7c5f5e4a006ce87e5f4bf957651bbd6f010eab71
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /* flag for if timekeeping is suspended */
48 int __read_mostly timekeeping_suspended;
49
50 /* Flag for if there is a persistent clock on this platform */
51 bool __read_mostly persistent_clock_exist = false;
52
53 static inline void tk_normalize_xtime(struct timekeeper *tk)
54 {
55 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
56 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
57 tk->xtime_sec++;
58 }
59 }
60
61 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
62 {
63 struct timespec64 ts;
64
65 ts.tv_sec = tk->xtime_sec;
66 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
67 return ts;
68 }
69
70 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
71 {
72 tk->xtime_sec = ts->tv_sec;
73 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
74 }
75
76 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
77 {
78 tk->xtime_sec += ts->tv_sec;
79 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
80 tk_normalize_xtime(tk);
81 }
82
83 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
84 {
85 struct timespec64 tmp;
86
87 /*
88 * Verify consistency of: offset_real = -wall_to_monotonic
89 * before modifying anything
90 */
91 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92 -tk->wall_to_monotonic.tv_nsec);
93 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94 tk->wall_to_monotonic = wtm;
95 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
96 tk->offs_real = timespec64_to_ktime(tmp);
97 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
98 }
99
100 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
101 {
102 /* Verify consistency before modifying */
103 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
104
105 tk->total_sleep_time = t;
106 tk->offs_boot = timespec64_to_ktime(t);
107 }
108
109 /**
110 * tk_setup_internals - Set up internals to use clocksource clock.
111 *
112 * @tk: The target timekeeper to setup.
113 * @clock: Pointer to clocksource.
114 *
115 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
116 * pair and interval request.
117 *
118 * Unless you're the timekeeping code, you should not be using this!
119 */
120 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
121 {
122 cycle_t interval;
123 u64 tmp, ntpinterval;
124 struct clocksource *old_clock;
125
126 old_clock = tk->clock;
127 tk->clock = clock;
128 tk->cycle_last = clock->cycle_last = clock->read(clock);
129
130 /* Do the ns -> cycle conversion first, using original mult */
131 tmp = NTP_INTERVAL_LENGTH;
132 tmp <<= clock->shift;
133 ntpinterval = tmp;
134 tmp += clock->mult/2;
135 do_div(tmp, clock->mult);
136 if (tmp == 0)
137 tmp = 1;
138
139 interval = (cycle_t) tmp;
140 tk->cycle_interval = interval;
141
142 /* Go back from cycles -> shifted ns */
143 tk->xtime_interval = (u64) interval * clock->mult;
144 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
145 tk->raw_interval =
146 ((u64) interval * clock->mult) >> clock->shift;
147
148 /* if changing clocks, convert xtime_nsec shift units */
149 if (old_clock) {
150 int shift_change = clock->shift - old_clock->shift;
151 if (shift_change < 0)
152 tk->xtime_nsec >>= -shift_change;
153 else
154 tk->xtime_nsec <<= shift_change;
155 }
156 tk->shift = clock->shift;
157
158 tk->ntp_error = 0;
159 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
160
161 /*
162 * The timekeeper keeps its own mult values for the currently
163 * active clocksource. These value will be adjusted via NTP
164 * to counteract clock drifting.
165 */
166 tk->mult = clock->mult;
167 }
168
169 /* Timekeeper helper functions. */
170
171 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
172 static u32 default_arch_gettimeoffset(void) { return 0; }
173 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
174 #else
175 static inline u32 arch_gettimeoffset(void) { return 0; }
176 #endif
177
178 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
179 {
180 cycle_t cycle_now, cycle_delta;
181 struct clocksource *clock;
182 s64 nsec;
183
184 /* read clocksource: */
185 clock = tk->clock;
186 cycle_now = clock->read(clock);
187
188 /* calculate the delta since the last update_wall_time: */
189 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
190
191 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
192 nsec >>= tk->shift;
193
194 /* If arch requires, add in get_arch_timeoffset() */
195 return nsec + arch_gettimeoffset();
196 }
197
198 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
199 {
200 cycle_t cycle_now, cycle_delta;
201 struct clocksource *clock;
202 s64 nsec;
203
204 /* read clocksource: */
205 clock = tk->clock;
206 cycle_now = clock->read(clock);
207
208 /* calculate the delta since the last update_wall_time: */
209 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
210
211 /* convert delta to nanoseconds. */
212 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
213
214 /* If arch requires, add in get_arch_timeoffset() */
215 return nsec + arch_gettimeoffset();
216 }
217
218 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
219
220 static inline void update_vsyscall(struct timekeeper *tk)
221 {
222 struct timespec xt;
223
224 xt = tk_xtime(tk);
225 update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
226 }
227
228 static inline void old_vsyscall_fixup(struct timekeeper *tk)
229 {
230 s64 remainder;
231
232 /*
233 * Store only full nanoseconds into xtime_nsec after rounding
234 * it up and add the remainder to the error difference.
235 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
236 * by truncating the remainder in vsyscalls. However, it causes
237 * additional work to be done in timekeeping_adjust(). Once
238 * the vsyscall implementations are converted to use xtime_nsec
239 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
240 * users are removed, this can be killed.
241 */
242 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
243 tk->xtime_nsec -= remainder;
244 tk->xtime_nsec += 1ULL << tk->shift;
245 tk->ntp_error += remainder << tk->ntp_error_shift;
246 tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
247 }
248 #else
249 #define old_vsyscall_fixup(tk)
250 #endif
251
252 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
253
254 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
255 {
256 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
257 }
258
259 /**
260 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
261 */
262 int pvclock_gtod_register_notifier(struct notifier_block *nb)
263 {
264 struct timekeeper *tk = &tk_core.timekeeper;
265 unsigned long flags;
266 int ret;
267
268 raw_spin_lock_irqsave(&timekeeper_lock, flags);
269 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
270 update_pvclock_gtod(tk, true);
271 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
272
273 return ret;
274 }
275 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
276
277 /**
278 * pvclock_gtod_unregister_notifier - unregister a pvclock
279 * timedata update listener
280 */
281 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
282 {
283 unsigned long flags;
284 int ret;
285
286 raw_spin_lock_irqsave(&timekeeper_lock, flags);
287 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
288 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
289
290 return ret;
291 }
292 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
293
294 /*
295 * Update the ktime_t based scalar nsec members of the timekeeper
296 */
297 static inline void tk_update_ktime_data(struct timekeeper *tk)
298 {
299 s64 nsec;
300
301 /*
302 * The xtime based monotonic readout is:
303 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
304 * The ktime based monotonic readout is:
305 * nsec = base_mono + now();
306 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
307 */
308 nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
309 nsec *= NSEC_PER_SEC;
310 nsec += tk->wall_to_monotonic.tv_nsec;
311 tk->base_mono = ns_to_ktime(nsec);
312 }
313
314 /* must hold timekeeper_lock */
315 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
316 {
317 if (action & TK_CLEAR_NTP) {
318 tk->ntp_error = 0;
319 ntp_clear();
320 }
321 update_vsyscall(tk);
322 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
323
324 tk_update_ktime_data(tk);
325
326 if (action & TK_MIRROR)
327 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
328 sizeof(tk_core.timekeeper));
329 }
330
331 /**
332 * timekeeping_forward_now - update clock to the current time
333 *
334 * Forward the current clock to update its state since the last call to
335 * update_wall_time(). This is useful before significant clock changes,
336 * as it avoids having to deal with this time offset explicitly.
337 */
338 static void timekeeping_forward_now(struct timekeeper *tk)
339 {
340 cycle_t cycle_now, cycle_delta;
341 struct clocksource *clock;
342 s64 nsec;
343
344 clock = tk->clock;
345 cycle_now = clock->read(clock);
346 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
347 tk->cycle_last = clock->cycle_last = cycle_now;
348
349 tk->xtime_nsec += cycle_delta * tk->mult;
350
351 /* If arch requires, add in get_arch_timeoffset() */
352 tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
353
354 tk_normalize_xtime(tk);
355
356 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
357 timespec64_add_ns(&tk->raw_time, nsec);
358 }
359
360 /**
361 * __getnstimeofday64 - Returns the time of day in a timespec64.
362 * @ts: pointer to the timespec to be set
363 *
364 * Updates the time of day in the timespec.
365 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
366 */
367 int __getnstimeofday64(struct timespec64 *ts)
368 {
369 struct timekeeper *tk = &tk_core.timekeeper;
370 unsigned long seq;
371 s64 nsecs = 0;
372
373 do {
374 seq = read_seqcount_begin(&tk_core.seq);
375
376 ts->tv_sec = tk->xtime_sec;
377 nsecs = timekeeping_get_ns(tk);
378
379 } while (read_seqcount_retry(&tk_core.seq, seq));
380
381 ts->tv_nsec = 0;
382 timespec64_add_ns(ts, nsecs);
383
384 /*
385 * Do not bail out early, in case there were callers still using
386 * the value, even in the face of the WARN_ON.
387 */
388 if (unlikely(timekeeping_suspended))
389 return -EAGAIN;
390 return 0;
391 }
392 EXPORT_SYMBOL(__getnstimeofday64);
393
394 /**
395 * getnstimeofday64 - Returns the time of day in a timespec64.
396 * @ts: pointer to the timespec to be set
397 *
398 * Returns the time of day in a timespec (WARN if suspended).
399 */
400 void getnstimeofday64(struct timespec64 *ts)
401 {
402 WARN_ON(__getnstimeofday64(ts));
403 }
404 EXPORT_SYMBOL(getnstimeofday64);
405
406 ktime_t ktime_get(void)
407 {
408 struct timekeeper *tk = &tk_core.timekeeper;
409 unsigned int seq;
410 ktime_t base;
411 s64 nsecs;
412
413 WARN_ON(timekeeping_suspended);
414
415 do {
416 seq = read_seqcount_begin(&tk_core.seq);
417 base = tk->base_mono;
418 nsecs = timekeeping_get_ns(tk);
419
420 } while (read_seqcount_retry(&tk_core.seq, seq));
421
422 return ktime_add_ns(base, nsecs);
423 }
424 EXPORT_SYMBOL_GPL(ktime_get);
425
426 static ktime_t *offsets[TK_OFFS_MAX] = {
427 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
428 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
429 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
430 };
431
432 ktime_t ktime_get_with_offset(enum tk_offsets offs)
433 {
434 struct timekeeper *tk = &tk_core.timekeeper;
435 unsigned int seq;
436 ktime_t base, *offset = offsets[offs];
437 s64 nsecs;
438
439 WARN_ON(timekeeping_suspended);
440
441 do {
442 seq = read_seqcount_begin(&tk_core.seq);
443 base = ktime_add(tk->base_mono, *offset);
444 nsecs = timekeeping_get_ns(tk);
445
446 } while (read_seqcount_retry(&tk_core.seq, seq));
447
448 return ktime_add_ns(base, nsecs);
449
450 }
451 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
452
453 /**
454 * ktime_get_ts64 - get the monotonic clock in timespec64 format
455 * @ts: pointer to timespec variable
456 *
457 * The function calculates the monotonic clock from the realtime
458 * clock and the wall_to_monotonic offset and stores the result
459 * in normalized timespec format in the variable pointed to by @ts.
460 */
461 void ktime_get_ts64(struct timespec64 *ts)
462 {
463 struct timekeeper *tk = &tk_core.timekeeper;
464 struct timespec64 tomono;
465 s64 nsec;
466 unsigned int seq;
467
468 WARN_ON(timekeeping_suspended);
469
470 do {
471 seq = read_seqcount_begin(&tk_core.seq);
472 ts->tv_sec = tk->xtime_sec;
473 nsec = timekeeping_get_ns(tk);
474 tomono = tk->wall_to_monotonic;
475
476 } while (read_seqcount_retry(&tk_core.seq, seq));
477
478 ts->tv_sec += tomono.tv_sec;
479 ts->tv_nsec = 0;
480 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
481 }
482 EXPORT_SYMBOL_GPL(ktime_get_ts64);
483
484
485 /**
486 * timekeeping_clocktai - Returns the TAI time of day in a timespec
487 * @ts: pointer to the timespec to be set
488 *
489 * Returns the time of day in a timespec.
490 */
491 void timekeeping_clocktai(struct timespec *ts)
492 {
493 struct timekeeper *tk = &tk_core.timekeeper;
494 struct timespec64 ts64;
495 unsigned long seq;
496 u64 nsecs;
497
498 WARN_ON(timekeeping_suspended);
499
500 do {
501 seq = read_seqcount_begin(&tk_core.seq);
502
503 ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
504 nsecs = timekeeping_get_ns(tk);
505
506 } while (read_seqcount_retry(&tk_core.seq, seq));
507
508 ts64.tv_nsec = 0;
509 timespec64_add_ns(&ts64, nsecs);
510 *ts = timespec64_to_timespec(ts64);
511
512 }
513 EXPORT_SYMBOL(timekeeping_clocktai);
514
515
516 /**
517 * ktime_get_clocktai - Returns the TAI time of day in a ktime
518 *
519 * Returns the time of day in a ktime.
520 */
521 ktime_t ktime_get_clocktai(void)
522 {
523 struct timespec ts;
524
525 timekeeping_clocktai(&ts);
526 return timespec_to_ktime(ts);
527 }
528 EXPORT_SYMBOL(ktime_get_clocktai);
529
530 #ifdef CONFIG_NTP_PPS
531
532 /**
533 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
534 * @ts_raw: pointer to the timespec to be set to raw monotonic time
535 * @ts_real: pointer to the timespec to be set to the time of day
536 *
537 * This function reads both the time of day and raw monotonic time at the
538 * same time atomically and stores the resulting timestamps in timespec
539 * format.
540 */
541 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
542 {
543 struct timekeeper *tk = &tk_core.timekeeper;
544 unsigned long seq;
545 s64 nsecs_raw, nsecs_real;
546
547 WARN_ON_ONCE(timekeeping_suspended);
548
549 do {
550 seq = read_seqcount_begin(&tk_core.seq);
551
552 *ts_raw = timespec64_to_timespec(tk->raw_time);
553 ts_real->tv_sec = tk->xtime_sec;
554 ts_real->tv_nsec = 0;
555
556 nsecs_raw = timekeeping_get_ns_raw(tk);
557 nsecs_real = timekeeping_get_ns(tk);
558
559 } while (read_seqcount_retry(&tk_core.seq, seq));
560
561 timespec_add_ns(ts_raw, nsecs_raw);
562 timespec_add_ns(ts_real, nsecs_real);
563 }
564 EXPORT_SYMBOL(getnstime_raw_and_real);
565
566 #endif /* CONFIG_NTP_PPS */
567
568 /**
569 * do_gettimeofday - Returns the time of day in a timeval
570 * @tv: pointer to the timeval to be set
571 *
572 * NOTE: Users should be converted to using getnstimeofday()
573 */
574 void do_gettimeofday(struct timeval *tv)
575 {
576 struct timespec64 now;
577
578 getnstimeofday64(&now);
579 tv->tv_sec = now.tv_sec;
580 tv->tv_usec = now.tv_nsec/1000;
581 }
582 EXPORT_SYMBOL(do_gettimeofday);
583
584 /**
585 * do_settimeofday - Sets the time of day
586 * @tv: pointer to the timespec variable containing the new time
587 *
588 * Sets the time of day to the new time and update NTP and notify hrtimers
589 */
590 int do_settimeofday(const struct timespec *tv)
591 {
592 struct timekeeper *tk = &tk_core.timekeeper;
593 struct timespec64 ts_delta, xt, tmp;
594 unsigned long flags;
595
596 if (!timespec_valid_strict(tv))
597 return -EINVAL;
598
599 raw_spin_lock_irqsave(&timekeeper_lock, flags);
600 write_seqcount_begin(&tk_core.seq);
601
602 timekeeping_forward_now(tk);
603
604 xt = tk_xtime(tk);
605 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
606 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
607
608 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
609
610 tmp = timespec_to_timespec64(*tv);
611 tk_set_xtime(tk, &tmp);
612
613 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
614
615 write_seqcount_end(&tk_core.seq);
616 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
617
618 /* signal hrtimers about time change */
619 clock_was_set();
620
621 return 0;
622 }
623 EXPORT_SYMBOL(do_settimeofday);
624
625 /**
626 * timekeeping_inject_offset - Adds or subtracts from the current time.
627 * @tv: pointer to the timespec variable containing the offset
628 *
629 * Adds or subtracts an offset value from the current time.
630 */
631 int timekeeping_inject_offset(struct timespec *ts)
632 {
633 struct timekeeper *tk = &tk_core.timekeeper;
634 unsigned long flags;
635 struct timespec64 ts64, tmp;
636 int ret = 0;
637
638 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
639 return -EINVAL;
640
641 ts64 = timespec_to_timespec64(*ts);
642
643 raw_spin_lock_irqsave(&timekeeper_lock, flags);
644 write_seqcount_begin(&tk_core.seq);
645
646 timekeeping_forward_now(tk);
647
648 /* Make sure the proposed value is valid */
649 tmp = timespec64_add(tk_xtime(tk), ts64);
650 if (!timespec64_valid_strict(&tmp)) {
651 ret = -EINVAL;
652 goto error;
653 }
654
655 tk_xtime_add(tk, &ts64);
656 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
657
658 error: /* even if we error out, we forwarded the time, so call update */
659 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
660
661 write_seqcount_end(&tk_core.seq);
662 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
663
664 /* signal hrtimers about time change */
665 clock_was_set();
666
667 return ret;
668 }
669 EXPORT_SYMBOL(timekeeping_inject_offset);
670
671
672 /**
673 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
674 *
675 */
676 s32 timekeeping_get_tai_offset(void)
677 {
678 struct timekeeper *tk = &tk_core.timekeeper;
679 unsigned int seq;
680 s32 ret;
681
682 do {
683 seq = read_seqcount_begin(&tk_core.seq);
684 ret = tk->tai_offset;
685 } while (read_seqcount_retry(&tk_core.seq, seq));
686
687 return ret;
688 }
689
690 /**
691 * __timekeeping_set_tai_offset - Lock free worker function
692 *
693 */
694 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
695 {
696 tk->tai_offset = tai_offset;
697 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
698 }
699
700 /**
701 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
702 *
703 */
704 void timekeeping_set_tai_offset(s32 tai_offset)
705 {
706 struct timekeeper *tk = &tk_core.timekeeper;
707 unsigned long flags;
708
709 raw_spin_lock_irqsave(&timekeeper_lock, flags);
710 write_seqcount_begin(&tk_core.seq);
711 __timekeeping_set_tai_offset(tk, tai_offset);
712 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
713 write_seqcount_end(&tk_core.seq);
714 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
715 clock_was_set();
716 }
717
718 /**
719 * change_clocksource - Swaps clocksources if a new one is available
720 *
721 * Accumulates current time interval and initializes new clocksource
722 */
723 static int change_clocksource(void *data)
724 {
725 struct timekeeper *tk = &tk_core.timekeeper;
726 struct clocksource *new, *old;
727 unsigned long flags;
728
729 new = (struct clocksource *) data;
730
731 raw_spin_lock_irqsave(&timekeeper_lock, flags);
732 write_seqcount_begin(&tk_core.seq);
733
734 timekeeping_forward_now(tk);
735 /*
736 * If the cs is in module, get a module reference. Succeeds
737 * for built-in code (owner == NULL) as well.
738 */
739 if (try_module_get(new->owner)) {
740 if (!new->enable || new->enable(new) == 0) {
741 old = tk->clock;
742 tk_setup_internals(tk, new);
743 if (old->disable)
744 old->disable(old);
745 module_put(old->owner);
746 } else {
747 module_put(new->owner);
748 }
749 }
750 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
751
752 write_seqcount_end(&tk_core.seq);
753 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
754
755 return 0;
756 }
757
758 /**
759 * timekeeping_notify - Install a new clock source
760 * @clock: pointer to the clock source
761 *
762 * This function is called from clocksource.c after a new, better clock
763 * source has been registered. The caller holds the clocksource_mutex.
764 */
765 int timekeeping_notify(struct clocksource *clock)
766 {
767 struct timekeeper *tk = &tk_core.timekeeper;
768
769 if (tk->clock == clock)
770 return 0;
771 stop_machine(change_clocksource, clock, NULL);
772 tick_clock_notify();
773 return tk->clock == clock ? 0 : -1;
774 }
775
776 /**
777 * ktime_get_real - get the real (wall-) time in ktime_t format
778 *
779 * returns the time in ktime_t format
780 */
781 ktime_t ktime_get_real(void)
782 {
783 struct timespec64 now;
784
785 getnstimeofday64(&now);
786
787 return timespec64_to_ktime(now);
788 }
789 EXPORT_SYMBOL_GPL(ktime_get_real);
790
791 /**
792 * getrawmonotonic - Returns the raw monotonic time in a timespec
793 * @ts: pointer to the timespec to be set
794 *
795 * Returns the raw monotonic time (completely un-modified by ntp)
796 */
797 void getrawmonotonic(struct timespec *ts)
798 {
799 struct timekeeper *tk = &tk_core.timekeeper;
800 struct timespec64 ts64;
801 unsigned long seq;
802 s64 nsecs;
803
804 do {
805 seq = read_seqcount_begin(&tk_core.seq);
806 nsecs = timekeeping_get_ns_raw(tk);
807 ts64 = tk->raw_time;
808
809 } while (read_seqcount_retry(&tk_core.seq, seq));
810
811 timespec64_add_ns(&ts64, nsecs);
812 *ts = timespec64_to_timespec(ts64);
813 }
814 EXPORT_SYMBOL(getrawmonotonic);
815
816 /**
817 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
818 */
819 int timekeeping_valid_for_hres(void)
820 {
821 struct timekeeper *tk = &tk_core.timekeeper;
822 unsigned long seq;
823 int ret;
824
825 do {
826 seq = read_seqcount_begin(&tk_core.seq);
827
828 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
829
830 } while (read_seqcount_retry(&tk_core.seq, seq));
831
832 return ret;
833 }
834
835 /**
836 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
837 */
838 u64 timekeeping_max_deferment(void)
839 {
840 struct timekeeper *tk = &tk_core.timekeeper;
841 unsigned long seq;
842 u64 ret;
843
844 do {
845 seq = read_seqcount_begin(&tk_core.seq);
846
847 ret = tk->clock->max_idle_ns;
848
849 } while (read_seqcount_retry(&tk_core.seq, seq));
850
851 return ret;
852 }
853
854 /**
855 * read_persistent_clock - Return time from the persistent clock.
856 *
857 * Weak dummy function for arches that do not yet support it.
858 * Reads the time from the battery backed persistent clock.
859 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
860 *
861 * XXX - Do be sure to remove it once all arches implement it.
862 */
863 void __weak read_persistent_clock(struct timespec *ts)
864 {
865 ts->tv_sec = 0;
866 ts->tv_nsec = 0;
867 }
868
869 /**
870 * read_boot_clock - Return time of the system start.
871 *
872 * Weak dummy function for arches that do not yet support it.
873 * Function to read the exact time the system has been started.
874 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
875 *
876 * XXX - Do be sure to remove it once all arches implement it.
877 */
878 void __weak read_boot_clock(struct timespec *ts)
879 {
880 ts->tv_sec = 0;
881 ts->tv_nsec = 0;
882 }
883
884 /*
885 * timekeeping_init - Initializes the clocksource and common timekeeping values
886 */
887 void __init timekeeping_init(void)
888 {
889 struct timekeeper *tk = &tk_core.timekeeper;
890 struct clocksource *clock;
891 unsigned long flags;
892 struct timespec64 now, boot, tmp;
893 struct timespec ts;
894
895 read_persistent_clock(&ts);
896 now = timespec_to_timespec64(ts);
897 if (!timespec64_valid_strict(&now)) {
898 pr_warn("WARNING: Persistent clock returned invalid value!\n"
899 " Check your CMOS/BIOS settings.\n");
900 now.tv_sec = 0;
901 now.tv_nsec = 0;
902 } else if (now.tv_sec || now.tv_nsec)
903 persistent_clock_exist = true;
904
905 read_boot_clock(&ts);
906 boot = timespec_to_timespec64(ts);
907 if (!timespec64_valid_strict(&boot)) {
908 pr_warn("WARNING: Boot clock returned invalid value!\n"
909 " Check your CMOS/BIOS settings.\n");
910 boot.tv_sec = 0;
911 boot.tv_nsec = 0;
912 }
913
914 raw_spin_lock_irqsave(&timekeeper_lock, flags);
915 write_seqcount_begin(&tk_core.seq);
916 ntp_init();
917
918 clock = clocksource_default_clock();
919 if (clock->enable)
920 clock->enable(clock);
921 tk_setup_internals(tk, clock);
922
923 tk_set_xtime(tk, &now);
924 tk->raw_time.tv_sec = 0;
925 tk->raw_time.tv_nsec = 0;
926 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
927 boot = tk_xtime(tk);
928
929 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
930 tk_set_wall_to_mono(tk, tmp);
931
932 tmp.tv_sec = 0;
933 tmp.tv_nsec = 0;
934 tk_set_sleep_time(tk, tmp);
935
936 timekeeping_update(tk, TK_MIRROR);
937
938 write_seqcount_end(&tk_core.seq);
939 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
940 }
941
942 /* time in seconds when suspend began */
943 static struct timespec64 timekeeping_suspend_time;
944
945 /**
946 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
947 * @delta: pointer to a timespec delta value
948 *
949 * Takes a timespec offset measuring a suspend interval and properly
950 * adds the sleep offset to the timekeeping variables.
951 */
952 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
953 struct timespec64 *delta)
954 {
955 if (!timespec64_valid_strict(delta)) {
956 printk_deferred(KERN_WARNING
957 "__timekeeping_inject_sleeptime: Invalid "
958 "sleep delta value!\n");
959 return;
960 }
961 tk_xtime_add(tk, delta);
962 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
963 tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
964 tk_debug_account_sleep_time(delta);
965 }
966
967 /**
968 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
969 * @delta: pointer to a timespec delta value
970 *
971 * This hook is for architectures that cannot support read_persistent_clock
972 * because their RTC/persistent clock is only accessible when irqs are enabled.
973 *
974 * This function should only be called by rtc_resume(), and allows
975 * a suspend offset to be injected into the timekeeping values.
976 */
977 void timekeeping_inject_sleeptime(struct timespec *delta)
978 {
979 struct timekeeper *tk = &tk_core.timekeeper;
980 struct timespec64 tmp;
981 unsigned long flags;
982
983 /*
984 * Make sure we don't set the clock twice, as timekeeping_resume()
985 * already did it
986 */
987 if (has_persistent_clock())
988 return;
989
990 raw_spin_lock_irqsave(&timekeeper_lock, flags);
991 write_seqcount_begin(&tk_core.seq);
992
993 timekeeping_forward_now(tk);
994
995 tmp = timespec_to_timespec64(*delta);
996 __timekeeping_inject_sleeptime(tk, &tmp);
997
998 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
999
1000 write_seqcount_end(&tk_core.seq);
1001 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1002
1003 /* signal hrtimers about time change */
1004 clock_was_set();
1005 }
1006
1007 /**
1008 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1009 *
1010 * This is for the generic clocksource timekeeping.
1011 * xtime/wall_to_monotonic/jiffies/etc are
1012 * still managed by arch specific suspend/resume code.
1013 */
1014 static void timekeeping_resume(void)
1015 {
1016 struct timekeeper *tk = &tk_core.timekeeper;
1017 struct clocksource *clock = tk->clock;
1018 unsigned long flags;
1019 struct timespec64 ts_new, ts_delta;
1020 struct timespec tmp;
1021 cycle_t cycle_now, cycle_delta;
1022 bool suspendtime_found = false;
1023
1024 read_persistent_clock(&tmp);
1025 ts_new = timespec_to_timespec64(tmp);
1026
1027 clockevents_resume();
1028 clocksource_resume();
1029
1030 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1031 write_seqcount_begin(&tk_core.seq);
1032
1033 /*
1034 * After system resumes, we need to calculate the suspended time and
1035 * compensate it for the OS time. There are 3 sources that could be
1036 * used: Nonstop clocksource during suspend, persistent clock and rtc
1037 * device.
1038 *
1039 * One specific platform may have 1 or 2 or all of them, and the
1040 * preference will be:
1041 * suspend-nonstop clocksource -> persistent clock -> rtc
1042 * The less preferred source will only be tried if there is no better
1043 * usable source. The rtc part is handled separately in rtc core code.
1044 */
1045 cycle_now = clock->read(clock);
1046 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1047 cycle_now > clock->cycle_last) {
1048 u64 num, max = ULLONG_MAX;
1049 u32 mult = clock->mult;
1050 u32 shift = clock->shift;
1051 s64 nsec = 0;
1052
1053 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
1054
1055 /*
1056 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1057 * suspended time is too long. In that case we need do the
1058 * 64 bits math carefully
1059 */
1060 do_div(max, mult);
1061 if (cycle_delta > max) {
1062 num = div64_u64(cycle_delta, max);
1063 nsec = (((u64) max * mult) >> shift) * num;
1064 cycle_delta -= num * max;
1065 }
1066 nsec += ((u64) cycle_delta * mult) >> shift;
1067
1068 ts_delta = ns_to_timespec64(nsec);
1069 suspendtime_found = true;
1070 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1071 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1072 suspendtime_found = true;
1073 }
1074
1075 if (suspendtime_found)
1076 __timekeeping_inject_sleeptime(tk, &ts_delta);
1077
1078 /* Re-base the last cycle value */
1079 tk->cycle_last = clock->cycle_last = cycle_now;
1080 tk->ntp_error = 0;
1081 timekeeping_suspended = 0;
1082 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1083 write_seqcount_end(&tk_core.seq);
1084 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1085
1086 touch_softlockup_watchdog();
1087
1088 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1089
1090 /* Resume hrtimers */
1091 hrtimers_resume();
1092 }
1093
1094 static int timekeeping_suspend(void)
1095 {
1096 struct timekeeper *tk = &tk_core.timekeeper;
1097 unsigned long flags;
1098 struct timespec64 delta, delta_delta;
1099 static struct timespec64 old_delta;
1100 struct timespec tmp;
1101
1102 read_persistent_clock(&tmp);
1103 timekeeping_suspend_time = timespec_to_timespec64(tmp);
1104
1105 /*
1106 * On some systems the persistent_clock can not be detected at
1107 * timekeeping_init by its return value, so if we see a valid
1108 * value returned, update the persistent_clock_exists flag.
1109 */
1110 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1111 persistent_clock_exist = true;
1112
1113 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1114 write_seqcount_begin(&tk_core.seq);
1115 timekeeping_forward_now(tk);
1116 timekeeping_suspended = 1;
1117
1118 /*
1119 * To avoid drift caused by repeated suspend/resumes,
1120 * which each can add ~1 second drift error,
1121 * try to compensate so the difference in system time
1122 * and persistent_clock time stays close to constant.
1123 */
1124 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1125 delta_delta = timespec64_sub(delta, old_delta);
1126 if (abs(delta_delta.tv_sec) >= 2) {
1127 /*
1128 * if delta_delta is too large, assume time correction
1129 * has occured and set old_delta to the current delta.
1130 */
1131 old_delta = delta;
1132 } else {
1133 /* Otherwise try to adjust old_system to compensate */
1134 timekeeping_suspend_time =
1135 timespec64_add(timekeeping_suspend_time, delta_delta);
1136 }
1137
1138 timekeeping_update(tk, TK_MIRROR);
1139 write_seqcount_end(&tk_core.seq);
1140 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1141
1142 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1143 clocksource_suspend();
1144 clockevents_suspend();
1145
1146 return 0;
1147 }
1148
1149 /* sysfs resume/suspend bits for timekeeping */
1150 static struct syscore_ops timekeeping_syscore_ops = {
1151 .resume = timekeeping_resume,
1152 .suspend = timekeeping_suspend,
1153 };
1154
1155 static int __init timekeeping_init_ops(void)
1156 {
1157 register_syscore_ops(&timekeeping_syscore_ops);
1158 return 0;
1159 }
1160
1161 device_initcall(timekeeping_init_ops);
1162
1163 /*
1164 * If the error is already larger, we look ahead even further
1165 * to compensate for late or lost adjustments.
1166 */
1167 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1168 s64 error, s64 *interval,
1169 s64 *offset)
1170 {
1171 s64 tick_error, i;
1172 u32 look_ahead, adj;
1173 s32 error2, mult;
1174
1175 /*
1176 * Use the current error value to determine how much to look ahead.
1177 * The larger the error the slower we adjust for it to avoid problems
1178 * with losing too many ticks, otherwise we would overadjust and
1179 * produce an even larger error. The smaller the adjustment the
1180 * faster we try to adjust for it, as lost ticks can do less harm
1181 * here. This is tuned so that an error of about 1 msec is adjusted
1182 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1183 */
1184 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1185 error2 = abs(error2);
1186 for (look_ahead = 0; error2 > 0; look_ahead++)
1187 error2 >>= 2;
1188
1189 /*
1190 * Now calculate the error in (1 << look_ahead) ticks, but first
1191 * remove the single look ahead already included in the error.
1192 */
1193 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1194 tick_error -= tk->xtime_interval >> 1;
1195 error = ((error - tick_error) >> look_ahead) + tick_error;
1196
1197 /* Finally calculate the adjustment shift value. */
1198 i = *interval;
1199 mult = 1;
1200 if (error < 0) {
1201 error = -error;
1202 *interval = -*interval;
1203 *offset = -*offset;
1204 mult = -1;
1205 }
1206 for (adj = 0; error > i; adj++)
1207 error >>= 1;
1208
1209 *interval <<= adj;
1210 *offset <<= adj;
1211 return mult << adj;
1212 }
1213
1214 /*
1215 * Adjust the multiplier to reduce the error value,
1216 * this is optimized for the most common adjustments of -1,0,1,
1217 * for other values we can do a bit more work.
1218 */
1219 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1220 {
1221 s64 error, interval = tk->cycle_interval;
1222 int adj;
1223
1224 /*
1225 * The point of this is to check if the error is greater than half
1226 * an interval.
1227 *
1228 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1229 *
1230 * Note we subtract one in the shift, so that error is really error*2.
1231 * This "saves" dividing(shifting) interval twice, but keeps the
1232 * (error > interval) comparison as still measuring if error is
1233 * larger than half an interval.
1234 *
1235 * Note: It does not "save" on aggravation when reading the code.
1236 */
1237 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1238 if (error > interval) {
1239 /*
1240 * We now divide error by 4(via shift), which checks if
1241 * the error is greater than twice the interval.
1242 * If it is greater, we need a bigadjust, if its smaller,
1243 * we can adjust by 1.
1244 */
1245 error >>= 2;
1246 if (likely(error <= interval))
1247 adj = 1;
1248 else
1249 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1250 } else {
1251 if (error < -interval) {
1252 /* See comment above, this is just switched for the negative */
1253 error >>= 2;
1254 if (likely(error >= -interval)) {
1255 adj = -1;
1256 interval = -interval;
1257 offset = -offset;
1258 } else {
1259 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1260 }
1261 } else {
1262 goto out_adjust;
1263 }
1264 }
1265
1266 if (unlikely(tk->clock->maxadj &&
1267 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1268 printk_deferred_once(KERN_WARNING
1269 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1270 tk->clock->name, (long)tk->mult + adj,
1271 (long)tk->clock->mult + tk->clock->maxadj);
1272 }
1273 /*
1274 * So the following can be confusing.
1275 *
1276 * To keep things simple, lets assume adj == 1 for now.
1277 *
1278 * When adj != 1, remember that the interval and offset values
1279 * have been appropriately scaled so the math is the same.
1280 *
1281 * The basic idea here is that we're increasing the multiplier
1282 * by one, this causes the xtime_interval to be incremented by
1283 * one cycle_interval. This is because:
1284 * xtime_interval = cycle_interval * mult
1285 * So if mult is being incremented by one:
1286 * xtime_interval = cycle_interval * (mult + 1)
1287 * Its the same as:
1288 * xtime_interval = (cycle_interval * mult) + cycle_interval
1289 * Which can be shortened to:
1290 * xtime_interval += cycle_interval
1291 *
1292 * So offset stores the non-accumulated cycles. Thus the current
1293 * time (in shifted nanoseconds) is:
1294 * now = (offset * adj) + xtime_nsec
1295 * Now, even though we're adjusting the clock frequency, we have
1296 * to keep time consistent. In other words, we can't jump back
1297 * in time, and we also want to avoid jumping forward in time.
1298 *
1299 * So given the same offset value, we need the time to be the same
1300 * both before and after the freq adjustment.
1301 * now = (offset * adj_1) + xtime_nsec_1
1302 * now = (offset * adj_2) + xtime_nsec_2
1303 * So:
1304 * (offset * adj_1) + xtime_nsec_1 =
1305 * (offset * adj_2) + xtime_nsec_2
1306 * And we know:
1307 * adj_2 = adj_1 + 1
1308 * So:
1309 * (offset * adj_1) + xtime_nsec_1 =
1310 * (offset * (adj_1+1)) + xtime_nsec_2
1311 * (offset * adj_1) + xtime_nsec_1 =
1312 * (offset * adj_1) + offset + xtime_nsec_2
1313 * Canceling the sides:
1314 * xtime_nsec_1 = offset + xtime_nsec_2
1315 * Which gives us:
1316 * xtime_nsec_2 = xtime_nsec_1 - offset
1317 * Which simplfies to:
1318 * xtime_nsec -= offset
1319 *
1320 * XXX - TODO: Doc ntp_error calculation.
1321 */
1322 tk->mult += adj;
1323 tk->xtime_interval += interval;
1324 tk->xtime_nsec -= offset;
1325 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1326
1327 out_adjust:
1328 /*
1329 * It may be possible that when we entered this function, xtime_nsec
1330 * was very small. Further, if we're slightly speeding the clocksource
1331 * in the code above, its possible the required corrective factor to
1332 * xtime_nsec could cause it to underflow.
1333 *
1334 * Now, since we already accumulated the second, cannot simply roll
1335 * the accumulated second back, since the NTP subsystem has been
1336 * notified via second_overflow. So instead we push xtime_nsec forward
1337 * by the amount we underflowed, and add that amount into the error.
1338 *
1339 * We'll correct this error next time through this function, when
1340 * xtime_nsec is not as small.
1341 */
1342 if (unlikely((s64)tk->xtime_nsec < 0)) {
1343 s64 neg = -(s64)tk->xtime_nsec;
1344 tk->xtime_nsec = 0;
1345 tk->ntp_error += neg << tk->ntp_error_shift;
1346 }
1347
1348 }
1349
1350 /**
1351 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1352 *
1353 * Helper function that accumulates a the nsecs greater then a second
1354 * from the xtime_nsec field to the xtime_secs field.
1355 * It also calls into the NTP code to handle leapsecond processing.
1356 *
1357 */
1358 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1359 {
1360 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1361 unsigned int clock_set = 0;
1362
1363 while (tk->xtime_nsec >= nsecps) {
1364 int leap;
1365
1366 tk->xtime_nsec -= nsecps;
1367 tk->xtime_sec++;
1368
1369 /* Figure out if its a leap sec and apply if needed */
1370 leap = second_overflow(tk->xtime_sec);
1371 if (unlikely(leap)) {
1372 struct timespec64 ts;
1373
1374 tk->xtime_sec += leap;
1375
1376 ts.tv_sec = leap;
1377 ts.tv_nsec = 0;
1378 tk_set_wall_to_mono(tk,
1379 timespec64_sub(tk->wall_to_monotonic, ts));
1380
1381 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1382
1383 clock_set = TK_CLOCK_WAS_SET;
1384 }
1385 }
1386 return clock_set;
1387 }
1388
1389 /**
1390 * logarithmic_accumulation - shifted accumulation of cycles
1391 *
1392 * This functions accumulates a shifted interval of cycles into
1393 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1394 * loop.
1395 *
1396 * Returns the unconsumed cycles.
1397 */
1398 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1399 u32 shift,
1400 unsigned int *clock_set)
1401 {
1402 cycle_t interval = tk->cycle_interval << shift;
1403 u64 raw_nsecs;
1404
1405 /* If the offset is smaller then a shifted interval, do nothing */
1406 if (offset < interval)
1407 return offset;
1408
1409 /* Accumulate one shifted interval */
1410 offset -= interval;
1411 tk->cycle_last += interval;
1412
1413 tk->xtime_nsec += tk->xtime_interval << shift;
1414 *clock_set |= accumulate_nsecs_to_secs(tk);
1415
1416 /* Accumulate raw time */
1417 raw_nsecs = (u64)tk->raw_interval << shift;
1418 raw_nsecs += tk->raw_time.tv_nsec;
1419 if (raw_nsecs >= NSEC_PER_SEC) {
1420 u64 raw_secs = raw_nsecs;
1421 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1422 tk->raw_time.tv_sec += raw_secs;
1423 }
1424 tk->raw_time.tv_nsec = raw_nsecs;
1425
1426 /* Accumulate error between NTP and clock interval */
1427 tk->ntp_error += ntp_tick_length() << shift;
1428 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1429 (tk->ntp_error_shift + shift);
1430
1431 return offset;
1432 }
1433
1434 /**
1435 * update_wall_time - Uses the current clocksource to increment the wall time
1436 *
1437 */
1438 void update_wall_time(void)
1439 {
1440 struct clocksource *clock;
1441 struct timekeeper *real_tk = &tk_core.timekeeper;
1442 struct timekeeper *tk = &shadow_timekeeper;
1443 cycle_t offset;
1444 int shift = 0, maxshift;
1445 unsigned int clock_set = 0;
1446 unsigned long flags;
1447
1448 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1449
1450 /* Make sure we're fully resumed: */
1451 if (unlikely(timekeeping_suspended))
1452 goto out;
1453
1454 clock = real_tk->clock;
1455
1456 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1457 offset = real_tk->cycle_interval;
1458 #else
1459 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1460 #endif
1461
1462 /* Check if there's really nothing to do */
1463 if (offset < real_tk->cycle_interval)
1464 goto out;
1465
1466 /*
1467 * With NO_HZ we may have to accumulate many cycle_intervals
1468 * (think "ticks") worth of time at once. To do this efficiently,
1469 * we calculate the largest doubling multiple of cycle_intervals
1470 * that is smaller than the offset. We then accumulate that
1471 * chunk in one go, and then try to consume the next smaller
1472 * doubled multiple.
1473 */
1474 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1475 shift = max(0, shift);
1476 /* Bound shift to one less than what overflows tick_length */
1477 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1478 shift = min(shift, maxshift);
1479 while (offset >= tk->cycle_interval) {
1480 offset = logarithmic_accumulation(tk, offset, shift,
1481 &clock_set);
1482 if (offset < tk->cycle_interval<<shift)
1483 shift--;
1484 }
1485
1486 /* correct the clock when NTP error is too big */
1487 timekeeping_adjust(tk, offset);
1488
1489 /*
1490 * XXX This can be killed once everyone converts
1491 * to the new update_vsyscall.
1492 */
1493 old_vsyscall_fixup(tk);
1494
1495 /*
1496 * Finally, make sure that after the rounding
1497 * xtime_nsec isn't larger than NSEC_PER_SEC
1498 */
1499 clock_set |= accumulate_nsecs_to_secs(tk);
1500
1501 write_seqcount_begin(&tk_core.seq);
1502 /* Update clock->cycle_last with the new value */
1503 clock->cycle_last = tk->cycle_last;
1504 /*
1505 * Update the real timekeeper.
1506 *
1507 * We could avoid this memcpy by switching pointers, but that
1508 * requires changes to all other timekeeper usage sites as
1509 * well, i.e. move the timekeeper pointer getter into the
1510 * spinlocked/seqcount protected sections. And we trade this
1511 * memcpy under the tk_core.seq against one before we start
1512 * updating.
1513 */
1514 memcpy(real_tk, tk, sizeof(*tk));
1515 timekeeping_update(real_tk, clock_set);
1516 write_seqcount_end(&tk_core.seq);
1517 out:
1518 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1519 if (clock_set)
1520 /* Have to call _delayed version, since in irq context*/
1521 clock_was_set_delayed();
1522 }
1523
1524 /**
1525 * getboottime - Return the real time of system boot.
1526 * @ts: pointer to the timespec to be set
1527 *
1528 * Returns the wall-time of boot in a timespec.
1529 *
1530 * This is based on the wall_to_monotonic offset and the total suspend
1531 * time. Calls to settimeofday will affect the value returned (which
1532 * basically means that however wrong your real time clock is at boot time,
1533 * you get the right time here).
1534 */
1535 void getboottime(struct timespec *ts)
1536 {
1537 struct timekeeper *tk = &tk_core.timekeeper;
1538 struct timespec boottime = {
1539 .tv_sec = tk->wall_to_monotonic.tv_sec +
1540 tk->total_sleep_time.tv_sec,
1541 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1542 tk->total_sleep_time.tv_nsec
1543 };
1544
1545 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1546 }
1547 EXPORT_SYMBOL_GPL(getboottime);
1548
1549 /**
1550 * get_monotonic_boottime - Returns monotonic time since boot
1551 * @ts: pointer to the timespec to be set
1552 *
1553 * Returns the monotonic time since boot in a timespec.
1554 *
1555 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1556 * includes the time spent in suspend.
1557 */
1558 void get_monotonic_boottime(struct timespec *ts)
1559 {
1560 struct timekeeper *tk = &tk_core.timekeeper;
1561 struct timespec64 tomono, sleep, ret;
1562 s64 nsec;
1563 unsigned int seq;
1564
1565 WARN_ON(timekeeping_suspended);
1566
1567 do {
1568 seq = read_seqcount_begin(&tk_core.seq);
1569 ret.tv_sec = tk->xtime_sec;
1570 nsec = timekeeping_get_ns(tk);
1571 tomono = tk->wall_to_monotonic;
1572 sleep = tk->total_sleep_time;
1573
1574 } while (read_seqcount_retry(&tk_core.seq, seq));
1575
1576 ret.tv_sec += tomono.tv_sec + sleep.tv_sec;
1577 ret.tv_nsec = 0;
1578 timespec64_add_ns(&ret, nsec + tomono.tv_nsec + sleep.tv_nsec);
1579 *ts = timespec64_to_timespec(ret);
1580 }
1581 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1582
1583 /**
1584 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1585 *
1586 * Returns the monotonic time since boot in a ktime
1587 *
1588 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1589 * includes the time spent in suspend.
1590 */
1591 ktime_t ktime_get_boottime(void)
1592 {
1593 struct timespec ts;
1594
1595 get_monotonic_boottime(&ts);
1596 return timespec_to_ktime(ts);
1597 }
1598 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1599
1600 /**
1601 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1602 * @ts: pointer to the timespec to be converted
1603 */
1604 void monotonic_to_bootbased(struct timespec *ts)
1605 {
1606 struct timekeeper *tk = &tk_core.timekeeper;
1607 struct timespec64 ts64;
1608
1609 ts64 = timespec_to_timespec64(*ts);
1610 ts64 = timespec64_add(ts64, tk->total_sleep_time);
1611 *ts = timespec64_to_timespec(ts64);
1612 }
1613 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1614
1615 unsigned long get_seconds(void)
1616 {
1617 struct timekeeper *tk = &tk_core.timekeeper;
1618
1619 return tk->xtime_sec;
1620 }
1621 EXPORT_SYMBOL(get_seconds);
1622
1623 struct timespec __current_kernel_time(void)
1624 {
1625 struct timekeeper *tk = &tk_core.timekeeper;
1626
1627 return timespec64_to_timespec(tk_xtime(tk));
1628 }
1629
1630 struct timespec current_kernel_time(void)
1631 {
1632 struct timekeeper *tk = &tk_core.timekeeper;
1633 struct timespec64 now;
1634 unsigned long seq;
1635
1636 do {
1637 seq = read_seqcount_begin(&tk_core.seq);
1638
1639 now = tk_xtime(tk);
1640 } while (read_seqcount_retry(&tk_core.seq, seq));
1641
1642 return timespec64_to_timespec(now);
1643 }
1644 EXPORT_SYMBOL(current_kernel_time);
1645
1646 struct timespec get_monotonic_coarse(void)
1647 {
1648 struct timekeeper *tk = &tk_core.timekeeper;
1649 struct timespec64 now, mono;
1650 unsigned long seq;
1651
1652 do {
1653 seq = read_seqcount_begin(&tk_core.seq);
1654
1655 now = tk_xtime(tk);
1656 mono = tk->wall_to_monotonic;
1657 } while (read_seqcount_retry(&tk_core.seq, seq));
1658
1659 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1660 now.tv_nsec + mono.tv_nsec);
1661
1662 return timespec64_to_timespec(now);
1663 }
1664
1665 /*
1666 * Must hold jiffies_lock
1667 */
1668 void do_timer(unsigned long ticks)
1669 {
1670 jiffies_64 += ticks;
1671 calc_global_load(ticks);
1672 }
1673
1674 /**
1675 * ktime_get_update_offsets_tick - hrtimer helper
1676 * @offs_real: pointer to storage for monotonic -> realtime offset
1677 * @offs_boot: pointer to storage for monotonic -> boottime offset
1678 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1679 *
1680 * Returns monotonic time at last tick and various offsets
1681 */
1682 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1683 ktime_t *offs_tai)
1684 {
1685 struct timekeeper *tk = &tk_core.timekeeper;
1686 struct timespec64 ts;
1687 ktime_t now;
1688 unsigned int seq;
1689
1690 do {
1691 seq = read_seqcount_begin(&tk_core.seq);
1692
1693 ts = tk_xtime(tk);
1694 *offs_real = tk->offs_real;
1695 *offs_boot = tk->offs_boot;
1696 *offs_tai = tk->offs_tai;
1697 } while (read_seqcount_retry(&tk_core.seq, seq));
1698
1699 now = ktime_set(ts.tv_sec, ts.tv_nsec);
1700 now = ktime_sub(now, *offs_real);
1701 return now;
1702 }
1703
1704 #ifdef CONFIG_HIGH_RES_TIMERS
1705 /**
1706 * ktime_get_update_offsets_now - hrtimer helper
1707 * @offs_real: pointer to storage for monotonic -> realtime offset
1708 * @offs_boot: pointer to storage for monotonic -> boottime offset
1709 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1710 *
1711 * Returns current monotonic time and updates the offsets
1712 * Called from hrtimer_interrupt() or retrigger_next_event()
1713 */
1714 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1715 ktime_t *offs_tai)
1716 {
1717 struct timekeeper *tk = &tk_core.timekeeper;
1718 ktime_t now;
1719 unsigned int seq;
1720 u64 secs, nsecs;
1721
1722 do {
1723 seq = read_seqcount_begin(&tk_core.seq);
1724
1725 secs = tk->xtime_sec;
1726 nsecs = timekeeping_get_ns(tk);
1727
1728 *offs_real = tk->offs_real;
1729 *offs_boot = tk->offs_boot;
1730 *offs_tai = tk->offs_tai;
1731 } while (read_seqcount_retry(&tk_core.seq, seq));
1732
1733 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1734 now = ktime_sub(now, *offs_real);
1735 return now;
1736 }
1737 #endif
1738
1739 /**
1740 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1741 */
1742 ktime_t ktime_get_monotonic_offset(void)
1743 {
1744 struct timekeeper *tk = &tk_core.timekeeper;
1745 unsigned long seq;
1746 struct timespec64 wtom;
1747
1748 do {
1749 seq = read_seqcount_begin(&tk_core.seq);
1750 wtom = tk->wall_to_monotonic;
1751 } while (read_seqcount_retry(&tk_core.seq, seq));
1752
1753 return timespec64_to_ktime(wtom);
1754 }
1755 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1756
1757 /**
1758 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1759 */
1760 int do_adjtimex(struct timex *txc)
1761 {
1762 struct timekeeper *tk = &tk_core.timekeeper;
1763 unsigned long flags;
1764 struct timespec64 ts;
1765 s32 orig_tai, tai;
1766 int ret;
1767
1768 /* Validate the data before disabling interrupts */
1769 ret = ntp_validate_timex(txc);
1770 if (ret)
1771 return ret;
1772
1773 if (txc->modes & ADJ_SETOFFSET) {
1774 struct timespec delta;
1775 delta.tv_sec = txc->time.tv_sec;
1776 delta.tv_nsec = txc->time.tv_usec;
1777 if (!(txc->modes & ADJ_NANO))
1778 delta.tv_nsec *= 1000;
1779 ret = timekeeping_inject_offset(&delta);
1780 if (ret)
1781 return ret;
1782 }
1783
1784 getnstimeofday64(&ts);
1785
1786 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1787 write_seqcount_begin(&tk_core.seq);
1788
1789 orig_tai = tai = tk->tai_offset;
1790 ret = __do_adjtimex(txc, &ts, &tai);
1791
1792 if (tai != orig_tai) {
1793 __timekeeping_set_tai_offset(tk, tai);
1794 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1795 }
1796 write_seqcount_end(&tk_core.seq);
1797 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1798
1799 if (tai != orig_tai)
1800 clock_was_set();
1801
1802 ntp_notify_cmos_timer();
1803
1804 return ret;
1805 }
1806
1807 #ifdef CONFIG_NTP_PPS
1808 /**
1809 * hardpps() - Accessor function to NTP __hardpps function
1810 */
1811 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1812 {
1813 unsigned long flags;
1814
1815 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1816 write_seqcount_begin(&tk_core.seq);
1817
1818 __hardpps(phase_ts, raw_ts);
1819
1820 write_seqcount_end(&tk_core.seq);
1821 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1822 }
1823 EXPORT_SYMBOL(hardpps);
1824 #endif
1825
1826 /**
1827 * xtime_update() - advances the timekeeping infrastructure
1828 * @ticks: number of ticks, that have elapsed since the last call.
1829 *
1830 * Must be called with interrupts disabled.
1831 */
1832 void xtime_update(unsigned long ticks)
1833 {
1834 write_seqlock(&jiffies_lock);
1835 do_timer(ticks);
1836 write_sequnlock(&jiffies_lock);
1837 update_wall_time();
1838 }
This page took 0.06628 seconds and 4 git commands to generate.