Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22
23 /* Structure holding internal timekeeping values. */
24 struct timekeeper {
25 /* Current clocksource used for timekeeping. */
26 struct clocksource *clock;
27 /* The shift value of the current clocksource. */
28 int shift;
29
30 /* Number of clock cycles in one NTP interval. */
31 cycle_t cycle_interval;
32 /* Number of clock shifted nano seconds in one NTP interval. */
33 u64 xtime_interval;
34 /* Raw nano seconds accumulated per NTP interval. */
35 u32 raw_interval;
36
37 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
38 u64 xtime_nsec;
39 /* Difference between accumulated time and NTP time in ntp
40 * shifted nano seconds. */
41 s64 ntp_error;
42 /* Shift conversion between clock shifted nano seconds and
43 * ntp shifted nano seconds. */
44 int ntp_error_shift;
45 /* NTP adjusted clock multiplier */
46 u32 mult;
47 };
48
49 struct timekeeper timekeeper;
50
51 /**
52 * timekeeper_setup_internals - Set up internals to use clocksource clock.
53 *
54 * @clock: Pointer to clocksource.
55 *
56 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
57 * pair and interval request.
58 *
59 * Unless you're the timekeeping code, you should not be using this!
60 */
61 static void timekeeper_setup_internals(struct clocksource *clock)
62 {
63 cycle_t interval;
64 u64 tmp;
65
66 timekeeper.clock = clock;
67 clock->cycle_last = clock->read(clock);
68
69 /* Do the ns -> cycle conversion first, using original mult */
70 tmp = NTP_INTERVAL_LENGTH;
71 tmp <<= clock->shift;
72 tmp += clock->mult/2;
73 do_div(tmp, clock->mult);
74 if (tmp == 0)
75 tmp = 1;
76
77 interval = (cycle_t) tmp;
78 timekeeper.cycle_interval = interval;
79
80 /* Go back from cycles -> shifted ns */
81 timekeeper.xtime_interval = (u64) interval * clock->mult;
82 timekeeper.raw_interval =
83 ((u64) interval * clock->mult) >> clock->shift;
84
85 timekeeper.xtime_nsec = 0;
86 timekeeper.shift = clock->shift;
87
88 timekeeper.ntp_error = 0;
89 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
90
91 /*
92 * The timekeeper keeps its own mult values for the currently
93 * active clocksource. These value will be adjusted via NTP
94 * to counteract clock drifting.
95 */
96 timekeeper.mult = clock->mult;
97 }
98
99 /* Timekeeper helper functions. */
100 static inline s64 timekeeping_get_ns(void)
101 {
102 cycle_t cycle_now, cycle_delta;
103 struct clocksource *clock;
104
105 /* read clocksource: */
106 clock = timekeeper.clock;
107 cycle_now = clock->read(clock);
108
109 /* calculate the delta since the last update_wall_time: */
110 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
111
112 /* return delta convert to nanoseconds using ntp adjusted mult. */
113 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
114 timekeeper.shift);
115 }
116
117 static inline s64 timekeeping_get_ns_raw(void)
118 {
119 cycle_t cycle_now, cycle_delta;
120 struct clocksource *clock;
121
122 /* read clocksource: */
123 clock = timekeeper.clock;
124 cycle_now = clock->read(clock);
125
126 /* calculate the delta since the last update_wall_time: */
127 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
128
129 /* return delta convert to nanoseconds using ntp adjusted mult. */
130 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
131 }
132
133 /*
134 * This read-write spinlock protects us from races in SMP while
135 * playing with xtime.
136 */
137 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
138
139
140 /*
141 * The current time
142 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
143 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
144 * at zero at system boot time, so wall_to_monotonic will be negative,
145 * however, we will ALWAYS keep the tv_nsec part positive so we can use
146 * the usual normalization.
147 *
148 * wall_to_monotonic is moved after resume from suspend for the monotonic
149 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
150 * to get the real boot based time offset.
151 *
152 * - wall_to_monotonic is no longer the boot time, getboottime must be
153 * used instead.
154 */
155 struct timespec xtime __attribute__ ((aligned (16)));
156 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
157 static struct timespec total_sleep_time;
158
159 /*
160 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
161 */
162 struct timespec raw_time;
163
164 /* flag for if timekeeping is suspended */
165 int __read_mostly timekeeping_suspended;
166
167 static struct timespec xtime_cache __attribute__ ((aligned (16)));
168 void update_xtime_cache(u64 nsec)
169 {
170 xtime_cache = xtime;
171 timespec_add_ns(&xtime_cache, nsec);
172 }
173
174 /* must hold xtime_lock */
175 void timekeeping_leap_insert(int leapsecond)
176 {
177 xtime.tv_sec += leapsecond;
178 wall_to_monotonic.tv_sec -= leapsecond;
179 update_vsyscall(&xtime, timekeeper.clock);
180 }
181
182 #ifdef CONFIG_GENERIC_TIME
183
184 /**
185 * timekeeping_forward_now - update clock to the current time
186 *
187 * Forward the current clock to update its state since the last call to
188 * update_wall_time(). This is useful before significant clock changes,
189 * as it avoids having to deal with this time offset explicitly.
190 */
191 static void timekeeping_forward_now(void)
192 {
193 cycle_t cycle_now, cycle_delta;
194 struct clocksource *clock;
195 s64 nsec;
196
197 clock = timekeeper.clock;
198 cycle_now = clock->read(clock);
199 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
200 clock->cycle_last = cycle_now;
201
202 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
203 timekeeper.shift);
204
205 /* If arch requires, add in gettimeoffset() */
206 nsec += arch_gettimeoffset();
207
208 timespec_add_ns(&xtime, nsec);
209
210 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
211 timespec_add_ns(&raw_time, nsec);
212 }
213
214 /**
215 * getnstimeofday - Returns the time of day in a timespec
216 * @ts: pointer to the timespec to be set
217 *
218 * Returns the time of day in a timespec.
219 */
220 void getnstimeofday(struct timespec *ts)
221 {
222 unsigned long seq;
223 s64 nsecs;
224
225 WARN_ON(timekeeping_suspended);
226
227 do {
228 seq = read_seqbegin(&xtime_lock);
229
230 *ts = xtime;
231 nsecs = timekeeping_get_ns();
232
233 /* If arch requires, add in gettimeoffset() */
234 nsecs += arch_gettimeoffset();
235
236 } while (read_seqretry(&xtime_lock, seq));
237
238 timespec_add_ns(ts, nsecs);
239 }
240
241 EXPORT_SYMBOL(getnstimeofday);
242
243 ktime_t ktime_get(void)
244 {
245 unsigned int seq;
246 s64 secs, nsecs;
247
248 WARN_ON(timekeeping_suspended);
249
250 do {
251 seq = read_seqbegin(&xtime_lock);
252 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
253 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
254 nsecs += timekeeping_get_ns();
255
256 } while (read_seqretry(&xtime_lock, seq));
257 /*
258 * Use ktime_set/ktime_add_ns to create a proper ktime on
259 * 32-bit architectures without CONFIG_KTIME_SCALAR.
260 */
261 return ktime_add_ns(ktime_set(secs, 0), nsecs);
262 }
263 EXPORT_SYMBOL_GPL(ktime_get);
264
265 /**
266 * ktime_get_ts - get the monotonic clock in timespec format
267 * @ts: pointer to timespec variable
268 *
269 * The function calculates the monotonic clock from the realtime
270 * clock and the wall_to_monotonic offset and stores the result
271 * in normalized timespec format in the variable pointed to by @ts.
272 */
273 void ktime_get_ts(struct timespec *ts)
274 {
275 struct timespec tomono;
276 unsigned int seq;
277 s64 nsecs;
278
279 WARN_ON(timekeeping_suspended);
280
281 do {
282 seq = read_seqbegin(&xtime_lock);
283 *ts = xtime;
284 tomono = wall_to_monotonic;
285 nsecs = timekeeping_get_ns();
286
287 } while (read_seqretry(&xtime_lock, seq));
288
289 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
290 ts->tv_nsec + tomono.tv_nsec + nsecs);
291 }
292 EXPORT_SYMBOL_GPL(ktime_get_ts);
293
294 /**
295 * do_gettimeofday - Returns the time of day in a timeval
296 * @tv: pointer to the timeval to be set
297 *
298 * NOTE: Users should be converted to using getnstimeofday()
299 */
300 void do_gettimeofday(struct timeval *tv)
301 {
302 struct timespec now;
303
304 getnstimeofday(&now);
305 tv->tv_sec = now.tv_sec;
306 tv->tv_usec = now.tv_nsec/1000;
307 }
308
309 EXPORT_SYMBOL(do_gettimeofday);
310 /**
311 * do_settimeofday - Sets the time of day
312 * @tv: pointer to the timespec variable containing the new time
313 *
314 * Sets the time of day to the new time and update NTP and notify hrtimers
315 */
316 int do_settimeofday(struct timespec *tv)
317 {
318 struct timespec ts_delta;
319 unsigned long flags;
320
321 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
322 return -EINVAL;
323
324 write_seqlock_irqsave(&xtime_lock, flags);
325
326 timekeeping_forward_now();
327
328 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
329 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
330 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
331
332 xtime = *tv;
333
334 update_xtime_cache(0);
335
336 timekeeper.ntp_error = 0;
337 ntp_clear();
338
339 update_vsyscall(&xtime, timekeeper.clock);
340
341 write_sequnlock_irqrestore(&xtime_lock, flags);
342
343 /* signal hrtimers about time change */
344 clock_was_set();
345
346 return 0;
347 }
348
349 EXPORT_SYMBOL(do_settimeofday);
350
351 /**
352 * change_clocksource - Swaps clocksources if a new one is available
353 *
354 * Accumulates current time interval and initializes new clocksource
355 */
356 static int change_clocksource(void *data)
357 {
358 struct clocksource *new, *old;
359
360 new = (struct clocksource *) data;
361
362 timekeeping_forward_now();
363 if (!new->enable || new->enable(new) == 0) {
364 old = timekeeper.clock;
365 timekeeper_setup_internals(new);
366 if (old->disable)
367 old->disable(old);
368 }
369 return 0;
370 }
371
372 /**
373 * timekeeping_notify - Install a new clock source
374 * @clock: pointer to the clock source
375 *
376 * This function is called from clocksource.c after a new, better clock
377 * source has been registered. The caller holds the clocksource_mutex.
378 */
379 void timekeeping_notify(struct clocksource *clock)
380 {
381 if (timekeeper.clock == clock)
382 return;
383 stop_machine(change_clocksource, clock, NULL);
384 tick_clock_notify();
385 }
386
387 #else /* GENERIC_TIME */
388
389 static inline void timekeeping_forward_now(void) { }
390
391 /**
392 * ktime_get - get the monotonic time in ktime_t format
393 *
394 * returns the time in ktime_t format
395 */
396 ktime_t ktime_get(void)
397 {
398 struct timespec now;
399
400 ktime_get_ts(&now);
401
402 return timespec_to_ktime(now);
403 }
404 EXPORT_SYMBOL_GPL(ktime_get);
405
406 /**
407 * ktime_get_ts - get the monotonic clock in timespec format
408 * @ts: pointer to timespec variable
409 *
410 * The function calculates the monotonic clock from the realtime
411 * clock and the wall_to_monotonic offset and stores the result
412 * in normalized timespec format in the variable pointed to by @ts.
413 */
414 void ktime_get_ts(struct timespec *ts)
415 {
416 struct timespec tomono;
417 unsigned long seq;
418
419 do {
420 seq = read_seqbegin(&xtime_lock);
421 getnstimeofday(ts);
422 tomono = wall_to_monotonic;
423
424 } while (read_seqretry(&xtime_lock, seq));
425
426 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
427 ts->tv_nsec + tomono.tv_nsec);
428 }
429 EXPORT_SYMBOL_GPL(ktime_get_ts);
430
431 #endif /* !GENERIC_TIME */
432
433 /**
434 * ktime_get_real - get the real (wall-) time in ktime_t format
435 *
436 * returns the time in ktime_t format
437 */
438 ktime_t ktime_get_real(void)
439 {
440 struct timespec now;
441
442 getnstimeofday(&now);
443
444 return timespec_to_ktime(now);
445 }
446 EXPORT_SYMBOL_GPL(ktime_get_real);
447
448 /**
449 * getrawmonotonic - Returns the raw monotonic time in a timespec
450 * @ts: pointer to the timespec to be set
451 *
452 * Returns the raw monotonic time (completely un-modified by ntp)
453 */
454 void getrawmonotonic(struct timespec *ts)
455 {
456 unsigned long seq;
457 s64 nsecs;
458
459 do {
460 seq = read_seqbegin(&xtime_lock);
461 nsecs = timekeeping_get_ns_raw();
462 *ts = raw_time;
463
464 } while (read_seqretry(&xtime_lock, seq));
465
466 timespec_add_ns(ts, nsecs);
467 }
468 EXPORT_SYMBOL(getrawmonotonic);
469
470
471 /**
472 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
473 */
474 int timekeeping_valid_for_hres(void)
475 {
476 unsigned long seq;
477 int ret;
478
479 do {
480 seq = read_seqbegin(&xtime_lock);
481
482 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
483
484 } while (read_seqretry(&xtime_lock, seq));
485
486 return ret;
487 }
488
489 /**
490 * read_persistent_clock - Return time from the persistent clock.
491 *
492 * Weak dummy function for arches that do not yet support it.
493 * Reads the time from the battery backed persistent clock.
494 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
495 *
496 * XXX - Do be sure to remove it once all arches implement it.
497 */
498 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
499 {
500 ts->tv_sec = 0;
501 ts->tv_nsec = 0;
502 }
503
504 /**
505 * read_boot_clock - Return time of the system start.
506 *
507 * Weak dummy function for arches that do not yet support it.
508 * Function to read the exact time the system has been started.
509 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
510 *
511 * XXX - Do be sure to remove it once all arches implement it.
512 */
513 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
514 {
515 ts->tv_sec = 0;
516 ts->tv_nsec = 0;
517 }
518
519 /*
520 * timekeeping_init - Initializes the clocksource and common timekeeping values
521 */
522 void __init timekeeping_init(void)
523 {
524 struct clocksource *clock;
525 unsigned long flags;
526 struct timespec now, boot;
527
528 read_persistent_clock(&now);
529 read_boot_clock(&boot);
530
531 write_seqlock_irqsave(&xtime_lock, flags);
532
533 ntp_init();
534
535 clock = clocksource_default_clock();
536 if (clock->enable)
537 clock->enable(clock);
538 timekeeper_setup_internals(clock);
539
540 xtime.tv_sec = now.tv_sec;
541 xtime.tv_nsec = now.tv_nsec;
542 raw_time.tv_sec = 0;
543 raw_time.tv_nsec = 0;
544 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
545 boot.tv_sec = xtime.tv_sec;
546 boot.tv_nsec = xtime.tv_nsec;
547 }
548 set_normalized_timespec(&wall_to_monotonic,
549 -boot.tv_sec, -boot.tv_nsec);
550 update_xtime_cache(0);
551 total_sleep_time.tv_sec = 0;
552 total_sleep_time.tv_nsec = 0;
553 write_sequnlock_irqrestore(&xtime_lock, flags);
554 }
555
556 /* time in seconds when suspend began */
557 static struct timespec timekeeping_suspend_time;
558
559 /**
560 * timekeeping_resume - Resumes the generic timekeeping subsystem.
561 * @dev: unused
562 *
563 * This is for the generic clocksource timekeeping.
564 * xtime/wall_to_monotonic/jiffies/etc are
565 * still managed by arch specific suspend/resume code.
566 */
567 static int timekeeping_resume(struct sys_device *dev)
568 {
569 unsigned long flags;
570 struct timespec ts;
571
572 read_persistent_clock(&ts);
573
574 clocksource_resume();
575
576 write_seqlock_irqsave(&xtime_lock, flags);
577
578 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
579 ts = timespec_sub(ts, timekeeping_suspend_time);
580 xtime = timespec_add_safe(xtime, ts);
581 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
582 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
583 }
584 update_xtime_cache(0);
585 /* re-base the last cycle value */
586 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
587 timekeeper.ntp_error = 0;
588 timekeeping_suspended = 0;
589 write_sequnlock_irqrestore(&xtime_lock, flags);
590
591 touch_softlockup_watchdog();
592
593 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
594
595 /* Resume hrtimers */
596 hres_timers_resume();
597
598 return 0;
599 }
600
601 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
602 {
603 unsigned long flags;
604
605 read_persistent_clock(&timekeeping_suspend_time);
606
607 write_seqlock_irqsave(&xtime_lock, flags);
608 timekeeping_forward_now();
609 timekeeping_suspended = 1;
610 write_sequnlock_irqrestore(&xtime_lock, flags);
611
612 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
613
614 return 0;
615 }
616
617 /* sysfs resume/suspend bits for timekeeping */
618 static struct sysdev_class timekeeping_sysclass = {
619 .name = "timekeeping",
620 .resume = timekeeping_resume,
621 .suspend = timekeeping_suspend,
622 };
623
624 static struct sys_device device_timer = {
625 .id = 0,
626 .cls = &timekeeping_sysclass,
627 };
628
629 static int __init timekeeping_init_device(void)
630 {
631 int error = sysdev_class_register(&timekeeping_sysclass);
632 if (!error)
633 error = sysdev_register(&device_timer);
634 return error;
635 }
636
637 device_initcall(timekeeping_init_device);
638
639 /*
640 * If the error is already larger, we look ahead even further
641 * to compensate for late or lost adjustments.
642 */
643 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
644 s64 *offset)
645 {
646 s64 tick_error, i;
647 u32 look_ahead, adj;
648 s32 error2, mult;
649
650 /*
651 * Use the current error value to determine how much to look ahead.
652 * The larger the error the slower we adjust for it to avoid problems
653 * with losing too many ticks, otherwise we would overadjust and
654 * produce an even larger error. The smaller the adjustment the
655 * faster we try to adjust for it, as lost ticks can do less harm
656 * here. This is tuned so that an error of about 1 msec is adjusted
657 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
658 */
659 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
660 error2 = abs(error2);
661 for (look_ahead = 0; error2 > 0; look_ahead++)
662 error2 >>= 2;
663
664 /*
665 * Now calculate the error in (1 << look_ahead) ticks, but first
666 * remove the single look ahead already included in the error.
667 */
668 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
669 tick_error -= timekeeper.xtime_interval >> 1;
670 error = ((error - tick_error) >> look_ahead) + tick_error;
671
672 /* Finally calculate the adjustment shift value. */
673 i = *interval;
674 mult = 1;
675 if (error < 0) {
676 error = -error;
677 *interval = -*interval;
678 *offset = -*offset;
679 mult = -1;
680 }
681 for (adj = 0; error > i; adj++)
682 error >>= 1;
683
684 *interval <<= adj;
685 *offset <<= adj;
686 return mult << adj;
687 }
688
689 /*
690 * Adjust the multiplier to reduce the error value,
691 * this is optimized for the most common adjustments of -1,0,1,
692 * for other values we can do a bit more work.
693 */
694 static void timekeeping_adjust(s64 offset)
695 {
696 s64 error, interval = timekeeper.cycle_interval;
697 int adj;
698
699 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
700 if (error > interval) {
701 error >>= 2;
702 if (likely(error <= interval))
703 adj = 1;
704 else
705 adj = timekeeping_bigadjust(error, &interval, &offset);
706 } else if (error < -interval) {
707 error >>= 2;
708 if (likely(error >= -interval)) {
709 adj = -1;
710 interval = -interval;
711 offset = -offset;
712 } else
713 adj = timekeeping_bigadjust(error, &interval, &offset);
714 } else
715 return;
716
717 timekeeper.mult += adj;
718 timekeeper.xtime_interval += interval;
719 timekeeper.xtime_nsec -= offset;
720 timekeeper.ntp_error -= (interval - offset) <<
721 timekeeper.ntp_error_shift;
722 }
723
724 /**
725 * update_wall_time - Uses the current clocksource to increment the wall time
726 *
727 * Called from the timer interrupt, must hold a write on xtime_lock.
728 */
729 void update_wall_time(void)
730 {
731 struct clocksource *clock;
732 cycle_t offset;
733 u64 nsecs;
734
735 /* Make sure we're fully resumed: */
736 if (unlikely(timekeeping_suspended))
737 return;
738
739 clock = timekeeper.clock;
740 #ifdef CONFIG_GENERIC_TIME
741 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
742 #else
743 offset = timekeeper.cycle_interval;
744 #endif
745 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
746
747 /* normally this loop will run just once, however in the
748 * case of lost or late ticks, it will accumulate correctly.
749 */
750 while (offset >= timekeeper.cycle_interval) {
751 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
752
753 /* accumulate one interval */
754 offset -= timekeeper.cycle_interval;
755 clock->cycle_last += timekeeper.cycle_interval;
756
757 timekeeper.xtime_nsec += timekeeper.xtime_interval;
758 if (timekeeper.xtime_nsec >= nsecps) {
759 timekeeper.xtime_nsec -= nsecps;
760 xtime.tv_sec++;
761 second_overflow();
762 }
763
764 raw_time.tv_nsec += timekeeper.raw_interval;
765 if (raw_time.tv_nsec >= NSEC_PER_SEC) {
766 raw_time.tv_nsec -= NSEC_PER_SEC;
767 raw_time.tv_sec++;
768 }
769
770 /* accumulate error between NTP and clock interval */
771 timekeeper.ntp_error += tick_length;
772 timekeeper.ntp_error -= timekeeper.xtime_interval <<
773 timekeeper.ntp_error_shift;
774 }
775
776 /* correct the clock when NTP error is too big */
777 timekeeping_adjust(offset);
778
779 /*
780 * Since in the loop above, we accumulate any amount of time
781 * in xtime_nsec over a second into xtime.tv_sec, its possible for
782 * xtime_nsec to be fairly small after the loop. Further, if we're
783 * slightly speeding the clocksource up in timekeeping_adjust(),
784 * its possible the required corrective factor to xtime_nsec could
785 * cause it to underflow.
786 *
787 * Now, we cannot simply roll the accumulated second back, since
788 * the NTP subsystem has been notified via second_overflow. So
789 * instead we push xtime_nsec forward by the amount we underflowed,
790 * and add that amount into the error.
791 *
792 * We'll correct this error next time through this function, when
793 * xtime_nsec is not as small.
794 */
795 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
796 s64 neg = -(s64)timekeeper.xtime_nsec;
797 timekeeper.xtime_nsec = 0;
798 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
799 }
800
801 /* store full nanoseconds into xtime after rounding it up and
802 * add the remainder to the error difference.
803 */
804 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
805 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
806 timekeeper.ntp_error += timekeeper.xtime_nsec <<
807 timekeeper.ntp_error_shift;
808
809 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
810 update_xtime_cache(nsecs);
811
812 /* check to see if there is a new clocksource to use */
813 update_vsyscall(&xtime, timekeeper.clock);
814 }
815
816 /**
817 * getboottime - Return the real time of system boot.
818 * @ts: pointer to the timespec to be set
819 *
820 * Returns the time of day in a timespec.
821 *
822 * This is based on the wall_to_monotonic offset and the total suspend
823 * time. Calls to settimeofday will affect the value returned (which
824 * basically means that however wrong your real time clock is at boot time,
825 * you get the right time here).
826 */
827 void getboottime(struct timespec *ts)
828 {
829 struct timespec boottime = {
830 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
831 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
832 };
833
834 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
835 }
836
837 /**
838 * monotonic_to_bootbased - Convert the monotonic time to boot based.
839 * @ts: pointer to the timespec to be converted
840 */
841 void monotonic_to_bootbased(struct timespec *ts)
842 {
843 *ts = timespec_add_safe(*ts, total_sleep_time);
844 }
845
846 unsigned long get_seconds(void)
847 {
848 return xtime_cache.tv_sec;
849 }
850 EXPORT_SYMBOL(get_seconds);
851
852 struct timespec __current_kernel_time(void)
853 {
854 return xtime_cache;
855 }
856
857 struct timespec current_kernel_time(void)
858 {
859 struct timespec now;
860 unsigned long seq;
861
862 do {
863 seq = read_seqbegin(&xtime_lock);
864
865 now = xtime_cache;
866 } while (read_seqretry(&xtime_lock, seq));
867
868 return now;
869 }
870 EXPORT_SYMBOL(current_kernel_time);
871
872 struct timespec get_monotonic_coarse(void)
873 {
874 struct timespec now, mono;
875 unsigned long seq;
876
877 do {
878 seq = read_seqbegin(&xtime_lock);
879
880 now = xtime_cache;
881 mono = wall_to_monotonic;
882 } while (read_seqretry(&xtime_lock, seq));
883
884 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
885 now.tv_nsec + mono.tv_nsec);
886 return now;
887 }
This page took 0.050021 seconds and 5 git commands to generate.