ntp: Access tick_length variable via ntp_tick_length()
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
39
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
48 /* NTP adjusted clock multiplier */
49 u32 mult;
50
51 /* The current time */
52 struct timespec xtime;
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
67 struct timespec wall_to_monotonic;
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
72
73 /* Seqlock for all timekeeper values */
74 seqlock_t lock;
75 };
76
77 static struct timekeeper timekeeper;
78
79 /*
80 * This read-write spinlock protects us from races in SMP while
81 * playing with xtime.
82 */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
84
85
86 /* flag for if timekeeping is suspended */
87 int __read_mostly timekeeping_suspended;
88
89
90
91 /**
92 * timekeeper_setup_internals - Set up internals to use clocksource clock.
93 *
94 * @clock: Pointer to clocksource.
95 *
96 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
97 * pair and interval request.
98 *
99 * Unless you're the timekeeping code, you should not be using this!
100 */
101 static void timekeeper_setup_internals(struct clocksource *clock)
102 {
103 cycle_t interval;
104 u64 tmp, ntpinterval;
105
106 timekeeper.clock = clock;
107 clock->cycle_last = clock->read(clock);
108
109 /* Do the ns -> cycle conversion first, using original mult */
110 tmp = NTP_INTERVAL_LENGTH;
111 tmp <<= clock->shift;
112 ntpinterval = tmp;
113 tmp += clock->mult/2;
114 do_div(tmp, clock->mult);
115 if (tmp == 0)
116 tmp = 1;
117
118 interval = (cycle_t) tmp;
119 timekeeper.cycle_interval = interval;
120
121 /* Go back from cycles -> shifted ns */
122 timekeeper.xtime_interval = (u64) interval * clock->mult;
123 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124 timekeeper.raw_interval =
125 ((u64) interval * clock->mult) >> clock->shift;
126
127 timekeeper.xtime_nsec = 0;
128 timekeeper.shift = clock->shift;
129
130 timekeeper.ntp_error = 0;
131 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132
133 /*
134 * The timekeeper keeps its own mult values for the currently
135 * active clocksource. These value will be adjusted via NTP
136 * to counteract clock drifting.
137 */
138 timekeeper.mult = clock->mult;
139 }
140
141 /* Timekeeper helper functions. */
142 static inline s64 timekeeping_get_ns(void)
143 {
144 cycle_t cycle_now, cycle_delta;
145 struct clocksource *clock;
146
147 /* read clocksource: */
148 clock = timekeeper.clock;
149 cycle_now = clock->read(clock);
150
151 /* calculate the delta since the last update_wall_time: */
152 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
153
154 /* return delta convert to nanoseconds using ntp adjusted mult. */
155 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
156 timekeeper.shift);
157 }
158
159 static inline s64 timekeeping_get_ns_raw(void)
160 {
161 cycle_t cycle_now, cycle_delta;
162 struct clocksource *clock;
163
164 /* read clocksource: */
165 clock = timekeeper.clock;
166 cycle_now = clock->read(clock);
167
168 /* calculate the delta since the last update_wall_time: */
169 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
170
171 /* return delta convert to nanoseconds. */
172 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
173 }
174
175 /* must hold xtime_lock */
176 void timekeeping_leap_insert(int leapsecond)
177 {
178 unsigned long flags;
179
180 write_seqlock_irqsave(&timekeeper.lock, flags);
181
182 timekeeper.xtime.tv_sec += leapsecond;
183 timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
184 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
185 timekeeper.clock, timekeeper.mult);
186
187 write_sequnlock_irqrestore(&timekeeper.lock, flags);
188
189 }
190
191 /**
192 * timekeeping_forward_now - update clock to the current time
193 *
194 * Forward the current clock to update its state since the last call to
195 * update_wall_time(). This is useful before significant clock changes,
196 * as it avoids having to deal with this time offset explicitly.
197 */
198 static void timekeeping_forward_now(void)
199 {
200 cycle_t cycle_now, cycle_delta;
201 struct clocksource *clock;
202 s64 nsec;
203
204 clock = timekeeper.clock;
205 cycle_now = clock->read(clock);
206 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
207 clock->cycle_last = cycle_now;
208
209 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
210 timekeeper.shift);
211
212 /* If arch requires, add in gettimeoffset() */
213 nsec += arch_gettimeoffset();
214
215 timespec_add_ns(&timekeeper.xtime, nsec);
216
217 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
218 timespec_add_ns(&timekeeper.raw_time, nsec);
219 }
220
221 /**
222 * getnstimeofday - Returns the time of day in a timespec
223 * @ts: pointer to the timespec to be set
224 *
225 * Returns the time of day in a timespec.
226 */
227 void getnstimeofday(struct timespec *ts)
228 {
229 unsigned long seq;
230 s64 nsecs;
231
232 WARN_ON(timekeeping_suspended);
233
234 do {
235 seq = read_seqbegin(&timekeeper.lock);
236
237 *ts = timekeeper.xtime;
238 nsecs = timekeeping_get_ns();
239
240 /* If arch requires, add in gettimeoffset() */
241 nsecs += arch_gettimeoffset();
242
243 } while (read_seqretry(&timekeeper.lock, seq));
244
245 timespec_add_ns(ts, nsecs);
246 }
247
248 EXPORT_SYMBOL(getnstimeofday);
249
250 ktime_t ktime_get(void)
251 {
252 unsigned int seq;
253 s64 secs, nsecs;
254
255 WARN_ON(timekeeping_suspended);
256
257 do {
258 seq = read_seqbegin(&timekeeper.lock);
259 secs = timekeeper.xtime.tv_sec +
260 timekeeper.wall_to_monotonic.tv_sec;
261 nsecs = timekeeper.xtime.tv_nsec +
262 timekeeper.wall_to_monotonic.tv_nsec;
263 nsecs += timekeeping_get_ns();
264 /* If arch requires, add in gettimeoffset() */
265 nsecs += arch_gettimeoffset();
266
267 } while (read_seqretry(&timekeeper.lock, seq));
268 /*
269 * Use ktime_set/ktime_add_ns to create a proper ktime on
270 * 32-bit architectures without CONFIG_KTIME_SCALAR.
271 */
272 return ktime_add_ns(ktime_set(secs, 0), nsecs);
273 }
274 EXPORT_SYMBOL_GPL(ktime_get);
275
276 /**
277 * ktime_get_ts - get the monotonic clock in timespec format
278 * @ts: pointer to timespec variable
279 *
280 * The function calculates the monotonic clock from the realtime
281 * clock and the wall_to_monotonic offset and stores the result
282 * in normalized timespec format in the variable pointed to by @ts.
283 */
284 void ktime_get_ts(struct timespec *ts)
285 {
286 struct timespec tomono;
287 unsigned int seq;
288 s64 nsecs;
289
290 WARN_ON(timekeeping_suspended);
291
292 do {
293 seq = read_seqbegin(&timekeeper.lock);
294 *ts = timekeeper.xtime;
295 tomono = timekeeper.wall_to_monotonic;
296 nsecs = timekeeping_get_ns();
297 /* If arch requires, add in gettimeoffset() */
298 nsecs += arch_gettimeoffset();
299
300 } while (read_seqretry(&timekeeper.lock, seq));
301
302 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
303 ts->tv_nsec + tomono.tv_nsec + nsecs);
304 }
305 EXPORT_SYMBOL_GPL(ktime_get_ts);
306
307 #ifdef CONFIG_NTP_PPS
308
309 /**
310 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
311 * @ts_raw: pointer to the timespec to be set to raw monotonic time
312 * @ts_real: pointer to the timespec to be set to the time of day
313 *
314 * This function reads both the time of day and raw monotonic time at the
315 * same time atomically and stores the resulting timestamps in timespec
316 * format.
317 */
318 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
319 {
320 unsigned long seq;
321 s64 nsecs_raw, nsecs_real;
322
323 WARN_ON_ONCE(timekeeping_suspended);
324
325 do {
326 u32 arch_offset;
327
328 seq = read_seqbegin(&timekeeper.lock);
329
330 *ts_raw = timekeeper.raw_time;
331 *ts_real = timekeeper.xtime;
332
333 nsecs_raw = timekeeping_get_ns_raw();
334 nsecs_real = timekeeping_get_ns();
335
336 /* If arch requires, add in gettimeoffset() */
337 arch_offset = arch_gettimeoffset();
338 nsecs_raw += arch_offset;
339 nsecs_real += arch_offset;
340
341 } while (read_seqretry(&timekeeper.lock, seq));
342
343 timespec_add_ns(ts_raw, nsecs_raw);
344 timespec_add_ns(ts_real, nsecs_real);
345 }
346 EXPORT_SYMBOL(getnstime_raw_and_real);
347
348 #endif /* CONFIG_NTP_PPS */
349
350 /**
351 * do_gettimeofday - Returns the time of day in a timeval
352 * @tv: pointer to the timeval to be set
353 *
354 * NOTE: Users should be converted to using getnstimeofday()
355 */
356 void do_gettimeofday(struct timeval *tv)
357 {
358 struct timespec now;
359
360 getnstimeofday(&now);
361 tv->tv_sec = now.tv_sec;
362 tv->tv_usec = now.tv_nsec/1000;
363 }
364
365 EXPORT_SYMBOL(do_gettimeofday);
366 /**
367 * do_settimeofday - Sets the time of day
368 * @tv: pointer to the timespec variable containing the new time
369 *
370 * Sets the time of day to the new time and update NTP and notify hrtimers
371 */
372 int do_settimeofday(const struct timespec *tv)
373 {
374 struct timespec ts_delta;
375 unsigned long flags1,flags2;
376
377 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
378 return -EINVAL;
379
380 write_seqlock_irqsave(&xtime_lock, flags1);
381 write_seqlock_irqsave(&timekeeper.lock, flags2);
382
383 timekeeping_forward_now();
384
385 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
386 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
387 timekeeper.wall_to_monotonic =
388 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
389
390 timekeeper.xtime = *tv;
391
392 timekeeper.ntp_error = 0;
393 ntp_clear();
394
395 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
396 timekeeper.clock, timekeeper.mult);
397
398 write_sequnlock_irqrestore(&timekeeper.lock, flags2);
399 write_sequnlock_irqrestore(&xtime_lock, flags1);
400
401 /* signal hrtimers about time change */
402 clock_was_set();
403
404 return 0;
405 }
406
407 EXPORT_SYMBOL(do_settimeofday);
408
409
410 /**
411 * timekeeping_inject_offset - Adds or subtracts from the current time.
412 * @tv: pointer to the timespec variable containing the offset
413 *
414 * Adds or subtracts an offset value from the current time.
415 */
416 int timekeeping_inject_offset(struct timespec *ts)
417 {
418 unsigned long flags1,flags2;
419
420 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
421 return -EINVAL;
422
423 write_seqlock_irqsave(&xtime_lock, flags1);
424 write_seqlock_irqsave(&timekeeper.lock, flags2);
425
426 timekeeping_forward_now();
427
428 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
429 timekeeper.wall_to_monotonic =
430 timespec_sub(timekeeper.wall_to_monotonic, *ts);
431
432 timekeeper.ntp_error = 0;
433 ntp_clear();
434
435 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
436 timekeeper.clock, timekeeper.mult);
437
438 write_sequnlock_irqrestore(&timekeeper.lock, flags2);
439 write_sequnlock_irqrestore(&xtime_lock, flags1);
440
441 /* signal hrtimers about time change */
442 clock_was_set();
443
444 return 0;
445 }
446 EXPORT_SYMBOL(timekeeping_inject_offset);
447
448 /**
449 * change_clocksource - Swaps clocksources if a new one is available
450 *
451 * Accumulates current time interval and initializes new clocksource
452 */
453 static int change_clocksource(void *data)
454 {
455 struct clocksource *new, *old;
456
457 new = (struct clocksource *) data;
458
459 timekeeping_forward_now();
460 if (!new->enable || new->enable(new) == 0) {
461 old = timekeeper.clock;
462 timekeeper_setup_internals(new);
463 if (old->disable)
464 old->disable(old);
465 }
466 return 0;
467 }
468
469 /**
470 * timekeeping_notify - Install a new clock source
471 * @clock: pointer to the clock source
472 *
473 * This function is called from clocksource.c after a new, better clock
474 * source has been registered. The caller holds the clocksource_mutex.
475 */
476 void timekeeping_notify(struct clocksource *clock)
477 {
478 if (timekeeper.clock == clock)
479 return;
480 stop_machine(change_clocksource, clock, NULL);
481 tick_clock_notify();
482 }
483
484 /**
485 * ktime_get_real - get the real (wall-) time in ktime_t format
486 *
487 * returns the time in ktime_t format
488 */
489 ktime_t ktime_get_real(void)
490 {
491 struct timespec now;
492
493 getnstimeofday(&now);
494
495 return timespec_to_ktime(now);
496 }
497 EXPORT_SYMBOL_GPL(ktime_get_real);
498
499 /**
500 * getrawmonotonic - Returns the raw monotonic time in a timespec
501 * @ts: pointer to the timespec to be set
502 *
503 * Returns the raw monotonic time (completely un-modified by ntp)
504 */
505 void getrawmonotonic(struct timespec *ts)
506 {
507 unsigned long seq;
508 s64 nsecs;
509
510 do {
511 seq = read_seqbegin(&timekeeper.lock);
512 nsecs = timekeeping_get_ns_raw();
513 *ts = timekeeper.raw_time;
514
515 } while (read_seqretry(&timekeeper.lock, seq));
516
517 timespec_add_ns(ts, nsecs);
518 }
519 EXPORT_SYMBOL(getrawmonotonic);
520
521
522 /**
523 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
524 */
525 int timekeeping_valid_for_hres(void)
526 {
527 unsigned long seq;
528 int ret;
529
530 do {
531 seq = read_seqbegin(&timekeeper.lock);
532
533 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
534
535 } while (read_seqretry(&timekeeper.lock, seq));
536
537 return ret;
538 }
539
540 /**
541 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
542 */
543 u64 timekeeping_max_deferment(void)
544 {
545 unsigned long seq;
546 u64 ret;
547 do {
548 seq = read_seqbegin(&timekeeper.lock);
549
550 ret = timekeeper.clock->max_idle_ns;
551
552 } while (read_seqretry(&timekeeper.lock, seq));
553
554 return ret;
555 }
556
557 /**
558 * read_persistent_clock - Return time from the persistent clock.
559 *
560 * Weak dummy function for arches that do not yet support it.
561 * Reads the time from the battery backed persistent clock.
562 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
563 *
564 * XXX - Do be sure to remove it once all arches implement it.
565 */
566 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
567 {
568 ts->tv_sec = 0;
569 ts->tv_nsec = 0;
570 }
571
572 /**
573 * read_boot_clock - Return time of the system start.
574 *
575 * Weak dummy function for arches that do not yet support it.
576 * Function to read the exact time the system has been started.
577 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
578 *
579 * XXX - Do be sure to remove it once all arches implement it.
580 */
581 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
582 {
583 ts->tv_sec = 0;
584 ts->tv_nsec = 0;
585 }
586
587 /*
588 * timekeeping_init - Initializes the clocksource and common timekeeping values
589 */
590 void __init timekeeping_init(void)
591 {
592 struct clocksource *clock;
593 unsigned long flags;
594 struct timespec now, boot;
595
596 read_persistent_clock(&now);
597 read_boot_clock(&boot);
598
599 seqlock_init(&timekeeper.lock);
600
601 write_seqlock_irqsave(&xtime_lock, flags);
602 ntp_init();
603 write_sequnlock_irqrestore(&xtime_lock, flags);
604
605 write_seqlock_irqsave(&timekeeper.lock, flags);
606 clock = clocksource_default_clock();
607 if (clock->enable)
608 clock->enable(clock);
609 timekeeper_setup_internals(clock);
610
611 timekeeper.xtime.tv_sec = now.tv_sec;
612 timekeeper.xtime.tv_nsec = now.tv_nsec;
613 timekeeper.raw_time.tv_sec = 0;
614 timekeeper.raw_time.tv_nsec = 0;
615 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
616 boot.tv_sec = timekeeper.xtime.tv_sec;
617 boot.tv_nsec = timekeeper.xtime.tv_nsec;
618 }
619 set_normalized_timespec(&timekeeper.wall_to_monotonic,
620 -boot.tv_sec, -boot.tv_nsec);
621 timekeeper.total_sleep_time.tv_sec = 0;
622 timekeeper.total_sleep_time.tv_nsec = 0;
623 write_sequnlock_irqrestore(&timekeeper.lock, flags);
624 }
625
626 /* time in seconds when suspend began */
627 static struct timespec timekeeping_suspend_time;
628
629 /**
630 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
631 * @delta: pointer to a timespec delta value
632 *
633 * Takes a timespec offset measuring a suspend interval and properly
634 * adds the sleep offset to the timekeeping variables.
635 */
636 static void __timekeeping_inject_sleeptime(struct timespec *delta)
637 {
638 if (!timespec_valid(delta)) {
639 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
640 "sleep delta value!\n");
641 return;
642 }
643
644 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
645 timekeeper.wall_to_monotonic =
646 timespec_sub(timekeeper.wall_to_monotonic, *delta);
647 timekeeper.total_sleep_time = timespec_add(
648 timekeeper.total_sleep_time, *delta);
649 }
650
651
652 /**
653 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
654 * @delta: pointer to a timespec delta value
655 *
656 * This hook is for architectures that cannot support read_persistent_clock
657 * because their RTC/persistent clock is only accessible when irqs are enabled.
658 *
659 * This function should only be called by rtc_resume(), and allows
660 * a suspend offset to be injected into the timekeeping values.
661 */
662 void timekeeping_inject_sleeptime(struct timespec *delta)
663 {
664 unsigned long flags1,flags2;
665 struct timespec ts;
666
667 /* Make sure we don't set the clock twice */
668 read_persistent_clock(&ts);
669 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
670 return;
671
672 write_seqlock_irqsave(&xtime_lock, flags1);
673 write_seqlock_irqsave(&timekeeper.lock, flags2);
674
675 timekeeping_forward_now();
676
677 __timekeeping_inject_sleeptime(delta);
678
679 timekeeper.ntp_error = 0;
680 ntp_clear();
681 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
682 timekeeper.clock, timekeeper.mult);
683
684 write_sequnlock_irqrestore(&timekeeper.lock, flags2);
685 write_sequnlock_irqrestore(&xtime_lock, flags1);
686
687 /* signal hrtimers about time change */
688 clock_was_set();
689 }
690
691
692 /**
693 * timekeeping_resume - Resumes the generic timekeeping subsystem.
694 *
695 * This is for the generic clocksource timekeeping.
696 * xtime/wall_to_monotonic/jiffies/etc are
697 * still managed by arch specific suspend/resume code.
698 */
699 static void timekeeping_resume(void)
700 {
701 unsigned long flags1,flags2;
702 struct timespec ts;
703
704 read_persistent_clock(&ts);
705
706 clocksource_resume();
707
708 write_seqlock_irqsave(&xtime_lock, flags1);
709 write_seqlock_irqsave(&timekeeper.lock, flags2);
710
711 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
712 ts = timespec_sub(ts, timekeeping_suspend_time);
713 __timekeeping_inject_sleeptime(&ts);
714 }
715 /* re-base the last cycle value */
716 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
717 timekeeper.ntp_error = 0;
718 timekeeping_suspended = 0;
719 write_sequnlock_irqrestore(&timekeeper.lock, flags2);
720 write_sequnlock_irqrestore(&xtime_lock, flags1);
721
722 touch_softlockup_watchdog();
723
724 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
725
726 /* Resume hrtimers */
727 hrtimers_resume();
728 }
729
730 static int timekeeping_suspend(void)
731 {
732 unsigned long flags1,flags2;
733 struct timespec delta, delta_delta;
734 static struct timespec old_delta;
735
736 read_persistent_clock(&timekeeping_suspend_time);
737
738 write_seqlock_irqsave(&xtime_lock, flags1);
739 write_seqlock_irqsave(&timekeeper.lock, flags2);
740 timekeeping_forward_now();
741 timekeeping_suspended = 1;
742
743 /*
744 * To avoid drift caused by repeated suspend/resumes,
745 * which each can add ~1 second drift error,
746 * try to compensate so the difference in system time
747 * and persistent_clock time stays close to constant.
748 */
749 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
750 delta_delta = timespec_sub(delta, old_delta);
751 if (abs(delta_delta.tv_sec) >= 2) {
752 /*
753 * if delta_delta is too large, assume time correction
754 * has occured and set old_delta to the current delta.
755 */
756 old_delta = delta;
757 } else {
758 /* Otherwise try to adjust old_system to compensate */
759 timekeeping_suspend_time =
760 timespec_add(timekeeping_suspend_time, delta_delta);
761 }
762 write_sequnlock_irqrestore(&timekeeper.lock, flags2);
763 write_sequnlock_irqrestore(&xtime_lock, flags1);
764
765 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
766 clocksource_suspend();
767
768 return 0;
769 }
770
771 /* sysfs resume/suspend bits for timekeeping */
772 static struct syscore_ops timekeeping_syscore_ops = {
773 .resume = timekeeping_resume,
774 .suspend = timekeeping_suspend,
775 };
776
777 static int __init timekeeping_init_ops(void)
778 {
779 register_syscore_ops(&timekeeping_syscore_ops);
780 return 0;
781 }
782
783 device_initcall(timekeeping_init_ops);
784
785 /*
786 * If the error is already larger, we look ahead even further
787 * to compensate for late or lost adjustments.
788 */
789 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
790 s64 *offset)
791 {
792 s64 tick_error, i;
793 u32 look_ahead, adj;
794 s32 error2, mult;
795
796 /*
797 * Use the current error value to determine how much to look ahead.
798 * The larger the error the slower we adjust for it to avoid problems
799 * with losing too many ticks, otherwise we would overadjust and
800 * produce an even larger error. The smaller the adjustment the
801 * faster we try to adjust for it, as lost ticks can do less harm
802 * here. This is tuned so that an error of about 1 msec is adjusted
803 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
804 */
805 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
806 error2 = abs(error2);
807 for (look_ahead = 0; error2 > 0; look_ahead++)
808 error2 >>= 2;
809
810 /*
811 * Now calculate the error in (1 << look_ahead) ticks, but first
812 * remove the single look ahead already included in the error.
813 */
814 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
815 tick_error -= timekeeper.xtime_interval >> 1;
816 error = ((error - tick_error) >> look_ahead) + tick_error;
817
818 /* Finally calculate the adjustment shift value. */
819 i = *interval;
820 mult = 1;
821 if (error < 0) {
822 error = -error;
823 *interval = -*interval;
824 *offset = -*offset;
825 mult = -1;
826 }
827 for (adj = 0; error > i; adj++)
828 error >>= 1;
829
830 *interval <<= adj;
831 *offset <<= adj;
832 return mult << adj;
833 }
834
835 /*
836 * Adjust the multiplier to reduce the error value,
837 * this is optimized for the most common adjustments of -1,0,1,
838 * for other values we can do a bit more work.
839 */
840 static void timekeeping_adjust(s64 offset)
841 {
842 s64 error, interval = timekeeper.cycle_interval;
843 int adj;
844
845 /*
846 * The point of this is to check if the error is greater then half
847 * an interval.
848 *
849 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
850 *
851 * Note we subtract one in the shift, so that error is really error*2.
852 * This "saves" dividing(shifting) interval twice, but keeps the
853 * (error > interval) comparison as still measuring if error is
854 * larger then half an interval.
855 *
856 * Note: It does not "save" on aggravation when reading the code.
857 */
858 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
859 if (error > interval) {
860 /*
861 * We now divide error by 4(via shift), which checks if
862 * the error is greater then twice the interval.
863 * If it is greater, we need a bigadjust, if its smaller,
864 * we can adjust by 1.
865 */
866 error >>= 2;
867 /*
868 * XXX - In update_wall_time, we round up to the next
869 * nanosecond, and store the amount rounded up into
870 * the error. This causes the likely below to be unlikely.
871 *
872 * The proper fix is to avoid rounding up by using
873 * the high precision timekeeper.xtime_nsec instead of
874 * xtime.tv_nsec everywhere. Fixing this will take some
875 * time.
876 */
877 if (likely(error <= interval))
878 adj = 1;
879 else
880 adj = timekeeping_bigadjust(error, &interval, &offset);
881 } else if (error < -interval) {
882 /* See comment above, this is just switched for the negative */
883 error >>= 2;
884 if (likely(error >= -interval)) {
885 adj = -1;
886 interval = -interval;
887 offset = -offset;
888 } else
889 adj = timekeeping_bigadjust(error, &interval, &offset);
890 } else /* No adjustment needed */
891 return;
892
893 WARN_ONCE(timekeeper.clock->maxadj &&
894 (timekeeper.mult + adj > timekeeper.clock->mult +
895 timekeeper.clock->maxadj),
896 "Adjusting %s more then 11%% (%ld vs %ld)\n",
897 timekeeper.clock->name, (long)timekeeper.mult + adj,
898 (long)timekeeper.clock->mult +
899 timekeeper.clock->maxadj);
900 /*
901 * So the following can be confusing.
902 *
903 * To keep things simple, lets assume adj == 1 for now.
904 *
905 * When adj != 1, remember that the interval and offset values
906 * have been appropriately scaled so the math is the same.
907 *
908 * The basic idea here is that we're increasing the multiplier
909 * by one, this causes the xtime_interval to be incremented by
910 * one cycle_interval. This is because:
911 * xtime_interval = cycle_interval * mult
912 * So if mult is being incremented by one:
913 * xtime_interval = cycle_interval * (mult + 1)
914 * Its the same as:
915 * xtime_interval = (cycle_interval * mult) + cycle_interval
916 * Which can be shortened to:
917 * xtime_interval += cycle_interval
918 *
919 * So offset stores the non-accumulated cycles. Thus the current
920 * time (in shifted nanoseconds) is:
921 * now = (offset * adj) + xtime_nsec
922 * Now, even though we're adjusting the clock frequency, we have
923 * to keep time consistent. In other words, we can't jump back
924 * in time, and we also want to avoid jumping forward in time.
925 *
926 * So given the same offset value, we need the time to be the same
927 * both before and after the freq adjustment.
928 * now = (offset * adj_1) + xtime_nsec_1
929 * now = (offset * adj_2) + xtime_nsec_2
930 * So:
931 * (offset * adj_1) + xtime_nsec_1 =
932 * (offset * adj_2) + xtime_nsec_2
933 * And we know:
934 * adj_2 = adj_1 + 1
935 * So:
936 * (offset * adj_1) + xtime_nsec_1 =
937 * (offset * (adj_1+1)) + xtime_nsec_2
938 * (offset * adj_1) + xtime_nsec_1 =
939 * (offset * adj_1) + offset + xtime_nsec_2
940 * Canceling the sides:
941 * xtime_nsec_1 = offset + xtime_nsec_2
942 * Which gives us:
943 * xtime_nsec_2 = xtime_nsec_1 - offset
944 * Which simplfies to:
945 * xtime_nsec -= offset
946 *
947 * XXX - TODO: Doc ntp_error calculation.
948 */
949 timekeeper.mult += adj;
950 timekeeper.xtime_interval += interval;
951 timekeeper.xtime_nsec -= offset;
952 timekeeper.ntp_error -= (interval - offset) <<
953 timekeeper.ntp_error_shift;
954 }
955
956
957 /**
958 * logarithmic_accumulation - shifted accumulation of cycles
959 *
960 * This functions accumulates a shifted interval of cycles into
961 * into a shifted interval nanoseconds. Allows for O(log) accumulation
962 * loop.
963 *
964 * Returns the unconsumed cycles.
965 */
966 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
967 {
968 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
969 u64 raw_nsecs;
970
971 /* If the offset is smaller then a shifted interval, do nothing */
972 if (offset < timekeeper.cycle_interval<<shift)
973 return offset;
974
975 /* Accumulate one shifted interval */
976 offset -= timekeeper.cycle_interval << shift;
977 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
978
979 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
980 while (timekeeper.xtime_nsec >= nsecps) {
981 timekeeper.xtime_nsec -= nsecps;
982 timekeeper.xtime.tv_sec++;
983 second_overflow();
984 }
985
986 /* Accumulate raw time */
987 raw_nsecs = timekeeper.raw_interval << shift;
988 raw_nsecs += timekeeper.raw_time.tv_nsec;
989 if (raw_nsecs >= NSEC_PER_SEC) {
990 u64 raw_secs = raw_nsecs;
991 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
992 timekeeper.raw_time.tv_sec += raw_secs;
993 }
994 timekeeper.raw_time.tv_nsec = raw_nsecs;
995
996 /* Accumulate error between NTP and clock interval */
997 timekeeper.ntp_error += ntp_tick_length() << shift;
998 timekeeper.ntp_error -=
999 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1000 (timekeeper.ntp_error_shift + shift);
1001
1002 return offset;
1003 }
1004
1005
1006 /**
1007 * update_wall_time - Uses the current clocksource to increment the wall time
1008 *
1009 * Called from the timer interrupt, must hold a write on xtime_lock.
1010 */
1011 static void update_wall_time(void)
1012 {
1013 struct clocksource *clock;
1014 cycle_t offset;
1015 int shift = 0, maxshift;
1016 unsigned long flags;
1017
1018 write_seqlock_irqsave(&timekeeper.lock, flags);
1019
1020 /* Make sure we're fully resumed: */
1021 if (unlikely(timekeeping_suspended))
1022 goto out;
1023
1024 clock = timekeeper.clock;
1025
1026 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1027 offset = timekeeper.cycle_interval;
1028 #else
1029 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1030 #endif
1031 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1032 timekeeper.shift;
1033
1034 /*
1035 * With NO_HZ we may have to accumulate many cycle_intervals
1036 * (think "ticks") worth of time at once. To do this efficiently,
1037 * we calculate the largest doubling multiple of cycle_intervals
1038 * that is smaller then the offset. We then accumulate that
1039 * chunk in one go, and then try to consume the next smaller
1040 * doubled multiple.
1041 */
1042 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1043 shift = max(0, shift);
1044 /* Bound shift to one less then what overflows tick_length */
1045 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1046 shift = min(shift, maxshift);
1047 while (offset >= timekeeper.cycle_interval) {
1048 offset = logarithmic_accumulation(offset, shift);
1049 if(offset < timekeeper.cycle_interval<<shift)
1050 shift--;
1051 }
1052
1053 /* correct the clock when NTP error is too big */
1054 timekeeping_adjust(offset);
1055
1056 /*
1057 * Since in the loop above, we accumulate any amount of time
1058 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1059 * xtime_nsec to be fairly small after the loop. Further, if we're
1060 * slightly speeding the clocksource up in timekeeping_adjust(),
1061 * its possible the required corrective factor to xtime_nsec could
1062 * cause it to underflow.
1063 *
1064 * Now, we cannot simply roll the accumulated second back, since
1065 * the NTP subsystem has been notified via second_overflow. So
1066 * instead we push xtime_nsec forward by the amount we underflowed,
1067 * and add that amount into the error.
1068 *
1069 * We'll correct this error next time through this function, when
1070 * xtime_nsec is not as small.
1071 */
1072 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1073 s64 neg = -(s64)timekeeper.xtime_nsec;
1074 timekeeper.xtime_nsec = 0;
1075 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1076 }
1077
1078
1079 /*
1080 * Store full nanoseconds into xtime after rounding it up and
1081 * add the remainder to the error difference.
1082 */
1083 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1084 timekeeper.shift) + 1;
1085 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1086 timekeeper.shift;
1087 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1088 timekeeper.ntp_error_shift;
1089
1090 /*
1091 * Finally, make sure that after the rounding
1092 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
1093 */
1094 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1095 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1096 timekeeper.xtime.tv_sec++;
1097 second_overflow();
1098 }
1099
1100 /* check to see if there is a new clocksource to use */
1101 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
1102 timekeeper.clock, timekeeper.mult);
1103
1104 out:
1105 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1106
1107 }
1108
1109 /**
1110 * getboottime - Return the real time of system boot.
1111 * @ts: pointer to the timespec to be set
1112 *
1113 * Returns the wall-time of boot in a timespec.
1114 *
1115 * This is based on the wall_to_monotonic offset and the total suspend
1116 * time. Calls to settimeofday will affect the value returned (which
1117 * basically means that however wrong your real time clock is at boot time,
1118 * you get the right time here).
1119 */
1120 void getboottime(struct timespec *ts)
1121 {
1122 struct timespec boottime = {
1123 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1124 timekeeper.total_sleep_time.tv_sec,
1125 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1126 timekeeper.total_sleep_time.tv_nsec
1127 };
1128
1129 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1130 }
1131 EXPORT_SYMBOL_GPL(getboottime);
1132
1133
1134 /**
1135 * get_monotonic_boottime - Returns monotonic time since boot
1136 * @ts: pointer to the timespec to be set
1137 *
1138 * Returns the monotonic time since boot in a timespec.
1139 *
1140 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1141 * includes the time spent in suspend.
1142 */
1143 void get_monotonic_boottime(struct timespec *ts)
1144 {
1145 struct timespec tomono, sleep;
1146 unsigned int seq;
1147 s64 nsecs;
1148
1149 WARN_ON(timekeeping_suspended);
1150
1151 do {
1152 seq = read_seqbegin(&timekeeper.lock);
1153 *ts = timekeeper.xtime;
1154 tomono = timekeeper.wall_to_monotonic;
1155 sleep = timekeeper.total_sleep_time;
1156 nsecs = timekeeping_get_ns();
1157
1158 } while (read_seqretry(&timekeeper.lock, seq));
1159
1160 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1161 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1162 }
1163 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1164
1165 /**
1166 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1167 *
1168 * Returns the monotonic time since boot in a ktime
1169 *
1170 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1171 * includes the time spent in suspend.
1172 */
1173 ktime_t ktime_get_boottime(void)
1174 {
1175 struct timespec ts;
1176
1177 get_monotonic_boottime(&ts);
1178 return timespec_to_ktime(ts);
1179 }
1180 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1181
1182 /**
1183 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1184 * @ts: pointer to the timespec to be converted
1185 */
1186 void monotonic_to_bootbased(struct timespec *ts)
1187 {
1188 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
1189 }
1190 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1191
1192 unsigned long get_seconds(void)
1193 {
1194 return timekeeper.xtime.tv_sec;
1195 }
1196 EXPORT_SYMBOL(get_seconds);
1197
1198 struct timespec __current_kernel_time(void)
1199 {
1200 return timekeeper.xtime;
1201 }
1202
1203 struct timespec current_kernel_time(void)
1204 {
1205 struct timespec now;
1206 unsigned long seq;
1207
1208 do {
1209 seq = read_seqbegin(&timekeeper.lock);
1210
1211 now = timekeeper.xtime;
1212 } while (read_seqretry(&timekeeper.lock, seq));
1213
1214 return now;
1215 }
1216 EXPORT_SYMBOL(current_kernel_time);
1217
1218 struct timespec get_monotonic_coarse(void)
1219 {
1220 struct timespec now, mono;
1221 unsigned long seq;
1222
1223 do {
1224 seq = read_seqbegin(&timekeeper.lock);
1225
1226 now = timekeeper.xtime;
1227 mono = timekeeper.wall_to_monotonic;
1228 } while (read_seqretry(&timekeeper.lock, seq));
1229
1230 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1231 now.tv_nsec + mono.tv_nsec);
1232 return now;
1233 }
1234
1235 /*
1236 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1237 * without sampling the sequence number in xtime_lock.
1238 * jiffies is defined in the linker script...
1239 */
1240 void do_timer(unsigned long ticks)
1241 {
1242 jiffies_64 += ticks;
1243 update_wall_time();
1244 calc_global_load(ticks);
1245 }
1246
1247 /**
1248 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1249 * and sleep offsets.
1250 * @xtim: pointer to timespec to be set with xtime
1251 * @wtom: pointer to timespec to be set with wall_to_monotonic
1252 * @sleep: pointer to timespec to be set with time in suspend
1253 */
1254 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1255 struct timespec *wtom, struct timespec *sleep)
1256 {
1257 unsigned long seq;
1258
1259 do {
1260 seq = read_seqbegin(&timekeeper.lock);
1261 *xtim = timekeeper.xtime;
1262 *wtom = timekeeper.wall_to_monotonic;
1263 *sleep = timekeeper.total_sleep_time;
1264 } while (read_seqretry(&timekeeper.lock, seq));
1265 }
1266
1267 /**
1268 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1269 */
1270 ktime_t ktime_get_monotonic_offset(void)
1271 {
1272 unsigned long seq;
1273 struct timespec wtom;
1274
1275 do {
1276 seq = read_seqbegin(&timekeeper.lock);
1277 wtom = timekeeper.wall_to_monotonic;
1278 } while (read_seqretry(&timekeeper.lock, seq));
1279
1280 return timespec_to_ktime(wtom);
1281 }
1282
1283 /**
1284 * xtime_update() - advances the timekeeping infrastructure
1285 * @ticks: number of ticks, that have elapsed since the last call.
1286 *
1287 * Must be called with interrupts disabled.
1288 */
1289 void xtime_update(unsigned long ticks)
1290 {
1291 write_seqlock(&xtime_lock);
1292 do_timer(ticks);
1293 write_sequnlock(&xtime_lock);
1294 }
This page took 0.057618 seconds and 5 git commands to generate.