x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* NTP adjusted clock multiplier */
29 u32 mult;
30 /* The shift value of the current clocksource. */
31 int shift;
32
33 /* Number of clock cycles in one NTP interval. */
34 cycle_t cycle_interval;
35 /* Number of clock shifted nano seconds in one NTP interval. */
36 u64 xtime_interval;
37 /* shifted nano seconds left over when rounding cycle_interval */
38 s64 xtime_remainder;
39 /* Raw nano seconds accumulated per NTP interval. */
40 u32 raw_interval;
41
42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 u64 xtime_nsec;
44 /* Difference between accumulated time and NTP time in ntp
45 * shifted nano seconds. */
46 s64 ntp_error;
47 /* Shift conversion between clock shifted nano seconds and
48 * ntp shifted nano seconds. */
49 int ntp_error_shift;
50
51 /* The current time */
52 struct timespec xtime;
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
67 struct timespec wall_to_monotonic;
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
72
73 /* Seqlock for all timekeeper values */
74 seqlock_t lock;
75 };
76
77 static struct timekeeper timekeeper;
78
79 /*
80 * This read-write spinlock protects us from races in SMP while
81 * playing with xtime.
82 */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84
85
86 /* flag for if timekeeping is suspended */
87 int __read_mostly timekeeping_suspended;
88
89
90
91 /**
92 * timekeeper_setup_internals - Set up internals to use clocksource clock.
93 *
94 * @clock: Pointer to clocksource.
95 *
96 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97 * pair and interval request.
98 *
99 * Unless you're the timekeeping code, you should not be using this!
100 */
101 static void timekeeper_setup_internals(struct clocksource *clock)
102 {
103 cycle_t interval;
104 u64 tmp, ntpinterval;
105
106 timekeeper.clock = clock;
107 clock->cycle_last = clock->read(clock);
108
109 /* Do the ns -> cycle conversion first, using original mult */
110 tmp = NTP_INTERVAL_LENGTH;
111 tmp <<= clock->shift;
112 ntpinterval = tmp;
113 tmp += clock->mult/2;
114 do_div(tmp, clock->mult);
115 if (tmp == 0)
116 tmp = 1;
117
118 interval = (cycle_t) tmp;
119 timekeeper.cycle_interval = interval;
120
121 /* Go back from cycles -> shifted ns */
122 timekeeper.xtime_interval = (u64) interval * clock->mult;
123 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124 timekeeper.raw_interval =
125 ((u64) interval * clock->mult) >> clock->shift;
126
127 timekeeper.xtime_nsec = 0;
128 timekeeper.shift = clock->shift;
129
130 timekeeper.ntp_error = 0;
131 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132
133 /*
134 * The timekeeper keeps its own mult values for the currently
135 * active clocksource. These value will be adjusted via NTP
136 * to counteract clock drifting.
137 */
138 timekeeper.mult = clock->mult;
139 }
140
141 /* Timekeeper helper functions. */
142 static inline s64 timekeeping_get_ns(void)
143 {
144 cycle_t cycle_now, cycle_delta;
145 struct clocksource *clock;
146
147 /* read clocksource: */
148 clock = timekeeper.clock;
149 cycle_now = clock->read(clock);
150
151 /* calculate the delta since the last update_wall_time: */
152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153
154 /* return delta convert to nanoseconds using ntp adjusted mult. */
155 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156 timekeeper.shift);
157 }
158
159 static inline s64 timekeeping_get_ns_raw(void)
160 {
161 cycle_t cycle_now, cycle_delta;
162 struct clocksource *clock;
163
164 /* read clocksource: */
165 clock = timekeeper.clock;
166 cycle_now = clock->read(clock);
167
168 /* calculate the delta since the last update_wall_time: */
169 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170
171 /* return delta convert to nanoseconds. */
172 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173 }
174
175 /* must hold write on timekeeper.lock */
176 static void timekeeping_update(bool clearntp)
177 {
178 if (clearntp) {
179 timekeeper.ntp_error = 0;
180 ntp_clear();
181 }
182 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
183 timekeeper.clock, timekeeper.mult);
184 }
185
186
187 /**
188 * timekeeping_forward_now - update clock to the current time
189 *
190 * Forward the current clock to update its state since the last call to
191 * update_wall_time(). This is useful before significant clock changes,
192 * as it avoids having to deal with this time offset explicitly.
193 */
194 static void timekeeping_forward_now(void)
195 {
196 cycle_t cycle_now, cycle_delta;
197 struct clocksource *clock;
198 s64 nsec;
199
200 clock = timekeeper.clock;
201 cycle_now = clock->read(clock);
202 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
203 clock->cycle_last = cycle_now;
204
205 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
206 timekeeper.shift);
207
208 /* If arch requires, add in gettimeoffset() */
209 nsec += arch_gettimeoffset();
210
211 timespec_add_ns(&timekeeper.xtime, nsec);
212
213 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
214 timespec_add_ns(&timekeeper.raw_time, nsec);
215 }
216
217 /**
218 * getnstimeofday - Returns the time of day in a timespec
219 * @ts: pointer to the timespec to be set
220 *
221 * Returns the time of day in a timespec.
222 */
223 void getnstimeofday(struct timespec *ts)
224 {
225 unsigned long seq;
226 s64 nsecs;
227
228 WARN_ON(timekeeping_suspended);
229
230 do {
231 seq = read_seqbegin(&timekeeper.lock);
232
233 *ts = timekeeper.xtime;
234 nsecs = timekeeping_get_ns();
235
236 /* If arch requires, add in gettimeoffset() */
237 nsecs += arch_gettimeoffset();
238
239 } while (read_seqretry(&timekeeper.lock, seq));
240
241 timespec_add_ns(ts, nsecs);
242 }
243 EXPORT_SYMBOL(getnstimeofday);
244
245 ktime_t ktime_get(void)
246 {
247 unsigned int seq;
248 s64 secs, nsecs;
249
250 WARN_ON(timekeeping_suspended);
251
252 do {
253 seq = read_seqbegin(&timekeeper.lock);
254 secs = timekeeper.xtime.tv_sec +
255 timekeeper.wall_to_monotonic.tv_sec;
256 nsecs = timekeeper.xtime.tv_nsec +
257 timekeeper.wall_to_monotonic.tv_nsec;
258 nsecs += timekeeping_get_ns();
259 /* If arch requires, add in gettimeoffset() */
260 nsecs += arch_gettimeoffset();
261
262 } while (read_seqretry(&timekeeper.lock, seq));
263 /*
264 * Use ktime_set/ktime_add_ns to create a proper ktime on
265 * 32-bit architectures without CONFIG_KTIME_SCALAR.
266 */
267 return ktime_add_ns(ktime_set(secs, 0), nsecs);
268 }
269 EXPORT_SYMBOL_GPL(ktime_get);
270
271 /**
272 * ktime_get_ts - get the monotonic clock in timespec format
273 * @ts: pointer to timespec variable
274 *
275 * The function calculates the monotonic clock from the realtime
276 * clock and the wall_to_monotonic offset and stores the result
277 * in normalized timespec format in the variable pointed to by @ts.
278 */
279 void ktime_get_ts(struct timespec *ts)
280 {
281 struct timespec tomono;
282 unsigned int seq;
283 s64 nsecs;
284
285 WARN_ON(timekeeping_suspended);
286
287 do {
288 seq = read_seqbegin(&timekeeper.lock);
289 *ts = timekeeper.xtime;
290 tomono = timekeeper.wall_to_monotonic;
291 nsecs = timekeeping_get_ns();
292 /* If arch requires, add in gettimeoffset() */
293 nsecs += arch_gettimeoffset();
294
295 } while (read_seqretry(&timekeeper.lock, seq));
296
297 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
298 ts->tv_nsec + tomono.tv_nsec + nsecs);
299 }
300 EXPORT_SYMBOL_GPL(ktime_get_ts);
301
302 #ifdef CONFIG_NTP_PPS
303
304 /**
305 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
306 * @ts_raw: pointer to the timespec to be set to raw monotonic time
307 * @ts_real: pointer to the timespec to be set to the time of day
308 *
309 * This function reads both the time of day and raw monotonic time at the
310 * same time atomically and stores the resulting timestamps in timespec
311 * format.
312 */
313 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
314 {
315 unsigned long seq;
316 s64 nsecs_raw, nsecs_real;
317
318 WARN_ON_ONCE(timekeeping_suspended);
319
320 do {
321 u32 arch_offset;
322
323 seq = read_seqbegin(&timekeeper.lock);
324
325 *ts_raw = timekeeper.raw_time;
326 *ts_real = timekeeper.xtime;
327
328 nsecs_raw = timekeeping_get_ns_raw();
329 nsecs_real = timekeeping_get_ns();
330
331 /* If arch requires, add in gettimeoffset() */
332 arch_offset = arch_gettimeoffset();
333 nsecs_raw += arch_offset;
334 nsecs_real += arch_offset;
335
336 } while (read_seqretry(&timekeeper.lock, seq));
337
338 timespec_add_ns(ts_raw, nsecs_raw);
339 timespec_add_ns(ts_real, nsecs_real);
340 }
341 EXPORT_SYMBOL(getnstime_raw_and_real);
342
343 #endif /* CONFIG_NTP_PPS */
344
345 /**
346 * do_gettimeofday - Returns the time of day in a timeval
347 * @tv: pointer to the timeval to be set
348 *
349 * NOTE: Users should be converted to using getnstimeofday()
350 */
351 void do_gettimeofday(struct timeval *tv)
352 {
353 struct timespec now;
354
355 getnstimeofday(&now);
356 tv->tv_sec = now.tv_sec;
357 tv->tv_usec = now.tv_nsec/1000;
358 }
359 EXPORT_SYMBOL(do_gettimeofday);
360
361 /**
362 * do_settimeofday - Sets the time of day
363 * @tv: pointer to the timespec variable containing the new time
364 *
365 * Sets the time of day to the new time and update NTP and notify hrtimers
366 */
367 int do_settimeofday(const struct timespec *tv)
368 {
369 struct timespec ts_delta;
370 unsigned long flags;
371
372 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
373 return -EINVAL;
374
375 write_seqlock_irqsave(&timekeeper.lock, flags);
376
377 timekeeping_forward_now();
378
379 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
380 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
381 timekeeper.wall_to_monotonic =
382 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
383
384 timekeeper.xtime = *tv;
385 timekeeping_update(true);
386
387 write_sequnlock_irqrestore(&timekeeper.lock, flags);
388
389 /* signal hrtimers about time change */
390 clock_was_set();
391
392 return 0;
393 }
394 EXPORT_SYMBOL(do_settimeofday);
395
396
397 /**
398 * timekeeping_inject_offset - Adds or subtracts from the current time.
399 * @tv: pointer to the timespec variable containing the offset
400 *
401 * Adds or subtracts an offset value from the current time.
402 */
403 int timekeeping_inject_offset(struct timespec *ts)
404 {
405 unsigned long flags;
406
407 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
408 return -EINVAL;
409
410 write_seqlock_irqsave(&timekeeper.lock, flags);
411
412 timekeeping_forward_now();
413
414 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
415 timekeeper.wall_to_monotonic =
416 timespec_sub(timekeeper.wall_to_monotonic, *ts);
417
418 timekeeping_update(true);
419
420 write_sequnlock_irqrestore(&timekeeper.lock, flags);
421
422 /* signal hrtimers about time change */
423 clock_was_set();
424
425 return 0;
426 }
427 EXPORT_SYMBOL(timekeeping_inject_offset);
428
429 /**
430 * change_clocksource - Swaps clocksources if a new one is available
431 *
432 * Accumulates current time interval and initializes new clocksource
433 */
434 static int change_clocksource(void *data)
435 {
436 struct clocksource *new, *old;
437 unsigned long flags;
438
439 new = (struct clocksource *) data;
440
441 write_seqlock_irqsave(&timekeeper.lock, flags);
442
443 timekeeping_forward_now();
444 if (!new->enable || new->enable(new) == 0) {
445 old = timekeeper.clock;
446 timekeeper_setup_internals(new);
447 if (old->disable)
448 old->disable(old);
449 }
450 timekeeping_update(true);
451
452 write_sequnlock_irqrestore(&timekeeper.lock, flags);
453
454 return 0;
455 }
456
457 /**
458 * timekeeping_notify - Install a new clock source
459 * @clock: pointer to the clock source
460 *
461 * This function is called from clocksource.c after a new, better clock
462 * source has been registered. The caller holds the clocksource_mutex.
463 */
464 void timekeeping_notify(struct clocksource *clock)
465 {
466 if (timekeeper.clock == clock)
467 return;
468 stop_machine(change_clocksource, clock, NULL);
469 tick_clock_notify();
470 }
471
472 /**
473 * ktime_get_real - get the real (wall-) time in ktime_t format
474 *
475 * returns the time in ktime_t format
476 */
477 ktime_t ktime_get_real(void)
478 {
479 struct timespec now;
480
481 getnstimeofday(&now);
482
483 return timespec_to_ktime(now);
484 }
485 EXPORT_SYMBOL_GPL(ktime_get_real);
486
487 /**
488 * getrawmonotonic - Returns the raw monotonic time in a timespec
489 * @ts: pointer to the timespec to be set
490 *
491 * Returns the raw monotonic time (completely un-modified by ntp)
492 */
493 void getrawmonotonic(struct timespec *ts)
494 {
495 unsigned long seq;
496 s64 nsecs;
497
498 do {
499 seq = read_seqbegin(&timekeeper.lock);
500 nsecs = timekeeping_get_ns_raw();
501 *ts = timekeeper.raw_time;
502
503 } while (read_seqretry(&timekeeper.lock, seq));
504
505 timespec_add_ns(ts, nsecs);
506 }
507 EXPORT_SYMBOL(getrawmonotonic);
508
509
510 /**
511 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
512 */
513 int timekeeping_valid_for_hres(void)
514 {
515 unsigned long seq;
516 int ret;
517
518 do {
519 seq = read_seqbegin(&timekeeper.lock);
520
521 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
522
523 } while (read_seqretry(&timekeeper.lock, seq));
524
525 return ret;
526 }
527
528 /**
529 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
530 */
531 u64 timekeeping_max_deferment(void)
532 {
533 unsigned long seq;
534 u64 ret;
535 do {
536 seq = read_seqbegin(&timekeeper.lock);
537
538 ret = timekeeper.clock->max_idle_ns;
539
540 } while (read_seqretry(&timekeeper.lock, seq));
541
542 return ret;
543 }
544
545 /**
546 * read_persistent_clock - Return time from the persistent clock.
547 *
548 * Weak dummy function for arches that do not yet support it.
549 * Reads the time from the battery backed persistent clock.
550 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
551 *
552 * XXX - Do be sure to remove it once all arches implement it.
553 */
554 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
555 {
556 ts->tv_sec = 0;
557 ts->tv_nsec = 0;
558 }
559
560 /**
561 * read_boot_clock - Return time of the system start.
562 *
563 * Weak dummy function for arches that do not yet support it.
564 * Function to read the exact time the system has been started.
565 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
566 *
567 * XXX - Do be sure to remove it once all arches implement it.
568 */
569 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
570 {
571 ts->tv_sec = 0;
572 ts->tv_nsec = 0;
573 }
574
575 /*
576 * timekeeping_init - Initializes the clocksource and common timekeeping values
577 */
578 void __init timekeeping_init(void)
579 {
580 struct clocksource *clock;
581 unsigned long flags;
582 struct timespec now, boot;
583
584 read_persistent_clock(&now);
585 read_boot_clock(&boot);
586
587 seqlock_init(&timekeeper.lock);
588
589 ntp_init();
590
591 write_seqlock_irqsave(&timekeeper.lock, flags);
592 clock = clocksource_default_clock();
593 if (clock->enable)
594 clock->enable(clock);
595 timekeeper_setup_internals(clock);
596
597 timekeeper.xtime.tv_sec = now.tv_sec;
598 timekeeper.xtime.tv_nsec = now.tv_nsec;
599 timekeeper.raw_time.tv_sec = 0;
600 timekeeper.raw_time.tv_nsec = 0;
601 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
602 boot.tv_sec = timekeeper.xtime.tv_sec;
603 boot.tv_nsec = timekeeper.xtime.tv_nsec;
604 }
605 set_normalized_timespec(&timekeeper.wall_to_monotonic,
606 -boot.tv_sec, -boot.tv_nsec);
607 timekeeper.total_sleep_time.tv_sec = 0;
608 timekeeper.total_sleep_time.tv_nsec = 0;
609 write_sequnlock_irqrestore(&timekeeper.lock, flags);
610 }
611
612 /* time in seconds when suspend began */
613 static struct timespec timekeeping_suspend_time;
614
615 /**
616 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
617 * @delta: pointer to a timespec delta value
618 *
619 * Takes a timespec offset measuring a suspend interval and properly
620 * adds the sleep offset to the timekeeping variables.
621 */
622 static void __timekeeping_inject_sleeptime(struct timespec *delta)
623 {
624 if (!timespec_valid(delta)) {
625 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
626 "sleep delta value!\n");
627 return;
628 }
629
630 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
631 timekeeper.wall_to_monotonic =
632 timespec_sub(timekeeper.wall_to_monotonic, *delta);
633 timekeeper.total_sleep_time = timespec_add(
634 timekeeper.total_sleep_time, *delta);
635 }
636
637
638 /**
639 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
640 * @delta: pointer to a timespec delta value
641 *
642 * This hook is for architectures that cannot support read_persistent_clock
643 * because their RTC/persistent clock is only accessible when irqs are enabled.
644 *
645 * This function should only be called by rtc_resume(), and allows
646 * a suspend offset to be injected into the timekeeping values.
647 */
648 void timekeeping_inject_sleeptime(struct timespec *delta)
649 {
650 unsigned long flags;
651 struct timespec ts;
652
653 /* Make sure we don't set the clock twice */
654 read_persistent_clock(&ts);
655 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
656 return;
657
658 write_seqlock_irqsave(&timekeeper.lock, flags);
659
660 timekeeping_forward_now();
661
662 __timekeeping_inject_sleeptime(delta);
663
664 timekeeping_update(true);
665
666 write_sequnlock_irqrestore(&timekeeper.lock, flags);
667
668 /* signal hrtimers about time change */
669 clock_was_set();
670 }
671
672
673 /**
674 * timekeeping_resume - Resumes the generic timekeeping subsystem.
675 *
676 * This is for the generic clocksource timekeeping.
677 * xtime/wall_to_monotonic/jiffies/etc are
678 * still managed by arch specific suspend/resume code.
679 */
680 static void timekeeping_resume(void)
681 {
682 unsigned long flags;
683 struct timespec ts;
684
685 read_persistent_clock(&ts);
686
687 clocksource_resume();
688
689 write_seqlock_irqsave(&timekeeper.lock, flags);
690
691 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
692 ts = timespec_sub(ts, timekeeping_suspend_time);
693 __timekeeping_inject_sleeptime(&ts);
694 }
695 /* re-base the last cycle value */
696 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
697 timekeeper.ntp_error = 0;
698 timekeeping_suspended = 0;
699 write_sequnlock_irqrestore(&timekeeper.lock, flags);
700
701 touch_softlockup_watchdog();
702
703 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
704
705 /* Resume hrtimers */
706 hrtimers_resume();
707 }
708
709 static int timekeeping_suspend(void)
710 {
711 unsigned long flags;
712 struct timespec delta, delta_delta;
713 static struct timespec old_delta;
714
715 read_persistent_clock(&timekeeping_suspend_time);
716
717 write_seqlock_irqsave(&timekeeper.lock, flags);
718 timekeeping_forward_now();
719 timekeeping_suspended = 1;
720
721 /*
722 * To avoid drift caused by repeated suspend/resumes,
723 * which each can add ~1 second drift error,
724 * try to compensate so the difference in system time
725 * and persistent_clock time stays close to constant.
726 */
727 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
728 delta_delta = timespec_sub(delta, old_delta);
729 if (abs(delta_delta.tv_sec) >= 2) {
730 /*
731 * if delta_delta is too large, assume time correction
732 * has occured and set old_delta to the current delta.
733 */
734 old_delta = delta;
735 } else {
736 /* Otherwise try to adjust old_system to compensate */
737 timekeeping_suspend_time =
738 timespec_add(timekeeping_suspend_time, delta_delta);
739 }
740 write_sequnlock_irqrestore(&timekeeper.lock, flags);
741
742 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
743 clocksource_suspend();
744
745 return 0;
746 }
747
748 /* sysfs resume/suspend bits for timekeeping */
749 static struct syscore_ops timekeeping_syscore_ops = {
750 .resume = timekeeping_resume,
751 .suspend = timekeeping_suspend,
752 };
753
754 static int __init timekeeping_init_ops(void)
755 {
756 register_syscore_ops(&timekeeping_syscore_ops);
757 return 0;
758 }
759
760 device_initcall(timekeeping_init_ops);
761
762 /*
763 * If the error is already larger, we look ahead even further
764 * to compensate for late or lost adjustments.
765 */
766 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
767 s64 *offset)
768 {
769 s64 tick_error, i;
770 u32 look_ahead, adj;
771 s32 error2, mult;
772
773 /*
774 * Use the current error value to determine how much to look ahead.
775 * The larger the error the slower we adjust for it to avoid problems
776 * with losing too many ticks, otherwise we would overadjust and
777 * produce an even larger error. The smaller the adjustment the
778 * faster we try to adjust for it, as lost ticks can do less harm
779 * here. This is tuned so that an error of about 1 msec is adjusted
780 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
781 */
782 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
783 error2 = abs(error2);
784 for (look_ahead = 0; error2 > 0; look_ahead++)
785 error2 >>= 2;
786
787 /*
788 * Now calculate the error in (1 << look_ahead) ticks, but first
789 * remove the single look ahead already included in the error.
790 */
791 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
792 tick_error -= timekeeper.xtime_interval >> 1;
793 error = ((error - tick_error) >> look_ahead) + tick_error;
794
795 /* Finally calculate the adjustment shift value. */
796 i = *interval;
797 mult = 1;
798 if (error < 0) {
799 error = -error;
800 *interval = -*interval;
801 *offset = -*offset;
802 mult = -1;
803 }
804 for (adj = 0; error > i; adj++)
805 error >>= 1;
806
807 *interval <<= adj;
808 *offset <<= adj;
809 return mult << adj;
810 }
811
812 /*
813 * Adjust the multiplier to reduce the error value,
814 * this is optimized for the most common adjustments of -1,0,1,
815 * for other values we can do a bit more work.
816 */
817 static void timekeeping_adjust(s64 offset)
818 {
819 s64 error, interval = timekeeper.cycle_interval;
820 int adj;
821
822 /*
823 * The point of this is to check if the error is greater than half
824 * an interval.
825 *
826 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
827 *
828 * Note we subtract one in the shift, so that error is really error*2.
829 * This "saves" dividing(shifting) interval twice, but keeps the
830 * (error > interval) comparison as still measuring if error is
831 * larger than half an interval.
832 *
833 * Note: It does not "save" on aggravation when reading the code.
834 */
835 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
836 if (error > interval) {
837 /*
838 * We now divide error by 4(via shift), which checks if
839 * the error is greater than twice the interval.
840 * If it is greater, we need a bigadjust, if its smaller,
841 * we can adjust by 1.
842 */
843 error >>= 2;
844 /*
845 * XXX - In update_wall_time, we round up to the next
846 * nanosecond, and store the amount rounded up into
847 * the error. This causes the likely below to be unlikely.
848 *
849 * The proper fix is to avoid rounding up by using
850 * the high precision timekeeper.xtime_nsec instead of
851 * xtime.tv_nsec everywhere. Fixing this will take some
852 * time.
853 */
854 if (likely(error <= interval))
855 adj = 1;
856 else
857 adj = timekeeping_bigadjust(error, &interval, &offset);
858 } else if (error < -interval) {
859 /* See comment above, this is just switched for the negative */
860 error >>= 2;
861 if (likely(error >= -interval)) {
862 adj = -1;
863 interval = -interval;
864 offset = -offset;
865 } else
866 adj = timekeeping_bigadjust(error, &interval, &offset);
867 } else /* No adjustment needed */
868 return;
869
870 if (unlikely(timekeeper.clock->maxadj &&
871 (timekeeper.mult + adj >
872 timekeeper.clock->mult + timekeeper.clock->maxadj))) {
873 printk_once(KERN_WARNING
874 "Adjusting %s more than 11%% (%ld vs %ld)\n",
875 timekeeper.clock->name, (long)timekeeper.mult + adj,
876 (long)timekeeper.clock->mult +
877 timekeeper.clock->maxadj);
878 }
879 /*
880 * So the following can be confusing.
881 *
882 * To keep things simple, lets assume adj == 1 for now.
883 *
884 * When adj != 1, remember that the interval and offset values
885 * have been appropriately scaled so the math is the same.
886 *
887 * The basic idea here is that we're increasing the multiplier
888 * by one, this causes the xtime_interval to be incremented by
889 * one cycle_interval. This is because:
890 * xtime_interval = cycle_interval * mult
891 * So if mult is being incremented by one:
892 * xtime_interval = cycle_interval * (mult + 1)
893 * Its the same as:
894 * xtime_interval = (cycle_interval * mult) + cycle_interval
895 * Which can be shortened to:
896 * xtime_interval += cycle_interval
897 *
898 * So offset stores the non-accumulated cycles. Thus the current
899 * time (in shifted nanoseconds) is:
900 * now = (offset * adj) + xtime_nsec
901 * Now, even though we're adjusting the clock frequency, we have
902 * to keep time consistent. In other words, we can't jump back
903 * in time, and we also want to avoid jumping forward in time.
904 *
905 * So given the same offset value, we need the time to be the same
906 * both before and after the freq adjustment.
907 * now = (offset * adj_1) + xtime_nsec_1
908 * now = (offset * adj_2) + xtime_nsec_2
909 * So:
910 * (offset * adj_1) + xtime_nsec_1 =
911 * (offset * adj_2) + xtime_nsec_2
912 * And we know:
913 * adj_2 = adj_1 + 1
914 * So:
915 * (offset * adj_1) + xtime_nsec_1 =
916 * (offset * (adj_1+1)) + xtime_nsec_2
917 * (offset * adj_1) + xtime_nsec_1 =
918 * (offset * adj_1) + offset + xtime_nsec_2
919 * Canceling the sides:
920 * xtime_nsec_1 = offset + xtime_nsec_2
921 * Which gives us:
922 * xtime_nsec_2 = xtime_nsec_1 - offset
923 * Which simplfies to:
924 * xtime_nsec -= offset
925 *
926 * XXX - TODO: Doc ntp_error calculation.
927 */
928 timekeeper.mult += adj;
929 timekeeper.xtime_interval += interval;
930 timekeeper.xtime_nsec -= offset;
931 timekeeper.ntp_error -= (interval - offset) <<
932 timekeeper.ntp_error_shift;
933 }
934
935
936 /**
937 * logarithmic_accumulation - shifted accumulation of cycles
938 *
939 * This functions accumulates a shifted interval of cycles into
940 * into a shifted interval nanoseconds. Allows for O(log) accumulation
941 * loop.
942 *
943 * Returns the unconsumed cycles.
944 */
945 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
946 {
947 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
948 u64 raw_nsecs;
949
950 /* If the offset is smaller than a shifted interval, do nothing */
951 if (offset < timekeeper.cycle_interval<<shift)
952 return offset;
953
954 /* Accumulate one shifted interval */
955 offset -= timekeeper.cycle_interval << shift;
956 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
957
958 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
959 while (timekeeper.xtime_nsec >= nsecps) {
960 int leap;
961 timekeeper.xtime_nsec -= nsecps;
962 timekeeper.xtime.tv_sec++;
963 leap = second_overflow(timekeeper.xtime.tv_sec);
964 timekeeper.xtime.tv_sec += leap;
965 timekeeper.wall_to_monotonic.tv_sec -= leap;
966 }
967
968 /* Accumulate raw time */
969 raw_nsecs = timekeeper.raw_interval << shift;
970 raw_nsecs += timekeeper.raw_time.tv_nsec;
971 if (raw_nsecs >= NSEC_PER_SEC) {
972 u64 raw_secs = raw_nsecs;
973 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
974 timekeeper.raw_time.tv_sec += raw_secs;
975 }
976 timekeeper.raw_time.tv_nsec = raw_nsecs;
977
978 /* Accumulate error between NTP and clock interval */
979 timekeeper.ntp_error += ntp_tick_length() << shift;
980 timekeeper.ntp_error -=
981 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
982 (timekeeper.ntp_error_shift + shift);
983
984 return offset;
985 }
986
987
988 /**
989 * update_wall_time - Uses the current clocksource to increment the wall time
990 *
991 */
992 static void update_wall_time(void)
993 {
994 struct clocksource *clock;
995 cycle_t offset;
996 int shift = 0, maxshift;
997 unsigned long flags;
998
999 write_seqlock_irqsave(&timekeeper.lock, flags);
1000
1001 /* Make sure we're fully resumed: */
1002 if (unlikely(timekeeping_suspended))
1003 goto out;
1004
1005 clock = timekeeper.clock;
1006
1007 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1008 offset = timekeeper.cycle_interval;
1009 #else
1010 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1011 #endif
1012 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1013 timekeeper.shift;
1014
1015 /*
1016 * With NO_HZ we may have to accumulate many cycle_intervals
1017 * (think "ticks") worth of time at once. To do this efficiently,
1018 * we calculate the largest doubling multiple of cycle_intervals
1019 * that is smaller than the offset. We then accumulate that
1020 * chunk in one go, and then try to consume the next smaller
1021 * doubled multiple.
1022 */
1023 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1024 shift = max(0, shift);
1025 /* Bound shift to one less than what overflows tick_length */
1026 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1027 shift = min(shift, maxshift);
1028 while (offset >= timekeeper.cycle_interval) {
1029 offset = logarithmic_accumulation(offset, shift);
1030 if(offset < timekeeper.cycle_interval<<shift)
1031 shift--;
1032 }
1033
1034 /* correct the clock when NTP error is too big */
1035 timekeeping_adjust(offset);
1036
1037 /*
1038 * Since in the loop above, we accumulate any amount of time
1039 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1040 * xtime_nsec to be fairly small after the loop. Further, if we're
1041 * slightly speeding the clocksource up in timekeeping_adjust(),
1042 * its possible the required corrective factor to xtime_nsec could
1043 * cause it to underflow.
1044 *
1045 * Now, we cannot simply roll the accumulated second back, since
1046 * the NTP subsystem has been notified via second_overflow. So
1047 * instead we push xtime_nsec forward by the amount we underflowed,
1048 * and add that amount into the error.
1049 *
1050 * We'll correct this error next time through this function, when
1051 * xtime_nsec is not as small.
1052 */
1053 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1054 s64 neg = -(s64)timekeeper.xtime_nsec;
1055 timekeeper.xtime_nsec = 0;
1056 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1057 }
1058
1059
1060 /*
1061 * Store full nanoseconds into xtime after rounding it up and
1062 * add the remainder to the error difference.
1063 */
1064 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1065 timekeeper.shift) + 1;
1066 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1067 timekeeper.shift;
1068 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1069 timekeeper.ntp_error_shift;
1070
1071 /*
1072 * Finally, make sure that after the rounding
1073 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1074 */
1075 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1076 int leap;
1077 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1078 timekeeper.xtime.tv_sec++;
1079 leap = second_overflow(timekeeper.xtime.tv_sec);
1080 timekeeper.xtime.tv_sec += leap;
1081 timekeeper.wall_to_monotonic.tv_sec -= leap;
1082 }
1083
1084 timekeeping_update(false);
1085
1086 out:
1087 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1088
1089 }
1090
1091 /**
1092 * getboottime - Return the real time of system boot.
1093 * @ts: pointer to the timespec to be set
1094 *
1095 * Returns the wall-time of boot in a timespec.
1096 *
1097 * This is based on the wall_to_monotonic offset and the total suspend
1098 * time. Calls to settimeofday will affect the value returned (which
1099 * basically means that however wrong your real time clock is at boot time,
1100 * you get the right time here).
1101 */
1102 void getboottime(struct timespec *ts)
1103 {
1104 struct timespec boottime = {
1105 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1106 timekeeper.total_sleep_time.tv_sec,
1107 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1108 timekeeper.total_sleep_time.tv_nsec
1109 };
1110
1111 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1112 }
1113 EXPORT_SYMBOL_GPL(getboottime);
1114
1115
1116 /**
1117 * get_monotonic_boottime - Returns monotonic time since boot
1118 * @ts: pointer to the timespec to be set
1119 *
1120 * Returns the monotonic time since boot in a timespec.
1121 *
1122 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1123 * includes the time spent in suspend.
1124 */
1125 void get_monotonic_boottime(struct timespec *ts)
1126 {
1127 struct timespec tomono, sleep;
1128 unsigned int seq;
1129 s64 nsecs;
1130
1131 WARN_ON(timekeeping_suspended);
1132
1133 do {
1134 seq = read_seqbegin(&timekeeper.lock);
1135 *ts = timekeeper.xtime;
1136 tomono = timekeeper.wall_to_monotonic;
1137 sleep = timekeeper.total_sleep_time;
1138 nsecs = timekeeping_get_ns();
1139
1140 } while (read_seqretry(&timekeeper.lock, seq));
1141
1142 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1143 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1144 }
1145 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1146
1147 /**
1148 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1149 *
1150 * Returns the monotonic time since boot in a ktime
1151 *
1152 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1153 * includes the time spent in suspend.
1154 */
1155 ktime_t ktime_get_boottime(void)
1156 {
1157 struct timespec ts;
1158
1159 get_monotonic_boottime(&ts);
1160 return timespec_to_ktime(ts);
1161 }
1162 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1163
1164 /**
1165 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1166 * @ts: pointer to the timespec to be converted
1167 */
1168 void monotonic_to_bootbased(struct timespec *ts)
1169 {
1170 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
1171 }
1172 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1173
1174 unsigned long get_seconds(void)
1175 {
1176 return timekeeper.xtime.tv_sec;
1177 }
1178 EXPORT_SYMBOL(get_seconds);
1179
1180 struct timespec __current_kernel_time(void)
1181 {
1182 return timekeeper.xtime;
1183 }
1184
1185 struct timespec current_kernel_time(void)
1186 {
1187 struct timespec now;
1188 unsigned long seq;
1189
1190 do {
1191 seq = read_seqbegin(&timekeeper.lock);
1192
1193 now = timekeeper.xtime;
1194 } while (read_seqretry(&timekeeper.lock, seq));
1195
1196 return now;
1197 }
1198 EXPORT_SYMBOL(current_kernel_time);
1199
1200 struct timespec get_monotonic_coarse(void)
1201 {
1202 struct timespec now, mono;
1203 unsigned long seq;
1204
1205 do {
1206 seq = read_seqbegin(&timekeeper.lock);
1207
1208 now = timekeeper.xtime;
1209 mono = timekeeper.wall_to_monotonic;
1210 } while (read_seqretry(&timekeeper.lock, seq));
1211
1212 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1213 now.tv_nsec + mono.tv_nsec);
1214 return now;
1215 }
1216
1217 /*
1218 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1219 * without sampling the sequence number in xtime_lock.
1220 * jiffies is defined in the linker script...
1221 */
1222 void do_timer(unsigned long ticks)
1223 {
1224 jiffies_64 += ticks;
1225 update_wall_time();
1226 calc_global_load(ticks);
1227 }
1228
1229 /**
1230 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1231 * and sleep offsets.
1232 * @xtim: pointer to timespec to be set with xtime
1233 * @wtom: pointer to timespec to be set with wall_to_monotonic
1234 * @sleep: pointer to timespec to be set with time in suspend
1235 */
1236 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1237 struct timespec *wtom, struct timespec *sleep)
1238 {
1239 unsigned long seq;
1240
1241 do {
1242 seq = read_seqbegin(&timekeeper.lock);
1243 *xtim = timekeeper.xtime;
1244 *wtom = timekeeper.wall_to_monotonic;
1245 *sleep = timekeeper.total_sleep_time;
1246 } while (read_seqretry(&timekeeper.lock, seq));
1247 }
1248
1249 /**
1250 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1251 */
1252 ktime_t ktime_get_monotonic_offset(void)
1253 {
1254 unsigned long seq;
1255 struct timespec wtom;
1256
1257 do {
1258 seq = read_seqbegin(&timekeeper.lock);
1259 wtom = timekeeper.wall_to_monotonic;
1260 } while (read_seqretry(&timekeeper.lock, seq));
1261
1262 return timespec_to_ktime(wtom);
1263 }
1264 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1265
1266
1267 /**
1268 * xtime_update() - advances the timekeeping infrastructure
1269 * @ticks: number of ticks, that have elapsed since the last call.
1270 *
1271 * Must be called with interrupts disabled.
1272 */
1273 void xtime_update(unsigned long ticks)
1274 {
1275 write_seqlock(&xtime_lock);
1276 do_timer(ticks);
1277 write_sequnlock(&xtime_lock);
1278 }
This page took 0.05915 seconds and 5 git commands to generate.