[PATCH] clockevents: add core functionality
[deliverable/linux.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/clockchips.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/div64.h>
42 #include <asm/timex.h>
43 #include <asm/io.h>
44
45 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
46
47 EXPORT_SYMBOL(jiffies_64);
48
49 /*
50 * per-CPU timer vector definitions:
51 */
52 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
53 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
54 #define TVN_SIZE (1 << TVN_BITS)
55 #define TVR_SIZE (1 << TVR_BITS)
56 #define TVN_MASK (TVN_SIZE - 1)
57 #define TVR_MASK (TVR_SIZE - 1)
58
59 typedef struct tvec_s {
60 struct list_head vec[TVN_SIZE];
61 } tvec_t;
62
63 typedef struct tvec_root_s {
64 struct list_head vec[TVR_SIZE];
65 } tvec_root_t;
66
67 struct tvec_t_base_s {
68 spinlock_t lock;
69 struct timer_list *running_timer;
70 unsigned long timer_jiffies;
71 tvec_root_t tv1;
72 tvec_t tv2;
73 tvec_t tv3;
74 tvec_t tv4;
75 tvec_t tv5;
76 } ____cacheline_aligned_in_smp;
77
78 typedef struct tvec_t_base_s tvec_base_t;
79
80 tvec_base_t boot_tvec_bases;
81 EXPORT_SYMBOL(boot_tvec_bases);
82 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
83
84 /**
85 * __round_jiffies - function to round jiffies to a full second
86 * @j: the time in (absolute) jiffies that should be rounded
87 * @cpu: the processor number on which the timeout will happen
88 *
89 * __round_jiffies() rounds an absolute time in the future (in jiffies)
90 * up or down to (approximately) full seconds. This is useful for timers
91 * for which the exact time they fire does not matter too much, as long as
92 * they fire approximately every X seconds.
93 *
94 * By rounding these timers to whole seconds, all such timers will fire
95 * at the same time, rather than at various times spread out. The goal
96 * of this is to have the CPU wake up less, which saves power.
97 *
98 * The exact rounding is skewed for each processor to avoid all
99 * processors firing at the exact same time, which could lead
100 * to lock contention or spurious cache line bouncing.
101 *
102 * The return value is the rounded version of the @j parameter.
103 */
104 unsigned long __round_jiffies(unsigned long j, int cpu)
105 {
106 int rem;
107 unsigned long original = j;
108
109 /*
110 * We don't want all cpus firing their timers at once hitting the
111 * same lock or cachelines, so we skew each extra cpu with an extra
112 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
113 * already did this.
114 * The skew is done by adding 3*cpunr, then round, then subtract this
115 * extra offset again.
116 */
117 j += cpu * 3;
118
119 rem = j % HZ;
120
121 /*
122 * If the target jiffie is just after a whole second (which can happen
123 * due to delays of the timer irq, long irq off times etc etc) then
124 * we should round down to the whole second, not up. Use 1/4th second
125 * as cutoff for this rounding as an extreme upper bound for this.
126 */
127 if (rem < HZ/4) /* round down */
128 j = j - rem;
129 else /* round up */
130 j = j - rem + HZ;
131
132 /* now that we have rounded, subtract the extra skew again */
133 j -= cpu * 3;
134
135 if (j <= jiffies) /* rounding ate our timeout entirely; */
136 return original;
137 return j;
138 }
139 EXPORT_SYMBOL_GPL(__round_jiffies);
140
141 /**
142 * __round_jiffies_relative - function to round jiffies to a full second
143 * @j: the time in (relative) jiffies that should be rounded
144 * @cpu: the processor number on which the timeout will happen
145 *
146 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
147 * up or down to (approximately) full seconds. This is useful for timers
148 * for which the exact time they fire does not matter too much, as long as
149 * they fire approximately every X seconds.
150 *
151 * By rounding these timers to whole seconds, all such timers will fire
152 * at the same time, rather than at various times spread out. The goal
153 * of this is to have the CPU wake up less, which saves power.
154 *
155 * The exact rounding is skewed for each processor to avoid all
156 * processors firing at the exact same time, which could lead
157 * to lock contention or spurious cache line bouncing.
158 *
159 * The return value is the rounded version of the @j parameter.
160 */
161 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
162 {
163 /*
164 * In theory the following code can skip a jiffy in case jiffies
165 * increments right between the addition and the later subtraction.
166 * However since the entire point of this function is to use approximate
167 * timeouts, it's entirely ok to not handle that.
168 */
169 return __round_jiffies(j + jiffies, cpu) - jiffies;
170 }
171 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
172
173 /**
174 * round_jiffies - function to round jiffies to a full second
175 * @j: the time in (absolute) jiffies that should be rounded
176 *
177 * round_jiffies() rounds an absolute time in the future (in jiffies)
178 * up or down to (approximately) full seconds. This is useful for timers
179 * for which the exact time they fire does not matter too much, as long as
180 * they fire approximately every X seconds.
181 *
182 * By rounding these timers to whole seconds, all such timers will fire
183 * at the same time, rather than at various times spread out. The goal
184 * of this is to have the CPU wake up less, which saves power.
185 *
186 * The return value is the rounded version of the @j parameter.
187 */
188 unsigned long round_jiffies(unsigned long j)
189 {
190 return __round_jiffies(j, raw_smp_processor_id());
191 }
192 EXPORT_SYMBOL_GPL(round_jiffies);
193
194 /**
195 * round_jiffies_relative - function to round jiffies to a full second
196 * @j: the time in (relative) jiffies that should be rounded
197 *
198 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
199 * up or down to (approximately) full seconds. This is useful for timers
200 * for which the exact time they fire does not matter too much, as long as
201 * they fire approximately every X seconds.
202 *
203 * By rounding these timers to whole seconds, all such timers will fire
204 * at the same time, rather than at various times spread out. The goal
205 * of this is to have the CPU wake up less, which saves power.
206 *
207 * The return value is the rounded version of the @j parameter.
208 */
209 unsigned long round_jiffies_relative(unsigned long j)
210 {
211 return __round_jiffies_relative(j, raw_smp_processor_id());
212 }
213 EXPORT_SYMBOL_GPL(round_jiffies_relative);
214
215
216 static inline void set_running_timer(tvec_base_t *base,
217 struct timer_list *timer)
218 {
219 #ifdef CONFIG_SMP
220 base->running_timer = timer;
221 #endif
222 }
223
224 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
225 {
226 unsigned long expires = timer->expires;
227 unsigned long idx = expires - base->timer_jiffies;
228 struct list_head *vec;
229
230 if (idx < TVR_SIZE) {
231 int i = expires & TVR_MASK;
232 vec = base->tv1.vec + i;
233 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
234 int i = (expires >> TVR_BITS) & TVN_MASK;
235 vec = base->tv2.vec + i;
236 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
237 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
238 vec = base->tv3.vec + i;
239 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
240 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
241 vec = base->tv4.vec + i;
242 } else if ((signed long) idx < 0) {
243 /*
244 * Can happen if you add a timer with expires == jiffies,
245 * or you set a timer to go off in the past
246 */
247 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
248 } else {
249 int i;
250 /* If the timeout is larger than 0xffffffff on 64-bit
251 * architectures then we use the maximum timeout:
252 */
253 if (idx > 0xffffffffUL) {
254 idx = 0xffffffffUL;
255 expires = idx + base->timer_jiffies;
256 }
257 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
258 vec = base->tv5.vec + i;
259 }
260 /*
261 * Timers are FIFO:
262 */
263 list_add_tail(&timer->entry, vec);
264 }
265
266 /**
267 * init_timer - initialize a timer.
268 * @timer: the timer to be initialized
269 *
270 * init_timer() must be done to a timer prior calling *any* of the
271 * other timer functions.
272 */
273 void fastcall init_timer(struct timer_list *timer)
274 {
275 timer->entry.next = NULL;
276 timer->base = __raw_get_cpu_var(tvec_bases);
277 }
278 EXPORT_SYMBOL(init_timer);
279
280 static inline void detach_timer(struct timer_list *timer,
281 int clear_pending)
282 {
283 struct list_head *entry = &timer->entry;
284
285 __list_del(entry->prev, entry->next);
286 if (clear_pending)
287 entry->next = NULL;
288 entry->prev = LIST_POISON2;
289 }
290
291 /*
292 * We are using hashed locking: holding per_cpu(tvec_bases).lock
293 * means that all timers which are tied to this base via timer->base are
294 * locked, and the base itself is locked too.
295 *
296 * So __run_timers/migrate_timers can safely modify all timers which could
297 * be found on ->tvX lists.
298 *
299 * When the timer's base is locked, and the timer removed from list, it is
300 * possible to set timer->base = NULL and drop the lock: the timer remains
301 * locked.
302 */
303 static tvec_base_t *lock_timer_base(struct timer_list *timer,
304 unsigned long *flags)
305 __acquires(timer->base->lock)
306 {
307 tvec_base_t *base;
308
309 for (;;) {
310 base = timer->base;
311 if (likely(base != NULL)) {
312 spin_lock_irqsave(&base->lock, *flags);
313 if (likely(base == timer->base))
314 return base;
315 /* The timer has migrated to another CPU */
316 spin_unlock_irqrestore(&base->lock, *flags);
317 }
318 cpu_relax();
319 }
320 }
321
322 int __mod_timer(struct timer_list *timer, unsigned long expires)
323 {
324 tvec_base_t *base, *new_base;
325 unsigned long flags;
326 int ret = 0;
327
328 BUG_ON(!timer->function);
329
330 base = lock_timer_base(timer, &flags);
331
332 if (timer_pending(timer)) {
333 detach_timer(timer, 0);
334 ret = 1;
335 }
336
337 new_base = __get_cpu_var(tvec_bases);
338
339 if (base != new_base) {
340 /*
341 * We are trying to schedule the timer on the local CPU.
342 * However we can't change timer's base while it is running,
343 * otherwise del_timer_sync() can't detect that the timer's
344 * handler yet has not finished. This also guarantees that
345 * the timer is serialized wrt itself.
346 */
347 if (likely(base->running_timer != timer)) {
348 /* See the comment in lock_timer_base() */
349 timer->base = NULL;
350 spin_unlock(&base->lock);
351 base = new_base;
352 spin_lock(&base->lock);
353 timer->base = base;
354 }
355 }
356
357 timer->expires = expires;
358 internal_add_timer(base, timer);
359 spin_unlock_irqrestore(&base->lock, flags);
360
361 return ret;
362 }
363
364 EXPORT_SYMBOL(__mod_timer);
365
366 /**
367 * add_timer_on - start a timer on a particular CPU
368 * @timer: the timer to be added
369 * @cpu: the CPU to start it on
370 *
371 * This is not very scalable on SMP. Double adds are not possible.
372 */
373 void add_timer_on(struct timer_list *timer, int cpu)
374 {
375 tvec_base_t *base = per_cpu(tvec_bases, cpu);
376 unsigned long flags;
377
378 BUG_ON(timer_pending(timer) || !timer->function);
379 spin_lock_irqsave(&base->lock, flags);
380 timer->base = base;
381 internal_add_timer(base, timer);
382 spin_unlock_irqrestore(&base->lock, flags);
383 }
384
385
386 /**
387 * mod_timer - modify a timer's timeout
388 * @timer: the timer to be modified
389 * @expires: new timeout in jiffies
390 *
391 * mod_timer() is a more efficient way to update the expire field of an
392 * active timer (if the timer is inactive it will be activated)
393 *
394 * mod_timer(timer, expires) is equivalent to:
395 *
396 * del_timer(timer); timer->expires = expires; add_timer(timer);
397 *
398 * Note that if there are multiple unserialized concurrent users of the
399 * same timer, then mod_timer() is the only safe way to modify the timeout,
400 * since add_timer() cannot modify an already running timer.
401 *
402 * The function returns whether it has modified a pending timer or not.
403 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
404 * active timer returns 1.)
405 */
406 int mod_timer(struct timer_list *timer, unsigned long expires)
407 {
408 BUG_ON(!timer->function);
409
410 /*
411 * This is a common optimization triggered by the
412 * networking code - if the timer is re-modified
413 * to be the same thing then just return:
414 */
415 if (timer->expires == expires && timer_pending(timer))
416 return 1;
417
418 return __mod_timer(timer, expires);
419 }
420
421 EXPORT_SYMBOL(mod_timer);
422
423 /**
424 * del_timer - deactive a timer.
425 * @timer: the timer to be deactivated
426 *
427 * del_timer() deactivates a timer - this works on both active and inactive
428 * timers.
429 *
430 * The function returns whether it has deactivated a pending timer or not.
431 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
432 * active timer returns 1.)
433 */
434 int del_timer(struct timer_list *timer)
435 {
436 tvec_base_t *base;
437 unsigned long flags;
438 int ret = 0;
439
440 if (timer_pending(timer)) {
441 base = lock_timer_base(timer, &flags);
442 if (timer_pending(timer)) {
443 detach_timer(timer, 1);
444 ret = 1;
445 }
446 spin_unlock_irqrestore(&base->lock, flags);
447 }
448
449 return ret;
450 }
451
452 EXPORT_SYMBOL(del_timer);
453
454 #ifdef CONFIG_SMP
455 /**
456 * try_to_del_timer_sync - Try to deactivate a timer
457 * @timer: timer do del
458 *
459 * This function tries to deactivate a timer. Upon successful (ret >= 0)
460 * exit the timer is not queued and the handler is not running on any CPU.
461 *
462 * It must not be called from interrupt contexts.
463 */
464 int try_to_del_timer_sync(struct timer_list *timer)
465 {
466 tvec_base_t *base;
467 unsigned long flags;
468 int ret = -1;
469
470 base = lock_timer_base(timer, &flags);
471
472 if (base->running_timer == timer)
473 goto out;
474
475 ret = 0;
476 if (timer_pending(timer)) {
477 detach_timer(timer, 1);
478 ret = 1;
479 }
480 out:
481 spin_unlock_irqrestore(&base->lock, flags);
482
483 return ret;
484 }
485
486 /**
487 * del_timer_sync - deactivate a timer and wait for the handler to finish.
488 * @timer: the timer to be deactivated
489 *
490 * This function only differs from del_timer() on SMP: besides deactivating
491 * the timer it also makes sure the handler has finished executing on other
492 * CPUs.
493 *
494 * Synchronization rules: Callers must prevent restarting of the timer,
495 * otherwise this function is meaningless. It must not be called from
496 * interrupt contexts. The caller must not hold locks which would prevent
497 * completion of the timer's handler. The timer's handler must not call
498 * add_timer_on(). Upon exit the timer is not queued and the handler is
499 * not running on any CPU.
500 *
501 * The function returns whether it has deactivated a pending timer or not.
502 */
503 int del_timer_sync(struct timer_list *timer)
504 {
505 for (;;) {
506 int ret = try_to_del_timer_sync(timer);
507 if (ret >= 0)
508 return ret;
509 cpu_relax();
510 }
511 }
512
513 EXPORT_SYMBOL(del_timer_sync);
514 #endif
515
516 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
517 {
518 /* cascade all the timers from tv up one level */
519 struct timer_list *timer, *tmp;
520 struct list_head tv_list;
521
522 list_replace_init(tv->vec + index, &tv_list);
523
524 /*
525 * We are removing _all_ timers from the list, so we
526 * don't have to detach them individually.
527 */
528 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
529 BUG_ON(timer->base != base);
530 internal_add_timer(base, timer);
531 }
532
533 return index;
534 }
535
536 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
537
538 /**
539 * __run_timers - run all expired timers (if any) on this CPU.
540 * @base: the timer vector to be processed.
541 *
542 * This function cascades all vectors and executes all expired timer
543 * vectors.
544 */
545 static inline void __run_timers(tvec_base_t *base)
546 {
547 struct timer_list *timer;
548
549 spin_lock_irq(&base->lock);
550 while (time_after_eq(jiffies, base->timer_jiffies)) {
551 struct list_head work_list;
552 struct list_head *head = &work_list;
553 int index = base->timer_jiffies & TVR_MASK;
554
555 /*
556 * Cascade timers:
557 */
558 if (!index &&
559 (!cascade(base, &base->tv2, INDEX(0))) &&
560 (!cascade(base, &base->tv3, INDEX(1))) &&
561 !cascade(base, &base->tv4, INDEX(2)))
562 cascade(base, &base->tv5, INDEX(3));
563 ++base->timer_jiffies;
564 list_replace_init(base->tv1.vec + index, &work_list);
565 while (!list_empty(head)) {
566 void (*fn)(unsigned long);
567 unsigned long data;
568
569 timer = list_entry(head->next,struct timer_list,entry);
570 fn = timer->function;
571 data = timer->data;
572
573 set_running_timer(base, timer);
574 detach_timer(timer, 1);
575 spin_unlock_irq(&base->lock);
576 {
577 int preempt_count = preempt_count();
578 fn(data);
579 if (preempt_count != preempt_count()) {
580 printk(KERN_WARNING "huh, entered %p "
581 "with preempt_count %08x, exited"
582 " with %08x?\n",
583 fn, preempt_count,
584 preempt_count());
585 BUG();
586 }
587 }
588 spin_lock_irq(&base->lock);
589 }
590 }
591 set_running_timer(base, NULL);
592 spin_unlock_irq(&base->lock);
593 }
594
595 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
596 /*
597 * Find out when the next timer event is due to happen. This
598 * is used on S/390 to stop all activity when a cpus is idle.
599 * This functions needs to be called disabled.
600 */
601 static unsigned long __next_timer_interrupt(tvec_base_t *base)
602 {
603 unsigned long timer_jiffies = base->timer_jiffies;
604 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
605 int index, slot, array, found = 0;
606 struct timer_list *nte;
607 tvec_t *varray[4];
608
609 /* Look for timer events in tv1. */
610 index = slot = timer_jiffies & TVR_MASK;
611 do {
612 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
613 found = 1;
614 expires = nte->expires;
615 /* Look at the cascade bucket(s)? */
616 if (!index || slot < index)
617 goto cascade;
618 return expires;
619 }
620 slot = (slot + 1) & TVR_MASK;
621 } while (slot != index);
622
623 cascade:
624 /* Calculate the next cascade event */
625 if (index)
626 timer_jiffies += TVR_SIZE - index;
627 timer_jiffies >>= TVR_BITS;
628
629 /* Check tv2-tv5. */
630 varray[0] = &base->tv2;
631 varray[1] = &base->tv3;
632 varray[2] = &base->tv4;
633 varray[3] = &base->tv5;
634
635 for (array = 0; array < 4; array++) {
636 tvec_t *varp = varray[array];
637
638 index = slot = timer_jiffies & TVN_MASK;
639 do {
640 list_for_each_entry(nte, varp->vec + slot, entry) {
641 found = 1;
642 if (time_before(nte->expires, expires))
643 expires = nte->expires;
644 }
645 /*
646 * Do we still search for the first timer or are
647 * we looking up the cascade buckets ?
648 */
649 if (found) {
650 /* Look at the cascade bucket(s)? */
651 if (!index || slot < index)
652 break;
653 return expires;
654 }
655 slot = (slot + 1) & TVN_MASK;
656 } while (slot != index);
657
658 if (index)
659 timer_jiffies += TVN_SIZE - index;
660 timer_jiffies >>= TVN_BITS;
661 }
662 return expires;
663 }
664
665 /*
666 * Check, if the next hrtimer event is before the next timer wheel
667 * event:
668 */
669 static unsigned long cmp_next_hrtimer_event(unsigned long now,
670 unsigned long expires)
671 {
672 ktime_t hr_delta = hrtimer_get_next_event();
673 struct timespec tsdelta;
674
675 if (hr_delta.tv64 == KTIME_MAX)
676 return expires;
677
678 if (hr_delta.tv64 <= TICK_NSEC)
679 return now;
680
681 tsdelta = ktime_to_timespec(hr_delta);
682 now += timespec_to_jiffies(&tsdelta);
683 if (time_before(now, expires))
684 return now;
685 return expires;
686 }
687
688 /**
689 * next_timer_interrupt - return the jiffy of the next pending timer
690 */
691 unsigned long get_next_timer_interrupt(unsigned long now)
692 {
693 tvec_base_t *base = __get_cpu_var(tvec_bases);
694 unsigned long expires;
695
696 spin_lock(&base->lock);
697 expires = __next_timer_interrupt(base);
698 spin_unlock(&base->lock);
699
700 if (time_before_eq(expires, now))
701 return now;
702
703 return cmp_next_hrtimer_event(now, expires);
704 }
705
706 #ifdef CONFIG_NO_IDLE_HZ
707 unsigned long next_timer_interrupt(void)
708 {
709 return get_next_timer_interrupt(jiffies);
710 }
711 #endif
712
713 #endif
714
715 /******************************************************************/
716
717 /*
718 * The current time
719 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
720 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
721 * at zero at system boot time, so wall_to_monotonic will be negative,
722 * however, we will ALWAYS keep the tv_nsec part positive so we can use
723 * the usual normalization.
724 */
725 struct timespec xtime __attribute__ ((aligned (16)));
726 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
727
728 EXPORT_SYMBOL(xtime);
729
730
731 /* XXX - all of this timekeeping code should be later moved to time.c */
732 #include <linux/clocksource.h>
733 static struct clocksource *clock; /* pointer to current clocksource */
734
735 #ifdef CONFIG_GENERIC_TIME
736 /**
737 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
738 *
739 * private function, must hold xtime_lock lock when being
740 * called. Returns the number of nanoseconds since the
741 * last call to update_wall_time() (adjusted by NTP scaling)
742 */
743 static inline s64 __get_nsec_offset(void)
744 {
745 cycle_t cycle_now, cycle_delta;
746 s64 ns_offset;
747
748 /* read clocksource: */
749 cycle_now = clocksource_read(clock);
750
751 /* calculate the delta since the last update_wall_time: */
752 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
753
754 /* convert to nanoseconds: */
755 ns_offset = cyc2ns(clock, cycle_delta);
756
757 return ns_offset;
758 }
759
760 /**
761 * __get_realtime_clock_ts - Returns the time of day in a timespec
762 * @ts: pointer to the timespec to be set
763 *
764 * Returns the time of day in a timespec. Used by
765 * do_gettimeofday() and get_realtime_clock_ts().
766 */
767 static inline void __get_realtime_clock_ts(struct timespec *ts)
768 {
769 unsigned long seq;
770 s64 nsecs;
771
772 do {
773 seq = read_seqbegin(&xtime_lock);
774
775 *ts = xtime;
776 nsecs = __get_nsec_offset();
777
778 } while (read_seqretry(&xtime_lock, seq));
779
780 timespec_add_ns(ts, nsecs);
781 }
782
783 /**
784 * getnstimeofday - Returns the time of day in a timespec
785 * @ts: pointer to the timespec to be set
786 *
787 * Returns the time of day in a timespec.
788 */
789 void getnstimeofday(struct timespec *ts)
790 {
791 __get_realtime_clock_ts(ts);
792 }
793
794 EXPORT_SYMBOL(getnstimeofday);
795
796 /**
797 * do_gettimeofday - Returns the time of day in a timeval
798 * @tv: pointer to the timeval to be set
799 *
800 * NOTE: Users should be converted to using get_realtime_clock_ts()
801 */
802 void do_gettimeofday(struct timeval *tv)
803 {
804 struct timespec now;
805
806 __get_realtime_clock_ts(&now);
807 tv->tv_sec = now.tv_sec;
808 tv->tv_usec = now.tv_nsec/1000;
809 }
810
811 EXPORT_SYMBOL(do_gettimeofday);
812 /**
813 * do_settimeofday - Sets the time of day
814 * @tv: pointer to the timespec variable containing the new time
815 *
816 * Sets the time of day to the new time and update NTP and notify hrtimers
817 */
818 int do_settimeofday(struct timespec *tv)
819 {
820 unsigned long flags;
821 time_t wtm_sec, sec = tv->tv_sec;
822 long wtm_nsec, nsec = tv->tv_nsec;
823
824 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
825 return -EINVAL;
826
827 write_seqlock_irqsave(&xtime_lock, flags);
828
829 nsec -= __get_nsec_offset();
830
831 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
832 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
833
834 set_normalized_timespec(&xtime, sec, nsec);
835 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
836
837 clock->error = 0;
838 ntp_clear();
839
840 write_sequnlock_irqrestore(&xtime_lock, flags);
841
842 /* signal hrtimers about time change */
843 clock_was_set();
844
845 return 0;
846 }
847
848 EXPORT_SYMBOL(do_settimeofday);
849
850 /**
851 * change_clocksource - Swaps clocksources if a new one is available
852 *
853 * Accumulates current time interval and initializes new clocksource
854 */
855 static void change_clocksource(void)
856 {
857 struct clocksource *new;
858 cycle_t now;
859 u64 nsec;
860
861 new = clocksource_get_next();
862
863 if (clock == new)
864 return;
865
866 now = clocksource_read(new);
867 nsec = __get_nsec_offset();
868 timespec_add_ns(&xtime, nsec);
869
870 clock = new;
871 clock->cycle_last = now;
872
873 clock->error = 0;
874 clock->xtime_nsec = 0;
875 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
876
877 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
878 clock->name);
879 }
880 #else
881 static inline void change_clocksource(void) { }
882 #endif
883
884 /**
885 * timeofday_is_continuous - check to see if timekeeping is free running
886 */
887 int timekeeping_is_continuous(void)
888 {
889 unsigned long seq;
890 int ret;
891
892 do {
893 seq = read_seqbegin(&xtime_lock);
894
895 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
896
897 } while (read_seqretry(&xtime_lock, seq));
898
899 return ret;
900 }
901
902 /**
903 * read_persistent_clock - Return time in seconds from the persistent clock.
904 *
905 * Weak dummy function for arches that do not yet support it.
906 * Returns seconds from epoch using the battery backed persistent clock.
907 * Returns zero if unsupported.
908 *
909 * XXX - Do be sure to remove it once all arches implement it.
910 */
911 unsigned long __attribute__((weak)) read_persistent_clock(void)
912 {
913 return 0;
914 }
915
916 /*
917 * timekeeping_init - Initializes the clocksource and common timekeeping values
918 */
919 void __init timekeeping_init(void)
920 {
921 unsigned long flags;
922 unsigned long sec = read_persistent_clock();
923
924 write_seqlock_irqsave(&xtime_lock, flags);
925
926 ntp_clear();
927
928 clock = clocksource_get_next();
929 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
930 clock->cycle_last = clocksource_read(clock);
931
932 xtime.tv_sec = sec;
933 xtime.tv_nsec = 0;
934 set_normalized_timespec(&wall_to_monotonic,
935 -xtime.tv_sec, -xtime.tv_nsec);
936
937 write_sequnlock_irqrestore(&xtime_lock, flags);
938 }
939
940
941 /* flag for if timekeeping is suspended */
942 static int timekeeping_suspended;
943 /* time in seconds when suspend began */
944 static unsigned long timekeeping_suspend_time;
945
946 /**
947 * timekeeping_resume - Resumes the generic timekeeping subsystem.
948 * @dev: unused
949 *
950 * This is for the generic clocksource timekeeping.
951 * xtime/wall_to_monotonic/jiffies/etc are
952 * still managed by arch specific suspend/resume code.
953 */
954 static int timekeeping_resume(struct sys_device *dev)
955 {
956 unsigned long flags;
957 unsigned long now = read_persistent_clock();
958
959 write_seqlock_irqsave(&xtime_lock, flags);
960
961 if (now && (now > timekeeping_suspend_time)) {
962 unsigned long sleep_length = now - timekeeping_suspend_time;
963
964 xtime.tv_sec += sleep_length;
965 wall_to_monotonic.tv_sec -= sleep_length;
966 }
967 /* re-base the last cycle value */
968 clock->cycle_last = clocksource_read(clock);
969 clock->error = 0;
970 timekeeping_suspended = 0;
971 write_sequnlock_irqrestore(&xtime_lock, flags);
972
973 touch_softlockup_watchdog();
974 /* Resume hrtimers */
975 clock_was_set();
976
977 return 0;
978 }
979
980 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
981 {
982 unsigned long flags;
983
984 write_seqlock_irqsave(&xtime_lock, flags);
985 timekeeping_suspended = 1;
986 timekeeping_suspend_time = read_persistent_clock();
987 write_sequnlock_irqrestore(&xtime_lock, flags);
988 return 0;
989 }
990
991 /* sysfs resume/suspend bits for timekeeping */
992 static struct sysdev_class timekeeping_sysclass = {
993 .resume = timekeeping_resume,
994 .suspend = timekeeping_suspend,
995 set_kset_name("timekeeping"),
996 };
997
998 static struct sys_device device_timer = {
999 .id = 0,
1000 .cls = &timekeeping_sysclass,
1001 };
1002
1003 static int __init timekeeping_init_device(void)
1004 {
1005 int error = sysdev_class_register(&timekeeping_sysclass);
1006 if (!error)
1007 error = sysdev_register(&device_timer);
1008 return error;
1009 }
1010
1011 device_initcall(timekeeping_init_device);
1012
1013 /*
1014 * If the error is already larger, we look ahead even further
1015 * to compensate for late or lost adjustments.
1016 */
1017 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
1018 s64 *offset)
1019 {
1020 s64 tick_error, i;
1021 u32 look_ahead, adj;
1022 s32 error2, mult;
1023
1024 /*
1025 * Use the current error value to determine how much to look ahead.
1026 * The larger the error the slower we adjust for it to avoid problems
1027 * with losing too many ticks, otherwise we would overadjust and
1028 * produce an even larger error. The smaller the adjustment the
1029 * faster we try to adjust for it, as lost ticks can do less harm
1030 * here. This is tuned so that an error of about 1 msec is adusted
1031 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1032 */
1033 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1034 error2 = abs(error2);
1035 for (look_ahead = 0; error2 > 0; look_ahead++)
1036 error2 >>= 2;
1037
1038 /*
1039 * Now calculate the error in (1 << look_ahead) ticks, but first
1040 * remove the single look ahead already included in the error.
1041 */
1042 tick_error = current_tick_length() >>
1043 (TICK_LENGTH_SHIFT - clock->shift + 1);
1044 tick_error -= clock->xtime_interval >> 1;
1045 error = ((error - tick_error) >> look_ahead) + tick_error;
1046
1047 /* Finally calculate the adjustment shift value. */
1048 i = *interval;
1049 mult = 1;
1050 if (error < 0) {
1051 error = -error;
1052 *interval = -*interval;
1053 *offset = -*offset;
1054 mult = -1;
1055 }
1056 for (adj = 0; error > i; adj++)
1057 error >>= 1;
1058
1059 *interval <<= adj;
1060 *offset <<= adj;
1061 return mult << adj;
1062 }
1063
1064 /*
1065 * Adjust the multiplier to reduce the error value,
1066 * this is optimized for the most common adjustments of -1,0,1,
1067 * for other values we can do a bit more work.
1068 */
1069 static void clocksource_adjust(struct clocksource *clock, s64 offset)
1070 {
1071 s64 error, interval = clock->cycle_interval;
1072 int adj;
1073
1074 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1075 if (error > interval) {
1076 error >>= 2;
1077 if (likely(error <= interval))
1078 adj = 1;
1079 else
1080 adj = clocksource_bigadjust(error, &interval, &offset);
1081 } else if (error < -interval) {
1082 error >>= 2;
1083 if (likely(error >= -interval)) {
1084 adj = -1;
1085 interval = -interval;
1086 offset = -offset;
1087 } else
1088 adj = clocksource_bigadjust(error, &interval, &offset);
1089 } else
1090 return;
1091
1092 clock->mult += adj;
1093 clock->xtime_interval += interval;
1094 clock->xtime_nsec -= offset;
1095 clock->error -= (interval - offset) <<
1096 (TICK_LENGTH_SHIFT - clock->shift);
1097 }
1098
1099 /**
1100 * update_wall_time - Uses the current clocksource to increment the wall time
1101 *
1102 * Called from the timer interrupt, must hold a write on xtime_lock.
1103 */
1104 static void update_wall_time(void)
1105 {
1106 cycle_t offset;
1107
1108 /* Make sure we're fully resumed: */
1109 if (unlikely(timekeeping_suspended))
1110 return;
1111
1112 #ifdef CONFIG_GENERIC_TIME
1113 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1114 #else
1115 offset = clock->cycle_interval;
1116 #endif
1117 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1118
1119 /* normally this loop will run just once, however in the
1120 * case of lost or late ticks, it will accumulate correctly.
1121 */
1122 while (offset >= clock->cycle_interval) {
1123 /* accumulate one interval */
1124 clock->xtime_nsec += clock->xtime_interval;
1125 clock->cycle_last += clock->cycle_interval;
1126 offset -= clock->cycle_interval;
1127
1128 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1129 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1130 xtime.tv_sec++;
1131 second_overflow();
1132 }
1133
1134 /* interpolator bits */
1135 time_interpolator_update(clock->xtime_interval
1136 >> clock->shift);
1137
1138 /* accumulate error between NTP and clock interval */
1139 clock->error += current_tick_length();
1140 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1141 }
1142
1143 /* correct the clock when NTP error is too big */
1144 clocksource_adjust(clock, offset);
1145
1146 /* store full nanoseconds into xtime */
1147 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1148 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1149
1150 /* check to see if there is a new clocksource to use */
1151 change_clocksource();
1152 }
1153
1154 /*
1155 * Called from the timer interrupt handler to charge one tick to the current
1156 * process. user_tick is 1 if the tick is user time, 0 for system.
1157 */
1158 void update_process_times(int user_tick)
1159 {
1160 struct task_struct *p = current;
1161 int cpu = smp_processor_id();
1162
1163 /* Note: this timer irq context must be accounted for as well. */
1164 if (user_tick)
1165 account_user_time(p, jiffies_to_cputime(1));
1166 else
1167 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1168 run_local_timers();
1169 if (rcu_pending(cpu))
1170 rcu_check_callbacks(cpu, user_tick);
1171 scheduler_tick();
1172 run_posix_cpu_timers(p);
1173 }
1174
1175 /*
1176 * Nr of active tasks - counted in fixed-point numbers
1177 */
1178 static unsigned long count_active_tasks(void)
1179 {
1180 return nr_active() * FIXED_1;
1181 }
1182
1183 /*
1184 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1185 * imply that avenrun[] is the standard name for this kind of thing.
1186 * Nothing else seems to be standardized: the fractional size etc
1187 * all seem to differ on different machines.
1188 *
1189 * Requires xtime_lock to access.
1190 */
1191 unsigned long avenrun[3];
1192
1193 EXPORT_SYMBOL(avenrun);
1194
1195 /*
1196 * calc_load - given tick count, update the avenrun load estimates.
1197 * This is called while holding a write_lock on xtime_lock.
1198 */
1199 static inline void calc_load(unsigned long ticks)
1200 {
1201 unsigned long active_tasks; /* fixed-point */
1202 static int count = LOAD_FREQ;
1203
1204 count -= ticks;
1205 if (unlikely(count < 0)) {
1206 active_tasks = count_active_tasks();
1207 do {
1208 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1209 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1210 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1211 count += LOAD_FREQ;
1212 } while (count < 0);
1213 }
1214 }
1215
1216 /*
1217 * This read-write spinlock protects us from races in SMP while
1218 * playing with xtime and avenrun.
1219 */
1220 __attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1221
1222 EXPORT_SYMBOL(xtime_lock);
1223
1224 /*
1225 * This function runs timers and the timer-tq in bottom half context.
1226 */
1227 static void run_timer_softirq(struct softirq_action *h)
1228 {
1229 tvec_base_t *base = __get_cpu_var(tvec_bases);
1230
1231 hrtimer_run_queues();
1232 if (time_after_eq(jiffies, base->timer_jiffies))
1233 __run_timers(base);
1234 }
1235
1236 /*
1237 * Called by the local, per-CPU timer interrupt on SMP.
1238 */
1239 void run_local_timers(void)
1240 {
1241 raise_softirq(TIMER_SOFTIRQ);
1242 softlockup_tick();
1243 }
1244
1245 /*
1246 * Called by the timer interrupt. xtime_lock must already be taken
1247 * by the timer IRQ!
1248 */
1249 static inline void update_times(unsigned long ticks)
1250 {
1251 update_wall_time();
1252 calc_load(ticks);
1253 }
1254
1255 /*
1256 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1257 * without sampling the sequence number in xtime_lock.
1258 * jiffies is defined in the linker script...
1259 */
1260
1261 void do_timer(unsigned long ticks)
1262 {
1263 jiffies_64 += ticks;
1264 update_times(ticks);
1265 }
1266
1267 #ifdef __ARCH_WANT_SYS_ALARM
1268
1269 /*
1270 * For backwards compatibility? This can be done in libc so Alpha
1271 * and all newer ports shouldn't need it.
1272 */
1273 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1274 {
1275 return alarm_setitimer(seconds);
1276 }
1277
1278 #endif
1279
1280 #ifndef __alpha__
1281
1282 /*
1283 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1284 * should be moved into arch/i386 instead?
1285 */
1286
1287 /**
1288 * sys_getpid - return the thread group id of the current process
1289 *
1290 * Note, despite the name, this returns the tgid not the pid. The tgid and
1291 * the pid are identical unless CLONE_THREAD was specified on clone() in
1292 * which case the tgid is the same in all threads of the same group.
1293 *
1294 * This is SMP safe as current->tgid does not change.
1295 */
1296 asmlinkage long sys_getpid(void)
1297 {
1298 return current->tgid;
1299 }
1300
1301 /*
1302 * Accessing ->real_parent is not SMP-safe, it could
1303 * change from under us. However, we can use a stale
1304 * value of ->real_parent under rcu_read_lock(), see
1305 * release_task()->call_rcu(delayed_put_task_struct).
1306 */
1307 asmlinkage long sys_getppid(void)
1308 {
1309 int pid;
1310
1311 rcu_read_lock();
1312 pid = rcu_dereference(current->real_parent)->tgid;
1313 rcu_read_unlock();
1314
1315 return pid;
1316 }
1317
1318 asmlinkage long sys_getuid(void)
1319 {
1320 /* Only we change this so SMP safe */
1321 return current->uid;
1322 }
1323
1324 asmlinkage long sys_geteuid(void)
1325 {
1326 /* Only we change this so SMP safe */
1327 return current->euid;
1328 }
1329
1330 asmlinkage long sys_getgid(void)
1331 {
1332 /* Only we change this so SMP safe */
1333 return current->gid;
1334 }
1335
1336 asmlinkage long sys_getegid(void)
1337 {
1338 /* Only we change this so SMP safe */
1339 return current->egid;
1340 }
1341
1342 #endif
1343
1344 static void process_timeout(unsigned long __data)
1345 {
1346 wake_up_process((struct task_struct *)__data);
1347 }
1348
1349 /**
1350 * schedule_timeout - sleep until timeout
1351 * @timeout: timeout value in jiffies
1352 *
1353 * Make the current task sleep until @timeout jiffies have
1354 * elapsed. The routine will return immediately unless
1355 * the current task state has been set (see set_current_state()).
1356 *
1357 * You can set the task state as follows -
1358 *
1359 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1360 * pass before the routine returns. The routine will return 0
1361 *
1362 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1363 * delivered to the current task. In this case the remaining time
1364 * in jiffies will be returned, or 0 if the timer expired in time
1365 *
1366 * The current task state is guaranteed to be TASK_RUNNING when this
1367 * routine returns.
1368 *
1369 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1370 * the CPU away without a bound on the timeout. In this case the return
1371 * value will be %MAX_SCHEDULE_TIMEOUT.
1372 *
1373 * In all cases the return value is guaranteed to be non-negative.
1374 */
1375 fastcall signed long __sched schedule_timeout(signed long timeout)
1376 {
1377 struct timer_list timer;
1378 unsigned long expire;
1379
1380 switch (timeout)
1381 {
1382 case MAX_SCHEDULE_TIMEOUT:
1383 /*
1384 * These two special cases are useful to be comfortable
1385 * in the caller. Nothing more. We could take
1386 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1387 * but I' d like to return a valid offset (>=0) to allow
1388 * the caller to do everything it want with the retval.
1389 */
1390 schedule();
1391 goto out;
1392 default:
1393 /*
1394 * Another bit of PARANOID. Note that the retval will be
1395 * 0 since no piece of kernel is supposed to do a check
1396 * for a negative retval of schedule_timeout() (since it
1397 * should never happens anyway). You just have the printk()
1398 * that will tell you if something is gone wrong and where.
1399 */
1400 if (timeout < 0) {
1401 printk(KERN_ERR "schedule_timeout: wrong timeout "
1402 "value %lx\n", timeout);
1403 dump_stack();
1404 current->state = TASK_RUNNING;
1405 goto out;
1406 }
1407 }
1408
1409 expire = timeout + jiffies;
1410
1411 setup_timer(&timer, process_timeout, (unsigned long)current);
1412 __mod_timer(&timer, expire);
1413 schedule();
1414 del_singleshot_timer_sync(&timer);
1415
1416 timeout = expire - jiffies;
1417
1418 out:
1419 return timeout < 0 ? 0 : timeout;
1420 }
1421 EXPORT_SYMBOL(schedule_timeout);
1422
1423 /*
1424 * We can use __set_current_state() here because schedule_timeout() calls
1425 * schedule() unconditionally.
1426 */
1427 signed long __sched schedule_timeout_interruptible(signed long timeout)
1428 {
1429 __set_current_state(TASK_INTERRUPTIBLE);
1430 return schedule_timeout(timeout);
1431 }
1432 EXPORT_SYMBOL(schedule_timeout_interruptible);
1433
1434 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1435 {
1436 __set_current_state(TASK_UNINTERRUPTIBLE);
1437 return schedule_timeout(timeout);
1438 }
1439 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1440
1441 /* Thread ID - the internal kernel "pid" */
1442 asmlinkage long sys_gettid(void)
1443 {
1444 return current->pid;
1445 }
1446
1447 /**
1448 * do_sysinfo - fill in sysinfo struct
1449 * @info: pointer to buffer to fill
1450 */
1451 int do_sysinfo(struct sysinfo *info)
1452 {
1453 unsigned long mem_total, sav_total;
1454 unsigned int mem_unit, bitcount;
1455 unsigned long seq;
1456
1457 memset(info, 0, sizeof(struct sysinfo));
1458
1459 do {
1460 struct timespec tp;
1461 seq = read_seqbegin(&xtime_lock);
1462
1463 /*
1464 * This is annoying. The below is the same thing
1465 * posix_get_clock_monotonic() does, but it wants to
1466 * take the lock which we want to cover the loads stuff
1467 * too.
1468 */
1469
1470 getnstimeofday(&tp);
1471 tp.tv_sec += wall_to_monotonic.tv_sec;
1472 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1473 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1474 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1475 tp.tv_sec++;
1476 }
1477 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1478
1479 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1480 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1481 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1482
1483 info->procs = nr_threads;
1484 } while (read_seqretry(&xtime_lock, seq));
1485
1486 si_meminfo(info);
1487 si_swapinfo(info);
1488
1489 /*
1490 * If the sum of all the available memory (i.e. ram + swap)
1491 * is less than can be stored in a 32 bit unsigned long then
1492 * we can be binary compatible with 2.2.x kernels. If not,
1493 * well, in that case 2.2.x was broken anyways...
1494 *
1495 * -Erik Andersen <andersee@debian.org>
1496 */
1497
1498 mem_total = info->totalram + info->totalswap;
1499 if (mem_total < info->totalram || mem_total < info->totalswap)
1500 goto out;
1501 bitcount = 0;
1502 mem_unit = info->mem_unit;
1503 while (mem_unit > 1) {
1504 bitcount++;
1505 mem_unit >>= 1;
1506 sav_total = mem_total;
1507 mem_total <<= 1;
1508 if (mem_total < sav_total)
1509 goto out;
1510 }
1511
1512 /*
1513 * If mem_total did not overflow, multiply all memory values by
1514 * info->mem_unit and set it to 1. This leaves things compatible
1515 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1516 * kernels...
1517 */
1518
1519 info->mem_unit = 1;
1520 info->totalram <<= bitcount;
1521 info->freeram <<= bitcount;
1522 info->sharedram <<= bitcount;
1523 info->bufferram <<= bitcount;
1524 info->totalswap <<= bitcount;
1525 info->freeswap <<= bitcount;
1526 info->totalhigh <<= bitcount;
1527 info->freehigh <<= bitcount;
1528
1529 out:
1530 return 0;
1531 }
1532
1533 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1534 {
1535 struct sysinfo val;
1536
1537 do_sysinfo(&val);
1538
1539 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1540 return -EFAULT;
1541
1542 return 0;
1543 }
1544
1545 /*
1546 * lockdep: we want to track each per-CPU base as a separate lock-class,
1547 * but timer-bases are kmalloc()-ed, so we need to attach separate
1548 * keys to them:
1549 */
1550 static struct lock_class_key base_lock_keys[NR_CPUS];
1551
1552 static int __devinit init_timers_cpu(int cpu)
1553 {
1554 int j;
1555 tvec_base_t *base;
1556 static char __devinitdata tvec_base_done[NR_CPUS];
1557
1558 if (!tvec_base_done[cpu]) {
1559 static char boot_done;
1560
1561 if (boot_done) {
1562 /*
1563 * The APs use this path later in boot
1564 */
1565 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1566 cpu_to_node(cpu));
1567 if (!base)
1568 return -ENOMEM;
1569 memset(base, 0, sizeof(*base));
1570 per_cpu(tvec_bases, cpu) = base;
1571 } else {
1572 /*
1573 * This is for the boot CPU - we use compile-time
1574 * static initialisation because per-cpu memory isn't
1575 * ready yet and because the memory allocators are not
1576 * initialised either.
1577 */
1578 boot_done = 1;
1579 base = &boot_tvec_bases;
1580 }
1581 tvec_base_done[cpu] = 1;
1582 } else {
1583 base = per_cpu(tvec_bases, cpu);
1584 }
1585
1586 spin_lock_init(&base->lock);
1587 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1588
1589 for (j = 0; j < TVN_SIZE; j++) {
1590 INIT_LIST_HEAD(base->tv5.vec + j);
1591 INIT_LIST_HEAD(base->tv4.vec + j);
1592 INIT_LIST_HEAD(base->tv3.vec + j);
1593 INIT_LIST_HEAD(base->tv2.vec + j);
1594 }
1595 for (j = 0; j < TVR_SIZE; j++)
1596 INIT_LIST_HEAD(base->tv1.vec + j);
1597
1598 base->timer_jiffies = jiffies;
1599 return 0;
1600 }
1601
1602 #ifdef CONFIG_HOTPLUG_CPU
1603 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1604 {
1605 struct timer_list *timer;
1606
1607 while (!list_empty(head)) {
1608 timer = list_entry(head->next, struct timer_list, entry);
1609 detach_timer(timer, 0);
1610 timer->base = new_base;
1611 internal_add_timer(new_base, timer);
1612 }
1613 }
1614
1615 static void __devinit migrate_timers(int cpu)
1616 {
1617 tvec_base_t *old_base;
1618 tvec_base_t *new_base;
1619 int i;
1620
1621 BUG_ON(cpu_online(cpu));
1622 old_base = per_cpu(tvec_bases, cpu);
1623 new_base = get_cpu_var(tvec_bases);
1624
1625 local_irq_disable();
1626 spin_lock(&new_base->lock);
1627 spin_lock(&old_base->lock);
1628
1629 BUG_ON(old_base->running_timer);
1630
1631 for (i = 0; i < TVR_SIZE; i++)
1632 migrate_timer_list(new_base, old_base->tv1.vec + i);
1633 for (i = 0; i < TVN_SIZE; i++) {
1634 migrate_timer_list(new_base, old_base->tv2.vec + i);
1635 migrate_timer_list(new_base, old_base->tv3.vec + i);
1636 migrate_timer_list(new_base, old_base->tv4.vec + i);
1637 migrate_timer_list(new_base, old_base->tv5.vec + i);
1638 }
1639
1640 spin_unlock(&old_base->lock);
1641 spin_unlock(&new_base->lock);
1642 local_irq_enable();
1643 put_cpu_var(tvec_bases);
1644 }
1645 #endif /* CONFIG_HOTPLUG_CPU */
1646
1647 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1648 unsigned long action, void *hcpu)
1649 {
1650 long cpu = (long)hcpu;
1651 switch(action) {
1652 case CPU_UP_PREPARE:
1653 if (init_timers_cpu(cpu) < 0)
1654 return NOTIFY_BAD;
1655 break;
1656 #ifdef CONFIG_HOTPLUG_CPU
1657 case CPU_DEAD:
1658 migrate_timers(cpu);
1659 break;
1660 #endif
1661 default:
1662 break;
1663 }
1664 return NOTIFY_OK;
1665 }
1666
1667 static struct notifier_block __cpuinitdata timers_nb = {
1668 .notifier_call = timer_cpu_notify,
1669 };
1670
1671
1672 void __init init_timers(void)
1673 {
1674 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1675 (void *)(long)smp_processor_id());
1676
1677 BUG_ON(err == NOTIFY_BAD);
1678 register_cpu_notifier(&timers_nb);
1679 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1680 }
1681
1682 #ifdef CONFIG_TIME_INTERPOLATION
1683
1684 struct time_interpolator *time_interpolator __read_mostly;
1685 static struct time_interpolator *time_interpolator_list __read_mostly;
1686 static DEFINE_SPINLOCK(time_interpolator_lock);
1687
1688 static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1689 {
1690 unsigned long (*x)(void);
1691
1692 switch (src)
1693 {
1694 case TIME_SOURCE_FUNCTION:
1695 x = time_interpolator->addr;
1696 return x();
1697
1698 case TIME_SOURCE_MMIO64 :
1699 return readq_relaxed((void __iomem *)time_interpolator->addr);
1700
1701 case TIME_SOURCE_MMIO32 :
1702 return readl_relaxed((void __iomem *)time_interpolator->addr);
1703
1704 default: return get_cycles();
1705 }
1706 }
1707
1708 static inline u64 time_interpolator_get_counter(int writelock)
1709 {
1710 unsigned int src = time_interpolator->source;
1711
1712 if (time_interpolator->jitter)
1713 {
1714 cycles_t lcycle;
1715 cycles_t now;
1716
1717 do {
1718 lcycle = time_interpolator->last_cycle;
1719 now = time_interpolator_get_cycles(src);
1720 if (lcycle && time_after(lcycle, now))
1721 return lcycle;
1722
1723 /* When holding the xtime write lock, there's no need
1724 * to add the overhead of the cmpxchg. Readers are
1725 * force to retry until the write lock is released.
1726 */
1727 if (writelock) {
1728 time_interpolator->last_cycle = now;
1729 return now;
1730 }
1731 /* Keep track of the last timer value returned. The use of cmpxchg here
1732 * will cause contention in an SMP environment.
1733 */
1734 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1735 return now;
1736 }
1737 else
1738 return time_interpolator_get_cycles(src);
1739 }
1740
1741 void time_interpolator_reset(void)
1742 {
1743 time_interpolator->offset = 0;
1744 time_interpolator->last_counter = time_interpolator_get_counter(1);
1745 }
1746
1747 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1748
1749 unsigned long time_interpolator_get_offset(void)
1750 {
1751 /* If we do not have a time interpolator set up then just return zero */
1752 if (!time_interpolator)
1753 return 0;
1754
1755 return time_interpolator->offset +
1756 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1757 }
1758
1759 #define INTERPOLATOR_ADJUST 65536
1760 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1761
1762 void time_interpolator_update(long delta_nsec)
1763 {
1764 u64 counter;
1765 unsigned long offset;
1766
1767 /* If there is no time interpolator set up then do nothing */
1768 if (!time_interpolator)
1769 return;
1770
1771 /*
1772 * The interpolator compensates for late ticks by accumulating the late
1773 * time in time_interpolator->offset. A tick earlier than expected will
1774 * lead to a reset of the offset and a corresponding jump of the clock
1775 * forward. Again this only works if the interpolator clock is running
1776 * slightly slower than the regular clock and the tuning logic insures
1777 * that.
1778 */
1779
1780 counter = time_interpolator_get_counter(1);
1781 offset = time_interpolator->offset +
1782 GET_TI_NSECS(counter, time_interpolator);
1783
1784 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1785 time_interpolator->offset = offset - delta_nsec;
1786 else {
1787 time_interpolator->skips++;
1788 time_interpolator->ns_skipped += delta_nsec - offset;
1789 time_interpolator->offset = 0;
1790 }
1791 time_interpolator->last_counter = counter;
1792
1793 /* Tuning logic for time interpolator invoked every minute or so.
1794 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1795 * Increase interpolator clock speed if we skip too much time.
1796 */
1797 if (jiffies % INTERPOLATOR_ADJUST == 0)
1798 {
1799 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1800 time_interpolator->nsec_per_cyc--;
1801 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1802 time_interpolator->nsec_per_cyc++;
1803 time_interpolator->skips = 0;
1804 time_interpolator->ns_skipped = 0;
1805 }
1806 }
1807
1808 static inline int
1809 is_better_time_interpolator(struct time_interpolator *new)
1810 {
1811 if (!time_interpolator)
1812 return 1;
1813 return new->frequency > 2*time_interpolator->frequency ||
1814 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1815 }
1816
1817 void
1818 register_time_interpolator(struct time_interpolator *ti)
1819 {
1820 unsigned long flags;
1821
1822 /* Sanity check */
1823 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1824
1825 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1826 spin_lock(&time_interpolator_lock);
1827 write_seqlock_irqsave(&xtime_lock, flags);
1828 if (is_better_time_interpolator(ti)) {
1829 time_interpolator = ti;
1830 time_interpolator_reset();
1831 }
1832 write_sequnlock_irqrestore(&xtime_lock, flags);
1833
1834 ti->next = time_interpolator_list;
1835 time_interpolator_list = ti;
1836 spin_unlock(&time_interpolator_lock);
1837 }
1838
1839 void
1840 unregister_time_interpolator(struct time_interpolator *ti)
1841 {
1842 struct time_interpolator *curr, **prev;
1843 unsigned long flags;
1844
1845 spin_lock(&time_interpolator_lock);
1846 prev = &time_interpolator_list;
1847 for (curr = *prev; curr; curr = curr->next) {
1848 if (curr == ti) {
1849 *prev = curr->next;
1850 break;
1851 }
1852 prev = &curr->next;
1853 }
1854
1855 write_seqlock_irqsave(&xtime_lock, flags);
1856 if (ti == time_interpolator) {
1857 /* we lost the best time-interpolator: */
1858 time_interpolator = NULL;
1859 /* find the next-best interpolator */
1860 for (curr = time_interpolator_list; curr; curr = curr->next)
1861 if (is_better_time_interpolator(curr))
1862 time_interpolator = curr;
1863 time_interpolator_reset();
1864 }
1865 write_sequnlock_irqrestore(&xtime_lock, flags);
1866 spin_unlock(&time_interpolator_lock);
1867 }
1868 #endif /* CONFIG_TIME_INTERPOLATION */
1869
1870 /**
1871 * msleep - sleep safely even with waitqueue interruptions
1872 * @msecs: Time in milliseconds to sleep for
1873 */
1874 void msleep(unsigned int msecs)
1875 {
1876 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1877
1878 while (timeout)
1879 timeout = schedule_timeout_uninterruptible(timeout);
1880 }
1881
1882 EXPORT_SYMBOL(msleep);
1883
1884 /**
1885 * msleep_interruptible - sleep waiting for signals
1886 * @msecs: Time in milliseconds to sleep for
1887 */
1888 unsigned long msleep_interruptible(unsigned int msecs)
1889 {
1890 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1891
1892 while (timeout && !signal_pending(current))
1893 timeout = schedule_timeout_interruptible(timeout);
1894 return jiffies_to_msecs(timeout);
1895 }
1896
1897 EXPORT_SYMBOL(msleep_interruptible);
This page took 0.071481 seconds and 5 git commands to generate.