time, drivers/rtc: Don't bother with rtc_resume() for the nonstop clocksource
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121 /*
122 * These simple flag variables are managed
123 * without locks, which is racy, but ok since
124 * we don't really care about being super
125 * precise about how many events were seen,
126 * just that a problem was observed.
127 */
128 static int timekeeping_underflow_seen;
129 static int timekeeping_overflow_seen;
130
131 /* last_warning is only modified under the timekeeping lock */
132 static long timekeeping_last_warning;
133
134 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
135 {
136
137 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
138 const char *name = tk->tkr_mono.clock->name;
139
140 if (offset > max_cycles) {
141 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142 offset, name, max_cycles);
143 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144 } else {
145 if (offset > (max_cycles >> 1)) {
146 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
147 offset, name, max_cycles >> 1);
148 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
149 }
150 }
151
152 if (timekeeping_underflow_seen) {
153 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
154 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
157 timekeeping_last_warning = jiffies;
158 }
159 timekeeping_underflow_seen = 0;
160 }
161
162 if (timekeeping_overflow_seen) {
163 if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
164 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
165 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
166 printk_deferred(" Your kernel is probably still fine.\n");
167 timekeeping_last_warning = jiffies;
168 }
169 timekeeping_overflow_seen = 0;
170 }
171 }
172
173 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
174 {
175 cycle_t now, last, mask, max, delta;
176 unsigned int seq;
177
178 /*
179 * Since we're called holding a seqlock, the data may shift
180 * under us while we're doing the calculation. This can cause
181 * false positives, since we'd note a problem but throw the
182 * results away. So nest another seqlock here to atomically
183 * grab the points we are checking with.
184 */
185 do {
186 seq = read_seqcount_begin(&tk_core.seq);
187 now = tkr->read(tkr->clock);
188 last = tkr->cycle_last;
189 mask = tkr->mask;
190 max = tkr->clock->max_cycles;
191 } while (read_seqcount_retry(&tk_core.seq, seq));
192
193 delta = clocksource_delta(now, last, mask);
194
195 /*
196 * Try to catch underflows by checking if we are seeing small
197 * mask-relative negative values.
198 */
199 if (unlikely((~delta & mask) < (mask >> 3))) {
200 timekeeping_underflow_seen = 1;
201 delta = 0;
202 }
203
204 /* Cap delta value to the max_cycles values to avoid mult overflows */
205 if (unlikely(delta > max)) {
206 timekeeping_overflow_seen = 1;
207 delta = tkr->clock->max_cycles;
208 }
209
210 return delta;
211 }
212 #else
213 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
214 {
215 }
216 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
217 {
218 cycle_t cycle_now, delta;
219
220 /* read clocksource */
221 cycle_now = tkr->read(tkr->clock);
222
223 /* calculate the delta since the last update_wall_time */
224 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
225
226 return delta;
227 }
228 #endif
229
230 /**
231 * tk_setup_internals - Set up internals to use clocksource clock.
232 *
233 * @tk: The target timekeeper to setup.
234 * @clock: Pointer to clocksource.
235 *
236 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
237 * pair and interval request.
238 *
239 * Unless you're the timekeeping code, you should not be using this!
240 */
241 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242 {
243 cycle_t interval;
244 u64 tmp, ntpinterval;
245 struct clocksource *old_clock;
246
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.read = clock->read;
250 tk->tkr_mono.mask = clock->mask;
251 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
252
253 tk->tkr_raw.clock = clock;
254 tk->tkr_raw.read = clock->read;
255 tk->tkr_raw.mask = clock->mask;
256 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
257
258 /* Do the ns -> cycle conversion first, using original mult */
259 tmp = NTP_INTERVAL_LENGTH;
260 tmp <<= clock->shift;
261 ntpinterval = tmp;
262 tmp += clock->mult/2;
263 do_div(tmp, clock->mult);
264 if (tmp == 0)
265 tmp = 1;
266
267 interval = (cycle_t) tmp;
268 tk->cycle_interval = interval;
269
270 /* Go back from cycles -> shifted ns */
271 tk->xtime_interval = (u64) interval * clock->mult;
272 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
273 tk->raw_interval =
274 ((u64) interval * clock->mult) >> clock->shift;
275
276 /* if changing clocks, convert xtime_nsec shift units */
277 if (old_clock) {
278 int shift_change = clock->shift - old_clock->shift;
279 if (shift_change < 0)
280 tk->tkr_mono.xtime_nsec >>= -shift_change;
281 else
282 tk->tkr_mono.xtime_nsec <<= shift_change;
283 }
284 tk->tkr_raw.xtime_nsec = 0;
285
286 tk->tkr_mono.shift = clock->shift;
287 tk->tkr_raw.shift = clock->shift;
288
289 tk->ntp_error = 0;
290 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
292
293 /*
294 * The timekeeper keeps its own mult values for the currently
295 * active clocksource. These value will be adjusted via NTP
296 * to counteract clock drifting.
297 */
298 tk->tkr_mono.mult = clock->mult;
299 tk->tkr_raw.mult = clock->mult;
300 tk->ntp_err_mult = 0;
301 }
302
303 /* Timekeeper helper functions. */
304
305 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306 static u32 default_arch_gettimeoffset(void) { return 0; }
307 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308 #else
309 static inline u32 arch_gettimeoffset(void) { return 0; }
310 #endif
311
312 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314 cycle_t delta;
315 s64 nsec;
316
317 delta = timekeeping_get_delta(tkr);
318
319 nsec = delta * tkr->mult + tkr->xtime_nsec;
320 nsec >>= tkr->shift;
321
322 /* If arch requires, add in get_arch_timeoffset() */
323 return nsec + arch_gettimeoffset();
324 }
325
326 /**
327 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
328 * @tkr: Timekeeping readout base from which we take the update
329 *
330 * We want to use this from any context including NMI and tracing /
331 * instrumenting the timekeeping code itself.
332 *
333 * So we handle this differently than the other timekeeping accessor
334 * functions which retry when the sequence count has changed. The
335 * update side does:
336 *
337 * smp_wmb(); <- Ensure that the last base[1] update is visible
338 * tkf->seq++;
339 * smp_wmb(); <- Ensure that the seqcount update is visible
340 * update(tkf->base[0], tkr);
341 * smp_wmb(); <- Ensure that the base[0] update is visible
342 * tkf->seq++;
343 * smp_wmb(); <- Ensure that the seqcount update is visible
344 * update(tkf->base[1], tkr);
345 *
346 * The reader side does:
347 *
348 * do {
349 * seq = tkf->seq;
350 * smp_rmb();
351 * idx = seq & 0x01;
352 * now = now(tkf->base[idx]);
353 * smp_rmb();
354 * } while (seq != tkf->seq)
355 *
356 * As long as we update base[0] readers are forced off to
357 * base[1]. Once base[0] is updated readers are redirected to base[0]
358 * and the base[1] update takes place.
359 *
360 * So if a NMI hits the update of base[0] then it will use base[1]
361 * which is still consistent. In the worst case this can result is a
362 * slightly wrong timestamp (a few nanoseconds). See
363 * @ktime_get_mono_fast_ns.
364 */
365 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
366 {
367 struct tk_read_base *base = tkf->base;
368
369 /* Force readers off to base[1] */
370 raw_write_seqcount_latch(&tkf->seq);
371
372 /* Update base[0] */
373 memcpy(base, tkr, sizeof(*base));
374
375 /* Force readers back to base[0] */
376 raw_write_seqcount_latch(&tkf->seq);
377
378 /* Update base[1] */
379 memcpy(base + 1, base, sizeof(*base));
380 }
381
382 /**
383 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
384 *
385 * This timestamp is not guaranteed to be monotonic across an update.
386 * The timestamp is calculated by:
387 *
388 * now = base_mono + clock_delta * slope
389 *
390 * So if the update lowers the slope, readers who are forced to the
391 * not yet updated second array are still using the old steeper slope.
392 *
393 * tmono
394 * ^
395 * | o n
396 * | o n
397 * | u
398 * | o
399 * |o
400 * |12345678---> reader order
401 *
402 * o = old slope
403 * u = update
404 * n = new slope
405 *
406 * So reader 6 will observe time going backwards versus reader 5.
407 *
408 * While other CPUs are likely to be able observe that, the only way
409 * for a CPU local observation is when an NMI hits in the middle of
410 * the update. Timestamps taken from that NMI context might be ahead
411 * of the following timestamps. Callers need to be aware of that and
412 * deal with it.
413 */
414 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
415 {
416 struct tk_read_base *tkr;
417 unsigned int seq;
418 u64 now;
419
420 do {
421 seq = raw_read_seqcount(&tkf->seq);
422 tkr = tkf->base + (seq & 0x01);
423 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
424 } while (read_seqcount_retry(&tkf->seq, seq));
425
426 return now;
427 }
428
429 u64 ktime_get_mono_fast_ns(void)
430 {
431 return __ktime_get_fast_ns(&tk_fast_mono);
432 }
433 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
434
435 u64 ktime_get_raw_fast_ns(void)
436 {
437 return __ktime_get_fast_ns(&tk_fast_raw);
438 }
439 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
440
441 /* Suspend-time cycles value for halted fast timekeeper. */
442 static cycle_t cycles_at_suspend;
443
444 static cycle_t dummy_clock_read(struct clocksource *cs)
445 {
446 return cycles_at_suspend;
447 }
448
449 /**
450 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
451 * @tk: Timekeeper to snapshot.
452 *
453 * It generally is unsafe to access the clocksource after timekeeping has been
454 * suspended, so take a snapshot of the readout base of @tk and use it as the
455 * fast timekeeper's readout base while suspended. It will return the same
456 * number of cycles every time until timekeeping is resumed at which time the
457 * proper readout base for the fast timekeeper will be restored automatically.
458 */
459 static void halt_fast_timekeeper(struct timekeeper *tk)
460 {
461 static struct tk_read_base tkr_dummy;
462 struct tk_read_base *tkr = &tk->tkr_mono;
463
464 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
465 cycles_at_suspend = tkr->read(tkr->clock);
466 tkr_dummy.read = dummy_clock_read;
467 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
468
469 tkr = &tk->tkr_raw;
470 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
471 tkr_dummy.read = dummy_clock_read;
472 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
473 }
474
475 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
476
477 static inline void update_vsyscall(struct timekeeper *tk)
478 {
479 struct timespec xt, wm;
480
481 xt = timespec64_to_timespec(tk_xtime(tk));
482 wm = timespec64_to_timespec(tk->wall_to_monotonic);
483 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
484 tk->tkr_mono.cycle_last);
485 }
486
487 static inline void old_vsyscall_fixup(struct timekeeper *tk)
488 {
489 s64 remainder;
490
491 /*
492 * Store only full nanoseconds into xtime_nsec after rounding
493 * it up and add the remainder to the error difference.
494 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
495 * by truncating the remainder in vsyscalls. However, it causes
496 * additional work to be done in timekeeping_adjust(). Once
497 * the vsyscall implementations are converted to use xtime_nsec
498 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
499 * users are removed, this can be killed.
500 */
501 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
502 tk->tkr_mono.xtime_nsec -= remainder;
503 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
504 tk->ntp_error += remainder << tk->ntp_error_shift;
505 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
506 }
507 #else
508 #define old_vsyscall_fixup(tk)
509 #endif
510
511 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
512
513 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
514 {
515 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
516 }
517
518 /**
519 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
520 */
521 int pvclock_gtod_register_notifier(struct notifier_block *nb)
522 {
523 struct timekeeper *tk = &tk_core.timekeeper;
524 unsigned long flags;
525 int ret;
526
527 raw_spin_lock_irqsave(&timekeeper_lock, flags);
528 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
529 update_pvclock_gtod(tk, true);
530 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531
532 return ret;
533 }
534 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
535
536 /**
537 * pvclock_gtod_unregister_notifier - unregister a pvclock
538 * timedata update listener
539 */
540 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
541 {
542 unsigned long flags;
543 int ret;
544
545 raw_spin_lock_irqsave(&timekeeper_lock, flags);
546 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548
549 return ret;
550 }
551 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
552
553 /*
554 * Update the ktime_t based scalar nsec members of the timekeeper
555 */
556 static inline void tk_update_ktime_data(struct timekeeper *tk)
557 {
558 u64 seconds;
559 u32 nsec;
560
561 /*
562 * The xtime based monotonic readout is:
563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 * The ktime based monotonic readout is:
565 * nsec = base_mono + now();
566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 */
568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571
572 /* Update the monotonic raw base */
573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574
575 /*
576 * The sum of the nanoseconds portions of xtime and
577 * wall_to_monotonic can be greater/equal one second. Take
578 * this into account before updating tk->ktime_sec.
579 */
580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 if (nsec >= NSEC_PER_SEC)
582 seconds++;
583 tk->ktime_sec = seconds;
584 }
585
586 /* must hold timekeeper_lock */
587 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588 {
589 if (action & TK_CLEAR_NTP) {
590 tk->ntp_error = 0;
591 ntp_clear();
592 }
593
594 tk_update_ktime_data(tk);
595
596 update_vsyscall(tk);
597 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
598
599 if (action & TK_MIRROR)
600 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
601 sizeof(tk_core.timekeeper));
602
603 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
604 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
605 }
606
607 /**
608 * timekeeping_forward_now - update clock to the current time
609 *
610 * Forward the current clock to update its state since the last call to
611 * update_wall_time(). This is useful before significant clock changes,
612 * as it avoids having to deal with this time offset explicitly.
613 */
614 static void timekeeping_forward_now(struct timekeeper *tk)
615 {
616 struct clocksource *clock = tk->tkr_mono.clock;
617 cycle_t cycle_now, delta;
618 s64 nsec;
619
620 cycle_now = tk->tkr_mono.read(clock);
621 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622 tk->tkr_mono.cycle_last = cycle_now;
623 tk->tkr_raw.cycle_last = cycle_now;
624
625 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
626
627 /* If arch requires, add in get_arch_timeoffset() */
628 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
629
630 tk_normalize_xtime(tk);
631
632 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633 timespec64_add_ns(&tk->raw_time, nsec);
634 }
635
636 /**
637 * __getnstimeofday64 - Returns the time of day in a timespec64.
638 * @ts: pointer to the timespec to be set
639 *
640 * Updates the time of day in the timespec.
641 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
642 */
643 int __getnstimeofday64(struct timespec64 *ts)
644 {
645 struct timekeeper *tk = &tk_core.timekeeper;
646 unsigned long seq;
647 s64 nsecs = 0;
648
649 do {
650 seq = read_seqcount_begin(&tk_core.seq);
651
652 ts->tv_sec = tk->xtime_sec;
653 nsecs = timekeeping_get_ns(&tk->tkr_mono);
654
655 } while (read_seqcount_retry(&tk_core.seq, seq));
656
657 ts->tv_nsec = 0;
658 timespec64_add_ns(ts, nsecs);
659
660 /*
661 * Do not bail out early, in case there were callers still using
662 * the value, even in the face of the WARN_ON.
663 */
664 if (unlikely(timekeeping_suspended))
665 return -EAGAIN;
666 return 0;
667 }
668 EXPORT_SYMBOL(__getnstimeofday64);
669
670 /**
671 * getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec64 to be set
673 *
674 * Returns the time of day in a timespec64 (WARN if suspended).
675 */
676 void getnstimeofday64(struct timespec64 *ts)
677 {
678 WARN_ON(__getnstimeofday64(ts));
679 }
680 EXPORT_SYMBOL(getnstimeofday64);
681
682 ktime_t ktime_get(void)
683 {
684 struct timekeeper *tk = &tk_core.timekeeper;
685 unsigned int seq;
686 ktime_t base;
687 s64 nsecs;
688
689 WARN_ON(timekeeping_suspended);
690
691 do {
692 seq = read_seqcount_begin(&tk_core.seq);
693 base = tk->tkr_mono.base;
694 nsecs = timekeeping_get_ns(&tk->tkr_mono);
695
696 } while (read_seqcount_retry(&tk_core.seq, seq));
697
698 return ktime_add_ns(base, nsecs);
699 }
700 EXPORT_SYMBOL_GPL(ktime_get);
701
702 static ktime_t *offsets[TK_OFFS_MAX] = {
703 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
704 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
705 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
706 };
707
708 ktime_t ktime_get_with_offset(enum tk_offsets offs)
709 {
710 struct timekeeper *tk = &tk_core.timekeeper;
711 unsigned int seq;
712 ktime_t base, *offset = offsets[offs];
713 s64 nsecs;
714
715 WARN_ON(timekeeping_suspended);
716
717 do {
718 seq = read_seqcount_begin(&tk_core.seq);
719 base = ktime_add(tk->tkr_mono.base, *offset);
720 nsecs = timekeeping_get_ns(&tk->tkr_mono);
721
722 } while (read_seqcount_retry(&tk_core.seq, seq));
723
724 return ktime_add_ns(base, nsecs);
725
726 }
727 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
728
729 /**
730 * ktime_mono_to_any() - convert mononotic time to any other time
731 * @tmono: time to convert.
732 * @offs: which offset to use
733 */
734 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
735 {
736 ktime_t *offset = offsets[offs];
737 unsigned long seq;
738 ktime_t tconv;
739
740 do {
741 seq = read_seqcount_begin(&tk_core.seq);
742 tconv = ktime_add(tmono, *offset);
743 } while (read_seqcount_retry(&tk_core.seq, seq));
744
745 return tconv;
746 }
747 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
748
749 /**
750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
751 */
752 ktime_t ktime_get_raw(void)
753 {
754 struct timekeeper *tk = &tk_core.timekeeper;
755 unsigned int seq;
756 ktime_t base;
757 s64 nsecs;
758
759 do {
760 seq = read_seqcount_begin(&tk_core.seq);
761 base = tk->tkr_raw.base;
762 nsecs = timekeeping_get_ns(&tk->tkr_raw);
763
764 } while (read_seqcount_retry(&tk_core.seq, seq));
765
766 return ktime_add_ns(base, nsecs);
767 }
768 EXPORT_SYMBOL_GPL(ktime_get_raw);
769
770 /**
771 * ktime_get_ts64 - get the monotonic clock in timespec64 format
772 * @ts: pointer to timespec variable
773 *
774 * The function calculates the monotonic clock from the realtime
775 * clock and the wall_to_monotonic offset and stores the result
776 * in normalized timespec64 format in the variable pointed to by @ts.
777 */
778 void ktime_get_ts64(struct timespec64 *ts)
779 {
780 struct timekeeper *tk = &tk_core.timekeeper;
781 struct timespec64 tomono;
782 s64 nsec;
783 unsigned int seq;
784
785 WARN_ON(timekeeping_suspended);
786
787 do {
788 seq = read_seqcount_begin(&tk_core.seq);
789 ts->tv_sec = tk->xtime_sec;
790 nsec = timekeeping_get_ns(&tk->tkr_mono);
791 tomono = tk->wall_to_monotonic;
792
793 } while (read_seqcount_retry(&tk_core.seq, seq));
794
795 ts->tv_sec += tomono.tv_sec;
796 ts->tv_nsec = 0;
797 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
798 }
799 EXPORT_SYMBOL_GPL(ktime_get_ts64);
800
801 /**
802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
803 *
804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806 * works on both 32 and 64 bit systems. On 32 bit systems the readout
807 * covers ~136 years of uptime which should be enough to prevent
808 * premature wrap arounds.
809 */
810 time64_t ktime_get_seconds(void)
811 {
812 struct timekeeper *tk = &tk_core.timekeeper;
813
814 WARN_ON(timekeeping_suspended);
815 return tk->ktime_sec;
816 }
817 EXPORT_SYMBOL_GPL(ktime_get_seconds);
818
819 /**
820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
821 *
822 * Returns the wall clock seconds since 1970. This replaces the
823 * get_seconds() interface which is not y2038 safe on 32bit systems.
824 *
825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826 * 32bit systems the access must be protected with the sequence
827 * counter to provide "atomic" access to the 64bit tk->xtime_sec
828 * value.
829 */
830 time64_t ktime_get_real_seconds(void)
831 {
832 struct timekeeper *tk = &tk_core.timekeeper;
833 time64_t seconds;
834 unsigned int seq;
835
836 if (IS_ENABLED(CONFIG_64BIT))
837 return tk->xtime_sec;
838
839 do {
840 seq = read_seqcount_begin(&tk_core.seq);
841 seconds = tk->xtime_sec;
842
843 } while (read_seqcount_retry(&tk_core.seq, seq));
844
845 return seconds;
846 }
847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
848
849 #ifdef CONFIG_NTP_PPS
850
851 /**
852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853 * @ts_raw: pointer to the timespec to be set to raw monotonic time
854 * @ts_real: pointer to the timespec to be set to the time of day
855 *
856 * This function reads both the time of day and raw monotonic time at the
857 * same time atomically and stores the resulting timestamps in timespec
858 * format.
859 */
860 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
861 {
862 struct timekeeper *tk = &tk_core.timekeeper;
863 unsigned long seq;
864 s64 nsecs_raw, nsecs_real;
865
866 WARN_ON_ONCE(timekeeping_suspended);
867
868 do {
869 seq = read_seqcount_begin(&tk_core.seq);
870
871 *ts_raw = timespec64_to_timespec(tk->raw_time);
872 ts_real->tv_sec = tk->xtime_sec;
873 ts_real->tv_nsec = 0;
874
875 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
876 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
877
878 } while (read_seqcount_retry(&tk_core.seq, seq));
879
880 timespec_add_ns(ts_raw, nsecs_raw);
881 timespec_add_ns(ts_real, nsecs_real);
882 }
883 EXPORT_SYMBOL(getnstime_raw_and_real);
884
885 #endif /* CONFIG_NTP_PPS */
886
887 /**
888 * do_gettimeofday - Returns the time of day in a timeval
889 * @tv: pointer to the timeval to be set
890 *
891 * NOTE: Users should be converted to using getnstimeofday()
892 */
893 void do_gettimeofday(struct timeval *tv)
894 {
895 struct timespec64 now;
896
897 getnstimeofday64(&now);
898 tv->tv_sec = now.tv_sec;
899 tv->tv_usec = now.tv_nsec/1000;
900 }
901 EXPORT_SYMBOL(do_gettimeofday);
902
903 /**
904 * do_settimeofday64 - Sets the time of day.
905 * @ts: pointer to the timespec64 variable containing the new time
906 *
907 * Sets the time of day to the new time and update NTP and notify hrtimers
908 */
909 int do_settimeofday64(const struct timespec64 *ts)
910 {
911 struct timekeeper *tk = &tk_core.timekeeper;
912 struct timespec64 ts_delta, xt;
913 unsigned long flags;
914
915 if (!timespec64_valid_strict(ts))
916 return -EINVAL;
917
918 raw_spin_lock_irqsave(&timekeeper_lock, flags);
919 write_seqcount_begin(&tk_core.seq);
920
921 timekeeping_forward_now(tk);
922
923 xt = tk_xtime(tk);
924 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
925 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
926
927 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
928
929 tk_set_xtime(tk, ts);
930
931 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
932
933 write_seqcount_end(&tk_core.seq);
934 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
935
936 /* signal hrtimers about time change */
937 clock_was_set();
938
939 return 0;
940 }
941 EXPORT_SYMBOL(do_settimeofday64);
942
943 /**
944 * timekeeping_inject_offset - Adds or subtracts from the current time.
945 * @tv: pointer to the timespec variable containing the offset
946 *
947 * Adds or subtracts an offset value from the current time.
948 */
949 int timekeeping_inject_offset(struct timespec *ts)
950 {
951 struct timekeeper *tk = &tk_core.timekeeper;
952 unsigned long flags;
953 struct timespec64 ts64, tmp;
954 int ret = 0;
955
956 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
957 return -EINVAL;
958
959 ts64 = timespec_to_timespec64(*ts);
960
961 raw_spin_lock_irqsave(&timekeeper_lock, flags);
962 write_seqcount_begin(&tk_core.seq);
963
964 timekeeping_forward_now(tk);
965
966 /* Make sure the proposed value is valid */
967 tmp = timespec64_add(tk_xtime(tk), ts64);
968 if (!timespec64_valid_strict(&tmp)) {
969 ret = -EINVAL;
970 goto error;
971 }
972
973 tk_xtime_add(tk, &ts64);
974 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
975
976 error: /* even if we error out, we forwarded the time, so call update */
977 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
978
979 write_seqcount_end(&tk_core.seq);
980 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
981
982 /* signal hrtimers about time change */
983 clock_was_set();
984
985 return ret;
986 }
987 EXPORT_SYMBOL(timekeeping_inject_offset);
988
989
990 /**
991 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
992 *
993 */
994 s32 timekeeping_get_tai_offset(void)
995 {
996 struct timekeeper *tk = &tk_core.timekeeper;
997 unsigned int seq;
998 s32 ret;
999
1000 do {
1001 seq = read_seqcount_begin(&tk_core.seq);
1002 ret = tk->tai_offset;
1003 } while (read_seqcount_retry(&tk_core.seq, seq));
1004
1005 return ret;
1006 }
1007
1008 /**
1009 * __timekeeping_set_tai_offset - Lock free worker function
1010 *
1011 */
1012 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1013 {
1014 tk->tai_offset = tai_offset;
1015 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1016 }
1017
1018 /**
1019 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1020 *
1021 */
1022 void timekeeping_set_tai_offset(s32 tai_offset)
1023 {
1024 struct timekeeper *tk = &tk_core.timekeeper;
1025 unsigned long flags;
1026
1027 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1028 write_seqcount_begin(&tk_core.seq);
1029 __timekeeping_set_tai_offset(tk, tai_offset);
1030 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1031 write_seqcount_end(&tk_core.seq);
1032 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1033 clock_was_set();
1034 }
1035
1036 /**
1037 * change_clocksource - Swaps clocksources if a new one is available
1038 *
1039 * Accumulates current time interval and initializes new clocksource
1040 */
1041 static int change_clocksource(void *data)
1042 {
1043 struct timekeeper *tk = &tk_core.timekeeper;
1044 struct clocksource *new, *old;
1045 unsigned long flags;
1046
1047 new = (struct clocksource *) data;
1048
1049 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1050 write_seqcount_begin(&tk_core.seq);
1051
1052 timekeeping_forward_now(tk);
1053 /*
1054 * If the cs is in module, get a module reference. Succeeds
1055 * for built-in code (owner == NULL) as well.
1056 */
1057 if (try_module_get(new->owner)) {
1058 if (!new->enable || new->enable(new) == 0) {
1059 old = tk->tkr_mono.clock;
1060 tk_setup_internals(tk, new);
1061 if (old->disable)
1062 old->disable(old);
1063 module_put(old->owner);
1064 } else {
1065 module_put(new->owner);
1066 }
1067 }
1068 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1069
1070 write_seqcount_end(&tk_core.seq);
1071 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * timekeeping_notify - Install a new clock source
1078 * @clock: pointer to the clock source
1079 *
1080 * This function is called from clocksource.c after a new, better clock
1081 * source has been registered. The caller holds the clocksource_mutex.
1082 */
1083 int timekeeping_notify(struct clocksource *clock)
1084 {
1085 struct timekeeper *tk = &tk_core.timekeeper;
1086
1087 if (tk->tkr_mono.clock == clock)
1088 return 0;
1089 stop_machine(change_clocksource, clock, NULL);
1090 tick_clock_notify();
1091 return tk->tkr_mono.clock == clock ? 0 : -1;
1092 }
1093
1094 /**
1095 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096 * @ts: pointer to the timespec64 to be set
1097 *
1098 * Returns the raw monotonic time (completely un-modified by ntp)
1099 */
1100 void getrawmonotonic64(struct timespec64 *ts)
1101 {
1102 struct timekeeper *tk = &tk_core.timekeeper;
1103 struct timespec64 ts64;
1104 unsigned long seq;
1105 s64 nsecs;
1106
1107 do {
1108 seq = read_seqcount_begin(&tk_core.seq);
1109 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1110 ts64 = tk->raw_time;
1111
1112 } while (read_seqcount_retry(&tk_core.seq, seq));
1113
1114 timespec64_add_ns(&ts64, nsecs);
1115 *ts = ts64;
1116 }
1117 EXPORT_SYMBOL(getrawmonotonic64);
1118
1119
1120 /**
1121 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1122 */
1123 int timekeeping_valid_for_hres(void)
1124 {
1125 struct timekeeper *tk = &tk_core.timekeeper;
1126 unsigned long seq;
1127 int ret;
1128
1129 do {
1130 seq = read_seqcount_begin(&tk_core.seq);
1131
1132 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1133
1134 } while (read_seqcount_retry(&tk_core.seq, seq));
1135
1136 return ret;
1137 }
1138
1139 /**
1140 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1141 */
1142 u64 timekeeping_max_deferment(void)
1143 {
1144 struct timekeeper *tk = &tk_core.timekeeper;
1145 unsigned long seq;
1146 u64 ret;
1147
1148 do {
1149 seq = read_seqcount_begin(&tk_core.seq);
1150
1151 ret = tk->tkr_mono.clock->max_idle_ns;
1152
1153 } while (read_seqcount_retry(&tk_core.seq, seq));
1154
1155 return ret;
1156 }
1157
1158 /**
1159 * read_persistent_clock - Return time from the persistent clock.
1160 *
1161 * Weak dummy function for arches that do not yet support it.
1162 * Reads the time from the battery backed persistent clock.
1163 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1164 *
1165 * XXX - Do be sure to remove it once all arches implement it.
1166 */
1167 void __weak read_persistent_clock(struct timespec *ts)
1168 {
1169 ts->tv_sec = 0;
1170 ts->tv_nsec = 0;
1171 }
1172
1173 void __weak read_persistent_clock64(struct timespec64 *ts64)
1174 {
1175 struct timespec ts;
1176
1177 read_persistent_clock(&ts);
1178 *ts64 = timespec_to_timespec64(ts);
1179 }
1180
1181 /**
1182 * read_boot_clock - Return time of the system start.
1183 *
1184 * Weak dummy function for arches that do not yet support it.
1185 * Function to read the exact time the system has been started.
1186 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1187 *
1188 * XXX - Do be sure to remove it once all arches implement it.
1189 */
1190 void __weak read_boot_clock(struct timespec *ts)
1191 {
1192 ts->tv_sec = 0;
1193 ts->tv_nsec = 0;
1194 }
1195
1196 void __weak read_boot_clock64(struct timespec64 *ts64)
1197 {
1198 struct timespec ts;
1199
1200 read_boot_clock(&ts);
1201 *ts64 = timespec_to_timespec64(ts);
1202 }
1203
1204 /* Flag for if timekeeping_resume() has injected sleeptime */
1205 static bool sleeptime_injected;
1206
1207 /* Flag for if there is a persistent clock on this platform */
1208 static bool persistent_clock_exists;
1209
1210 /*
1211 * timekeeping_init - Initializes the clocksource and common timekeeping values
1212 */
1213 void __init timekeeping_init(void)
1214 {
1215 struct timekeeper *tk = &tk_core.timekeeper;
1216 struct clocksource *clock;
1217 unsigned long flags;
1218 struct timespec64 now, boot, tmp;
1219
1220 read_persistent_clock64(&now);
1221 if (!timespec64_valid_strict(&now)) {
1222 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1223 " Check your CMOS/BIOS settings.\n");
1224 now.tv_sec = 0;
1225 now.tv_nsec = 0;
1226 } else if (now.tv_sec || now.tv_nsec)
1227 persistent_clock_exists = true;
1228
1229 read_boot_clock64(&boot);
1230 if (!timespec64_valid_strict(&boot)) {
1231 pr_warn("WARNING: Boot clock returned invalid value!\n"
1232 " Check your CMOS/BIOS settings.\n");
1233 boot.tv_sec = 0;
1234 boot.tv_nsec = 0;
1235 }
1236
1237 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1238 write_seqcount_begin(&tk_core.seq);
1239 ntp_init();
1240
1241 clock = clocksource_default_clock();
1242 if (clock->enable)
1243 clock->enable(clock);
1244 tk_setup_internals(tk, clock);
1245
1246 tk_set_xtime(tk, &now);
1247 tk->raw_time.tv_sec = 0;
1248 tk->raw_time.tv_nsec = 0;
1249 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1250 boot = tk_xtime(tk);
1251
1252 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1253 tk_set_wall_to_mono(tk, tmp);
1254
1255 timekeeping_update(tk, TK_MIRROR);
1256
1257 write_seqcount_end(&tk_core.seq);
1258 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1259 }
1260
1261 /* time in seconds when suspend began for persistent clock */
1262 static struct timespec64 timekeeping_suspend_time;
1263
1264 /**
1265 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1266 * @delta: pointer to a timespec delta value
1267 *
1268 * Takes a timespec offset measuring a suspend interval and properly
1269 * adds the sleep offset to the timekeeping variables.
1270 */
1271 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1272 struct timespec64 *delta)
1273 {
1274 if (!timespec64_valid_strict(delta)) {
1275 printk_deferred(KERN_WARNING
1276 "__timekeeping_inject_sleeptime: Invalid "
1277 "sleep delta value!\n");
1278 return;
1279 }
1280 tk_xtime_add(tk, delta);
1281 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1282 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1283 tk_debug_account_sleep_time(delta);
1284 }
1285
1286 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1287 /**
1288 * We have three kinds of time sources to use for sleep time
1289 * injection, the preference order is:
1290 * 1) non-stop clocksource
1291 * 2) persistent clock (ie: RTC accessible when irqs are off)
1292 * 3) RTC
1293 *
1294 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1295 * If system has neither 1) nor 2), 3) will be used finally.
1296 *
1297 *
1298 * If timekeeping has injected sleeptime via either 1) or 2),
1299 * 3) becomes needless, so in this case we don't need to call
1300 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1301 * means.
1302 */
1303 bool timekeeping_rtc_skipresume(void)
1304 {
1305 return sleeptime_injected;
1306 }
1307
1308 /**
1309 * 1) can be determined whether to use or not only when doing
1310 * timekeeping_resume() which is invoked after rtc_suspend(),
1311 * so we can't skip rtc_suspend() surely if system has 1).
1312 *
1313 * But if system has 2), 2) will definitely be used, so in this
1314 * case we don't need to call rtc_suspend(), and this is what
1315 * timekeeping_rtc_skipsuspend() means.
1316 */
1317 bool timekeeping_rtc_skipsuspend(void)
1318 {
1319 return persistent_clock_exists;
1320 }
1321
1322 /**
1323 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1324 * @delta: pointer to a timespec64 delta value
1325 *
1326 * This hook is for architectures that cannot support read_persistent_clock64
1327 * because their RTC/persistent clock is only accessible when irqs are enabled.
1328 * and also don't have an effective nonstop clocksource.
1329 *
1330 * This function should only be called by rtc_resume(), and allows
1331 * a suspend offset to be injected into the timekeeping values.
1332 */
1333 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1334 {
1335 struct timekeeper *tk = &tk_core.timekeeper;
1336 unsigned long flags;
1337
1338 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339 write_seqcount_begin(&tk_core.seq);
1340
1341 timekeeping_forward_now(tk);
1342
1343 __timekeeping_inject_sleeptime(tk, delta);
1344
1345 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1346
1347 write_seqcount_end(&tk_core.seq);
1348 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1349
1350 /* signal hrtimers about time change */
1351 clock_was_set();
1352 }
1353 #endif
1354
1355 /**
1356 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1357 *
1358 * This is for the generic clocksource timekeeping.
1359 * xtime/wall_to_monotonic/jiffies/etc are
1360 * still managed by arch specific suspend/resume code.
1361 */
1362 void timekeeping_resume(void)
1363 {
1364 struct timekeeper *tk = &tk_core.timekeeper;
1365 struct clocksource *clock = tk->tkr_mono.clock;
1366 unsigned long flags;
1367 struct timespec64 ts_new, ts_delta;
1368 cycle_t cycle_now, cycle_delta;
1369
1370 sleeptime_injected = false;
1371 read_persistent_clock64(&ts_new);
1372
1373 clockevents_resume();
1374 clocksource_resume();
1375
1376 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1377 write_seqcount_begin(&tk_core.seq);
1378
1379 /*
1380 * After system resumes, we need to calculate the suspended time and
1381 * compensate it for the OS time. There are 3 sources that could be
1382 * used: Nonstop clocksource during suspend, persistent clock and rtc
1383 * device.
1384 *
1385 * One specific platform may have 1 or 2 or all of them, and the
1386 * preference will be:
1387 * suspend-nonstop clocksource -> persistent clock -> rtc
1388 * The less preferred source will only be tried if there is no better
1389 * usable source. The rtc part is handled separately in rtc core code.
1390 */
1391 cycle_now = tk->tkr_mono.read(clock);
1392 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1393 cycle_now > tk->tkr_mono.cycle_last) {
1394 u64 num, max = ULLONG_MAX;
1395 u32 mult = clock->mult;
1396 u32 shift = clock->shift;
1397 s64 nsec = 0;
1398
1399 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1400 tk->tkr_mono.mask);
1401
1402 /*
1403 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1404 * suspended time is too long. In that case we need do the
1405 * 64 bits math carefully
1406 */
1407 do_div(max, mult);
1408 if (cycle_delta > max) {
1409 num = div64_u64(cycle_delta, max);
1410 nsec = (((u64) max * mult) >> shift) * num;
1411 cycle_delta -= num * max;
1412 }
1413 nsec += ((u64) cycle_delta * mult) >> shift;
1414
1415 ts_delta = ns_to_timespec64(nsec);
1416 sleeptime_injected = true;
1417 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1418 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1419 sleeptime_injected = true;
1420 }
1421
1422 if (sleeptime_injected)
1423 __timekeeping_inject_sleeptime(tk, &ts_delta);
1424
1425 /* Re-base the last cycle value */
1426 tk->tkr_mono.cycle_last = cycle_now;
1427 tk->tkr_raw.cycle_last = cycle_now;
1428
1429 tk->ntp_error = 0;
1430 timekeeping_suspended = 0;
1431 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1432 write_seqcount_end(&tk_core.seq);
1433 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1434
1435 touch_softlockup_watchdog();
1436
1437 tick_resume();
1438 hrtimers_resume();
1439 }
1440
1441 int timekeeping_suspend(void)
1442 {
1443 struct timekeeper *tk = &tk_core.timekeeper;
1444 unsigned long flags;
1445 struct timespec64 delta, delta_delta;
1446 static struct timespec64 old_delta;
1447
1448 read_persistent_clock64(&timekeeping_suspend_time);
1449
1450 /*
1451 * On some systems the persistent_clock can not be detected at
1452 * timekeeping_init by its return value, so if we see a valid
1453 * value returned, update the persistent_clock_exists flag.
1454 */
1455 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1456 persistent_clock_exists = true;
1457
1458 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1459 write_seqcount_begin(&tk_core.seq);
1460 timekeeping_forward_now(tk);
1461 timekeeping_suspended = 1;
1462
1463 if (persistent_clock_exists) {
1464 /*
1465 * To avoid drift caused by repeated suspend/resumes,
1466 * which each can add ~1 second drift error,
1467 * try to compensate so the difference in system time
1468 * and persistent_clock time stays close to constant.
1469 */
1470 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1471 delta_delta = timespec64_sub(delta, old_delta);
1472 if (abs(delta_delta.tv_sec) >= 2) {
1473 /*
1474 * if delta_delta is too large, assume time correction
1475 * has occurred and set old_delta to the current delta.
1476 */
1477 old_delta = delta;
1478 } else {
1479 /* Otherwise try to adjust old_system to compensate */
1480 timekeeping_suspend_time =
1481 timespec64_add(timekeeping_suspend_time, delta_delta);
1482 }
1483 }
1484
1485 timekeeping_update(tk, TK_MIRROR);
1486 halt_fast_timekeeper(tk);
1487 write_seqcount_end(&tk_core.seq);
1488 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1489
1490 tick_suspend();
1491 clocksource_suspend();
1492 clockevents_suspend();
1493
1494 return 0;
1495 }
1496
1497 /* sysfs resume/suspend bits for timekeeping */
1498 static struct syscore_ops timekeeping_syscore_ops = {
1499 .resume = timekeeping_resume,
1500 .suspend = timekeeping_suspend,
1501 };
1502
1503 static int __init timekeeping_init_ops(void)
1504 {
1505 register_syscore_ops(&timekeeping_syscore_ops);
1506 return 0;
1507 }
1508 device_initcall(timekeeping_init_ops);
1509
1510 /*
1511 * Apply a multiplier adjustment to the timekeeper
1512 */
1513 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1514 s64 offset,
1515 bool negative,
1516 int adj_scale)
1517 {
1518 s64 interval = tk->cycle_interval;
1519 s32 mult_adj = 1;
1520
1521 if (negative) {
1522 mult_adj = -mult_adj;
1523 interval = -interval;
1524 offset = -offset;
1525 }
1526 mult_adj <<= adj_scale;
1527 interval <<= adj_scale;
1528 offset <<= adj_scale;
1529
1530 /*
1531 * So the following can be confusing.
1532 *
1533 * To keep things simple, lets assume mult_adj == 1 for now.
1534 *
1535 * When mult_adj != 1, remember that the interval and offset values
1536 * have been appropriately scaled so the math is the same.
1537 *
1538 * The basic idea here is that we're increasing the multiplier
1539 * by one, this causes the xtime_interval to be incremented by
1540 * one cycle_interval. This is because:
1541 * xtime_interval = cycle_interval * mult
1542 * So if mult is being incremented by one:
1543 * xtime_interval = cycle_interval * (mult + 1)
1544 * Its the same as:
1545 * xtime_interval = (cycle_interval * mult) + cycle_interval
1546 * Which can be shortened to:
1547 * xtime_interval += cycle_interval
1548 *
1549 * So offset stores the non-accumulated cycles. Thus the current
1550 * time (in shifted nanoseconds) is:
1551 * now = (offset * adj) + xtime_nsec
1552 * Now, even though we're adjusting the clock frequency, we have
1553 * to keep time consistent. In other words, we can't jump back
1554 * in time, and we also want to avoid jumping forward in time.
1555 *
1556 * So given the same offset value, we need the time to be the same
1557 * both before and after the freq adjustment.
1558 * now = (offset * adj_1) + xtime_nsec_1
1559 * now = (offset * adj_2) + xtime_nsec_2
1560 * So:
1561 * (offset * adj_1) + xtime_nsec_1 =
1562 * (offset * adj_2) + xtime_nsec_2
1563 * And we know:
1564 * adj_2 = adj_1 + 1
1565 * So:
1566 * (offset * adj_1) + xtime_nsec_1 =
1567 * (offset * (adj_1+1)) + xtime_nsec_2
1568 * (offset * adj_1) + xtime_nsec_1 =
1569 * (offset * adj_1) + offset + xtime_nsec_2
1570 * Canceling the sides:
1571 * xtime_nsec_1 = offset + xtime_nsec_2
1572 * Which gives us:
1573 * xtime_nsec_2 = xtime_nsec_1 - offset
1574 * Which simplfies to:
1575 * xtime_nsec -= offset
1576 *
1577 * XXX - TODO: Doc ntp_error calculation.
1578 */
1579 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1580 /* NTP adjustment caused clocksource mult overflow */
1581 WARN_ON_ONCE(1);
1582 return;
1583 }
1584
1585 tk->tkr_mono.mult += mult_adj;
1586 tk->xtime_interval += interval;
1587 tk->tkr_mono.xtime_nsec -= offset;
1588 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1589 }
1590
1591 /*
1592 * Calculate the multiplier adjustment needed to match the frequency
1593 * specified by NTP
1594 */
1595 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1596 s64 offset)
1597 {
1598 s64 interval = tk->cycle_interval;
1599 s64 xinterval = tk->xtime_interval;
1600 s64 tick_error;
1601 bool negative;
1602 u32 adj;
1603
1604 /* Remove any current error adj from freq calculation */
1605 if (tk->ntp_err_mult)
1606 xinterval -= tk->cycle_interval;
1607
1608 tk->ntp_tick = ntp_tick_length();
1609
1610 /* Calculate current error per tick */
1611 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1612 tick_error -= (xinterval + tk->xtime_remainder);
1613
1614 /* Don't worry about correcting it if its small */
1615 if (likely((tick_error >= 0) && (tick_error <= interval)))
1616 return;
1617
1618 /* preserve the direction of correction */
1619 negative = (tick_error < 0);
1620
1621 /* Sort out the magnitude of the correction */
1622 tick_error = abs(tick_error);
1623 for (adj = 0; tick_error > interval; adj++)
1624 tick_error >>= 1;
1625
1626 /* scale the corrections */
1627 timekeeping_apply_adjustment(tk, offset, negative, adj);
1628 }
1629
1630 /*
1631 * Adjust the timekeeper's multiplier to the correct frequency
1632 * and also to reduce the accumulated error value.
1633 */
1634 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1635 {
1636 /* Correct for the current frequency error */
1637 timekeeping_freqadjust(tk, offset);
1638
1639 /* Next make a small adjustment to fix any cumulative error */
1640 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1641 tk->ntp_err_mult = 1;
1642 timekeeping_apply_adjustment(tk, offset, 0, 0);
1643 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1644 /* Undo any existing error adjustment */
1645 timekeeping_apply_adjustment(tk, offset, 1, 0);
1646 tk->ntp_err_mult = 0;
1647 }
1648
1649 if (unlikely(tk->tkr_mono.clock->maxadj &&
1650 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1651 > tk->tkr_mono.clock->maxadj))) {
1652 printk_once(KERN_WARNING
1653 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1654 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1655 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1656 }
1657
1658 /*
1659 * It may be possible that when we entered this function, xtime_nsec
1660 * was very small. Further, if we're slightly speeding the clocksource
1661 * in the code above, its possible the required corrective factor to
1662 * xtime_nsec could cause it to underflow.
1663 *
1664 * Now, since we already accumulated the second, cannot simply roll
1665 * the accumulated second back, since the NTP subsystem has been
1666 * notified via second_overflow. So instead we push xtime_nsec forward
1667 * by the amount we underflowed, and add that amount into the error.
1668 *
1669 * We'll correct this error next time through this function, when
1670 * xtime_nsec is not as small.
1671 */
1672 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1673 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1674 tk->tkr_mono.xtime_nsec = 0;
1675 tk->ntp_error += neg << tk->ntp_error_shift;
1676 }
1677 }
1678
1679 /**
1680 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1681 *
1682 * Helper function that accumulates a the nsecs greater then a second
1683 * from the xtime_nsec field to the xtime_secs field.
1684 * It also calls into the NTP code to handle leapsecond processing.
1685 *
1686 */
1687 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1688 {
1689 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1690 unsigned int clock_set = 0;
1691
1692 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1693 int leap;
1694
1695 tk->tkr_mono.xtime_nsec -= nsecps;
1696 tk->xtime_sec++;
1697
1698 /* Figure out if its a leap sec and apply if needed */
1699 leap = second_overflow(tk->xtime_sec);
1700 if (unlikely(leap)) {
1701 struct timespec64 ts;
1702
1703 tk->xtime_sec += leap;
1704
1705 ts.tv_sec = leap;
1706 ts.tv_nsec = 0;
1707 tk_set_wall_to_mono(tk,
1708 timespec64_sub(tk->wall_to_monotonic, ts));
1709
1710 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1711
1712 clock_set = TK_CLOCK_WAS_SET;
1713 }
1714 }
1715 return clock_set;
1716 }
1717
1718 /**
1719 * logarithmic_accumulation - shifted accumulation of cycles
1720 *
1721 * This functions accumulates a shifted interval of cycles into
1722 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1723 * loop.
1724 *
1725 * Returns the unconsumed cycles.
1726 */
1727 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1728 u32 shift,
1729 unsigned int *clock_set)
1730 {
1731 cycle_t interval = tk->cycle_interval << shift;
1732 u64 raw_nsecs;
1733
1734 /* If the offset is smaller then a shifted interval, do nothing */
1735 if (offset < interval)
1736 return offset;
1737
1738 /* Accumulate one shifted interval */
1739 offset -= interval;
1740 tk->tkr_mono.cycle_last += interval;
1741 tk->tkr_raw.cycle_last += interval;
1742
1743 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1744 *clock_set |= accumulate_nsecs_to_secs(tk);
1745
1746 /* Accumulate raw time */
1747 raw_nsecs = (u64)tk->raw_interval << shift;
1748 raw_nsecs += tk->raw_time.tv_nsec;
1749 if (raw_nsecs >= NSEC_PER_SEC) {
1750 u64 raw_secs = raw_nsecs;
1751 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1752 tk->raw_time.tv_sec += raw_secs;
1753 }
1754 tk->raw_time.tv_nsec = raw_nsecs;
1755
1756 /* Accumulate error between NTP and clock interval */
1757 tk->ntp_error += tk->ntp_tick << shift;
1758 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1759 (tk->ntp_error_shift + shift);
1760
1761 return offset;
1762 }
1763
1764 /**
1765 * update_wall_time - Uses the current clocksource to increment the wall time
1766 *
1767 */
1768 void update_wall_time(void)
1769 {
1770 struct timekeeper *real_tk = &tk_core.timekeeper;
1771 struct timekeeper *tk = &shadow_timekeeper;
1772 cycle_t offset;
1773 int shift = 0, maxshift;
1774 unsigned int clock_set = 0;
1775 unsigned long flags;
1776
1777 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1778
1779 /* Make sure we're fully resumed: */
1780 if (unlikely(timekeeping_suspended))
1781 goto out;
1782
1783 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1784 offset = real_tk->cycle_interval;
1785 #else
1786 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1787 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1788 #endif
1789
1790 /* Check if there's really nothing to do */
1791 if (offset < real_tk->cycle_interval)
1792 goto out;
1793
1794 /* Do some additional sanity checking */
1795 timekeeping_check_update(real_tk, offset);
1796
1797 /*
1798 * With NO_HZ we may have to accumulate many cycle_intervals
1799 * (think "ticks") worth of time at once. To do this efficiently,
1800 * we calculate the largest doubling multiple of cycle_intervals
1801 * that is smaller than the offset. We then accumulate that
1802 * chunk in one go, and then try to consume the next smaller
1803 * doubled multiple.
1804 */
1805 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1806 shift = max(0, shift);
1807 /* Bound shift to one less than what overflows tick_length */
1808 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1809 shift = min(shift, maxshift);
1810 while (offset >= tk->cycle_interval) {
1811 offset = logarithmic_accumulation(tk, offset, shift,
1812 &clock_set);
1813 if (offset < tk->cycle_interval<<shift)
1814 shift--;
1815 }
1816
1817 /* correct the clock when NTP error is too big */
1818 timekeeping_adjust(tk, offset);
1819
1820 /*
1821 * XXX This can be killed once everyone converts
1822 * to the new update_vsyscall.
1823 */
1824 old_vsyscall_fixup(tk);
1825
1826 /*
1827 * Finally, make sure that after the rounding
1828 * xtime_nsec isn't larger than NSEC_PER_SEC
1829 */
1830 clock_set |= accumulate_nsecs_to_secs(tk);
1831
1832 write_seqcount_begin(&tk_core.seq);
1833 /*
1834 * Update the real timekeeper.
1835 *
1836 * We could avoid this memcpy by switching pointers, but that
1837 * requires changes to all other timekeeper usage sites as
1838 * well, i.e. move the timekeeper pointer getter into the
1839 * spinlocked/seqcount protected sections. And we trade this
1840 * memcpy under the tk_core.seq against one before we start
1841 * updating.
1842 */
1843 memcpy(real_tk, tk, sizeof(*tk));
1844 timekeeping_update(real_tk, clock_set);
1845 write_seqcount_end(&tk_core.seq);
1846 out:
1847 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1848 if (clock_set)
1849 /* Have to call _delayed version, since in irq context*/
1850 clock_was_set_delayed();
1851 }
1852
1853 /**
1854 * getboottime64 - Return the real time of system boot.
1855 * @ts: pointer to the timespec64 to be set
1856 *
1857 * Returns the wall-time of boot in a timespec64.
1858 *
1859 * This is based on the wall_to_monotonic offset and the total suspend
1860 * time. Calls to settimeofday will affect the value returned (which
1861 * basically means that however wrong your real time clock is at boot time,
1862 * you get the right time here).
1863 */
1864 void getboottime64(struct timespec64 *ts)
1865 {
1866 struct timekeeper *tk = &tk_core.timekeeper;
1867 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1868
1869 *ts = ktime_to_timespec64(t);
1870 }
1871 EXPORT_SYMBOL_GPL(getboottime64);
1872
1873 unsigned long get_seconds(void)
1874 {
1875 struct timekeeper *tk = &tk_core.timekeeper;
1876
1877 return tk->xtime_sec;
1878 }
1879 EXPORT_SYMBOL(get_seconds);
1880
1881 struct timespec __current_kernel_time(void)
1882 {
1883 struct timekeeper *tk = &tk_core.timekeeper;
1884
1885 return timespec64_to_timespec(tk_xtime(tk));
1886 }
1887
1888 struct timespec current_kernel_time(void)
1889 {
1890 struct timekeeper *tk = &tk_core.timekeeper;
1891 struct timespec64 now;
1892 unsigned long seq;
1893
1894 do {
1895 seq = read_seqcount_begin(&tk_core.seq);
1896
1897 now = tk_xtime(tk);
1898 } while (read_seqcount_retry(&tk_core.seq, seq));
1899
1900 return timespec64_to_timespec(now);
1901 }
1902 EXPORT_SYMBOL(current_kernel_time);
1903
1904 struct timespec64 get_monotonic_coarse64(void)
1905 {
1906 struct timekeeper *tk = &tk_core.timekeeper;
1907 struct timespec64 now, mono;
1908 unsigned long seq;
1909
1910 do {
1911 seq = read_seqcount_begin(&tk_core.seq);
1912
1913 now = tk_xtime(tk);
1914 mono = tk->wall_to_monotonic;
1915 } while (read_seqcount_retry(&tk_core.seq, seq));
1916
1917 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1918 now.tv_nsec + mono.tv_nsec);
1919
1920 return now;
1921 }
1922
1923 /*
1924 * Must hold jiffies_lock
1925 */
1926 void do_timer(unsigned long ticks)
1927 {
1928 jiffies_64 += ticks;
1929 calc_global_load(ticks);
1930 }
1931
1932 /**
1933 * ktime_get_update_offsets_tick - hrtimer helper
1934 * @offs_real: pointer to storage for monotonic -> realtime offset
1935 * @offs_boot: pointer to storage for monotonic -> boottime offset
1936 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1937 *
1938 * Returns monotonic time at last tick and various offsets
1939 */
1940 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1941 ktime_t *offs_tai)
1942 {
1943 struct timekeeper *tk = &tk_core.timekeeper;
1944 unsigned int seq;
1945 ktime_t base;
1946 u64 nsecs;
1947
1948 do {
1949 seq = read_seqcount_begin(&tk_core.seq);
1950
1951 base = tk->tkr_mono.base;
1952 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1953
1954 *offs_real = tk->offs_real;
1955 *offs_boot = tk->offs_boot;
1956 *offs_tai = tk->offs_tai;
1957 } while (read_seqcount_retry(&tk_core.seq, seq));
1958
1959 return ktime_add_ns(base, nsecs);
1960 }
1961
1962 #ifdef CONFIG_HIGH_RES_TIMERS
1963 /**
1964 * ktime_get_update_offsets_now - hrtimer helper
1965 * @offs_real: pointer to storage for monotonic -> realtime offset
1966 * @offs_boot: pointer to storage for monotonic -> boottime offset
1967 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1968 *
1969 * Returns current monotonic time and updates the offsets
1970 * Called from hrtimer_interrupt() or retrigger_next_event()
1971 */
1972 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1973 ktime_t *offs_tai)
1974 {
1975 struct timekeeper *tk = &tk_core.timekeeper;
1976 unsigned int seq;
1977 ktime_t base;
1978 u64 nsecs;
1979
1980 do {
1981 seq = read_seqcount_begin(&tk_core.seq);
1982
1983 base = tk->tkr_mono.base;
1984 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1985
1986 *offs_real = tk->offs_real;
1987 *offs_boot = tk->offs_boot;
1988 *offs_tai = tk->offs_tai;
1989 } while (read_seqcount_retry(&tk_core.seq, seq));
1990
1991 return ktime_add_ns(base, nsecs);
1992 }
1993 #endif
1994
1995 /**
1996 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1997 */
1998 int do_adjtimex(struct timex *txc)
1999 {
2000 struct timekeeper *tk = &tk_core.timekeeper;
2001 unsigned long flags;
2002 struct timespec64 ts;
2003 s32 orig_tai, tai;
2004 int ret;
2005
2006 /* Validate the data before disabling interrupts */
2007 ret = ntp_validate_timex(txc);
2008 if (ret)
2009 return ret;
2010
2011 if (txc->modes & ADJ_SETOFFSET) {
2012 struct timespec delta;
2013 delta.tv_sec = txc->time.tv_sec;
2014 delta.tv_nsec = txc->time.tv_usec;
2015 if (!(txc->modes & ADJ_NANO))
2016 delta.tv_nsec *= 1000;
2017 ret = timekeeping_inject_offset(&delta);
2018 if (ret)
2019 return ret;
2020 }
2021
2022 getnstimeofday64(&ts);
2023
2024 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2025 write_seqcount_begin(&tk_core.seq);
2026
2027 orig_tai = tai = tk->tai_offset;
2028 ret = __do_adjtimex(txc, &ts, &tai);
2029
2030 if (tai != orig_tai) {
2031 __timekeeping_set_tai_offset(tk, tai);
2032 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2033 }
2034 write_seqcount_end(&tk_core.seq);
2035 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2036
2037 if (tai != orig_tai)
2038 clock_was_set();
2039
2040 ntp_notify_cmos_timer();
2041
2042 return ret;
2043 }
2044
2045 #ifdef CONFIG_NTP_PPS
2046 /**
2047 * hardpps() - Accessor function to NTP __hardpps function
2048 */
2049 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
2050 {
2051 unsigned long flags;
2052
2053 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2054 write_seqcount_begin(&tk_core.seq);
2055
2056 __hardpps(phase_ts, raw_ts);
2057
2058 write_seqcount_end(&tk_core.seq);
2059 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2060 }
2061 EXPORT_SYMBOL(hardpps);
2062 #endif
2063
2064 /**
2065 * xtime_update() - advances the timekeeping infrastructure
2066 * @ticks: number of ticks, that have elapsed since the last call.
2067 *
2068 * Must be called with interrupts disabled.
2069 */
2070 void xtime_update(unsigned long ticks)
2071 {
2072 write_seqlock(&jiffies_lock);
2073 do_timer(ticks);
2074 write_sequnlock(&jiffies_lock);
2075 update_wall_time();
2076 }
This page took 0.079494 seconds and 5 git commands to generate.