of
413 * the update. Timestamps taken from that NMI context might be ahead
414 * of the following timestamps. Callers need to be aware of that and
415 * deal with it.
416 */
417 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
418 {
419 struct tk_read_base *tkr;
420 unsigned int seq;
421 u64 now;
422
423 do {
424 seq = raw_read_seqcount(&tkf->seq);
425 tkr = tkf->base + (seq & 0x01);
426 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
427 } while (read_seqcount_retry(&tkf->seq, seq));
428
429 return now;
430 }
431
432 u64 ktime_get_mono_fast_ns(void)
433 {
434 return __ktime_get_fast_ns(&tk_fast_mono);
435 }
436 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
437
438 u64 ktime_get_raw_fast_ns(void)
439 {
440 return __ktime_get_fast_ns(&tk_fast_raw);
441 }
442 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
443
444 /* Suspend-time cycles value for halted fast timekeeper. */
445 static cycle_t cycles_at_suspend;
446
447 static cycle_t dummy_clock_read(struct clocksource *cs)
448 {
449 return cycles_at_suspend;
450 }
451
452 /**
453 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
454 * @tk: Timekeeper to snapshot.
455 *
456 * It generally is unsafe to access the clocksource after timekeeping has been
457 * suspended, so take a snapshot of the readout base of @tk and use it as the
458 * fast timekeeper's readout base while suspended. It will return the same
459 * number of cycles every time until timekeeping is resumed at which time the
460 * proper readout base for the fast timekeeper will be restored automatically.
461 */
462 static void halt_fast_timekeeper(struct timekeeper *tk)
463 {
464 static struct tk_read_base tkr_dummy;
465 struct tk_read_base *tkr = &tk->tkr_mono;
466
467 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
468 cycles_at_suspend = tkr->read(tkr->clock);
469 tkr_dummy.read = dummy_clock_read;
470 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
471
472 tkr = &tk->tkr_raw;
473 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
474 tkr_dummy.read = dummy_clock_read;
475 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
476 }
477
478 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
479
480 static inline void update_vsyscall(struct timekeeper *tk)
481 {
482 struct timespec xt, wm;
483
484 xt = timespec64_to_timespec(tk_xtime(tk));
485 wm = timespec64_to_timespec(tk->wall_to_monotonic);
486 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
487 tk->tkr_mono.cycle_last);
488 }
489
490 static inline void old_vsyscall_fixup(struct timekeeper *tk)
491 {
492 s64 remainder;
493
494 /*
495 * Store only full nanoseconds into xtime_nsec after rounding
496 * it up and add the remainder to the error difference.
497 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
498 * by truncating the remainder in vsyscalls. However, it causes
499 * additional work to be done in timekeeping_adjust(). Once
500 * the vsyscall implementations are converted to use xtime_nsec
501 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
502 * users are removed, this can be killed.
503 */
504 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
505 tk->tkr_mono.xtime_nsec -= remainder;
506 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
507 tk->ntp_error += remainder << tk->ntp_error_shift;
508 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
509 }
510 #else
511 #define old_vsyscall_fixup(tk)
512 #endif
513
514 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
515
516 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
517 {
518 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
519 }
520
521 /**
522 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
523 */
524 int pvclock_gtod_register_notifier(struct notifier_block *nb)
525 {
526 struct timekeeper *tk = &tk_core.timekeeper;
527 unsigned long flags;
528 int ret;
529
530 raw_spin_lock_irqsave(&timekeeper_lock, flags);
531 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
532 update_pvclock_gtod(tk, true);
533 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534
535 return ret;
536 }
537 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
538
539 /**
540 * pvclock_gtod_unregister_notifier - unregister a pvclock
541 * timedata update listener
542 */
543 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
544 {
545 unsigned long flags;
546 int ret;
547
548 raw_spin_lock_irqsave(&timekeeper_lock, flags);
549 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
550 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
551
552 return ret;
553 }
554 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
555
556 /*
557 * Update the ktime_t based scalar nsec members of the timekeeper
558 */
559 static inline void tk_update_ktime_data(struct timekeeper *tk)
560 {
561 u64 seconds;
562 u32 nsec;
563
564 /*
565 * The xtime based monotonic readout is:
566 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
567 * The ktime based monotonic readout is:
568 * nsec = base_mono + now();
569 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
570 */
571 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
572 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
573 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
574
575 /* Update the monotonic raw base */
576 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
577
578 /*
579 * The sum of the nanoseconds portions of xtime and
580 * wall_to_monotonic can be greater/equal one second. Take
581 * this into account before updating tk->ktime_sec.
582 */
583 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
584 if (nsec >= NSEC_PER_SEC)
585 seconds++;
586 tk->ktime_sec = seconds;
587 }
588
589 /* must hold timekeeper_lock */
590 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
591 {
592 if (action & TK_CLEAR_NTP) {
593 tk->ntp_error = 0;
594 ntp_clear();
595 }
596
597 tk_update_ktime_data(tk);
598
599 update_vsyscall(tk);
600 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
601
602 if (action & TK_MIRROR)
603 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
604 sizeof(tk_core.timekeeper));
605
606 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
607 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
608 }
609
610 /**
611 * timekeeping_forward_now - update clock to the current time
612 *
613 * Forward the current clock to update its state since the last call to
614 * update_wall_time(). This is useful before significant clock changes,
615 * as it avoids having to deal with this time offset explicitly.
616 */
617 static void timekeeping_forward_now(struct timekeeper *tk)
618 {
619 struct clocksource *clock = tk->tkr_mono.clock;
620 cycle_t cycle_now, delta;
621 s64 nsec;
622
623 cycle_now = tk->tkr_mono.read(clock);
624 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
625 tk->tkr_mono.cycle_last = cycle_now;
626 tk->tkr_raw.cycle_last = cycle_now;
627
628 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
629
630 /* If arch requires, add in get_arch_timeoffset() */
631 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
632
633 tk_normalize_xtime(tk);
634
635 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
636 timespec64_add_ns(&tk->raw_time, nsec);
637 }
638
639 /**
640 * __getnstimeofday64 - Returns the time of day in a timespec64.
641 * @ts: pointer to the timespec to be set
642 *
643 * Updates the time of day in the timespec.
644 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
645 */
646 int __getnstimeofday64(struct timespec64 *ts)
647 {
648 struct timekeeper *tk = &tk_core.timekeeper;
649 unsigned long seq;
650 s64 nsecs = 0;
651
652 do {
653 seq = read_seqcount_begin(&tk_core.seq);
654
655 ts->tv_sec = tk->xtime_sec;
656 nsecs = timekeeping_get_ns(&tk->tkr_mono);
657
658 } while (read_seqcount_retry(&tk_core.seq, seq));
659
660 ts->tv_nsec = 0;
661 timespec64_add_ns(ts, nsecs);
662
663 /*
664 * Do not bail out early, in case there were callers still using
665 * the value, even in the face of the WARN_ON.
666 */
667 if (unlikely(timekeeping_suspended))
668 return -EAGAIN;
669 return 0;
670 }
671 EXPORT_SYMBOL(__getnstimeofday64);
672
673 /**
674 * getnstimeofday64 - Returns the time of day in a timespec64.
675 * @ts: pointer to the timespec64 to be set
676 *
677 * Returns the time of day in a timespec64 (WARN if suspended).
678 */
679 void getnstimeofday64(struct timespec64 *ts)
680 {
681 WARN_ON(__getnstimeofday64(ts));
682 }
683 EXPORT_SYMBOL(getnstimeofday64);
684
685 ktime_t ktime_get(void)
686 {
687 struct timekeeper *tk = &tk_core.timekeeper;
688 unsigned int seq;
689 ktime_t base;
690 s64 nsecs;
691
692 WARN_ON(timekeeping_suspended);
693
694 do {
695 seq = read_seqcount_begin(&tk_core.seq);
696 base = tk->tkr_mono.base;
697 nsecs = timekeeping_get_ns(&tk->tkr_mono);
698
699 } while (read_seqcount_retry(&tk_core.seq, seq));
700
701 return ktime_add_ns(base, nsecs);
702 }
703 EXPORT_SYMBOL_GPL(ktime_get);
704
705 static ktime_t *offsets[TK_OFFS_MAX] = {
706 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
707 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
708 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
709 };
710
711 ktime_t ktime_get_with_offset(enum tk_offsets offs)
712 {
713 struct timekeeper *tk = &tk_core.timekeeper;
714 unsigned int seq;
715 ktime_t base, *offset = offsets[offs];
716 s64 nsecs;
717
718 WARN_ON(timekeeping_suspended);
719
720 do {
721 seq = read_seqcount_begin(&tk_core.seq);
722 base = ktime_add(tk->tkr_mono.base, *offset);
723 nsecs = timekeeping_get_ns(&tk->tkr_mono);
724
725 } while (read_seqcount_retry(&tk_core.seq, seq));
726
727 return ktime_add_ns(base, nsecs);
728
729 }
730 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
731
732 /**
733 * ktime_mono_to_any() - convert mononotic time to any other time
734 * @tmono: time to convert.
735 * @offs: which offset to use
736 */
737 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
738 {
739 ktime_t *offset = offsets[offs];
740 unsigned long seq;
741 ktime_t tconv;
742
743 do {
744 seq = read_seqcount_begin(&tk_core.seq);
745 tconv = ktime_add(tmono, *offset);
746 } while (read_seqcount_retry(&tk_core.seq, seq));
747
748 return tconv;
749 }
750 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
751
752 /**
753 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
754 */
755 ktime_t ktime_get_raw(void)
756 {
757 struct timekeeper *tk = &tk_core.timekeeper;
758 unsigned int seq;
759 ktime_t base;
760 s64 nsecs;
761
762 do {
763 seq = read_seqcount_begin(&tk_core.seq);
764 base = tk->tkr_raw.base;
765 nsecs = timekeeping_get_ns(&tk->tkr_raw);
766
767 } while (read_seqcount_retry(&tk_core.seq, seq));
768
769 return ktime_add_ns(base, nsecs);
770 }
771 EXPORT_SYMBOL_GPL(ktime_get_raw);
772
773 /**
774 * ktime_get_ts64 - get the monotonic clock in timespec64 format
775 * @ts: pointer to timespec variable
776 *
777 * The function calculates the monotonic clock from the realtime
778 * clock and the wall_to_monotonic offset and stores the result
779 * in normalized timespec64 format in the variable pointed to by @ts.
780 */
781 void ktime_get_ts64(struct timespec64 *ts)
782 {
783 struct timekeeper *tk = &tk_core.timekeeper;
784 struct timespec64 tomono;
785 s64 nsec;
786 unsigned int seq;
787
788 WARN_ON(timekeeping_suspended);
789
790 do {
791 seq = read_seqcount_begin(&tk_core.seq);
792 ts->tv_sec = tk->xtime_sec;
793 nsec = timekeeping_get_ns(&tk->tkr_mono);
794 tomono = tk->wall_to_monotonic;
795
796 } while (read_seqcount_retry(&tk_core.seq, seq));
797
798 ts->tv_sec += tomono.tv_sec;
799 ts->tv_nsec = 0;
800 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
801 }
802 EXPORT_SYMBOL_GPL(ktime_get_ts64);
803
804 /**
805 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
806 *
807 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
808 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
809 * works on both 32 and 64 bit systems. On 32 bit systems the readout
810 * covers ~136 years of uptime which should be enough to prevent
811 * premature wrap arounds.
812 */
813 time64_t ktime_get_seconds(void)
814 {
815 struct timekeeper *tk = &tk_core.timekeeper;
816
817 WARN_ON(timekeeping_suspended);
818 return tk->ktime_sec;
819 }
820 EXPORT_SYMBOL_GPL(ktime_get_seconds);
821
822 /**
823 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
824 *
825 * Returns the wall clock seconds since 1970. This replaces the
826 * get_seconds() interface which is not y2038 safe on 32bit systems.
827 *
828 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
829 * 32bit systems the access must be protected with the sequence
830 * counter to provide "atomic" access to the 64bit tk->xtime_sec
831 * value.
832 */
833 time64_t ktime_get_real_seconds(void)
834 {
835 struct timekeeper *tk = &tk_core.timekeeper;
836 time64_t seconds;
837 unsigned int seq;
838
839 if (IS_ENABLED(CONFIG_64BIT))
840 return tk->xtime_sec;
841
842 do {
843 seq = read_seqcount_begin(&tk_core.seq);
844 seconds = tk->xtime_sec;
845
846 } while (read_seqcount_retry(&tk_core.seq, seq));
847
848 return seconds;
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
851
852 #ifdef CONFIG_NTP_PPS
853
854 /**
855 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
856 * @ts_raw: pointer to the timespec to be set to raw monotonic time
857 * @ts_real: pointer to the timespec to be set to the time of day
858 *
859 * This function reads both the time of day and raw monotonic time at the
860 * same time atomically and stores the resulting timestamps in timespec
861 * format.
862 */
863 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
864 {
865 struct timekeeper *tk = &tk_core.timekeeper;
866 unsigned long seq;
867 s64 nsecs_raw, nsecs_real;
868
869 WARN_ON_ONCE(timekeeping_suspended);
870
871 do {
872 seq = read_seqcount_begin(&tk_core.seq);
873
874 *ts_raw = timespec64_to_timespec(tk->raw_time);
875 ts_real->tv_sec = tk->xtime_sec;
876 ts_real->tv_nsec = 0;
877
878 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
879 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
880
881 } while (read_seqcount_retry(&tk_core.seq, seq));
882
883 timespec_add_ns(ts_raw, nsecs_raw);
884 timespec_add_ns(ts_real, nsecs_real);
885 }
886 EXPORT_SYMBOL(getnstime_raw_and_real);
887
888 #endif /* CONFIG_NTP_PPS */
889
890 /**
891 * do_gettimeofday - Returns the time of day in a timeval
892 * @tv: pointer to the timeval to be set
893 *
894 * NOTE: Users should be converted to using getnstimeofday()
895 */
896 void do_gettimeofday(struct timeval *tv)
897 {
898 struct timespec64 now;
899
900 getnstimeofday64(&now);
901 tv->tv_sec = now.tv_sec;
902 tv->tv_usec = now.tv_nsec/1000;
903 }
904 EXPORT_SYMBOL(do_gettimeofday);
905
906 /**
907 * do_settimeofday64 - Sets the time of day.
908 * @ts: pointer to the timespec64 variable containing the new time
909 *
910 * Sets the time of day to the new time and update NTP and notify hrtimers
911 */
912 int do_settimeofday64(const struct timespec64 *ts)
913 {
914 struct timekeeper *tk = &tk_core.timekeeper;
915 struct timespec64 ts_delta, xt;
916 unsigned long flags;
917
918 if (!timespec64_valid_strict(ts))
919 return -EINVAL;
920
921 raw_spin_lock_irqsave(&timekeeper_lock, flags);
922 write_seqcount_begin(&tk_core.seq);
923
924 timekeeping_forward_now(tk);
925
926 xt = tk_xtime(tk);
927 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
928 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
929
930 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
931
932 tk_set_xtime(tk, ts);
933
934 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
935
936 write_seqcount_end(&tk_core.seq);
937 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
938
939 /* signal hrtimers about time change */
940 clock_was_set();
941
942 return 0;
943 }
944 EXPORT_SYMBOL(do_settimeofday64);
945
946 /**
947 * timekeeping_inject_offset - Adds or subtracts from the current time.
948 * @tv: pointer to the timespec variable containing the offset
949 *
950 * Adds or subtracts an offset value from the current time.
951 */
952 int timekeeping_inject_offset(struct timespec *ts)
953 {
954 struct timekeeper *tk = &tk_core.timekeeper;
955 unsigned long flags;
956 struct timespec64 ts64, tmp;
957 int ret = 0;
958
959 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
960 return -EINVAL;
961
962 ts64 = timespec_to_timespec64(*ts);
963
964 raw_spin_lock_irqsave(&timekeeper_lock, flags);
965 write_seqcount_begin(&tk_core.seq);
966
967 timekeeping_forward_now(tk);
968
969 /* Make sure the proposed value is valid */
970 tmp = timespec64_add(tk_xtime(tk), ts64);
971 if (!timespec64_valid_strict(&tmp)) {
972 ret = -EINVAL;
973 goto error;
974 }
975
976 tk_xtime_add(tk, &ts64);
977 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
978
979 error: /* even if we error out, we forwarded the time, so call update */
980 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
981
982 write_seqcount_end(&tk_core.seq);
983 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
984
985 /* signal hrtimers about time change */
986 clock_was_set();
987
988 return ret;
989 }
990 EXPORT_SYMBOL(timekeeping_inject_offset);
991
992
993 /**
994 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
995 *
996 */
997 s32 timekeeping_get_tai_offset(void)
998 {
999 struct timekeeper *tk = &tk_core.timekeeper;
1000 unsigned int seq;
1001 s32 ret;
1002
1003 do {
1004 seq = read_seqcount_begin(&tk_core.seq);
1005 ret = tk->tai_offset;
1006 } while (read_seqcount_retry(&tk_core.seq, seq));
1007
1008 return ret;
1009 }
1010
1011 /**
1012 * __timekeeping_set_tai_offset - Lock free worker function
1013 *
1014 */
1015 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1016 {
1017 tk->tai_offset = tai_offset;
1018 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1019 }
1020
1021 /**
1022 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1023 *
1024 */
1025 void timekeeping_set_tai_offset(s32 tai_offset)
1026 {
1027 struct timekeeper *tk = &tk_core.timekeeper;
1028 unsigned long flags;
1029
1030 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1031 write_seqcount_begin(&tk_core.seq);
1032 __timekeeping_set_tai_offset(tk, tai_offset);
1033 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1034 write_seqcount_end(&tk_core.seq);
1035 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1036 clock_was_set();
1037 }
1038
1039 /**
1040 * change_clocksource - Swaps clocksources if a new one is available
1041 *
1042 * Accumulates current time interval and initializes new clocksource
1043 */
1044 static int change_clocksource(void *data)
1045 {
1046 struct timekeeper *tk = &tk_core.timekeeper;
1047 struct clocksource *new, *old;
1048 unsigned long flags;
1049
1050 new = (struct clocksource *) data;
1051
1052 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053 write_seqcount_begin(&tk_core.seq);
1054
1055 timekeeping_forward_now(tk);
1056 /*
1057 * If the cs is in module, get a module reference. Succeeds
1058 * for built-in code (owner == NULL) as well.
1059 */
1060 if (try_module_get(new->owner)) {
1061 if (!new->enable || new->enable(new) == 0) {
1062 old = tk->tkr_mono.clock;
1063 tk_setup_internals(tk, new);
1064 if (old->disable)
1065 old->disable(old);
1066 module_put(old->owner);
1067 } else {
1068 module_put(new->owner);
1069 }
1070 }
1071 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1072
1073 write_seqcount_end(&tk_core.seq);
1074 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * timekeeping_notify - Install a new clock source
1081 * @clock: pointer to the clock source
1082 *
1083 * This function is called from clocksource.c after a new, better clock
1084 * source has been registered. The caller holds the clocksource_mutex.
1085 */
1086 int timekeeping_notify(struct clocksource *clock)
1087 {
1088 struct timekeeper *tk = &tk_core.timekeeper;
1089
1090 if (tk->tkr_mono.clock == clock)
1091 return 0;
1092 stop_machine(change_clocksource, clock, NULL);
1093 tick_clock_notify();
1094 return tk->tkr_mono.clock == clock ? 0 : -1;
1095 }
1096
1097 /**
1098 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1099 * @ts: pointer to the timespec64 to be set
1100 *
1101 * Returns the raw monotonic time (completely un-modified by ntp)
1102 */
1103 void getrawmonotonic64(struct timespec64 *ts)
1104 {
1105 struct timekeeper *tk = &tk_core.timekeeper;
1106 struct timespec64 ts64;
1107 unsigned long seq;
1108 s64 nsecs;
1109
1110 do {
1111 seq = read_seqcount_begin(&tk_core.seq);
1112 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1113 ts64 = tk->raw_time;
1114
1115 } while (read_seqcount_retry(&tk_core.seq, seq));
1116
1117 timespec64_add_ns(&ts64, nsecs);
1118 *ts = ts64;
1119 }
1120 EXPORT_SYMBOL(getrawmonotonic64);
1121
1122
1123 /**
1124 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1125 */
1126 int timekeeping_valid_for_hres(void)
1127 {
1128 struct timekeeper *tk = &tk_core.timekeeper;
1129 unsigned long seq;
1130 int ret;
1131
1132 do {
1133 seq = read_seqcount_begin(&tk_core.seq);
1134
1135 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1136
1137 } while (read_seqcount_retry(&tk_core.seq, seq));
1138
1139 return ret;
1140 }
1141
1142 /**
1143 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1144 */
1145 u64 timekeeping_max_deferment(void)
1146 {
1147 struct timekeeper *tk = &tk_core.timekeeper;
1148 unsigned long seq;
1149 u64 ret;
1150
1151 do {
1152 seq = read_seqcount_begin(&tk_core.seq);
1153
1154 ret = tk->tkr_mono.clock->max_idle_ns;
1155
1156 } while (read_seqcount_retry(&tk_core.seq, seq));
1157
1158 return ret;
1159 }
1160
1161 /**
1162 * read_persistent_clock - Return time from the persistent clock.
1163 *
1164 * Weak dummy function for arches that do not yet support it.
1165 * Reads the time from the battery backed persistent clock.
1166 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1167 *
1168 * XXX - Do be sure to remove it once all arches implement it.
1169 */
1170 void __weak read_persistent_clock(struct timespec *ts)
1171 {
1172 ts->tv_sec = 0;
1173 ts->tv_nsec = 0;
1174 }
1175
1176 /**
1177 * read_boot_clock - Return time of the system start.
1178 *
1179 * Weak dummy function for arches that do not yet support it.
1180 * Function to read the exact time the system has been started.
1181 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1182 *
1183 * XXX - Do be sure to remove it once all arches implement it.
1184 */
1185 void __weak read_boot_clock(struct timespec *ts)
1186 {
1187 ts->tv_sec = 0;
1188 ts->tv_nsec = 0;
1189 }
1190
1191 /*
1192 * timekeeping_init - Initializes the clocksource and common timekeeping values
1193 */
1194 void __init timekeeping_init(void)
1195 {
1196 struct timekeeper *tk = &tk_core.timekeeper;
1197 struct clocksource *clock;
1198 unsigned long flags;
1199 struct timespec64 now, boot, tmp;
1200 struct timespec ts;
1201
1202 read_persistent_clock(&ts);
1203 now = timespec_to_timespec64(ts);
1204 if (!timespec64_valid_strict(&now)) {
1205 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1206 " Check your CMOS/BIOS settings.\n");
1207 now.tv_sec = 0;
1208 now.tv_nsec = 0;
1209 } else if (now.tv_sec || now.tv_nsec)
1210 persistent_clock_exist = true;
1211
1212 read_boot_clock(&ts);
1213 boot = timespec_to_timespec64(ts);
1214 if (!timespec64_valid_strict(&boot)) {
1215 pr_warn("WARNING: Boot clock returned invalid value!\n"
1216 " Check your CMOS/BIOS settings.\n");
1217 boot.tv_sec = 0;
1218 boot.tv_nsec = 0;
1219 }
1220
1221 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1222 write_seqcount_begin(&tk_core.seq);
1223 ntp_init();
1224
1225 clock = clocksource_default_clock();
1226 if (clock->enable)
1227 clock->enable(clock);
1228 tk_setup_internals(tk, clock);
1229
1230 tk_set_xtime(tk, &now);
1231 tk->raw_time.tv_sec = 0;
1232 tk->raw_time.tv_nsec = 0;
1233 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1234 boot = tk_xtime(tk);
1235
1236 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1237 tk_set_wall_to_mono(tk, tmp);
1238
1239 timekeeping_update(tk, TK_MIRROR);
1240
1241 write_seqcount_end(&tk_core.seq);
1242 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1243 }
1244
1245 /* time in seconds when suspend began */
1246 static struct timespec64 timekeeping_suspend_time;
1247
1248 /**
1249 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1250 * @delta: pointer to a timespec delta value
1251 *
1252 * Takes a timespec offset measuring a suspend interval and properly
1253 * adds the sleep offset to the timekeeping variables.
1254 */
1255 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1256 struct timespec64 *delta)
1257 {
1258 if (!timespec64_valid_strict(delta)) {
1259 printk_deferred(KERN_WARNING
1260 "__timekeeping_inject_sleeptime: Invalid "
1261 "sleep delta value!\n");
1262 return;
1263 }
1264 tk_xtime_add(tk, delta);
1265 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1266 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1267 tk_debug_account_sleep_time(delta);
1268 }
1269
1270 /**
1271 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1272 * @delta: pointer to a timespec64 delta value
1273 *
1274 * This hook is for architectures that cannot support read_persistent_clock
1275 * because their RTC/persistent clock is only accessible when irqs are enabled.
1276 *
1277 * This function should only be called by rtc_resume(), and allows
1278 * a suspend offset to be injected into the timekeeping values.
1279 */
1280 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1281 {
1282 struct timekeeper *tk = &tk_core.timekeeper;
1283 unsigned long flags;
1284
1285 /*
1286 * Make sure we don't set the clock twice, as timekeeping_resume()
1287 * already did it
1288 */
1289 if (has_persistent_clock())
1290 return;
1291
1292 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1293 write_seqcount_begin(&tk_core.seq);
1294
1295 timekeeping_forward_now(tk);
1296
1297 __timekeeping_inject_sleeptime(tk, delta);
1298
1299 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1300
1301 write_seqcount_end(&tk_core.seq);
1302 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1303
1304 /* signal hrtimers about time change */
1305 clock_was_set();
1306 }
1307
1308 /**
1309 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1310 *
1311 * This is for the generic clocksource timekeeping.
1312 * xtime/wall_to_monotonic/jiffies/etc are
1313 * still managed by arch specific suspend/resume code.
1314 */
1315 void timekeeping_resume(void)
1316 {
1317 struct timekeeper *tk = &tk_core.timekeeper;
1318 struct clocksource *clock = tk->tkr_mono.clock;
1319 unsigned long flags;
1320 struct timespec64 ts_new, ts_delta;
1321 struct timespec tmp;
1322 cycle_t cycle_now, cycle_delta;
1323 bool suspendtime_found = false;
1324
1325 read_persistent_clock(&tmp);
1326 ts_new = timespec_to_timespec64(tmp);
1327
1328 clockevents_resume();
1329 clocksource_resume();
1330
1331 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1332 write_seqcount_begin(&tk_core.seq);
1333
1334 /*
1335 * After system resumes, we need to calculate the suspended time and
1336 * compensate it for the OS time. There are 3 sources that could be
1337 * used: Nonstop clocksource during suspend, persistent clock and rtc
1338 * device.
1339 *
1340 * One specific platform may have 1 or 2 or all of them, and the
1341 * preference will be:
1342 * suspend-nonstop clocksource -> persistent clock -> rtc
1343 * The less preferred source will only be tried if there is no better
1344 * usable source. The rtc part is handled separately in rtc core code.
1345 */
1346 cycle_now = tk->tkr_mono.read(clock);
1347 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1348 cycle_now > tk->tkr_mono.cycle_last) {
1349 u64 num, max = ULLONG_MAX;
1350 u32 mult = clock->mult;
1351 u32 shift = clock->shift;
1352 s64 nsec = 0;
1353
1354 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1355 tk->tkr_mono.mask);
1356
1357 /*
1358 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1359 * suspended time is too long. In that case we need do the
1360 * 64 bits math carefully
1361 */
1362 do_div(max, mult);
1363 if (cycle_delta > max) {
1364 num = div64_u64(cycle_delta, max);
1365 nsec = (((u64) max * mult) >> shift) * num;
1366 cycle_delta -= num * max;
1367 }
1368 nsec += ((u64) cycle_delta * mult) >> shift;
1369
1370 ts_delta = ns_to_timespec64(nsec);
1371 suspendtime_found = true;
1372 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1373 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1374 suspendtime_found = true;
1375 }
1376
1377 if (suspendtime_found)
1378 __timekeeping_inject_sleeptime(tk, &ts_delta);
1379
1380 /* Re-base the last cycle value */
1381 tk->tkr_mono.cycle_last = cycle_now;
1382 tk->tkr_raw.cycle_last = cycle_now;
1383
1384 tk->ntp_error = 0;
1385 timekeeping_suspended = 0;
1386 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1387 write_seqcount_end(&tk_core.seq);
1388 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1389
1390 touch_softlockup_watchdog();
1391
1392 tick_resume();
1393 hrtimers_resume();
1394 }
1395
1396 int timekeeping_suspend(void)
1397 {
1398 struct timekeeper *tk = &tk_core.timekeeper;
1399 unsigned long flags;
1400 struct timespec64 delta, delta_delta;
1401 static struct timespec64 old_delta;
1402 struct timespec tmp;
1403
1404 read_persistent_clock(&tmp);
1405 timekeeping_suspend_time = timespec_to_timespec64(tmp);
1406
1407 /*
1408 * On some systems the persistent_clock can not be detected at
1409 * timekeeping_init by its return value, so if we see a valid
1410 * value returned, update the persistent_clock_exists flag.
1411 */
1412 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1413 persistent_clock_exist = true;
1414
1415 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1416 write_seqcount_begin(&tk_core.seq);
1417 timekeeping_forward_now(tk);
1418 timekeeping_suspended = 1;
1419
1420 /*
1421 * To avoid drift caused by repeated suspend/resumes,
1422 * which each can add ~1 second drift error,
1423 * try to compensate so the difference in system time
1424 * and persistent_clock time stays close to constant.
1425 */
1426 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1427 delta_delta = timespec64_sub(delta, old_delta);
1428 if (abs(delta_delta.tv_sec) >= 2) {
1429 /*
1430 * if delta_delta is too large, assume time correction
1431 * has occured and set old_delta to the current delta.
1432 */
1433 old_delta = delta;
1434 } else {
1435 /* Otherwise try to adjust old_system to compensate */
1436 timekeeping_suspend_time =
1437 timespec64_add(timekeeping_suspend_time, delta_delta);
1438 }
1439
1440 timekeeping_update(tk, TK_MIRROR);
1441 halt_fast_timekeeper(tk);
1442 write_seqcount_end(&tk_core.seq);
1443 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1444
1445 tick_suspend();
1446 clocksource_suspend();
1447 clockevents_suspend();
1448
1449 return 0;
1450 }
1451
1452 /* sysfs resume/suspend bits for timekeeping */
1453 static struct syscore_ops timekeeping_syscore_ops = {
1454 .resume = timekeeping_resume,
1455 .suspend = timekeeping_suspend,
1456 };
1457
1458 static int __init timekeeping_init_ops(void)
1459 {
1460 register_syscore_ops(&timekeeping_syscore_ops);
1461 return 0;
1462 }
1463 device_initcall(timekeeping_init_ops);
1464
1465 /*
1466 * Apply a multiplier adjustment to the timekeeper
1467 */
1468 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1469 s64 offset,
1470 bool negative,
1471 int adj_scale)
1472 {
1473 s64 interval = tk->cycle_interval;
1474 s32 mult_adj = 1;
1475
1476 if (negative) {
1477 mult_adj = -mult_adj;
1478 interval = -interval;
1479 offset = -offset;
1480 }
1481 mult_adj <<= adj_scale;
1482 interval <<= adj_scale;
1483 offset <<= adj_scale;
1484
1485 /*
1486 * So the following can be confusing.
1487 *
1488 * To keep things simple, lets assume mult_adj == 1 for now.
1489 *
1490 * When mult_adj != 1, remember that the interval and offset values
1491 * have been appropriately scaled so the math is the same.
1492 *
1493 * The basic idea here is that we're increasing the multiplier
1494 * by one, this causes the xtime_interval to be incremented by
1495 * one cycle_interval. This is because:
1496 * xtime_interval = cycle_interval * mult
1497 * So if mult is being incremented by one:
1498 * xtime_interval = cycle_interval * (mult + 1)
1499 * Its the same as:
1500 * xtime_interval = (cycle_interval * mult) + cycle_interval
1501 * Which can be shortened to:
1502 * xtime_interval += cycle_interval
1503 *
1504 * So offset stores the non-accumulated cycles. Thus the current
1505 * time (in shifted nanoseconds) is:
1506 * now = (offset * adj) + xtime_nsec
1507 * Now, even though we're adjusting the clock frequency, we have
1508 * to keep time consistent. In other words, we can't jump back
1509 * in time, and we also want to avoid jumping forward in time.
1510 *
1511 * So given the same offset value, we need the time to be the same
1512 * both before and after the freq adjustment.
1513 * now = (offset * adj_1) + xtime_nsec_1
1514 * now = (offset * adj_2) + xtime_nsec_2
1515 * So:
1516 * (offset * adj_1) + xtime_nsec_1 =
1517 * (offset * adj_2) + xtime_nsec_2
1518 * And we know:
1519 * adj_2 = adj_1 + 1
1520 * So:
1521 * (offset * adj_1) + xtime_nsec_1 =
1522 * (offset * (adj_1+1)) + xtime_nsec_2
1523 * (offset * adj_1) + xtime_nsec_1 =
1524 * (offset * adj_1) + offset + xtime_nsec_2
1525 * Canceling the sides:
1526 * xtime_nsec_1 = offset + xtime_nsec_2
1527 * Which gives us:
1528 * xtime_nsec_2 = xtime_nsec_1 - offset
1529 * Which simplfies to:
1530 * xtime_nsec -= offset
1531 *
1532 * XXX - TODO: Doc ntp_error calculation.
1533 */
1534 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1535 /* NTP adjustment caused clocksource mult overflow */
1536 WARN_ON_ONCE(1);
1537 return;
1538 }
1539
1540 tk->tkr_mono.mult += mult_adj;
1541 tk->xtime_interval += interval;
1542 tk->tkr_mono.xtime_nsec -= offset;
1543 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1544 }
1545
1546 /*
1547 * Calculate the multiplier adjustment needed to match the frequency
1548 * specified by NTP
1549 */
1550 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1551 s64 offset)
1552 {
1553 s64 interval = tk->cycle_interval;
1554 s64 xinterval = tk->xtime_interval;
1555 s64 tick_error;
1556 bool negative;
1557 u32 adj;
1558
1559 /* Remove any current error adj from freq calculation */
1560 if (tk->ntp_err_mult)
1561 xinterval -= tk->cycle_interval;
1562
1563 tk->ntp_tick = ntp_tick_length();
1564
1565 /* Calculate current error per tick */
1566 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1567 tick_error -= (xinterval + tk->xtime_remainder);
1568
1569 /* Don't worry about correcting it if its small */
1570 if (likely((tick_error >= 0) && (tick_error <= interval)))
1571 return;
1572
1573 /* preserve the direction of correction */
1574 negative = (tick_error < 0);
1575
1576 /* Sort out the magnitude of the correction */
1577 tick_error = abs(tick_error);
1578 for (adj = 0; tick_error > interval; adj++)
1579 tick_error >>= 1;
1580
1581 /* scale the corrections */
1582 timekeeping_apply_adjustment(tk, offset, negative, adj);
1583 }
1584
1585 /*
1586 * Adjust the timekeeper's multiplier to the correct frequency
1587 * and also to reduce the accumulated error value.
1588 */
1589 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1590 {
1591 /* Correct for the current frequency error */
1592 timekeeping_freqadjust(tk, offset);
1593
1594 /* Next make a small adjustment to fix any cumulative error */
1595 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1596 tk->ntp_err_mult = 1;
1597 timekeeping_apply_adjustment(tk, offset, 0, 0);
1598 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1599 /* Undo any existing error adjustment */
1600 timekeeping_apply_adjustment(tk, offset, 1, 0);
1601 tk->ntp_err_mult = 0;
1602 }
1603
1604 if (unlikely(tk->tkr_mono.clock->maxadj &&
1605 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1606 > tk->tkr_mono.clock->maxadj))) {
1607 printk_once(KERN_WARNING
1608 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1609 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1610 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1611 }
1612
1613 /*
1614 * It may be possible that when we entered this function, xtime_nsec
1615 * was very small. Further, if we're slightly speeding the clocksource
1616 * in the code above, its possible the required corrective factor to
1617 * xtime_nsec could cause it to underflow.
1618 *
1619 * Now, since we already accumulated the second, cannot simply roll
1620 * the accumulated second back, since the NTP subsystem has been
1621 * notified via second_overflow. So instead we push xtime_nsec forward
1622 * by the amount we underflowed, and add that amount into the error.
1623 *
1624 * We'll correct this error next time through this function, when
1625 * xtime_nsec is not as small.
1626 */
1627 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1628 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1629 tk->tkr_mono.xtime_nsec = 0;
1630 tk->ntp_error += neg << tk->ntp_error_shift;
1631 }
1632 }
1633
1634 /**
1635 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1636 *
1637 * Helper function that accumulates a the nsecs greater then a second
1638 * from the xtime_nsec field to the xtime_secs field.
1639 * It also calls into the NTP code to handle leapsecond processing.
1640 *
1641 */
1642 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1643 {
1644 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1645 unsigned int clock_set = 0;
1646
1647 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1648 int leap;
1649
1650 tk->tkr_mono.xtime_nsec -= nsecps;
1651 tk->xtime_sec++;
1652
1653 /* Figure out if its a leap sec and apply if needed */
1654 leap = second_overflow(tk->xtime_sec);
1655 if (unlikely(leap)) {
1656 struct timespec64 ts;
1657
1658 tk->xtime_sec += leap;
1659
1660 ts.tv_sec = leap;
1661 ts.tv_nsec = 0;
1662 tk_set_wall_to_mono(tk,
1663 timespec64_sub(tk->wall_to_monotonic, ts));
1664
1665 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1666
1667 clock_set = TK_CLOCK_WAS_SET;
1668 }
1669 }
1670 return clock_set;
1671 }
1672
1673 /**
1674 * logarithmic_accumulation - shifted accumulation of cycles
1675 *
1676 * This functions accumulates a shifted interval of cycles into
1677 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1678 * loop.
1679 *
1680 * Returns the unconsumed cycles.
1681 */
1682 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1683 u32 shift,
1684 unsigned int *clock_set)
1685 {
1686 cycle_t interval = tk->cycle_interval << shift;
1687 u64 raw_nsecs;
1688
1689 /* If the offset is smaller then a shifted interval, do nothing */
1690 if (offset < interval)
1691 return offset;
1692
1693 /* Accumulate one shifted interval */
1694 offset -= interval;
1695 tk->tkr_mono.cycle_last += interval;
1696 tk->tkr_raw.cycle_last += interval;
1697
1698 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1699 *clock_set |= accumulate_nsecs_to_secs(tk);
1700
1701 /* Accumulate raw time */
1702 raw_nsecs = (u64)tk->raw_interval << shift;
1703 raw_nsecs += tk->raw_time.tv_nsec;
1704 if (raw_nsecs >= NSEC_PER_SEC) {
1705 u64 raw_secs = raw_nsecs;
1706 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1707 tk->raw_time.tv_sec += raw_secs;
1708 }
1709 tk->raw_time.tv_nsec = raw_nsecs;
1710
1711 /* Accumulate error between NTP and clock interval */
1712 tk->ntp_error += tk->ntp_tick << shift;
1713 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1714 (tk->ntp_error_shift + shift);
1715
1716 return offset;
1717 }
1718
1719 /**
1720 * update_wall_time - Uses the current clocksource to increment the wall time
1721 *
1722 */
1723 void update_wall_time(void)
1724 {
1725 struct timekeeper *real_tk = &tk_core.timekeeper;
1726 struct timekeeper *tk = &shadow_timekeeper;
1727 cycle_t offset;
1728 int shift = 0, maxshift;
1729 unsigned int clock_set = 0;
1730 unsigned long flags;
1731
1732 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1733
1734 /* Make sure we're fully resumed: */
1735 if (unlikely(timekeeping_suspended))
1736 goto out;
1737
1738 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1739 offset = real_tk->cycle_interval;
1740 #else
1741 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1742 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1743 #endif
1744
1745 /* Check if there's really nothing to do */
1746 if (offset < real_tk->cycle_interval)
1747 goto out;
1748
1749 /* Do some additional sanity checking */
1750 timekeeping_check_update(real_tk, offset);
1751
1752 /*
1753 * With NO_HZ we may have to accumulate many cycle_intervals
1754 * (think "ticks") worth of time at once. To do this efficiently,
1755 * we calculate the largest doubling multiple of cycle_intervals
1756 * that is smaller than the offset. We then accumulate that
1757 * chunk in one go, and then try to consume the next smaller
1758 * doubled multiple.
1759 */
1760 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1761 shift = max(0, shift);
1762 /* Bound shift to one less than what overflows tick_length */
1763 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1764 shift = min(shift, maxshift);
1765 while (offset >= tk->cycle_interval) {
1766 offset = logarithmic_accumulation(tk, offset, shift,
1767 &clock_set);
1768 if (offset < tk->cycle_interval<<shift)
1769 shift--;
1770 }
1771
1772 /* correct the clock when NTP error is too big */
1773 timekeeping_adjust(tk, offset);
1774
1775 /*
1776 * XXX This can be killed once everyone converts
1777 * to the new update_vsyscall.
1778 */
1779 old_vsyscall_fixup(tk);
1780
1781 /*
1782 * Finally, make sure that after the rounding
1783 * xtime_nsec isn't larger than NSEC_PER_SEC
1784 */
1785 clock_set |= accumulate_nsecs_to_secs(tk);
1786
1787 write_seqcount_begin(&tk_core.seq);
1788 /*
1789 * Update the real timekeeper.
1790 *
1791 * We could avoid this memcpy by switching pointers, but that
1792 * requires changes to all other timekeeper usage sites as
1793 * well, i.e. move the timekeeper pointer getter into the
1794 * spinlocked/seqcount protected sections. And we trade this
1795 * memcpy under the tk_core.seq against one before we start
1796 * updating.
1797 */
1798 memcpy(real_tk, tk, sizeof(*tk));
1799 timekeeping_update(real_tk, clock_set);
1800 write_seqcount_end(&tk_core.seq);
1801 out:
1802 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1803 if (clock_set)
1804 /* Have to call _delayed version, since in irq context*/
1805 clock_was_set_delayed();
1806 }
1807
1808 /**
1809 * getboottime64 - Return the real time of system boot.
1810 * @ts: pointer to the timespec64 to be set
1811 *
1812 * Returns the wall-time of boot in a timespec64.
1813 *
1814 * This is based on the wall_to_monotonic offset and the total suspend
1815 * time. Calls to settimeofday will affect the value returned (which
1816 * basically means that however wrong your real time clock is at boot time,
1817 * you get the right time here).
1818 */
1819 void getboottime64(struct timespec64 *ts)
1820 {
1821 struct timekeeper *tk = &tk_core.timekeeper;
1822 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1823
1824 *ts = ktime_to_timespec64(t);
1825 }
1826 EXPORT_SYMBOL_GPL(getboottime64);
1827
1828 unsigned long get_seconds(void)
1829 {
1830 struct timekeeper *tk = &tk_core.timekeeper;
1831
1832 return tk->xtime_sec;
1833 }
1834 EXPORT_SYMBOL(get_seconds);
1835
1836 struct timespec __current_kernel_time(void)
1837 {
1838 struct timekeeper *tk = &tk_core.timekeeper;
1839
1840 return timespec64_to_timespec(tk_xtime(tk));
1841 }
1842
1843 struct timespec current_kernel_time(void)
1844 {
1845 struct timekeeper *tk = &tk_core.timekeeper;
1846 struct timespec64 now;
1847 unsigned long seq;
1848
1849 do {
1850 seq = read_seqcount_begin(&tk_core.seq);
1851
1852 now = tk_xtime(tk);
1853 } while (read_seqcount_retry(&tk_core.seq, seq));
1854
1855 return timespec64_to_timespec(now);
1856 }
1857 EXPORT_SYMBOL(current_kernel_time);
1858
1859 struct timespec64 get_monotonic_coarse64(void)
1860 {
1861 struct timekeeper *tk = &tk_core.timekeeper;
1862 struct timespec64 now, mono;
1863 unsigned long seq;
1864
1865 do {
1866 seq = read_seqcount_begin(&tk_core.seq);
1867
1868 now = tk_xtime(tk);
1869 mono = tk->wall_to_monotonic;
1870 } while (read_seqcount_retry(&tk_core.seq, seq));
1871
1872 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1873 now.tv_nsec + mono.tv_nsec);
1874
1875 return now;
1876 }
1877
1878 /*
1879 * Must hold jiffies_lock
1880 */
1881 void do_timer(unsigned long ticks)
1882 {
1883 jiffies_64 += ticks;
1884 calc_global_load(ticks);
1885 }
1886
1887 /**
1888 * ktime_get_update_offsets_tick - hrtimer helper
1889 * @offs_real: pointer to storage for monotonic -> realtime offset
1890 * @offs_boot: pointer to storage for monotonic -> boottime offset
1891 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1892 *
1893 * Returns monotonic time at last tick and various offsets
1894 */
1895 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1896 ktime_t *offs_tai)
1897 {
1898 struct timekeeper *tk = &tk_core.timekeeper;
1899 unsigned int seq;
1900 ktime_t base;
1901 u64 nsecs;
1902
1903 do {
1904 seq = read_seqcount_begin(&tk_core.seq);
1905
1906 base = tk->tkr_mono.base;
1907 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1908
1909 *offs_real = tk->offs_real;
1910 *offs_boot = tk->offs_boot;
1911 *offs_tai = tk->offs_tai;
1912 } while (read_seqcount_retry(&tk_core.seq, seq));
1913
1914 return ktime_add_ns(base, nsecs);
1915 }
1916
1917 #ifdef CONFIG_HIGH_RES_TIMERS
1918 /**
1919 * ktime_get_update_offsets_now - hrtimer helper
1920 * @offs_real: pointer to storage for monotonic -> realtime offset
1921 * @offs_boot: pointer to storage for monotonic -> boottime offset
1922 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1923 *
1924 * Returns current monotonic time and updates the offsets
1925 * Called from hrtimer_interrupt() or retrigger_next_event()
1926 */
1927 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1928 ktime_t *offs_tai)
1929 {
1930 struct timekeeper *tk = &tk_core.timekeeper;
1931 unsigned int seq;
1932 ktime_t base;
1933 u64 nsecs;
1934
1935 do {
1936 seq = read_seqcount_begin(&tk_core.seq);
1937
1938 base = tk->tkr_mono.base;
1939 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1940
1941 *offs_real = tk->offs_real;
1942 *offs_boot = tk->offs_boot;
1943 *offs_tai = tk->offs_tai;
1944 } while (read_seqcount_retry(&tk_core.seq, seq));
1945
1946 return ktime_add_ns(base, nsecs);
1947 }
1948 #endif
1949
1950 /**
1951 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1952 */
1953 int do_adjtimex(struct timex *txc)
1954 {
1955 struct timekeeper *tk = &tk_core.timekeeper;
1956 unsigned long flags;
1957 struct timespec64 ts;
1958 s32 orig_tai, tai;
1959 int ret;
1960
1961 /* Validate the data before disabling interrupts */
1962 ret = ntp_validate_timex(txc);
1963 if (ret)
1964 return ret;
1965
1966 if (txc->modes & ADJ_SETOFFSET) {
1967 struct timespec delta;
1968 delta.tv_sec = txc->time.tv_sec;
1969 delta.tv_nsec = txc->time.tv_usec;
1970 if (!(txc->modes & ADJ_NANO))
1971 delta.tv_nsec *= 1000;
1972 ret = timekeeping_inject_offset(&delta);
1973 if (ret)
1974 return ret;
1975 }
1976
1977 getnstimeofday64(&ts);
1978
1979 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1980 write_seqcount_begin(&tk_core.seq);
1981
1982 orig_tai = tai = tk->tai_offset;
1983 ret = __do_adjtimex(txc, &ts, &tai);
1984
1985 if (tai != orig_tai) {
1986 __timekeeping_set_tai_offset(tk, tai);
1987 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1988 }
1989 write_seqcount_end(&tk_core.seq);
1990 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1991
1992 if (tai != orig_tai)
1993 clock_was_set();
1994
1995 ntp_notify_cmos_timer();
1996
1997 return ret;
1998 }
1999
2000 #ifdef CONFIG_NTP_PPS
2001 /**
2002 * hardpps() - Accessor function to NTP __hardpps function
2003 */
2004 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2005 {
2006 unsigned long flags;
2007
2008 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2009 write_seqcount_begin(&tk_core.seq);
2010
2011 __hardpps(phase_ts, raw_ts);
2012
2013 write_seqcount_end(&tk_core.seq);
2014 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2015 }
2016 EXPORT_SYMBOL(hardpps);
2017 #endif
2018
2019 /**
2020 * xtime_update() - advances the timekeeping infrastructure
2021 * @ticks: number of ticks, that have elapsed since the last call.
2022 *
2023 * Must be called with interrupts disabled.
2024 */
2025 void xtime_update(unsigned long ticks)
2026 {
2027 write_seqlock(&jiffies_lock);
2028 do_timer(ticks);
2029 write_sequnlock(&jiffies_lock);
2030 update_wall_time();
2031 }
This page took 0.071779 seconds and 4 git commands to generate.