timekeeping: Move reset of cycle_last for tsc clocksource to tsc
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21
22
23 /*
24 * This read-write spinlock protects us from races in SMP while
25 * playing with xtime.
26 */
27 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
28
29
30 /*
31 * The current time
32 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
33 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
34 * at zero at system boot time, so wall_to_monotonic will be negative,
35 * however, we will ALWAYS keep the tv_nsec part positive so we can use
36 * the usual normalization.
37 *
38 * wall_to_monotonic is moved after resume from suspend for the monotonic
39 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
40 * to get the real boot based time offset.
41 *
42 * - wall_to_monotonic is no longer the boot time, getboottime must be
43 * used instead.
44 */
45 struct timespec xtime __attribute__ ((aligned (16)));
46 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
47 static unsigned long total_sleep_time; /* seconds */
48
49 /* flag for if timekeeping is suspended */
50 int __read_mostly timekeeping_suspended;
51
52 static struct timespec xtime_cache __attribute__ ((aligned (16)));
53 void update_xtime_cache(u64 nsec)
54 {
55 xtime_cache = xtime;
56 timespec_add_ns(&xtime_cache, nsec);
57 }
58
59 struct clocksource *clock;
60
61 /* must hold xtime_lock */
62 void timekeeping_leap_insert(int leapsecond)
63 {
64 xtime.tv_sec += leapsecond;
65 wall_to_monotonic.tv_sec -= leapsecond;
66 update_vsyscall(&xtime, clock);
67 }
68
69 #ifdef CONFIG_GENERIC_TIME
70 /**
71 * clocksource_forward_now - update clock to the current time
72 *
73 * Forward the current clock to update its state since the last call to
74 * update_wall_time(). This is useful before significant clock changes,
75 * as it avoids having to deal with this time offset explicitly.
76 */
77 static void clocksource_forward_now(void)
78 {
79 cycle_t cycle_now, cycle_delta;
80 s64 nsec;
81
82 cycle_now = clock->read(clock);
83 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
84 clock->cycle_last = cycle_now;
85
86 nsec = cyc2ns(clock, cycle_delta);
87
88 /* If arch requires, add in gettimeoffset() */
89 nsec += arch_gettimeoffset();
90
91 timespec_add_ns(&xtime, nsec);
92
93 nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift;
94 clock->raw_time.tv_nsec += nsec;
95 }
96
97 /**
98 * getnstimeofday - Returns the time of day in a timespec
99 * @ts: pointer to the timespec to be set
100 *
101 * Returns the time of day in a timespec.
102 */
103 void getnstimeofday(struct timespec *ts)
104 {
105 cycle_t cycle_now, cycle_delta;
106 unsigned long seq;
107 s64 nsecs;
108
109 WARN_ON(timekeeping_suspended);
110
111 do {
112 seq = read_seqbegin(&xtime_lock);
113
114 *ts = xtime;
115
116 /* read clocksource: */
117 cycle_now = clock->read(clock);
118
119 /* calculate the delta since the last update_wall_time: */
120 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
121
122 /* convert to nanoseconds: */
123 nsecs = cyc2ns(clock, cycle_delta);
124
125 /* If arch requires, add in gettimeoffset() */
126 nsecs += arch_gettimeoffset();
127
128 } while (read_seqretry(&xtime_lock, seq));
129
130 timespec_add_ns(ts, nsecs);
131 }
132
133 EXPORT_SYMBOL(getnstimeofday);
134
135 ktime_t ktime_get(void)
136 {
137 cycle_t cycle_now, cycle_delta;
138 unsigned int seq;
139 s64 secs, nsecs;
140
141 WARN_ON(timekeeping_suspended);
142
143 do {
144 seq = read_seqbegin(&xtime_lock);
145 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
146 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
147
148 /* read clocksource: */
149 cycle_now = clock->read(clock);
150
151 /* calculate the delta since the last update_wall_time: */
152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153
154 /* convert to nanoseconds: */
155 nsecs += cyc2ns(clock, cycle_delta);
156
157 } while (read_seqretry(&xtime_lock, seq));
158 /*
159 * Use ktime_set/ktime_add_ns to create a proper ktime on
160 * 32-bit architectures without CONFIG_KTIME_SCALAR.
161 */
162 return ktime_add_ns(ktime_set(secs, 0), nsecs);
163 }
164 EXPORT_SYMBOL_GPL(ktime_get);
165
166 /**
167 * ktime_get_ts - get the monotonic clock in timespec format
168 * @ts: pointer to timespec variable
169 *
170 * The function calculates the monotonic clock from the realtime
171 * clock and the wall_to_monotonic offset and stores the result
172 * in normalized timespec format in the variable pointed to by @ts.
173 */
174 void ktime_get_ts(struct timespec *ts)
175 {
176 cycle_t cycle_now, cycle_delta;
177 struct timespec tomono;
178 unsigned int seq;
179 s64 nsecs;
180
181 WARN_ON(timekeeping_suspended);
182
183 do {
184 seq = read_seqbegin(&xtime_lock);
185 *ts = xtime;
186 tomono = wall_to_monotonic;
187
188 /* read clocksource: */
189 cycle_now = clock->read(clock);
190
191 /* calculate the delta since the last update_wall_time: */
192 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
193
194 /* convert to nanoseconds: */
195 nsecs = cyc2ns(clock, cycle_delta);
196
197 } while (read_seqretry(&xtime_lock, seq));
198
199 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
200 ts->tv_nsec + tomono.tv_nsec + nsecs);
201 }
202 EXPORT_SYMBOL_GPL(ktime_get_ts);
203
204 /**
205 * do_gettimeofday - Returns the time of day in a timeval
206 * @tv: pointer to the timeval to be set
207 *
208 * NOTE: Users should be converted to using getnstimeofday()
209 */
210 void do_gettimeofday(struct timeval *tv)
211 {
212 struct timespec now;
213
214 getnstimeofday(&now);
215 tv->tv_sec = now.tv_sec;
216 tv->tv_usec = now.tv_nsec/1000;
217 }
218
219 EXPORT_SYMBOL(do_gettimeofday);
220 /**
221 * do_settimeofday - Sets the time of day
222 * @tv: pointer to the timespec variable containing the new time
223 *
224 * Sets the time of day to the new time and update NTP and notify hrtimers
225 */
226 int do_settimeofday(struct timespec *tv)
227 {
228 struct timespec ts_delta;
229 unsigned long flags;
230
231 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
232 return -EINVAL;
233
234 write_seqlock_irqsave(&xtime_lock, flags);
235
236 clocksource_forward_now();
237
238 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
239 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
240 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
241
242 xtime = *tv;
243
244 update_xtime_cache(0);
245
246 clock->error = 0;
247 ntp_clear();
248
249 update_vsyscall(&xtime, clock);
250
251 write_sequnlock_irqrestore(&xtime_lock, flags);
252
253 /* signal hrtimers about time change */
254 clock_was_set();
255
256 return 0;
257 }
258
259 EXPORT_SYMBOL(do_settimeofday);
260
261 /**
262 * change_clocksource - Swaps clocksources if a new one is available
263 *
264 * Accumulates current time interval and initializes new clocksource
265 */
266 static void change_clocksource(void)
267 {
268 struct clocksource *new, *old;
269
270 new = clocksource_get_next();
271
272 if (clock == new)
273 return;
274
275 clocksource_forward_now();
276
277 if (new->enable && !new->enable(new))
278 return;
279 /*
280 * The frequency may have changed while the clocksource
281 * was disabled. If so the code in ->enable() must update
282 * the mult value to reflect the new frequency. Make sure
283 * mult_orig follows this change.
284 */
285 new->mult_orig = new->mult;
286
287 new->raw_time = clock->raw_time;
288 old = clock;
289 clock = new;
290 /*
291 * Save mult_orig in mult so that the value can be restored
292 * regardless if ->enable() updates the value of mult or not.
293 */
294 old->mult = old->mult_orig;
295 if (old->disable)
296 old->disable(old);
297
298 clock->cycle_last = clock->read(clock);
299 clock->error = 0;
300 clock->xtime_nsec = 0;
301 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
302
303 tick_clock_notify();
304
305 /*
306 * We're holding xtime lock and waking up klogd would deadlock
307 * us on enqueue. So no printing!
308 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
309 clock->name);
310 */
311 }
312 #else /* GENERIC_TIME */
313 static inline void clocksource_forward_now(void) { }
314 static inline void change_clocksource(void) { }
315
316 /**
317 * ktime_get - get the monotonic time in ktime_t format
318 *
319 * returns the time in ktime_t format
320 */
321 ktime_t ktime_get(void)
322 {
323 struct timespec now;
324
325 ktime_get_ts(&now);
326
327 return timespec_to_ktime(now);
328 }
329 EXPORT_SYMBOL_GPL(ktime_get);
330
331 /**
332 * ktime_get_ts - get the monotonic clock in timespec format
333 * @ts: pointer to timespec variable
334 *
335 * The function calculates the monotonic clock from the realtime
336 * clock and the wall_to_monotonic offset and stores the result
337 * in normalized timespec format in the variable pointed to by @ts.
338 */
339 void ktime_get_ts(struct timespec *ts)
340 {
341 struct timespec tomono;
342 unsigned long seq;
343
344 do {
345 seq = read_seqbegin(&xtime_lock);
346 getnstimeofday(ts);
347 tomono = wall_to_monotonic;
348
349 } while (read_seqretry(&xtime_lock, seq));
350
351 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
352 ts->tv_nsec + tomono.tv_nsec);
353 }
354 EXPORT_SYMBOL_GPL(ktime_get_ts);
355 #endif /* !GENERIC_TIME */
356
357 /**
358 * ktime_get_real - get the real (wall-) time in ktime_t format
359 *
360 * returns the time in ktime_t format
361 */
362 ktime_t ktime_get_real(void)
363 {
364 struct timespec now;
365
366 getnstimeofday(&now);
367
368 return timespec_to_ktime(now);
369 }
370 EXPORT_SYMBOL_GPL(ktime_get_real);
371
372 /**
373 * getrawmonotonic - Returns the raw monotonic time in a timespec
374 * @ts: pointer to the timespec to be set
375 *
376 * Returns the raw monotonic time (completely un-modified by ntp)
377 */
378 void getrawmonotonic(struct timespec *ts)
379 {
380 unsigned long seq;
381 s64 nsecs;
382 cycle_t cycle_now, cycle_delta;
383
384 do {
385 seq = read_seqbegin(&xtime_lock);
386
387 /* read clocksource: */
388 cycle_now = clock->read(clock);
389
390 /* calculate the delta since the last update_wall_time: */
391 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
392
393 /* convert to nanoseconds: */
394 nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift;
395
396 *ts = clock->raw_time;
397
398 } while (read_seqretry(&xtime_lock, seq));
399
400 timespec_add_ns(ts, nsecs);
401 }
402 EXPORT_SYMBOL(getrawmonotonic);
403
404
405 /**
406 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
407 */
408 int timekeeping_valid_for_hres(void)
409 {
410 unsigned long seq;
411 int ret;
412
413 do {
414 seq = read_seqbegin(&xtime_lock);
415
416 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
417
418 } while (read_seqretry(&xtime_lock, seq));
419
420 return ret;
421 }
422
423 /**
424 * read_persistent_clock - Return time in seconds from the persistent clock.
425 *
426 * Weak dummy function for arches that do not yet support it.
427 * Returns seconds from epoch using the battery backed persistent clock.
428 * Returns zero if unsupported.
429 *
430 * XXX - Do be sure to remove it once all arches implement it.
431 */
432 unsigned long __attribute__((weak)) read_persistent_clock(void)
433 {
434 return 0;
435 }
436
437 /*
438 * timekeeping_init - Initializes the clocksource and common timekeeping values
439 */
440 void __init timekeeping_init(void)
441 {
442 unsigned long flags;
443 unsigned long sec = read_persistent_clock();
444
445 write_seqlock_irqsave(&xtime_lock, flags);
446
447 ntp_init();
448
449 clock = clocksource_get_next();
450 if (clock->enable)
451 clock->enable(clock);
452 /* set mult_orig on enable */
453 clock->mult_orig = clock->mult;
454 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
455 clock->cycle_last = clock->read(clock);
456
457 xtime.tv_sec = sec;
458 xtime.tv_nsec = 0;
459 set_normalized_timespec(&wall_to_monotonic,
460 -xtime.tv_sec, -xtime.tv_nsec);
461 update_xtime_cache(0);
462 total_sleep_time = 0;
463 write_sequnlock_irqrestore(&xtime_lock, flags);
464 }
465
466 /* time in seconds when suspend began */
467 static unsigned long timekeeping_suspend_time;
468
469 /**
470 * timekeeping_resume - Resumes the generic timekeeping subsystem.
471 * @dev: unused
472 *
473 * This is for the generic clocksource timekeeping.
474 * xtime/wall_to_monotonic/jiffies/etc are
475 * still managed by arch specific suspend/resume code.
476 */
477 static int timekeeping_resume(struct sys_device *dev)
478 {
479 unsigned long flags;
480 unsigned long now = read_persistent_clock();
481
482 clocksource_resume();
483
484 write_seqlock_irqsave(&xtime_lock, flags);
485
486 if (now && (now > timekeeping_suspend_time)) {
487 unsigned long sleep_length = now - timekeeping_suspend_time;
488
489 xtime.tv_sec += sleep_length;
490 wall_to_monotonic.tv_sec -= sleep_length;
491 total_sleep_time += sleep_length;
492 }
493 update_xtime_cache(0);
494 /* re-base the last cycle value */
495 clock->cycle_last = clock->read(clock);
496 clock->error = 0;
497 timekeeping_suspended = 0;
498 write_sequnlock_irqrestore(&xtime_lock, flags);
499
500 touch_softlockup_watchdog();
501
502 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
503
504 /* Resume hrtimers */
505 hres_timers_resume();
506
507 return 0;
508 }
509
510 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
511 {
512 unsigned long flags;
513
514 timekeeping_suspend_time = read_persistent_clock();
515
516 write_seqlock_irqsave(&xtime_lock, flags);
517 clocksource_forward_now();
518 timekeeping_suspended = 1;
519 write_sequnlock_irqrestore(&xtime_lock, flags);
520
521 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
522
523 return 0;
524 }
525
526 /* sysfs resume/suspend bits for timekeeping */
527 static struct sysdev_class timekeeping_sysclass = {
528 .name = "timekeeping",
529 .resume = timekeeping_resume,
530 .suspend = timekeeping_suspend,
531 };
532
533 static struct sys_device device_timer = {
534 .id = 0,
535 .cls = &timekeeping_sysclass,
536 };
537
538 static int __init timekeeping_init_device(void)
539 {
540 int error = sysdev_class_register(&timekeeping_sysclass);
541 if (!error)
542 error = sysdev_register(&device_timer);
543 return error;
544 }
545
546 device_initcall(timekeeping_init_device);
547
548 /*
549 * If the error is already larger, we look ahead even further
550 * to compensate for late or lost adjustments.
551 */
552 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
553 s64 *offset)
554 {
555 s64 tick_error, i;
556 u32 look_ahead, adj;
557 s32 error2, mult;
558
559 /*
560 * Use the current error value to determine how much to look ahead.
561 * The larger the error the slower we adjust for it to avoid problems
562 * with losing too many ticks, otherwise we would overadjust and
563 * produce an even larger error. The smaller the adjustment the
564 * faster we try to adjust for it, as lost ticks can do less harm
565 * here. This is tuned so that an error of about 1 msec is adjusted
566 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
567 */
568 error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
569 error2 = abs(error2);
570 for (look_ahead = 0; error2 > 0; look_ahead++)
571 error2 >>= 2;
572
573 /*
574 * Now calculate the error in (1 << look_ahead) ticks, but first
575 * remove the single look ahead already included in the error.
576 */
577 tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1);
578 tick_error -= clock->xtime_interval >> 1;
579 error = ((error - tick_error) >> look_ahead) + tick_error;
580
581 /* Finally calculate the adjustment shift value. */
582 i = *interval;
583 mult = 1;
584 if (error < 0) {
585 error = -error;
586 *interval = -*interval;
587 *offset = -*offset;
588 mult = -1;
589 }
590 for (adj = 0; error > i; adj++)
591 error >>= 1;
592
593 *interval <<= adj;
594 *offset <<= adj;
595 return mult << adj;
596 }
597
598 /*
599 * Adjust the multiplier to reduce the error value,
600 * this is optimized for the most common adjustments of -1,0,1,
601 * for other values we can do a bit more work.
602 */
603 static void clocksource_adjust(s64 offset)
604 {
605 s64 error, interval = clock->cycle_interval;
606 int adj;
607
608 error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1);
609 if (error > interval) {
610 error >>= 2;
611 if (likely(error <= interval))
612 adj = 1;
613 else
614 adj = clocksource_bigadjust(error, &interval, &offset);
615 } else if (error < -interval) {
616 error >>= 2;
617 if (likely(error >= -interval)) {
618 adj = -1;
619 interval = -interval;
620 offset = -offset;
621 } else
622 adj = clocksource_bigadjust(error, &interval, &offset);
623 } else
624 return;
625
626 clock->mult += adj;
627 clock->xtime_interval += interval;
628 clock->xtime_nsec -= offset;
629 clock->error -= (interval - offset) <<
630 (NTP_SCALE_SHIFT - clock->shift);
631 }
632
633 /**
634 * update_wall_time - Uses the current clocksource to increment the wall time
635 *
636 * Called from the timer interrupt, must hold a write on xtime_lock.
637 */
638 void update_wall_time(void)
639 {
640 cycle_t offset;
641
642 /* Make sure we're fully resumed: */
643 if (unlikely(timekeeping_suspended))
644 return;
645
646 #ifdef CONFIG_GENERIC_TIME
647 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
648 #else
649 offset = clock->cycle_interval;
650 #endif
651 clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift;
652
653 /* normally this loop will run just once, however in the
654 * case of lost or late ticks, it will accumulate correctly.
655 */
656 while (offset >= clock->cycle_interval) {
657 /* accumulate one interval */
658 offset -= clock->cycle_interval;
659 clock->cycle_last += clock->cycle_interval;
660
661 clock->xtime_nsec += clock->xtime_interval;
662 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
663 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
664 xtime.tv_sec++;
665 second_overflow();
666 }
667
668 clock->raw_time.tv_nsec += clock->raw_interval;
669 if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) {
670 clock->raw_time.tv_nsec -= NSEC_PER_SEC;
671 clock->raw_time.tv_sec++;
672 }
673
674 /* accumulate error between NTP and clock interval */
675 clock->error += tick_length;
676 clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift);
677 }
678
679 /* correct the clock when NTP error is too big */
680 clocksource_adjust(offset);
681
682 /*
683 * Since in the loop above, we accumulate any amount of time
684 * in xtime_nsec over a second into xtime.tv_sec, its possible for
685 * xtime_nsec to be fairly small after the loop. Further, if we're
686 * slightly speeding the clocksource up in clocksource_adjust(),
687 * its possible the required corrective factor to xtime_nsec could
688 * cause it to underflow.
689 *
690 * Now, we cannot simply roll the accumulated second back, since
691 * the NTP subsystem has been notified via second_overflow. So
692 * instead we push xtime_nsec forward by the amount we underflowed,
693 * and add that amount into the error.
694 *
695 * We'll correct this error next time through this function, when
696 * xtime_nsec is not as small.
697 */
698 if (unlikely((s64)clock->xtime_nsec < 0)) {
699 s64 neg = -(s64)clock->xtime_nsec;
700 clock->xtime_nsec = 0;
701 clock->error += neg << (NTP_SCALE_SHIFT - clock->shift);
702 }
703
704 /* store full nanoseconds into xtime after rounding it up and
705 * add the remainder to the error difference.
706 */
707 xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1;
708 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
709 clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift);
710
711 update_xtime_cache(cyc2ns(clock, offset));
712
713 /* check to see if there is a new clocksource to use */
714 change_clocksource();
715 update_vsyscall(&xtime, clock);
716 }
717
718 /**
719 * getboottime - Return the real time of system boot.
720 * @ts: pointer to the timespec to be set
721 *
722 * Returns the time of day in a timespec.
723 *
724 * This is based on the wall_to_monotonic offset and the total suspend
725 * time. Calls to settimeofday will affect the value returned (which
726 * basically means that however wrong your real time clock is at boot time,
727 * you get the right time here).
728 */
729 void getboottime(struct timespec *ts)
730 {
731 set_normalized_timespec(ts,
732 - (wall_to_monotonic.tv_sec + total_sleep_time),
733 - wall_to_monotonic.tv_nsec);
734 }
735
736 /**
737 * monotonic_to_bootbased - Convert the monotonic time to boot based.
738 * @ts: pointer to the timespec to be converted
739 */
740 void monotonic_to_bootbased(struct timespec *ts)
741 {
742 ts->tv_sec += total_sleep_time;
743 }
744
745 unsigned long get_seconds(void)
746 {
747 return xtime_cache.tv_sec;
748 }
749 EXPORT_SYMBOL(get_seconds);
750
751
752 struct timespec current_kernel_time(void)
753 {
754 struct timespec now;
755 unsigned long seq;
756
757 do {
758 seq = read_seqbegin(&xtime_lock);
759
760 now = xtime_cache;
761 } while (read_seqretry(&xtime_lock, seq));
762
763 return now;
764 }
765 EXPORT_SYMBOL(current_kernel_time);
This page took 0.068635 seconds and 5 git commands to generate.