Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
127
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
146 }
147 tk->underflow_seen = 0;
148 }
149
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
156 }
157 tk->overflow_seen = 0;
158 }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 struct timekeeper *tk = &tk_core.timekeeper;
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
166
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
181
182 delta = clocksource_delta(now, last, mask);
183
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
191 }
192
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
197 }
198
199 return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216 }
217 #endif
218
219 /**
220 * tk_setup_internals - Set up internals to use clocksource clock.
221 *
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 cycle_t interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
235
236 old_clock = tk->tkr_mono.clock;
237 tk->tkr_mono.clock = clock;
238 tk->tkr_mono.read = clock->read;
239 tk->tkr_mono.mask = clock->mask;
240 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242 tk->tkr_raw.clock = clock;
243 tk->tkr_raw.read = clock->read;
244 tk->tkr_raw.mask = clock->mask;
245 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp = NTP_INTERVAL_LENGTH;
249 tmp <<= clock->shift;
250 ntpinterval = tmp;
251 tmp += clock->mult/2;
252 do_div(tmp, clock->mult);
253 if (tmp == 0)
254 tmp = 1;
255
256 interval = (cycle_t) tmp;
257 tk->cycle_interval = interval;
258
259 /* Go back from cycles -> shifted ns */
260 tk->xtime_interval = (u64) interval * clock->mult;
261 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262 tk->raw_interval =
263 ((u64) interval * clock->mult) >> clock->shift;
264
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
269 tk->tkr_mono.xtime_nsec >>= -shift_change;
270 else
271 tk->tkr_mono.xtime_nsec <<= shift_change;
272 }
273 tk->tkr_raw.xtime_nsec = 0;
274
275 tk->tkr_mono.shift = clock->shift;
276 tk->tkr_raw.shift = clock->shift;
277
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282 /*
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
286 */
287 tk->tkr_mono.mult = clock->mult;
288 tk->tkr_raw.mult = clock->mult;
289 tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303 cycle_t delta;
304 s64 nsec;
305
306 delta = timekeeping_get_delta(tkr);
307
308 nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312 }
313
314 /**
315 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
316 * @tkr: Timekeeping readout base from which we take the update
317 *
318 * We want to use this from any context including NMI and tracing /
319 * instrumenting the timekeeping code itself.
320 *
321 * Employ the latch technique; see @raw_write_seqcount_latch.
322 *
323 * So if a NMI hits the update of base[0] then it will use base[1]
324 * which is still consistent. In the worst case this can result is a
325 * slightly wrong timestamp (a few nanoseconds). See
326 * @ktime_get_mono_fast_ns.
327 */
328 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
329 {
330 struct tk_read_base *base = tkf->base;
331
332 /* Force readers off to base[1] */
333 raw_write_seqcount_latch(&tkf->seq);
334
335 /* Update base[0] */
336 memcpy(base, tkr, sizeof(*base));
337
338 /* Force readers back to base[0] */
339 raw_write_seqcount_latch(&tkf->seq);
340
341 /* Update base[1] */
342 memcpy(base + 1, base, sizeof(*base));
343 }
344
345 /**
346 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
347 *
348 * This timestamp is not guaranteed to be monotonic across an update.
349 * The timestamp is calculated by:
350 *
351 * now = base_mono + clock_delta * slope
352 *
353 * So if the update lowers the slope, readers who are forced to the
354 * not yet updated second array are still using the old steeper slope.
355 *
356 * tmono
357 * ^
358 * | o n
359 * | o n
360 * | u
361 * | o
362 * |o
363 * |12345678---> reader order
364 *
365 * o = old slope
366 * u = update
367 * n = new slope
368 *
369 * So reader 6 will observe time going backwards versus reader 5.
370 *
371 * While other CPUs are likely to be able observe that, the only way
372 * for a CPU local observation is when an NMI hits in the middle of
373 * the update. Timestamps taken from that NMI context might be ahead
374 * of the following timestamps. Callers need to be aware of that and
375 * deal with it.
376 */
377 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
378 {
379 struct tk_read_base *tkr;
380 unsigned int seq;
381 u64 now;
382
383 do {
384 seq = raw_read_seqcount_latch(&tkf->seq);
385 tkr = tkf->base + (seq & 0x01);
386 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
387 } while (read_seqcount_retry(&tkf->seq, seq));
388
389 return now;
390 }
391
392 u64 ktime_get_mono_fast_ns(void)
393 {
394 return __ktime_get_fast_ns(&tk_fast_mono);
395 }
396 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
397
398 u64 ktime_get_raw_fast_ns(void)
399 {
400 return __ktime_get_fast_ns(&tk_fast_raw);
401 }
402 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
403
404 /* Suspend-time cycles value for halted fast timekeeper. */
405 static cycle_t cycles_at_suspend;
406
407 static cycle_t dummy_clock_read(struct clocksource *cs)
408 {
409 return cycles_at_suspend;
410 }
411
412 /**
413 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
414 * @tk: Timekeeper to snapshot.
415 *
416 * It generally is unsafe to access the clocksource after timekeeping has been
417 * suspended, so take a snapshot of the readout base of @tk and use it as the
418 * fast timekeeper's readout base while suspended. It will return the same
419 * number of cycles every time until timekeeping is resumed at which time the
420 * proper readout base for the fast timekeeper will be restored automatically.
421 */
422 static void halt_fast_timekeeper(struct timekeeper *tk)
423 {
424 static struct tk_read_base tkr_dummy;
425 struct tk_read_base *tkr = &tk->tkr_mono;
426
427 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
428 cycles_at_suspend = tkr->read(tkr->clock);
429 tkr_dummy.read = dummy_clock_read;
430 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
431
432 tkr = &tk->tkr_raw;
433 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
434 tkr_dummy.read = dummy_clock_read;
435 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
436 }
437
438 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
439
440 static inline void update_vsyscall(struct timekeeper *tk)
441 {
442 struct timespec xt, wm;
443
444 xt = timespec64_to_timespec(tk_xtime(tk));
445 wm = timespec64_to_timespec(tk->wall_to_monotonic);
446 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
447 tk->tkr_mono.cycle_last);
448 }
449
450 static inline void old_vsyscall_fixup(struct timekeeper *tk)
451 {
452 s64 remainder;
453
454 /*
455 * Store only full nanoseconds into xtime_nsec after rounding
456 * it up and add the remainder to the error difference.
457 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
458 * by truncating the remainder in vsyscalls. However, it causes
459 * additional work to be done in timekeeping_adjust(). Once
460 * the vsyscall implementations are converted to use xtime_nsec
461 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
462 * users are removed, this can be killed.
463 */
464 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
465 tk->tkr_mono.xtime_nsec -= remainder;
466 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
467 tk->ntp_error += remainder << tk->ntp_error_shift;
468 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
469 }
470 #else
471 #define old_vsyscall_fixup(tk)
472 #endif
473
474 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
475
476 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
477 {
478 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
479 }
480
481 /**
482 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
483 */
484 int pvclock_gtod_register_notifier(struct notifier_block *nb)
485 {
486 struct timekeeper *tk = &tk_core.timekeeper;
487 unsigned long flags;
488 int ret;
489
490 raw_spin_lock_irqsave(&timekeeper_lock, flags);
491 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
492 update_pvclock_gtod(tk, true);
493 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
494
495 return ret;
496 }
497 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
498
499 /**
500 * pvclock_gtod_unregister_notifier - unregister a pvclock
501 * timedata update listener
502 */
503 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
504 {
505 unsigned long flags;
506 int ret;
507
508 raw_spin_lock_irqsave(&timekeeper_lock, flags);
509 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
510 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
511
512 return ret;
513 }
514 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
515
516 /*
517 * tk_update_leap_state - helper to update the next_leap_ktime
518 */
519 static inline void tk_update_leap_state(struct timekeeper *tk)
520 {
521 tk->next_leap_ktime = ntp_get_next_leap();
522 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
523 /* Convert to monotonic time */
524 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
525 }
526
527 /*
528 * Update the ktime_t based scalar nsec members of the timekeeper
529 */
530 static inline void tk_update_ktime_data(struct timekeeper *tk)
531 {
532 u64 seconds;
533 u32 nsec;
534
535 /*
536 * The xtime based monotonic readout is:
537 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
538 * The ktime based monotonic readout is:
539 * nsec = base_mono + now();
540 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
541 */
542 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
543 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
544 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
545
546 /* Update the monotonic raw base */
547 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
548
549 /*
550 * The sum of the nanoseconds portions of xtime and
551 * wall_to_monotonic can be greater/equal one second. Take
552 * this into account before updating tk->ktime_sec.
553 */
554 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
555 if (nsec >= NSEC_PER_SEC)
556 seconds++;
557 tk->ktime_sec = seconds;
558 }
559
560 /* must hold timekeeper_lock */
561 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
562 {
563 if (action & TK_CLEAR_NTP) {
564 tk->ntp_error = 0;
565 ntp_clear();
566 }
567
568 tk_update_leap_state(tk);
569 tk_update_ktime_data(tk);
570
571 update_vsyscall(tk);
572 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
573
574 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
575 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
576
577 if (action & TK_CLOCK_WAS_SET)
578 tk->clock_was_set_seq++;
579 /*
580 * The mirroring of the data to the shadow-timekeeper needs
581 * to happen last here to ensure we don't over-write the
582 * timekeeper structure on the next update with stale data
583 */
584 if (action & TK_MIRROR)
585 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
586 sizeof(tk_core.timekeeper));
587 }
588
589 /**
590 * timekeeping_forward_now - update clock to the current time
591 *
592 * Forward the current clock to update its state since the last call to
593 * update_wall_time(). This is useful before significant clock changes,
594 * as it avoids having to deal with this time offset explicitly.
595 */
596 static void timekeeping_forward_now(struct timekeeper *tk)
597 {
598 struct clocksource *clock = tk->tkr_mono.clock;
599 cycle_t cycle_now, delta;
600 s64 nsec;
601
602 cycle_now = tk->tkr_mono.read(clock);
603 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
604 tk->tkr_mono.cycle_last = cycle_now;
605 tk->tkr_raw.cycle_last = cycle_now;
606
607 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
608
609 /* If arch requires, add in get_arch_timeoffset() */
610 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
611
612 tk_normalize_xtime(tk);
613
614 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
615 timespec64_add_ns(&tk->raw_time, nsec);
616 }
617
618 /**
619 * __getnstimeofday64 - Returns the time of day in a timespec64.
620 * @ts: pointer to the timespec to be set
621 *
622 * Updates the time of day in the timespec.
623 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
624 */
625 int __getnstimeofday64(struct timespec64 *ts)
626 {
627 struct timekeeper *tk = &tk_core.timekeeper;
628 unsigned long seq;
629 s64 nsecs = 0;
630
631 do {
632 seq = read_seqcount_begin(&tk_core.seq);
633
634 ts->tv_sec = tk->xtime_sec;
635 nsecs = timekeeping_get_ns(&tk->tkr_mono);
636
637 } while (read_seqcount_retry(&tk_core.seq, seq));
638
639 ts->tv_nsec = 0;
640 timespec64_add_ns(ts, nsecs);
641
642 /*
643 * Do not bail out early, in case there were callers still using
644 * the value, even in the face of the WARN_ON.
645 */
646 if (unlikely(timekeeping_suspended))
647 return -EAGAIN;
648 return 0;
649 }
650 EXPORT_SYMBOL(__getnstimeofday64);
651
652 /**
653 * getnstimeofday64 - Returns the time of day in a timespec64.
654 * @ts: pointer to the timespec64 to be set
655 *
656 * Returns the time of day in a timespec64 (WARN if suspended).
657 */
658 void getnstimeofday64(struct timespec64 *ts)
659 {
660 WARN_ON(__getnstimeofday64(ts));
661 }
662 EXPORT_SYMBOL(getnstimeofday64);
663
664 ktime_t ktime_get(void)
665 {
666 struct timekeeper *tk = &tk_core.timekeeper;
667 unsigned int seq;
668 ktime_t base;
669 s64 nsecs;
670
671 WARN_ON(timekeeping_suspended);
672
673 do {
674 seq = read_seqcount_begin(&tk_core.seq);
675 base = tk->tkr_mono.base;
676 nsecs = timekeeping_get_ns(&tk->tkr_mono);
677
678 } while (read_seqcount_retry(&tk_core.seq, seq));
679
680 return ktime_add_ns(base, nsecs);
681 }
682 EXPORT_SYMBOL_GPL(ktime_get);
683
684 u32 ktime_get_resolution_ns(void)
685 {
686 struct timekeeper *tk = &tk_core.timekeeper;
687 unsigned int seq;
688 u32 nsecs;
689
690 WARN_ON(timekeeping_suspended);
691
692 do {
693 seq = read_seqcount_begin(&tk_core.seq);
694 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
695 } while (read_seqcount_retry(&tk_core.seq, seq));
696
697 return nsecs;
698 }
699 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
700
701 static ktime_t *offsets[TK_OFFS_MAX] = {
702 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
703 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
704 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
705 };
706
707 ktime_t ktime_get_with_offset(enum tk_offsets offs)
708 {
709 struct timekeeper *tk = &tk_core.timekeeper;
710 unsigned int seq;
711 ktime_t base, *offset = offsets[offs];
712 s64 nsecs;
713
714 WARN_ON(timekeeping_suspended);
715
716 do {
717 seq = read_seqcount_begin(&tk_core.seq);
718 base = ktime_add(tk->tkr_mono.base, *offset);
719 nsecs = timekeeping_get_ns(&tk->tkr_mono);
720
721 } while (read_seqcount_retry(&tk_core.seq, seq));
722
723 return ktime_add_ns(base, nsecs);
724
725 }
726 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
727
728 /**
729 * ktime_mono_to_any() - convert mononotic time to any other time
730 * @tmono: time to convert.
731 * @offs: which offset to use
732 */
733 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
734 {
735 ktime_t *offset = offsets[offs];
736 unsigned long seq;
737 ktime_t tconv;
738
739 do {
740 seq = read_seqcount_begin(&tk_core.seq);
741 tconv = ktime_add(tmono, *offset);
742 } while (read_seqcount_retry(&tk_core.seq, seq));
743
744 return tconv;
745 }
746 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
747
748 /**
749 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
750 */
751 ktime_t ktime_get_raw(void)
752 {
753 struct timekeeper *tk = &tk_core.timekeeper;
754 unsigned int seq;
755 ktime_t base;
756 s64 nsecs;
757
758 do {
759 seq = read_seqcount_begin(&tk_core.seq);
760 base = tk->tkr_raw.base;
761 nsecs = timekeeping_get_ns(&tk->tkr_raw);
762
763 } while (read_seqcount_retry(&tk_core.seq, seq));
764
765 return ktime_add_ns(base, nsecs);
766 }
767 EXPORT_SYMBOL_GPL(ktime_get_raw);
768
769 /**
770 * ktime_get_ts64 - get the monotonic clock in timespec64 format
771 * @ts: pointer to timespec variable
772 *
773 * The function calculates the monotonic clock from the realtime
774 * clock and the wall_to_monotonic offset and stores the result
775 * in normalized timespec64 format in the variable pointed to by @ts.
776 */
777 void ktime_get_ts64(struct timespec64 *ts)
778 {
779 struct timekeeper *tk = &tk_core.timekeeper;
780 struct timespec64 tomono;
781 s64 nsec;
782 unsigned int seq;
783
784 WARN_ON(timekeeping_suspended);
785
786 do {
787 seq = read_seqcount_begin(&tk_core.seq);
788 ts->tv_sec = tk->xtime_sec;
789 nsec = timekeeping_get_ns(&tk->tkr_mono);
790 tomono = tk->wall_to_monotonic;
791
792 } while (read_seqcount_retry(&tk_core.seq, seq));
793
794 ts->tv_sec += tomono.tv_sec;
795 ts->tv_nsec = 0;
796 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
797 }
798 EXPORT_SYMBOL_GPL(ktime_get_ts64);
799
800 /**
801 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
802 *
803 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
804 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
805 * works on both 32 and 64 bit systems. On 32 bit systems the readout
806 * covers ~136 years of uptime which should be enough to prevent
807 * premature wrap arounds.
808 */
809 time64_t ktime_get_seconds(void)
810 {
811 struct timekeeper *tk = &tk_core.timekeeper;
812
813 WARN_ON(timekeeping_suspended);
814 return tk->ktime_sec;
815 }
816 EXPORT_SYMBOL_GPL(ktime_get_seconds);
817
818 /**
819 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
820 *
821 * Returns the wall clock seconds since 1970. This replaces the
822 * get_seconds() interface which is not y2038 safe on 32bit systems.
823 *
824 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
825 * 32bit systems the access must be protected with the sequence
826 * counter to provide "atomic" access to the 64bit tk->xtime_sec
827 * value.
828 */
829 time64_t ktime_get_real_seconds(void)
830 {
831 struct timekeeper *tk = &tk_core.timekeeper;
832 time64_t seconds;
833 unsigned int seq;
834
835 if (IS_ENABLED(CONFIG_64BIT))
836 return tk->xtime_sec;
837
838 do {
839 seq = read_seqcount_begin(&tk_core.seq);
840 seconds = tk->xtime_sec;
841
842 } while (read_seqcount_retry(&tk_core.seq, seq));
843
844 return seconds;
845 }
846 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
847
848 /**
849 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
850 * but without the sequence counter protect. This internal function
851 * is called just when timekeeping lock is already held.
852 */
853 time64_t __ktime_get_real_seconds(void)
854 {
855 struct timekeeper *tk = &tk_core.timekeeper;
856
857 return tk->xtime_sec;
858 }
859
860
861 #ifdef CONFIG_NTP_PPS
862
863 /**
864 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
865 * @ts_raw: pointer to the timespec to be set to raw monotonic time
866 * @ts_real: pointer to the timespec to be set to the time of day
867 *
868 * This function reads both the time of day and raw monotonic time at the
869 * same time atomically and stores the resulting timestamps in timespec
870 * format.
871 */
872 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
873 {
874 struct timekeeper *tk = &tk_core.timekeeper;
875 unsigned long seq;
876 s64 nsecs_raw, nsecs_real;
877
878 WARN_ON_ONCE(timekeeping_suspended);
879
880 do {
881 seq = read_seqcount_begin(&tk_core.seq);
882
883 *ts_raw = tk->raw_time;
884 ts_real->tv_sec = tk->xtime_sec;
885 ts_real->tv_nsec = 0;
886
887 nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
888 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
889
890 } while (read_seqcount_retry(&tk_core.seq, seq));
891
892 timespec64_add_ns(ts_raw, nsecs_raw);
893 timespec64_add_ns(ts_real, nsecs_real);
894 }
895 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
896
897 #endif /* CONFIG_NTP_PPS */
898
899 /**
900 * do_gettimeofday - Returns the time of day in a timeval
901 * @tv: pointer to the timeval to be set
902 *
903 * NOTE: Users should be converted to using getnstimeofday()
904 */
905 void do_gettimeofday(struct timeval *tv)
906 {
907 struct timespec64 now;
908
909 getnstimeofday64(&now);
910 tv->tv_sec = now.tv_sec;
911 tv->tv_usec = now.tv_nsec/1000;
912 }
913 EXPORT_SYMBOL(do_gettimeofday);
914
915 /**
916 * do_settimeofday64 - Sets the time of day.
917 * @ts: pointer to the timespec64 variable containing the new time
918 *
919 * Sets the time of day to the new time and update NTP and notify hrtimers
920 */
921 int do_settimeofday64(const struct timespec64 *ts)
922 {
923 struct timekeeper *tk = &tk_core.timekeeper;
924 struct timespec64 ts_delta, xt;
925 unsigned long flags;
926 int ret = 0;
927
928 if (!timespec64_valid_strict(ts))
929 return -EINVAL;
930
931 raw_spin_lock_irqsave(&timekeeper_lock, flags);
932 write_seqcount_begin(&tk_core.seq);
933
934 timekeeping_forward_now(tk);
935
936 xt = tk_xtime(tk);
937 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
938 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
939
940 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
941 ret = -EINVAL;
942 goto out;
943 }
944
945 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
946
947 tk_set_xtime(tk, ts);
948 out:
949 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
950
951 write_seqcount_end(&tk_core.seq);
952 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
953
954 /* signal hrtimers about time change */
955 clock_was_set();
956
957 return ret;
958 }
959 EXPORT_SYMBOL(do_settimeofday64);
960
961 /**
962 * timekeeping_inject_offset - Adds or subtracts from the current time.
963 * @tv: pointer to the timespec variable containing the offset
964 *
965 * Adds or subtracts an offset value from the current time.
966 */
967 int timekeeping_inject_offset(struct timespec *ts)
968 {
969 struct timekeeper *tk = &tk_core.timekeeper;
970 unsigned long flags;
971 struct timespec64 ts64, tmp;
972 int ret = 0;
973
974 if (!timespec_inject_offset_valid(ts))
975 return -EINVAL;
976
977 ts64 = timespec_to_timespec64(*ts);
978
979 raw_spin_lock_irqsave(&timekeeper_lock, flags);
980 write_seqcount_begin(&tk_core.seq);
981
982 timekeeping_forward_now(tk);
983
984 /* Make sure the proposed value is valid */
985 tmp = timespec64_add(tk_xtime(tk), ts64);
986 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
987 !timespec64_valid_strict(&tmp)) {
988 ret = -EINVAL;
989 goto error;
990 }
991
992 tk_xtime_add(tk, &ts64);
993 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
994
995 error: /* even if we error out, we forwarded the time, so call update */
996 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
997
998 write_seqcount_end(&tk_core.seq);
999 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1000
1001 /* signal hrtimers about time change */
1002 clock_was_set();
1003
1004 return ret;
1005 }
1006 EXPORT_SYMBOL(timekeeping_inject_offset);
1007
1008
1009 /**
1010 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1011 *
1012 */
1013 s32 timekeeping_get_tai_offset(void)
1014 {
1015 struct timekeeper *tk = &tk_core.timekeeper;
1016 unsigned int seq;
1017 s32 ret;
1018
1019 do {
1020 seq = read_seqcount_begin(&tk_core.seq);
1021 ret = tk->tai_offset;
1022 } while (read_seqcount_retry(&tk_core.seq, seq));
1023
1024 return ret;
1025 }
1026
1027 /**
1028 * __timekeeping_set_tai_offset - Lock free worker function
1029 *
1030 */
1031 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1032 {
1033 tk->tai_offset = tai_offset;
1034 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1035 }
1036
1037 /**
1038 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1039 *
1040 */
1041 void timekeeping_set_tai_offset(s32 tai_offset)
1042 {
1043 struct timekeeper *tk = &tk_core.timekeeper;
1044 unsigned long flags;
1045
1046 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1047 write_seqcount_begin(&tk_core.seq);
1048 __timekeeping_set_tai_offset(tk, tai_offset);
1049 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1050 write_seqcount_end(&tk_core.seq);
1051 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1052 clock_was_set();
1053 }
1054
1055 /**
1056 * change_clocksource - Swaps clocksources if a new one is available
1057 *
1058 * Accumulates current time interval and initializes new clocksource
1059 */
1060 static int change_clocksource(void *data)
1061 {
1062 struct timekeeper *tk = &tk_core.timekeeper;
1063 struct clocksource *new, *old;
1064 unsigned long flags;
1065
1066 new = (struct clocksource *) data;
1067
1068 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1069 write_seqcount_begin(&tk_core.seq);
1070
1071 timekeeping_forward_now(tk);
1072 /*
1073 * If the cs is in module, get a module reference. Succeeds
1074 * for built-in code (owner == NULL) as well.
1075 */
1076 if (try_module_get(new->owner)) {
1077 if (!new->enable || new->enable(new) == 0) {
1078 old = tk->tkr_mono.clock;
1079 tk_setup_internals(tk, new);
1080 if (old->disable)
1081 old->disable(old);
1082 module_put(old->owner);
1083 } else {
1084 module_put(new->owner);
1085 }
1086 }
1087 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1088
1089 write_seqcount_end(&tk_core.seq);
1090 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1091
1092 return 0;
1093 }
1094
1095 /**
1096 * timekeeping_notify - Install a new clock source
1097 * @clock: pointer to the clock source
1098 *
1099 * This function is called from clocksource.c after a new, better clock
1100 * source has been registered. The caller holds the clocksource_mutex.
1101 */
1102 int timekeeping_notify(struct clocksource *clock)
1103 {
1104 struct timekeeper *tk = &tk_core.timekeeper;
1105
1106 if (tk->tkr_mono.clock == clock)
1107 return 0;
1108 stop_machine(change_clocksource, clock, NULL);
1109 tick_clock_notify();
1110 return tk->tkr_mono.clock == clock ? 0 : -1;
1111 }
1112
1113 /**
1114 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1115 * @ts: pointer to the timespec64 to be set
1116 *
1117 * Returns the raw monotonic time (completely un-modified by ntp)
1118 */
1119 void getrawmonotonic64(struct timespec64 *ts)
1120 {
1121 struct timekeeper *tk = &tk_core.timekeeper;
1122 struct timespec64 ts64;
1123 unsigned long seq;
1124 s64 nsecs;
1125
1126 do {
1127 seq = read_seqcount_begin(&tk_core.seq);
1128 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1129 ts64 = tk->raw_time;
1130
1131 } while (read_seqcount_retry(&tk_core.seq, seq));
1132
1133 timespec64_add_ns(&ts64, nsecs);
1134 *ts = ts64;
1135 }
1136 EXPORT_SYMBOL(getrawmonotonic64);
1137
1138
1139 /**
1140 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1141 */
1142 int timekeeping_valid_for_hres(void)
1143 {
1144 struct timekeeper *tk = &tk_core.timekeeper;
1145 unsigned long seq;
1146 int ret;
1147
1148 do {
1149 seq = read_seqcount_begin(&tk_core.seq);
1150
1151 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1152
1153 } while (read_seqcount_retry(&tk_core.seq, seq));
1154
1155 return ret;
1156 }
1157
1158 /**
1159 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1160 */
1161 u64 timekeeping_max_deferment(void)
1162 {
1163 struct timekeeper *tk = &tk_core.timekeeper;
1164 unsigned long seq;
1165 u64 ret;
1166
1167 do {
1168 seq = read_seqcount_begin(&tk_core.seq);
1169
1170 ret = tk->tkr_mono.clock->max_idle_ns;
1171
1172 } while (read_seqcount_retry(&tk_core.seq, seq));
1173
1174 return ret;
1175 }
1176
1177 /**
1178 * read_persistent_clock - Return time from the persistent clock.
1179 *
1180 * Weak dummy function for arches that do not yet support it.
1181 * Reads the time from the battery backed persistent clock.
1182 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1183 *
1184 * XXX - Do be sure to remove it once all arches implement it.
1185 */
1186 void __weak read_persistent_clock(struct timespec *ts)
1187 {
1188 ts->tv_sec = 0;
1189 ts->tv_nsec = 0;
1190 }
1191
1192 void __weak read_persistent_clock64(struct timespec64 *ts64)
1193 {
1194 struct timespec ts;
1195
1196 read_persistent_clock(&ts);
1197 *ts64 = timespec_to_timespec64(ts);
1198 }
1199
1200 /**
1201 * read_boot_clock64 - Return time of the system start.
1202 *
1203 * Weak dummy function for arches that do not yet support it.
1204 * Function to read the exact time the system has been started.
1205 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1206 *
1207 * XXX - Do be sure to remove it once all arches implement it.
1208 */
1209 void __weak read_boot_clock64(struct timespec64 *ts)
1210 {
1211 ts->tv_sec = 0;
1212 ts->tv_nsec = 0;
1213 }
1214
1215 /* Flag for if timekeeping_resume() has injected sleeptime */
1216 static bool sleeptime_injected;
1217
1218 /* Flag for if there is a persistent clock on this platform */
1219 static bool persistent_clock_exists;
1220
1221 /*
1222 * timekeeping_init - Initializes the clocksource and common timekeeping values
1223 */
1224 void __init timekeeping_init(void)
1225 {
1226 struct timekeeper *tk = &tk_core.timekeeper;
1227 struct clocksource *clock;
1228 unsigned long flags;
1229 struct timespec64 now, boot, tmp;
1230
1231 read_persistent_clock64(&now);
1232 if (!timespec64_valid_strict(&now)) {
1233 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1234 " Check your CMOS/BIOS settings.\n");
1235 now.tv_sec = 0;
1236 now.tv_nsec = 0;
1237 } else if (now.tv_sec || now.tv_nsec)
1238 persistent_clock_exists = true;
1239
1240 read_boot_clock64(&boot);
1241 if (!timespec64_valid_strict(&boot)) {
1242 pr_warn("WARNING: Boot clock returned invalid value!\n"
1243 " Check your CMOS/BIOS settings.\n");
1244 boot.tv_sec = 0;
1245 boot.tv_nsec = 0;
1246 }
1247
1248 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1249 write_seqcount_begin(&tk_core.seq);
1250 ntp_init();
1251
1252 clock = clocksource_default_clock();
1253 if (clock->enable)
1254 clock->enable(clock);
1255 tk_setup_internals(tk, clock);
1256
1257 tk_set_xtime(tk, &now);
1258 tk->raw_time.tv_sec = 0;
1259 tk->raw_time.tv_nsec = 0;
1260 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1261 boot = tk_xtime(tk);
1262
1263 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1264 tk_set_wall_to_mono(tk, tmp);
1265
1266 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1267
1268 write_seqcount_end(&tk_core.seq);
1269 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270 }
1271
1272 /* time in seconds when suspend began for persistent clock */
1273 static struct timespec64 timekeeping_suspend_time;
1274
1275 /**
1276 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1277 * @delta: pointer to a timespec delta value
1278 *
1279 * Takes a timespec offset measuring a suspend interval and properly
1280 * adds the sleep offset to the timekeeping variables.
1281 */
1282 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1283 struct timespec64 *delta)
1284 {
1285 if (!timespec64_valid_strict(delta)) {
1286 printk_deferred(KERN_WARNING
1287 "__timekeeping_inject_sleeptime: Invalid "
1288 "sleep delta value!\n");
1289 return;
1290 }
1291 tk_xtime_add(tk, delta);
1292 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1293 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1294 tk_debug_account_sleep_time(delta);
1295 }
1296
1297 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1298 /**
1299 * We have three kinds of time sources to use for sleep time
1300 * injection, the preference order is:
1301 * 1) non-stop clocksource
1302 * 2) persistent clock (ie: RTC accessible when irqs are off)
1303 * 3) RTC
1304 *
1305 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1306 * If system has neither 1) nor 2), 3) will be used finally.
1307 *
1308 *
1309 * If timekeeping has injected sleeptime via either 1) or 2),
1310 * 3) becomes needless, so in this case we don't need to call
1311 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1312 * means.
1313 */
1314 bool timekeeping_rtc_skipresume(void)
1315 {
1316 return sleeptime_injected;
1317 }
1318
1319 /**
1320 * 1) can be determined whether to use or not only when doing
1321 * timekeeping_resume() which is invoked after rtc_suspend(),
1322 * so we can't skip rtc_suspend() surely if system has 1).
1323 *
1324 * But if system has 2), 2) will definitely be used, so in this
1325 * case we don't need to call rtc_suspend(), and this is what
1326 * timekeeping_rtc_skipsuspend() means.
1327 */
1328 bool timekeeping_rtc_skipsuspend(void)
1329 {
1330 return persistent_clock_exists;
1331 }
1332
1333 /**
1334 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1335 * @delta: pointer to a timespec64 delta value
1336 *
1337 * This hook is for architectures that cannot support read_persistent_clock64
1338 * because their RTC/persistent clock is only accessible when irqs are enabled.
1339 * and also don't have an effective nonstop clocksource.
1340 *
1341 * This function should only be called by rtc_resume(), and allows
1342 * a suspend offset to be injected into the timekeeping values.
1343 */
1344 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1345 {
1346 struct timekeeper *tk = &tk_core.timekeeper;
1347 unsigned long flags;
1348
1349 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1350 write_seqcount_begin(&tk_core.seq);
1351
1352 timekeeping_forward_now(tk);
1353
1354 __timekeeping_inject_sleeptime(tk, delta);
1355
1356 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1357
1358 write_seqcount_end(&tk_core.seq);
1359 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1360
1361 /* signal hrtimers about time change */
1362 clock_was_set();
1363 }
1364 #endif
1365
1366 /**
1367 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1368 */
1369 void timekeeping_resume(void)
1370 {
1371 struct timekeeper *tk = &tk_core.timekeeper;
1372 struct clocksource *clock = tk->tkr_mono.clock;
1373 unsigned long flags;
1374 struct timespec64 ts_new, ts_delta;
1375 cycle_t cycle_now, cycle_delta;
1376
1377 sleeptime_injected = false;
1378 read_persistent_clock64(&ts_new);
1379
1380 clockevents_resume();
1381 clocksource_resume();
1382
1383 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1384 write_seqcount_begin(&tk_core.seq);
1385
1386 /*
1387 * After system resumes, we need to calculate the suspended time and
1388 * compensate it for the OS time. There are 3 sources that could be
1389 * used: Nonstop clocksource during suspend, persistent clock and rtc
1390 * device.
1391 *
1392 * One specific platform may have 1 or 2 or all of them, and the
1393 * preference will be:
1394 * suspend-nonstop clocksource -> persistent clock -> rtc
1395 * The less preferred source will only be tried if there is no better
1396 * usable source. The rtc part is handled separately in rtc core code.
1397 */
1398 cycle_now = tk->tkr_mono.read(clock);
1399 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1400 cycle_now > tk->tkr_mono.cycle_last) {
1401 u64 num, max = ULLONG_MAX;
1402 u32 mult = clock->mult;
1403 u32 shift = clock->shift;
1404 s64 nsec = 0;
1405
1406 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1407 tk->tkr_mono.mask);
1408
1409 /*
1410 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1411 * suspended time is too long. In that case we need do the
1412 * 64 bits math carefully
1413 */
1414 do_div(max, mult);
1415 if (cycle_delta > max) {
1416 num = div64_u64(cycle_delta, max);
1417 nsec = (((u64) max * mult) >> shift) * num;
1418 cycle_delta -= num * max;
1419 }
1420 nsec += ((u64) cycle_delta * mult) >> shift;
1421
1422 ts_delta = ns_to_timespec64(nsec);
1423 sleeptime_injected = true;
1424 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1425 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1426 sleeptime_injected = true;
1427 }
1428
1429 if (sleeptime_injected)
1430 __timekeeping_inject_sleeptime(tk, &ts_delta);
1431
1432 /* Re-base the last cycle value */
1433 tk->tkr_mono.cycle_last = cycle_now;
1434 tk->tkr_raw.cycle_last = cycle_now;
1435
1436 tk->ntp_error = 0;
1437 timekeeping_suspended = 0;
1438 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1439 write_seqcount_end(&tk_core.seq);
1440 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1441
1442 touch_softlockup_watchdog();
1443
1444 tick_resume();
1445 hrtimers_resume();
1446 }
1447
1448 int timekeeping_suspend(void)
1449 {
1450 struct timekeeper *tk = &tk_core.timekeeper;
1451 unsigned long flags;
1452 struct timespec64 delta, delta_delta;
1453 static struct timespec64 old_delta;
1454
1455 read_persistent_clock64(&timekeeping_suspend_time);
1456
1457 /*
1458 * On some systems the persistent_clock can not be detected at
1459 * timekeeping_init by its return value, so if we see a valid
1460 * value returned, update the persistent_clock_exists flag.
1461 */
1462 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1463 persistent_clock_exists = true;
1464
1465 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1466 write_seqcount_begin(&tk_core.seq);
1467 timekeeping_forward_now(tk);
1468 timekeeping_suspended = 1;
1469
1470 if (persistent_clock_exists) {
1471 /*
1472 * To avoid drift caused by repeated suspend/resumes,
1473 * which each can add ~1 second drift error,
1474 * try to compensate so the difference in system time
1475 * and persistent_clock time stays close to constant.
1476 */
1477 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1478 delta_delta = timespec64_sub(delta, old_delta);
1479 if (abs(delta_delta.tv_sec) >= 2) {
1480 /*
1481 * if delta_delta is too large, assume time correction
1482 * has occurred and set old_delta to the current delta.
1483 */
1484 old_delta = delta;
1485 } else {
1486 /* Otherwise try to adjust old_system to compensate */
1487 timekeeping_suspend_time =
1488 timespec64_add(timekeeping_suspend_time, delta_delta);
1489 }
1490 }
1491
1492 timekeeping_update(tk, TK_MIRROR);
1493 halt_fast_timekeeper(tk);
1494 write_seqcount_end(&tk_core.seq);
1495 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1496
1497 tick_suspend();
1498 clocksource_suspend();
1499 clockevents_suspend();
1500
1501 return 0;
1502 }
1503
1504 /* sysfs resume/suspend bits for timekeeping */
1505 static struct syscore_ops timekeeping_syscore_ops = {
1506 .resume = timekeeping_resume,
1507 .suspend = timekeeping_suspend,
1508 };
1509
1510 static int __init timekeeping_init_ops(void)
1511 {
1512 register_syscore_ops(&timekeeping_syscore_ops);
1513 return 0;
1514 }
1515 device_initcall(timekeeping_init_ops);
1516
1517 /*
1518 * Apply a multiplier adjustment to the timekeeper
1519 */
1520 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1521 s64 offset,
1522 bool negative,
1523 int adj_scale)
1524 {
1525 s64 interval = tk->cycle_interval;
1526 s32 mult_adj = 1;
1527
1528 if (negative) {
1529 mult_adj = -mult_adj;
1530 interval = -interval;
1531 offset = -offset;
1532 }
1533 mult_adj <<= adj_scale;
1534 interval <<= adj_scale;
1535 offset <<= adj_scale;
1536
1537 /*
1538 * So the following can be confusing.
1539 *
1540 * To keep things simple, lets assume mult_adj == 1 for now.
1541 *
1542 * When mult_adj != 1, remember that the interval and offset values
1543 * have been appropriately scaled so the math is the same.
1544 *
1545 * The basic idea here is that we're increasing the multiplier
1546 * by one, this causes the xtime_interval to be incremented by
1547 * one cycle_interval. This is because:
1548 * xtime_interval = cycle_interval * mult
1549 * So if mult is being incremented by one:
1550 * xtime_interval = cycle_interval * (mult + 1)
1551 * Its the same as:
1552 * xtime_interval = (cycle_interval * mult) + cycle_interval
1553 * Which can be shortened to:
1554 * xtime_interval += cycle_interval
1555 *
1556 * So offset stores the non-accumulated cycles. Thus the current
1557 * time (in shifted nanoseconds) is:
1558 * now = (offset * adj) + xtime_nsec
1559 * Now, even though we're adjusting the clock frequency, we have
1560 * to keep time consistent. In other words, we can't jump back
1561 * in time, and we also want to avoid jumping forward in time.
1562 *
1563 * So given the same offset value, we need the time to be the same
1564 * both before and after the freq adjustment.
1565 * now = (offset * adj_1) + xtime_nsec_1
1566 * now = (offset * adj_2) + xtime_nsec_2
1567 * So:
1568 * (offset * adj_1) + xtime_nsec_1 =
1569 * (offset * adj_2) + xtime_nsec_2
1570 * And we know:
1571 * adj_2 = adj_1 + 1
1572 * So:
1573 * (offset * adj_1) + xtime_nsec_1 =
1574 * (offset * (adj_1+1)) + xtime_nsec_2
1575 * (offset * adj_1) + xtime_nsec_1 =
1576 * (offset * adj_1) + offset + xtime_nsec_2
1577 * Canceling the sides:
1578 * xtime_nsec_1 = offset + xtime_nsec_2
1579 * Which gives us:
1580 * xtime_nsec_2 = xtime_nsec_1 - offset
1581 * Which simplfies to:
1582 * xtime_nsec -= offset
1583 *
1584 * XXX - TODO: Doc ntp_error calculation.
1585 */
1586 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1587 /* NTP adjustment caused clocksource mult overflow */
1588 WARN_ON_ONCE(1);
1589 return;
1590 }
1591
1592 tk->tkr_mono.mult += mult_adj;
1593 tk->xtime_interval += interval;
1594 tk->tkr_mono.xtime_nsec -= offset;
1595 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1596 }
1597
1598 /*
1599 * Calculate the multiplier adjustment needed to match the frequency
1600 * specified by NTP
1601 */
1602 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1603 s64 offset)
1604 {
1605 s64 interval = tk->cycle_interval;
1606 s64 xinterval = tk->xtime_interval;
1607 u32 base = tk->tkr_mono.clock->mult;
1608 u32 max = tk->tkr_mono.clock->maxadj;
1609 u32 cur_adj = tk->tkr_mono.mult;
1610 s64 tick_error;
1611 bool negative;
1612 u32 adj_scale;
1613
1614 /* Remove any current error adj from freq calculation */
1615 if (tk->ntp_err_mult)
1616 xinterval -= tk->cycle_interval;
1617
1618 tk->ntp_tick = ntp_tick_length();
1619
1620 /* Calculate current error per tick */
1621 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1622 tick_error -= (xinterval + tk->xtime_remainder);
1623
1624 /* Don't worry about correcting it if its small */
1625 if (likely((tick_error >= 0) && (tick_error <= interval)))
1626 return;
1627
1628 /* preserve the direction of correction */
1629 negative = (tick_error < 0);
1630
1631 /* If any adjustment would pass the max, just return */
1632 if (negative && (cur_adj - 1) <= (base - max))
1633 return;
1634 if (!negative && (cur_adj + 1) >= (base + max))
1635 return;
1636 /*
1637 * Sort out the magnitude of the correction, but
1638 * avoid making so large a correction that we go
1639 * over the max adjustment.
1640 */
1641 adj_scale = 0;
1642 tick_error = abs(tick_error);
1643 while (tick_error > interval) {
1644 u32 adj = 1 << (adj_scale + 1);
1645
1646 /* Check if adjustment gets us within 1 unit from the max */
1647 if (negative && (cur_adj - adj) <= (base - max))
1648 break;
1649 if (!negative && (cur_adj + adj) >= (base + max))
1650 break;
1651
1652 adj_scale++;
1653 tick_error >>= 1;
1654 }
1655
1656 /* scale the corrections */
1657 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1658 }
1659
1660 /*
1661 * Adjust the timekeeper's multiplier to the correct frequency
1662 * and also to reduce the accumulated error value.
1663 */
1664 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1665 {
1666 /* Correct for the current frequency error */
1667 timekeeping_freqadjust(tk, offset);
1668
1669 /* Next make a small adjustment to fix any cumulative error */
1670 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1671 tk->ntp_err_mult = 1;
1672 timekeeping_apply_adjustment(tk, offset, 0, 0);
1673 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1674 /* Undo any existing error adjustment */
1675 timekeeping_apply_adjustment(tk, offset, 1, 0);
1676 tk->ntp_err_mult = 0;
1677 }
1678
1679 if (unlikely(tk->tkr_mono.clock->maxadj &&
1680 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1681 > tk->tkr_mono.clock->maxadj))) {
1682 printk_once(KERN_WARNING
1683 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1684 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1685 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1686 }
1687
1688 /*
1689 * It may be possible that when we entered this function, xtime_nsec
1690 * was very small. Further, if we're slightly speeding the clocksource
1691 * in the code above, its possible the required corrective factor to
1692 * xtime_nsec could cause it to underflow.
1693 *
1694 * Now, since we already accumulated the second, cannot simply roll
1695 * the accumulated second back, since the NTP subsystem has been
1696 * notified via second_overflow. So instead we push xtime_nsec forward
1697 * by the amount we underflowed, and add that amount into the error.
1698 *
1699 * We'll correct this error next time through this function, when
1700 * xtime_nsec is not as small.
1701 */
1702 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1703 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1704 tk->tkr_mono.xtime_nsec = 0;
1705 tk->ntp_error += neg << tk->ntp_error_shift;
1706 }
1707 }
1708
1709 /**
1710 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1711 *
1712 * Helper function that accumulates the nsecs greater than a second
1713 * from the xtime_nsec field to the xtime_secs field.
1714 * It also calls into the NTP code to handle leapsecond processing.
1715 *
1716 */
1717 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1718 {
1719 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1720 unsigned int clock_set = 0;
1721
1722 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1723 int leap;
1724
1725 tk->tkr_mono.xtime_nsec -= nsecps;
1726 tk->xtime_sec++;
1727
1728 /* Figure out if its a leap sec and apply if needed */
1729 leap = second_overflow(tk->xtime_sec);
1730 if (unlikely(leap)) {
1731 struct timespec64 ts;
1732
1733 tk->xtime_sec += leap;
1734
1735 ts.tv_sec = leap;
1736 ts.tv_nsec = 0;
1737 tk_set_wall_to_mono(tk,
1738 timespec64_sub(tk->wall_to_monotonic, ts));
1739
1740 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1741
1742 clock_set = TK_CLOCK_WAS_SET;
1743 }
1744 }
1745 return clock_set;
1746 }
1747
1748 /**
1749 * logarithmic_accumulation - shifted accumulation of cycles
1750 *
1751 * This functions accumulates a shifted interval of cycles into
1752 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1753 * loop.
1754 *
1755 * Returns the unconsumed cycles.
1756 */
1757 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1758 u32 shift,
1759 unsigned int *clock_set)
1760 {
1761 cycle_t interval = tk->cycle_interval << shift;
1762 u64 raw_nsecs;
1763
1764 /* If the offset is smaller than a shifted interval, do nothing */
1765 if (offset < interval)
1766 return offset;
1767
1768 /* Accumulate one shifted interval */
1769 offset -= interval;
1770 tk->tkr_mono.cycle_last += interval;
1771 tk->tkr_raw.cycle_last += interval;
1772
1773 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1774 *clock_set |= accumulate_nsecs_to_secs(tk);
1775
1776 /* Accumulate raw time */
1777 raw_nsecs = (u64)tk->raw_interval << shift;
1778 raw_nsecs += tk->raw_time.tv_nsec;
1779 if (raw_nsecs >= NSEC_PER_SEC) {
1780 u64 raw_secs = raw_nsecs;
1781 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1782 tk->raw_time.tv_sec += raw_secs;
1783 }
1784 tk->raw_time.tv_nsec = raw_nsecs;
1785
1786 /* Accumulate error between NTP and clock interval */
1787 tk->ntp_error += tk->ntp_tick << shift;
1788 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1789 (tk->ntp_error_shift + shift);
1790
1791 return offset;
1792 }
1793
1794 /**
1795 * update_wall_time - Uses the current clocksource to increment the wall time
1796 *
1797 */
1798 void update_wall_time(void)
1799 {
1800 struct timekeeper *real_tk = &tk_core.timekeeper;
1801 struct timekeeper *tk = &shadow_timekeeper;
1802 cycle_t offset;
1803 int shift = 0, maxshift;
1804 unsigned int clock_set = 0;
1805 unsigned long flags;
1806
1807 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1808
1809 /* Make sure we're fully resumed: */
1810 if (unlikely(timekeeping_suspended))
1811 goto out;
1812
1813 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1814 offset = real_tk->cycle_interval;
1815 #else
1816 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1817 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1818 #endif
1819
1820 /* Check if there's really nothing to do */
1821 if (offset < real_tk->cycle_interval)
1822 goto out;
1823
1824 /* Do some additional sanity checking */
1825 timekeeping_check_update(real_tk, offset);
1826
1827 /*
1828 * With NO_HZ we may have to accumulate many cycle_intervals
1829 * (think "ticks") worth of time at once. To do this efficiently,
1830 * we calculate the largest doubling multiple of cycle_intervals
1831 * that is smaller than the offset. We then accumulate that
1832 * chunk in one go, and then try to consume the next smaller
1833 * doubled multiple.
1834 */
1835 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1836 shift = max(0, shift);
1837 /* Bound shift to one less than what overflows tick_length */
1838 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1839 shift = min(shift, maxshift);
1840 while (offset >= tk->cycle_interval) {
1841 offset = logarithmic_accumulation(tk, offset, shift,
1842 &clock_set);
1843 if (offset < tk->cycle_interval<<shift)
1844 shift--;
1845 }
1846
1847 /* correct the clock when NTP error is too big */
1848 timekeeping_adjust(tk, offset);
1849
1850 /*
1851 * XXX This can be killed once everyone converts
1852 * to the new update_vsyscall.
1853 */
1854 old_vsyscall_fixup(tk);
1855
1856 /*
1857 * Finally, make sure that after the rounding
1858 * xtime_nsec isn't larger than NSEC_PER_SEC
1859 */
1860 clock_set |= accumulate_nsecs_to_secs(tk);
1861
1862 write_seqcount_begin(&tk_core.seq);
1863 /*
1864 * Update the real timekeeper.
1865 *
1866 * We could avoid this memcpy by switching pointers, but that
1867 * requires changes to all other timekeeper usage sites as
1868 * well, i.e. move the timekeeper pointer getter into the
1869 * spinlocked/seqcount protected sections. And we trade this
1870 * memcpy under the tk_core.seq against one before we start
1871 * updating.
1872 */
1873 timekeeping_update(tk, clock_set);
1874 memcpy(real_tk, tk, sizeof(*tk));
1875 /* The memcpy must come last. Do not put anything here! */
1876 write_seqcount_end(&tk_core.seq);
1877 out:
1878 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1879 if (clock_set)
1880 /* Have to call _delayed version, since in irq context*/
1881 clock_was_set_delayed();
1882 }
1883
1884 /**
1885 * getboottime64 - Return the real time of system boot.
1886 * @ts: pointer to the timespec64 to be set
1887 *
1888 * Returns the wall-time of boot in a timespec64.
1889 *
1890 * This is based on the wall_to_monotonic offset and the total suspend
1891 * time. Calls to settimeofday will affect the value returned (which
1892 * basically means that however wrong your real time clock is at boot time,
1893 * you get the right time here).
1894 */
1895 void getboottime64(struct timespec64 *ts)
1896 {
1897 struct timekeeper *tk = &tk_core.timekeeper;
1898 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1899
1900 *ts = ktime_to_timespec64(t);
1901 }
1902 EXPORT_SYMBOL_GPL(getboottime64);
1903
1904 unsigned long get_seconds(void)
1905 {
1906 struct timekeeper *tk = &tk_core.timekeeper;
1907
1908 return tk->xtime_sec;
1909 }
1910 EXPORT_SYMBOL(get_seconds);
1911
1912 struct timespec __current_kernel_time(void)
1913 {
1914 struct timekeeper *tk = &tk_core.timekeeper;
1915
1916 return timespec64_to_timespec(tk_xtime(tk));
1917 }
1918
1919 struct timespec64 current_kernel_time64(void)
1920 {
1921 struct timekeeper *tk = &tk_core.timekeeper;
1922 struct timespec64 now;
1923 unsigned long seq;
1924
1925 do {
1926 seq = read_seqcount_begin(&tk_core.seq);
1927
1928 now = tk_xtime(tk);
1929 } while (read_seqcount_retry(&tk_core.seq, seq));
1930
1931 return now;
1932 }
1933 EXPORT_SYMBOL(current_kernel_time64);
1934
1935 struct timespec64 get_monotonic_coarse64(void)
1936 {
1937 struct timekeeper *tk = &tk_core.timekeeper;
1938 struct timespec64 now, mono;
1939 unsigned long seq;
1940
1941 do {
1942 seq = read_seqcount_begin(&tk_core.seq);
1943
1944 now = tk_xtime(tk);
1945 mono = tk->wall_to_monotonic;
1946 } while (read_seqcount_retry(&tk_core.seq, seq));
1947
1948 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1949 now.tv_nsec + mono.tv_nsec);
1950
1951 return now;
1952 }
1953
1954 /*
1955 * Must hold jiffies_lock
1956 */
1957 void do_timer(unsigned long ticks)
1958 {
1959 jiffies_64 += ticks;
1960 calc_global_load(ticks);
1961 }
1962
1963 /**
1964 * ktime_get_update_offsets_now - hrtimer helper
1965 * @cwsseq: pointer to check and store the clock was set sequence number
1966 * @offs_real: pointer to storage for monotonic -> realtime offset
1967 * @offs_boot: pointer to storage for monotonic -> boottime offset
1968 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1969 *
1970 * Returns current monotonic time and updates the offsets if the
1971 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1972 * different.
1973 *
1974 * Called from hrtimer_interrupt() or retrigger_next_event()
1975 */
1976 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1977 ktime_t *offs_boot, ktime_t *offs_tai)
1978 {
1979 struct timekeeper *tk = &tk_core.timekeeper;
1980 unsigned int seq;
1981 ktime_t base;
1982 u64 nsecs;
1983
1984 do {
1985 seq = read_seqcount_begin(&tk_core.seq);
1986
1987 base = tk->tkr_mono.base;
1988 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1989 base = ktime_add_ns(base, nsecs);
1990
1991 if (*cwsseq != tk->clock_was_set_seq) {
1992 *cwsseq = tk->clock_was_set_seq;
1993 *offs_real = tk->offs_real;
1994 *offs_boot = tk->offs_boot;
1995 *offs_tai = tk->offs_tai;
1996 }
1997
1998 /* Handle leapsecond insertion adjustments */
1999 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2000 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2001
2002 } while (read_seqcount_retry(&tk_core.seq, seq));
2003
2004 return base;
2005 }
2006
2007 /**
2008 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2009 */
2010 int do_adjtimex(struct timex *txc)
2011 {
2012 struct timekeeper *tk = &tk_core.timekeeper;
2013 unsigned long flags;
2014 struct timespec64 ts;
2015 s32 orig_tai, tai;
2016 int ret;
2017
2018 /* Validate the data before disabling interrupts */
2019 ret = ntp_validate_timex(txc);
2020 if (ret)
2021 return ret;
2022
2023 if (txc->modes & ADJ_SETOFFSET) {
2024 struct timespec delta;
2025 delta.tv_sec = txc->time.tv_sec;
2026 delta.tv_nsec = txc->time.tv_usec;
2027 if (!(txc->modes & ADJ_NANO))
2028 delta.tv_nsec *= 1000;
2029 ret = timekeeping_inject_offset(&delta);
2030 if (ret)
2031 return ret;
2032 }
2033
2034 getnstimeofday64(&ts);
2035
2036 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2037 write_seqcount_begin(&tk_core.seq);
2038
2039 orig_tai = tai = tk->tai_offset;
2040 ret = __do_adjtimex(txc, &ts, &tai);
2041
2042 if (tai != orig_tai) {
2043 __timekeeping_set_tai_offset(tk, tai);
2044 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2045 }
2046 tk_update_leap_state(tk);
2047
2048 write_seqcount_end(&tk_core.seq);
2049 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2050
2051 if (tai != orig_tai)
2052 clock_was_set();
2053
2054 ntp_notify_cmos_timer();
2055
2056 return ret;
2057 }
2058
2059 #ifdef CONFIG_NTP_PPS
2060 /**
2061 * hardpps() - Accessor function to NTP __hardpps function
2062 */
2063 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2064 {
2065 unsigned long flags;
2066
2067 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2068 write_seqcount_begin(&tk_core.seq);
2069
2070 __hardpps(phase_ts, raw_ts);
2071
2072 write_seqcount_end(&tk_core.seq);
2073 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2074 }
2075 EXPORT_SYMBOL(hardpps);
2076 #endif
2077
2078 /**
2079 * xtime_update() - advances the timekeeping infrastructure
2080 * @ticks: number of ticks, that have elapsed since the last call.
2081 *
2082 * Must be called with interrupts disabled.
2083 */
2084 void xtime_update(unsigned long ticks)
2085 {
2086 write_seqlock(&jiffies_lock);
2087 do_timer(ticks);
2088 write_sequnlock(&jiffies_lock);
2089 update_wall_time();
2090 }
This page took 0.086502 seconds and 6 git commands to generate.