timer: Try to survive timer callback preempt_count leak
[deliverable/linux.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
45 #include <asm/div64.h>
46 #include <asm/timex.h>
47 #include <asm/io.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/timer.h>
51
52 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
53
54 EXPORT_SYMBOL(jiffies_64);
55
56 /*
57 * per-CPU timer vector definitions:
58 */
59 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
60 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
61 #define TVN_SIZE (1 << TVN_BITS)
62 #define TVR_SIZE (1 << TVR_BITS)
63 #define TVN_MASK (TVN_SIZE - 1)
64 #define TVR_MASK (TVR_SIZE - 1)
65
66 struct tvec {
67 struct list_head vec[TVN_SIZE];
68 };
69
70 struct tvec_root {
71 struct list_head vec[TVR_SIZE];
72 };
73
74 struct tvec_base {
75 spinlock_t lock;
76 struct timer_list *running_timer;
77 unsigned long timer_jiffies;
78 unsigned long next_timer;
79 struct tvec_root tv1;
80 struct tvec tv2;
81 struct tvec tv3;
82 struct tvec tv4;
83 struct tvec tv5;
84 } ____cacheline_aligned;
85
86 struct tvec_base boot_tvec_bases;
87 EXPORT_SYMBOL(boot_tvec_bases);
88 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
89
90 /*
91 * Note that all tvec_bases are 2 byte aligned and lower bit of
92 * base in timer_list is guaranteed to be zero. Use the LSB for
93 * the new flag to indicate whether the timer is deferrable
94 */
95 #define TBASE_DEFERRABLE_FLAG (0x1)
96
97 /* Functions below help us manage 'deferrable' flag */
98 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
99 {
100 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
101 }
102
103 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
104 {
105 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
106 }
107
108 static inline void timer_set_deferrable(struct timer_list *timer)
109 {
110 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
111 TBASE_DEFERRABLE_FLAG));
112 }
113
114 static inline void
115 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
116 {
117 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
118 tbase_get_deferrable(timer->base));
119 }
120
121 static unsigned long round_jiffies_common(unsigned long j, int cpu,
122 bool force_up)
123 {
124 int rem;
125 unsigned long original = j;
126
127 /*
128 * We don't want all cpus firing their timers at once hitting the
129 * same lock or cachelines, so we skew each extra cpu with an extra
130 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
131 * already did this.
132 * The skew is done by adding 3*cpunr, then round, then subtract this
133 * extra offset again.
134 */
135 j += cpu * 3;
136
137 rem = j % HZ;
138
139 /*
140 * If the target jiffie is just after a whole second (which can happen
141 * due to delays of the timer irq, long irq off times etc etc) then
142 * we should round down to the whole second, not up. Use 1/4th second
143 * as cutoff for this rounding as an extreme upper bound for this.
144 * But never round down if @force_up is set.
145 */
146 if (rem < HZ/4 && !force_up) /* round down */
147 j = j - rem;
148 else /* round up */
149 j = j - rem + HZ;
150
151 /* now that we have rounded, subtract the extra skew again */
152 j -= cpu * 3;
153
154 if (j <= jiffies) /* rounding ate our timeout entirely; */
155 return original;
156 return j;
157 }
158
159 /**
160 * __round_jiffies - function to round jiffies to a full second
161 * @j: the time in (absolute) jiffies that should be rounded
162 * @cpu: the processor number on which the timeout will happen
163 *
164 * __round_jiffies() rounds an absolute time in the future (in jiffies)
165 * up or down to (approximately) full seconds. This is useful for timers
166 * for which the exact time they fire does not matter too much, as long as
167 * they fire approximately every X seconds.
168 *
169 * By rounding these timers to whole seconds, all such timers will fire
170 * at the same time, rather than at various times spread out. The goal
171 * of this is to have the CPU wake up less, which saves power.
172 *
173 * The exact rounding is skewed for each processor to avoid all
174 * processors firing at the exact same time, which could lead
175 * to lock contention or spurious cache line bouncing.
176 *
177 * The return value is the rounded version of the @j parameter.
178 */
179 unsigned long __round_jiffies(unsigned long j, int cpu)
180 {
181 return round_jiffies_common(j, cpu, false);
182 }
183 EXPORT_SYMBOL_GPL(__round_jiffies);
184
185 /**
186 * __round_jiffies_relative - function to round jiffies to a full second
187 * @j: the time in (relative) jiffies that should be rounded
188 * @cpu: the processor number on which the timeout will happen
189 *
190 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
191 * up or down to (approximately) full seconds. This is useful for timers
192 * for which the exact time they fire does not matter too much, as long as
193 * they fire approximately every X seconds.
194 *
195 * By rounding these timers to whole seconds, all such timers will fire
196 * at the same time, rather than at various times spread out. The goal
197 * of this is to have the CPU wake up less, which saves power.
198 *
199 * The exact rounding is skewed for each processor to avoid all
200 * processors firing at the exact same time, which could lead
201 * to lock contention or spurious cache line bouncing.
202 *
203 * The return value is the rounded version of the @j parameter.
204 */
205 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
206 {
207 unsigned long j0 = jiffies;
208
209 /* Use j0 because jiffies might change while we run */
210 return round_jiffies_common(j + j0, cpu, false) - j0;
211 }
212 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
213
214 /**
215 * round_jiffies - function to round jiffies to a full second
216 * @j: the time in (absolute) jiffies that should be rounded
217 *
218 * round_jiffies() rounds an absolute time in the future (in jiffies)
219 * up or down to (approximately) full seconds. This is useful for timers
220 * for which the exact time they fire does not matter too much, as long as
221 * they fire approximately every X seconds.
222 *
223 * By rounding these timers to whole seconds, all such timers will fire
224 * at the same time, rather than at various times spread out. The goal
225 * of this is to have the CPU wake up less, which saves power.
226 *
227 * The return value is the rounded version of the @j parameter.
228 */
229 unsigned long round_jiffies(unsigned long j)
230 {
231 return round_jiffies_common(j, raw_smp_processor_id(), false);
232 }
233 EXPORT_SYMBOL_GPL(round_jiffies);
234
235 /**
236 * round_jiffies_relative - function to round jiffies to a full second
237 * @j: the time in (relative) jiffies that should be rounded
238 *
239 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
240 * up or down to (approximately) full seconds. This is useful for timers
241 * for which the exact time they fire does not matter too much, as long as
242 * they fire approximately every X seconds.
243 *
244 * By rounding these timers to whole seconds, all such timers will fire
245 * at the same time, rather than at various times spread out. The goal
246 * of this is to have the CPU wake up less, which saves power.
247 *
248 * The return value is the rounded version of the @j parameter.
249 */
250 unsigned long round_jiffies_relative(unsigned long j)
251 {
252 return __round_jiffies_relative(j, raw_smp_processor_id());
253 }
254 EXPORT_SYMBOL_GPL(round_jiffies_relative);
255
256 /**
257 * __round_jiffies_up - function to round jiffies up to a full second
258 * @j: the time in (absolute) jiffies that should be rounded
259 * @cpu: the processor number on which the timeout will happen
260 *
261 * This is the same as __round_jiffies() except that it will never
262 * round down. This is useful for timeouts for which the exact time
263 * of firing does not matter too much, as long as they don't fire too
264 * early.
265 */
266 unsigned long __round_jiffies_up(unsigned long j, int cpu)
267 {
268 return round_jiffies_common(j, cpu, true);
269 }
270 EXPORT_SYMBOL_GPL(__round_jiffies_up);
271
272 /**
273 * __round_jiffies_up_relative - function to round jiffies up to a full second
274 * @j: the time in (relative) jiffies that should be rounded
275 * @cpu: the processor number on which the timeout will happen
276 *
277 * This is the same as __round_jiffies_relative() except that it will never
278 * round down. This is useful for timeouts for which the exact time
279 * of firing does not matter too much, as long as they don't fire too
280 * early.
281 */
282 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
283 {
284 unsigned long j0 = jiffies;
285
286 /* Use j0 because jiffies might change while we run */
287 return round_jiffies_common(j + j0, cpu, true) - j0;
288 }
289 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
290
291 /**
292 * round_jiffies_up - function to round jiffies up to a full second
293 * @j: the time in (absolute) jiffies that should be rounded
294 *
295 * This is the same as round_jiffies() except that it will never
296 * round down. This is useful for timeouts for which the exact time
297 * of firing does not matter too much, as long as they don't fire too
298 * early.
299 */
300 unsigned long round_jiffies_up(unsigned long j)
301 {
302 return round_jiffies_common(j, raw_smp_processor_id(), true);
303 }
304 EXPORT_SYMBOL_GPL(round_jiffies_up);
305
306 /**
307 * round_jiffies_up_relative - function to round jiffies up to a full second
308 * @j: the time in (relative) jiffies that should be rounded
309 *
310 * This is the same as round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315 unsigned long round_jiffies_up_relative(unsigned long j)
316 {
317 return __round_jiffies_up_relative(j, raw_smp_processor_id());
318 }
319 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
320
321
322 static inline void set_running_timer(struct tvec_base *base,
323 struct timer_list *timer)
324 {
325 #ifdef CONFIG_SMP
326 base->running_timer = timer;
327 #endif
328 }
329
330 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
331 {
332 unsigned long expires = timer->expires;
333 unsigned long idx = expires - base->timer_jiffies;
334 struct list_head *vec;
335
336 if (idx < TVR_SIZE) {
337 int i = expires & TVR_MASK;
338 vec = base->tv1.vec + i;
339 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
340 int i = (expires >> TVR_BITS) & TVN_MASK;
341 vec = base->tv2.vec + i;
342 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
343 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
344 vec = base->tv3.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
347 vec = base->tv4.vec + i;
348 } else if ((signed long) idx < 0) {
349 /*
350 * Can happen if you add a timer with expires == jiffies,
351 * or you set a timer to go off in the past
352 */
353 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
354 } else {
355 int i;
356 /* If the timeout is larger than 0xffffffff on 64-bit
357 * architectures then we use the maximum timeout:
358 */
359 if (idx > 0xffffffffUL) {
360 idx = 0xffffffffUL;
361 expires = idx + base->timer_jiffies;
362 }
363 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
364 vec = base->tv5.vec + i;
365 }
366 /*
367 * Timers are FIFO:
368 */
369 list_add_tail(&timer->entry, vec);
370 }
371
372 #ifdef CONFIG_TIMER_STATS
373 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
374 {
375 if (timer->start_site)
376 return;
377
378 timer->start_site = addr;
379 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
380 timer->start_pid = current->pid;
381 }
382
383 static void timer_stats_account_timer(struct timer_list *timer)
384 {
385 unsigned int flag = 0;
386
387 if (likely(!timer->start_site))
388 return;
389 if (unlikely(tbase_get_deferrable(timer->base)))
390 flag |= TIMER_STATS_FLAG_DEFERRABLE;
391
392 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
393 timer->function, timer->start_comm, flag);
394 }
395
396 #else
397 static void timer_stats_account_timer(struct timer_list *timer) {}
398 #endif
399
400 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
401
402 static struct debug_obj_descr timer_debug_descr;
403
404 /*
405 * fixup_init is called when:
406 * - an active object is initialized
407 */
408 static int timer_fixup_init(void *addr, enum debug_obj_state state)
409 {
410 struct timer_list *timer = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 del_timer_sync(timer);
415 debug_object_init(timer, &timer_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420 }
421
422 /*
423 * fixup_activate is called when:
424 * - an active object is activated
425 * - an unknown object is activated (might be a statically initialized object)
426 */
427 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
428 {
429 struct timer_list *timer = addr;
430
431 switch (state) {
432
433 case ODEBUG_STATE_NOTAVAILABLE:
434 /*
435 * This is not really a fixup. The timer was
436 * statically initialized. We just make sure that it
437 * is tracked in the object tracker.
438 */
439 if (timer->entry.next == NULL &&
440 timer->entry.prev == TIMER_ENTRY_STATIC) {
441 debug_object_init(timer, &timer_debug_descr);
442 debug_object_activate(timer, &timer_debug_descr);
443 return 0;
444 } else {
445 WARN_ON_ONCE(1);
446 }
447 return 0;
448
449 case ODEBUG_STATE_ACTIVE:
450 WARN_ON(1);
451
452 default:
453 return 0;
454 }
455 }
456
457 /*
458 * fixup_free is called when:
459 * - an active object is freed
460 */
461 static int timer_fixup_free(void *addr, enum debug_obj_state state)
462 {
463 struct timer_list *timer = addr;
464
465 switch (state) {
466 case ODEBUG_STATE_ACTIVE:
467 del_timer_sync(timer);
468 debug_object_free(timer, &timer_debug_descr);
469 return 1;
470 default:
471 return 0;
472 }
473 }
474
475 static struct debug_obj_descr timer_debug_descr = {
476 .name = "timer_list",
477 .fixup_init = timer_fixup_init,
478 .fixup_activate = timer_fixup_activate,
479 .fixup_free = timer_fixup_free,
480 };
481
482 static inline void debug_timer_init(struct timer_list *timer)
483 {
484 debug_object_init(timer, &timer_debug_descr);
485 }
486
487 static inline void debug_timer_activate(struct timer_list *timer)
488 {
489 debug_object_activate(timer, &timer_debug_descr);
490 }
491
492 static inline void debug_timer_deactivate(struct timer_list *timer)
493 {
494 debug_object_deactivate(timer, &timer_debug_descr);
495 }
496
497 static inline void debug_timer_free(struct timer_list *timer)
498 {
499 debug_object_free(timer, &timer_debug_descr);
500 }
501
502 static void __init_timer(struct timer_list *timer,
503 const char *name,
504 struct lock_class_key *key);
505
506 void init_timer_on_stack_key(struct timer_list *timer,
507 const char *name,
508 struct lock_class_key *key)
509 {
510 debug_object_init_on_stack(timer, &timer_debug_descr);
511 __init_timer(timer, name, key);
512 }
513 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
514
515 void destroy_timer_on_stack(struct timer_list *timer)
516 {
517 debug_object_free(timer, &timer_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
520
521 #else
522 static inline void debug_timer_init(struct timer_list *timer) { }
523 static inline void debug_timer_activate(struct timer_list *timer) { }
524 static inline void debug_timer_deactivate(struct timer_list *timer) { }
525 #endif
526
527 static inline void debug_init(struct timer_list *timer)
528 {
529 debug_timer_init(timer);
530 trace_timer_init(timer);
531 }
532
533 static inline void
534 debug_activate(struct timer_list *timer, unsigned long expires)
535 {
536 debug_timer_activate(timer);
537 trace_timer_start(timer, expires);
538 }
539
540 static inline void debug_deactivate(struct timer_list *timer)
541 {
542 debug_timer_deactivate(timer);
543 trace_timer_cancel(timer);
544 }
545
546 static void __init_timer(struct timer_list *timer,
547 const char *name,
548 struct lock_class_key *key)
549 {
550 timer->entry.next = NULL;
551 timer->base = __raw_get_cpu_var(tvec_bases);
552 #ifdef CONFIG_TIMER_STATS
553 timer->start_site = NULL;
554 timer->start_pid = -1;
555 memset(timer->start_comm, 0, TASK_COMM_LEN);
556 #endif
557 lockdep_init_map(&timer->lockdep_map, name, key, 0);
558 }
559
560 /**
561 * init_timer_key - initialize a timer
562 * @timer: the timer to be initialized
563 * @name: name of the timer
564 * @key: lockdep class key of the fake lock used for tracking timer
565 * sync lock dependencies
566 *
567 * init_timer_key() must be done to a timer prior calling *any* of the
568 * other timer functions.
569 */
570 void init_timer_key(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key)
573 {
574 debug_init(timer);
575 __init_timer(timer, name, key);
576 }
577 EXPORT_SYMBOL(init_timer_key);
578
579 void init_timer_deferrable_key(struct timer_list *timer,
580 const char *name,
581 struct lock_class_key *key)
582 {
583 init_timer_key(timer, name, key);
584 timer_set_deferrable(timer);
585 }
586 EXPORT_SYMBOL(init_timer_deferrable_key);
587
588 static inline void detach_timer(struct timer_list *timer,
589 int clear_pending)
590 {
591 struct list_head *entry = &timer->entry;
592
593 debug_deactivate(timer);
594
595 __list_del(entry->prev, entry->next);
596 if (clear_pending)
597 entry->next = NULL;
598 entry->prev = LIST_POISON2;
599 }
600
601 /*
602 * We are using hashed locking: holding per_cpu(tvec_bases).lock
603 * means that all timers which are tied to this base via timer->base are
604 * locked, and the base itself is locked too.
605 *
606 * So __run_timers/migrate_timers can safely modify all timers which could
607 * be found on ->tvX lists.
608 *
609 * When the timer's base is locked, and the timer removed from list, it is
610 * possible to set timer->base = NULL and drop the lock: the timer remains
611 * locked.
612 */
613 static struct tvec_base *lock_timer_base(struct timer_list *timer,
614 unsigned long *flags)
615 __acquires(timer->base->lock)
616 {
617 struct tvec_base *base;
618
619 for (;;) {
620 struct tvec_base *prelock_base = timer->base;
621 base = tbase_get_base(prelock_base);
622 if (likely(base != NULL)) {
623 spin_lock_irqsave(&base->lock, *flags);
624 if (likely(prelock_base == timer->base))
625 return base;
626 /* The timer has migrated to another CPU */
627 spin_unlock_irqrestore(&base->lock, *flags);
628 }
629 cpu_relax();
630 }
631 }
632
633 static inline int
634 __mod_timer(struct timer_list *timer, unsigned long expires,
635 bool pending_only, int pinned)
636 {
637 struct tvec_base *base, *new_base;
638 unsigned long flags;
639 int ret = 0 , cpu;
640
641 timer_stats_timer_set_start_info(timer);
642 BUG_ON(!timer->function);
643
644 base = lock_timer_base(timer, &flags);
645
646 if (timer_pending(timer)) {
647 detach_timer(timer, 0);
648 if (timer->expires == base->next_timer &&
649 !tbase_get_deferrable(timer->base))
650 base->next_timer = base->timer_jiffies;
651 ret = 1;
652 } else {
653 if (pending_only)
654 goto out_unlock;
655 }
656
657 debug_activate(timer, expires);
658
659 cpu = smp_processor_id();
660
661 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
662 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
663 int preferred_cpu = get_nohz_load_balancer();
664
665 if (preferred_cpu >= 0)
666 cpu = preferred_cpu;
667 }
668 #endif
669 new_base = per_cpu(tvec_bases, cpu);
670
671 if (base != new_base) {
672 /*
673 * We are trying to schedule the timer on the local CPU.
674 * However we can't change timer's base while it is running,
675 * otherwise del_timer_sync() can't detect that the timer's
676 * handler yet has not finished. This also guarantees that
677 * the timer is serialized wrt itself.
678 */
679 if (likely(base->running_timer != timer)) {
680 /* See the comment in lock_timer_base() */
681 timer_set_base(timer, NULL);
682 spin_unlock(&base->lock);
683 base = new_base;
684 spin_lock(&base->lock);
685 timer_set_base(timer, base);
686 }
687 }
688
689 timer->expires = expires;
690 if (time_before(timer->expires, base->next_timer) &&
691 !tbase_get_deferrable(timer->base))
692 base->next_timer = timer->expires;
693 internal_add_timer(base, timer);
694
695 out_unlock:
696 spin_unlock_irqrestore(&base->lock, flags);
697
698 return ret;
699 }
700
701 /**
702 * mod_timer_pending - modify a pending timer's timeout
703 * @timer: the pending timer to be modified
704 * @expires: new timeout in jiffies
705 *
706 * mod_timer_pending() is the same for pending timers as mod_timer(),
707 * but will not re-activate and modify already deleted timers.
708 *
709 * It is useful for unserialized use of timers.
710 */
711 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
712 {
713 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
714 }
715 EXPORT_SYMBOL(mod_timer_pending);
716
717 /**
718 * mod_timer - modify a timer's timeout
719 * @timer: the timer to be modified
720 * @expires: new timeout in jiffies
721 *
722 * mod_timer() is a more efficient way to update the expire field of an
723 * active timer (if the timer is inactive it will be activated)
724 *
725 * mod_timer(timer, expires) is equivalent to:
726 *
727 * del_timer(timer); timer->expires = expires; add_timer(timer);
728 *
729 * Note that if there are multiple unserialized concurrent users of the
730 * same timer, then mod_timer() is the only safe way to modify the timeout,
731 * since add_timer() cannot modify an already running timer.
732 *
733 * The function returns whether it has modified a pending timer or not.
734 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
735 * active timer returns 1.)
736 */
737 int mod_timer(struct timer_list *timer, unsigned long expires)
738 {
739 /*
740 * This is a common optimization triggered by the
741 * networking code - if the timer is re-modified
742 * to be the same thing then just return:
743 */
744 if (timer_pending(timer) && timer->expires == expires)
745 return 1;
746
747 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
748 }
749 EXPORT_SYMBOL(mod_timer);
750
751 /**
752 * mod_timer_pinned - modify a timer's timeout
753 * @timer: the timer to be modified
754 * @expires: new timeout in jiffies
755 *
756 * mod_timer_pinned() is a way to update the expire field of an
757 * active timer (if the timer is inactive it will be activated)
758 * and not allow the timer to be migrated to a different CPU.
759 *
760 * mod_timer_pinned(timer, expires) is equivalent to:
761 *
762 * del_timer(timer); timer->expires = expires; add_timer(timer);
763 */
764 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
765 {
766 if (timer->expires == expires && timer_pending(timer))
767 return 1;
768
769 return __mod_timer(timer, expires, false, TIMER_PINNED);
770 }
771 EXPORT_SYMBOL(mod_timer_pinned);
772
773 /**
774 * add_timer - start a timer
775 * @timer: the timer to be added
776 *
777 * The kernel will do a ->function(->data) callback from the
778 * timer interrupt at the ->expires point in the future. The
779 * current time is 'jiffies'.
780 *
781 * The timer's ->expires, ->function (and if the handler uses it, ->data)
782 * fields must be set prior calling this function.
783 *
784 * Timers with an ->expires field in the past will be executed in the next
785 * timer tick.
786 */
787 void add_timer(struct timer_list *timer)
788 {
789 BUG_ON(timer_pending(timer));
790 mod_timer(timer, timer->expires);
791 }
792 EXPORT_SYMBOL(add_timer);
793
794 /**
795 * add_timer_on - start a timer on a particular CPU
796 * @timer: the timer to be added
797 * @cpu: the CPU to start it on
798 *
799 * This is not very scalable on SMP. Double adds are not possible.
800 */
801 void add_timer_on(struct timer_list *timer, int cpu)
802 {
803 struct tvec_base *base = per_cpu(tvec_bases, cpu);
804 unsigned long flags;
805
806 timer_stats_timer_set_start_info(timer);
807 BUG_ON(timer_pending(timer) || !timer->function);
808 spin_lock_irqsave(&base->lock, flags);
809 timer_set_base(timer, base);
810 debug_activate(timer, timer->expires);
811 if (time_before(timer->expires, base->next_timer) &&
812 !tbase_get_deferrable(timer->base))
813 base->next_timer = timer->expires;
814 internal_add_timer(base, timer);
815 /*
816 * Check whether the other CPU is idle and needs to be
817 * triggered to reevaluate the timer wheel when nohz is
818 * active. We are protected against the other CPU fiddling
819 * with the timer by holding the timer base lock. This also
820 * makes sure that a CPU on the way to idle can not evaluate
821 * the timer wheel.
822 */
823 wake_up_idle_cpu(cpu);
824 spin_unlock_irqrestore(&base->lock, flags);
825 }
826 EXPORT_SYMBOL_GPL(add_timer_on);
827
828 /**
829 * del_timer - deactive a timer.
830 * @timer: the timer to be deactivated
831 *
832 * del_timer() deactivates a timer - this works on both active and inactive
833 * timers.
834 *
835 * The function returns whether it has deactivated a pending timer or not.
836 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
837 * active timer returns 1.)
838 */
839 int del_timer(struct timer_list *timer)
840 {
841 struct tvec_base *base;
842 unsigned long flags;
843 int ret = 0;
844
845 timer_stats_timer_clear_start_info(timer);
846 if (timer_pending(timer)) {
847 base = lock_timer_base(timer, &flags);
848 if (timer_pending(timer)) {
849 detach_timer(timer, 1);
850 if (timer->expires == base->next_timer &&
851 !tbase_get_deferrable(timer->base))
852 base->next_timer = base->timer_jiffies;
853 ret = 1;
854 }
855 spin_unlock_irqrestore(&base->lock, flags);
856 }
857
858 return ret;
859 }
860 EXPORT_SYMBOL(del_timer);
861
862 #ifdef CONFIG_SMP
863 /**
864 * try_to_del_timer_sync - Try to deactivate a timer
865 * @timer: timer do del
866 *
867 * This function tries to deactivate a timer. Upon successful (ret >= 0)
868 * exit the timer is not queued and the handler is not running on any CPU.
869 *
870 * It must not be called from interrupt contexts.
871 */
872 int try_to_del_timer_sync(struct timer_list *timer)
873 {
874 struct tvec_base *base;
875 unsigned long flags;
876 int ret = -1;
877
878 base = lock_timer_base(timer, &flags);
879
880 if (base->running_timer == timer)
881 goto out;
882
883 ret = 0;
884 if (timer_pending(timer)) {
885 detach_timer(timer, 1);
886 if (timer->expires == base->next_timer &&
887 !tbase_get_deferrable(timer->base))
888 base->next_timer = base->timer_jiffies;
889 ret = 1;
890 }
891 out:
892 spin_unlock_irqrestore(&base->lock, flags);
893
894 return ret;
895 }
896 EXPORT_SYMBOL(try_to_del_timer_sync);
897
898 /**
899 * del_timer_sync - deactivate a timer and wait for the handler to finish.
900 * @timer: the timer to be deactivated
901 *
902 * This function only differs from del_timer() on SMP: besides deactivating
903 * the timer it also makes sure the handler has finished executing on other
904 * CPUs.
905 *
906 * Synchronization rules: Callers must prevent restarting of the timer,
907 * otherwise this function is meaningless. It must not be called from
908 * interrupt contexts. The caller must not hold locks which would prevent
909 * completion of the timer's handler. The timer's handler must not call
910 * add_timer_on(). Upon exit the timer is not queued and the handler is
911 * not running on any CPU.
912 *
913 * The function returns whether it has deactivated a pending timer or not.
914 */
915 int del_timer_sync(struct timer_list *timer)
916 {
917 #ifdef CONFIG_LOCKDEP
918 unsigned long flags;
919
920 local_irq_save(flags);
921 lock_map_acquire(&timer->lockdep_map);
922 lock_map_release(&timer->lockdep_map);
923 local_irq_restore(flags);
924 #endif
925
926 for (;;) {
927 int ret = try_to_del_timer_sync(timer);
928 if (ret >= 0)
929 return ret;
930 cpu_relax();
931 }
932 }
933 EXPORT_SYMBOL(del_timer_sync);
934 #endif
935
936 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
937 {
938 /* cascade all the timers from tv up one level */
939 struct timer_list *timer, *tmp;
940 struct list_head tv_list;
941
942 list_replace_init(tv->vec + index, &tv_list);
943
944 /*
945 * We are removing _all_ timers from the list, so we
946 * don't have to detach them individually.
947 */
948 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
949 BUG_ON(tbase_get_base(timer->base) != base);
950 internal_add_timer(base, timer);
951 }
952
953 return index;
954 }
955
956 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
957 unsigned long data)
958 {
959 int preempt_count = preempt_count();
960
961 #ifdef CONFIG_LOCKDEP
962 /*
963 * It is permissible to free the timer from inside the
964 * function that is called from it, this we need to take into
965 * account for lockdep too. To avoid bogus "held lock freed"
966 * warnings as well as problems when looking into
967 * timer->lockdep_map, make a copy and use that here.
968 */
969 struct lockdep_map lockdep_map = timer->lockdep_map;
970 #endif
971 /*
972 * Couple the lock chain with the lock chain at
973 * del_timer_sync() by acquiring the lock_map around the fn()
974 * call here and in del_timer_sync().
975 */
976 lock_map_acquire(&lockdep_map);
977
978 trace_timer_expire_entry(timer);
979 fn(data);
980 trace_timer_expire_exit(timer);
981
982 lock_map_release(&lockdep_map);
983
984 if (preempt_count != preempt_count()) {
985 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
986 fn, preempt_count, preempt_count());
987 /*
988 * Restore the preempt count. That gives us a decent
989 * chance to survive and extract information. If the
990 * callback kept a lock held, bad luck, but not worse
991 * than the BUG() we had.
992 */
993 preempt_count() = preempt_count;
994 }
995 }
996
997 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
998
999 /**
1000 * __run_timers - run all expired timers (if any) on this CPU.
1001 * @base: the timer vector to be processed.
1002 *
1003 * This function cascades all vectors and executes all expired timer
1004 * vectors.
1005 */
1006 static inline void __run_timers(struct tvec_base *base)
1007 {
1008 struct timer_list *timer;
1009
1010 spin_lock_irq(&base->lock);
1011 while (time_after_eq(jiffies, base->timer_jiffies)) {
1012 struct list_head work_list;
1013 struct list_head *head = &work_list;
1014 int index = base->timer_jiffies & TVR_MASK;
1015
1016 /*
1017 * Cascade timers:
1018 */
1019 if (!index &&
1020 (!cascade(base, &base->tv2, INDEX(0))) &&
1021 (!cascade(base, &base->tv3, INDEX(1))) &&
1022 !cascade(base, &base->tv4, INDEX(2)))
1023 cascade(base, &base->tv5, INDEX(3));
1024 ++base->timer_jiffies;
1025 list_replace_init(base->tv1.vec + index, &work_list);
1026 while (!list_empty(head)) {
1027 void (*fn)(unsigned long);
1028 unsigned long data;
1029
1030 timer = list_first_entry(head, struct timer_list,entry);
1031 fn = timer->function;
1032 data = timer->data;
1033
1034 timer_stats_account_timer(timer);
1035
1036 set_running_timer(base, timer);
1037 detach_timer(timer, 1);
1038
1039 spin_unlock_irq(&base->lock);
1040 call_timer_fn(timer, fn, data);
1041 spin_lock_irq(&base->lock);
1042 }
1043 }
1044 set_running_timer(base, NULL);
1045 spin_unlock_irq(&base->lock);
1046 }
1047
1048 #ifdef CONFIG_NO_HZ
1049 /*
1050 * Find out when the next timer event is due to happen. This
1051 * is used on S/390 to stop all activity when a CPU is idle.
1052 * This function needs to be called with interrupts disabled.
1053 */
1054 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1055 {
1056 unsigned long timer_jiffies = base->timer_jiffies;
1057 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1058 int index, slot, array, found = 0;
1059 struct timer_list *nte;
1060 struct tvec *varray[4];
1061
1062 /* Look for timer events in tv1. */
1063 index = slot = timer_jiffies & TVR_MASK;
1064 do {
1065 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1066 if (tbase_get_deferrable(nte->base))
1067 continue;
1068
1069 found = 1;
1070 expires = nte->expires;
1071 /* Look at the cascade bucket(s)? */
1072 if (!index || slot < index)
1073 goto cascade;
1074 return expires;
1075 }
1076 slot = (slot + 1) & TVR_MASK;
1077 } while (slot != index);
1078
1079 cascade:
1080 /* Calculate the next cascade event */
1081 if (index)
1082 timer_jiffies += TVR_SIZE - index;
1083 timer_jiffies >>= TVR_BITS;
1084
1085 /* Check tv2-tv5. */
1086 varray[0] = &base->tv2;
1087 varray[1] = &base->tv3;
1088 varray[2] = &base->tv4;
1089 varray[3] = &base->tv5;
1090
1091 for (array = 0; array < 4; array++) {
1092 struct tvec *varp = varray[array];
1093
1094 index = slot = timer_jiffies & TVN_MASK;
1095 do {
1096 list_for_each_entry(nte, varp->vec + slot, entry) {
1097 if (tbase_get_deferrable(nte->base))
1098 continue;
1099
1100 found = 1;
1101 if (time_before(nte->expires, expires))
1102 expires = nte->expires;
1103 }
1104 /*
1105 * Do we still search for the first timer or are
1106 * we looking up the cascade buckets ?
1107 */
1108 if (found) {
1109 /* Look at the cascade bucket(s)? */
1110 if (!index || slot < index)
1111 break;
1112 return expires;
1113 }
1114 slot = (slot + 1) & TVN_MASK;
1115 } while (slot != index);
1116
1117 if (index)
1118 timer_jiffies += TVN_SIZE - index;
1119 timer_jiffies >>= TVN_BITS;
1120 }
1121 return expires;
1122 }
1123
1124 /*
1125 * Check, if the next hrtimer event is before the next timer wheel
1126 * event:
1127 */
1128 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1129 unsigned long expires)
1130 {
1131 ktime_t hr_delta = hrtimer_get_next_event();
1132 struct timespec tsdelta;
1133 unsigned long delta;
1134
1135 if (hr_delta.tv64 == KTIME_MAX)
1136 return expires;
1137
1138 /*
1139 * Expired timer available, let it expire in the next tick
1140 */
1141 if (hr_delta.tv64 <= 0)
1142 return now + 1;
1143
1144 tsdelta = ktime_to_timespec(hr_delta);
1145 delta = timespec_to_jiffies(&tsdelta);
1146
1147 /*
1148 * Limit the delta to the max value, which is checked in
1149 * tick_nohz_stop_sched_tick():
1150 */
1151 if (delta > NEXT_TIMER_MAX_DELTA)
1152 delta = NEXT_TIMER_MAX_DELTA;
1153
1154 /*
1155 * Take rounding errors in to account and make sure, that it
1156 * expires in the next tick. Otherwise we go into an endless
1157 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1158 * the timer softirq
1159 */
1160 if (delta < 1)
1161 delta = 1;
1162 now += delta;
1163 if (time_before(now, expires))
1164 return now;
1165 return expires;
1166 }
1167
1168 /**
1169 * get_next_timer_interrupt - return the jiffy of the next pending timer
1170 * @now: current time (in jiffies)
1171 */
1172 unsigned long get_next_timer_interrupt(unsigned long now)
1173 {
1174 struct tvec_base *base = __get_cpu_var(tvec_bases);
1175 unsigned long expires;
1176
1177 spin_lock(&base->lock);
1178 if (time_before_eq(base->next_timer, base->timer_jiffies))
1179 base->next_timer = __next_timer_interrupt(base);
1180 expires = base->next_timer;
1181 spin_unlock(&base->lock);
1182
1183 if (time_before_eq(expires, now))
1184 return now;
1185
1186 return cmp_next_hrtimer_event(now, expires);
1187 }
1188 #endif
1189
1190 /*
1191 * Called from the timer interrupt handler to charge one tick to the current
1192 * process. user_tick is 1 if the tick is user time, 0 for system.
1193 */
1194 void update_process_times(int user_tick)
1195 {
1196 struct task_struct *p = current;
1197 int cpu = smp_processor_id();
1198
1199 /* Note: this timer irq context must be accounted for as well. */
1200 account_process_tick(p, user_tick);
1201 run_local_timers();
1202 rcu_check_callbacks(cpu, user_tick);
1203 printk_tick();
1204 perf_event_do_pending();
1205 scheduler_tick();
1206 run_posix_cpu_timers(p);
1207 }
1208
1209 /*
1210 * This function runs timers and the timer-tq in bottom half context.
1211 */
1212 static void run_timer_softirq(struct softirq_action *h)
1213 {
1214 struct tvec_base *base = __get_cpu_var(tvec_bases);
1215
1216 hrtimer_run_pending();
1217
1218 if (time_after_eq(jiffies, base->timer_jiffies))
1219 __run_timers(base);
1220 }
1221
1222 /*
1223 * Called by the local, per-CPU timer interrupt on SMP.
1224 */
1225 void run_local_timers(void)
1226 {
1227 hrtimer_run_queues();
1228 raise_softirq(TIMER_SOFTIRQ);
1229 softlockup_tick();
1230 }
1231
1232 /*
1233 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1234 * without sampling the sequence number in xtime_lock.
1235 * jiffies is defined in the linker script...
1236 */
1237
1238 void do_timer(unsigned long ticks)
1239 {
1240 jiffies_64 += ticks;
1241 update_wall_time();
1242 calc_global_load();
1243 }
1244
1245 #ifdef __ARCH_WANT_SYS_ALARM
1246
1247 /*
1248 * For backwards compatibility? This can be done in libc so Alpha
1249 * and all newer ports shouldn't need it.
1250 */
1251 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1252 {
1253 return alarm_setitimer(seconds);
1254 }
1255
1256 #endif
1257
1258 #ifndef __alpha__
1259
1260 /*
1261 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1262 * should be moved into arch/i386 instead?
1263 */
1264
1265 /**
1266 * sys_getpid - return the thread group id of the current process
1267 *
1268 * Note, despite the name, this returns the tgid not the pid. The tgid and
1269 * the pid are identical unless CLONE_THREAD was specified on clone() in
1270 * which case the tgid is the same in all threads of the same group.
1271 *
1272 * This is SMP safe as current->tgid does not change.
1273 */
1274 SYSCALL_DEFINE0(getpid)
1275 {
1276 return task_tgid_vnr(current);
1277 }
1278
1279 /*
1280 * Accessing ->real_parent is not SMP-safe, it could
1281 * change from under us. However, we can use a stale
1282 * value of ->real_parent under rcu_read_lock(), see
1283 * release_task()->call_rcu(delayed_put_task_struct).
1284 */
1285 SYSCALL_DEFINE0(getppid)
1286 {
1287 int pid;
1288
1289 rcu_read_lock();
1290 pid = task_tgid_vnr(current->real_parent);
1291 rcu_read_unlock();
1292
1293 return pid;
1294 }
1295
1296 SYSCALL_DEFINE0(getuid)
1297 {
1298 /* Only we change this so SMP safe */
1299 return current_uid();
1300 }
1301
1302 SYSCALL_DEFINE0(geteuid)
1303 {
1304 /* Only we change this so SMP safe */
1305 return current_euid();
1306 }
1307
1308 SYSCALL_DEFINE0(getgid)
1309 {
1310 /* Only we change this so SMP safe */
1311 return current_gid();
1312 }
1313
1314 SYSCALL_DEFINE0(getegid)
1315 {
1316 /* Only we change this so SMP safe */
1317 return current_egid();
1318 }
1319
1320 #endif
1321
1322 static void process_timeout(unsigned long __data)
1323 {
1324 wake_up_process((struct task_struct *)__data);
1325 }
1326
1327 /**
1328 * schedule_timeout - sleep until timeout
1329 * @timeout: timeout value in jiffies
1330 *
1331 * Make the current task sleep until @timeout jiffies have
1332 * elapsed. The routine will return immediately unless
1333 * the current task state has been set (see set_current_state()).
1334 *
1335 * You can set the task state as follows -
1336 *
1337 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1338 * pass before the routine returns. The routine will return 0
1339 *
1340 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1341 * delivered to the current task. In this case the remaining time
1342 * in jiffies will be returned, or 0 if the timer expired in time
1343 *
1344 * The current task state is guaranteed to be TASK_RUNNING when this
1345 * routine returns.
1346 *
1347 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1348 * the CPU away without a bound on the timeout. In this case the return
1349 * value will be %MAX_SCHEDULE_TIMEOUT.
1350 *
1351 * In all cases the return value is guaranteed to be non-negative.
1352 */
1353 signed long __sched schedule_timeout(signed long timeout)
1354 {
1355 struct timer_list timer;
1356 unsigned long expire;
1357
1358 switch (timeout)
1359 {
1360 case MAX_SCHEDULE_TIMEOUT:
1361 /*
1362 * These two special cases are useful to be comfortable
1363 * in the caller. Nothing more. We could take
1364 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1365 * but I' d like to return a valid offset (>=0) to allow
1366 * the caller to do everything it want with the retval.
1367 */
1368 schedule();
1369 goto out;
1370 default:
1371 /*
1372 * Another bit of PARANOID. Note that the retval will be
1373 * 0 since no piece of kernel is supposed to do a check
1374 * for a negative retval of schedule_timeout() (since it
1375 * should never happens anyway). You just have the printk()
1376 * that will tell you if something is gone wrong and where.
1377 */
1378 if (timeout < 0) {
1379 printk(KERN_ERR "schedule_timeout: wrong timeout "
1380 "value %lx\n", timeout);
1381 dump_stack();
1382 current->state = TASK_RUNNING;
1383 goto out;
1384 }
1385 }
1386
1387 expire = timeout + jiffies;
1388
1389 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1390 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1391 schedule();
1392 del_singleshot_timer_sync(&timer);
1393
1394 /* Remove the timer from the object tracker */
1395 destroy_timer_on_stack(&timer);
1396
1397 timeout = expire - jiffies;
1398
1399 out:
1400 return timeout < 0 ? 0 : timeout;
1401 }
1402 EXPORT_SYMBOL(schedule_timeout);
1403
1404 /*
1405 * We can use __set_current_state() here because schedule_timeout() calls
1406 * schedule() unconditionally.
1407 */
1408 signed long __sched schedule_timeout_interruptible(signed long timeout)
1409 {
1410 __set_current_state(TASK_INTERRUPTIBLE);
1411 return schedule_timeout(timeout);
1412 }
1413 EXPORT_SYMBOL(schedule_timeout_interruptible);
1414
1415 signed long __sched schedule_timeout_killable(signed long timeout)
1416 {
1417 __set_current_state(TASK_KILLABLE);
1418 return schedule_timeout(timeout);
1419 }
1420 EXPORT_SYMBOL(schedule_timeout_killable);
1421
1422 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1423 {
1424 __set_current_state(TASK_UNINTERRUPTIBLE);
1425 return schedule_timeout(timeout);
1426 }
1427 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1428
1429 /* Thread ID - the internal kernel "pid" */
1430 SYSCALL_DEFINE0(gettid)
1431 {
1432 return task_pid_vnr(current);
1433 }
1434
1435 /**
1436 * do_sysinfo - fill in sysinfo struct
1437 * @info: pointer to buffer to fill
1438 */
1439 int do_sysinfo(struct sysinfo *info)
1440 {
1441 unsigned long mem_total, sav_total;
1442 unsigned int mem_unit, bitcount;
1443 struct timespec tp;
1444
1445 memset(info, 0, sizeof(struct sysinfo));
1446
1447 ktime_get_ts(&tp);
1448 monotonic_to_bootbased(&tp);
1449 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1450
1451 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1452
1453 info->procs = nr_threads;
1454
1455 si_meminfo(info);
1456 si_swapinfo(info);
1457
1458 /*
1459 * If the sum of all the available memory (i.e. ram + swap)
1460 * is less than can be stored in a 32 bit unsigned long then
1461 * we can be binary compatible with 2.2.x kernels. If not,
1462 * well, in that case 2.2.x was broken anyways...
1463 *
1464 * -Erik Andersen <andersee@debian.org>
1465 */
1466
1467 mem_total = info->totalram + info->totalswap;
1468 if (mem_total < info->totalram || mem_total < info->totalswap)
1469 goto out;
1470 bitcount = 0;
1471 mem_unit = info->mem_unit;
1472 while (mem_unit > 1) {
1473 bitcount++;
1474 mem_unit >>= 1;
1475 sav_total = mem_total;
1476 mem_total <<= 1;
1477 if (mem_total < sav_total)
1478 goto out;
1479 }
1480
1481 /*
1482 * If mem_total did not overflow, multiply all memory values by
1483 * info->mem_unit and set it to 1. This leaves things compatible
1484 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1485 * kernels...
1486 */
1487
1488 info->mem_unit = 1;
1489 info->totalram <<= bitcount;
1490 info->freeram <<= bitcount;
1491 info->sharedram <<= bitcount;
1492 info->bufferram <<= bitcount;
1493 info->totalswap <<= bitcount;
1494 info->freeswap <<= bitcount;
1495 info->totalhigh <<= bitcount;
1496 info->freehigh <<= bitcount;
1497
1498 out:
1499 return 0;
1500 }
1501
1502 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1503 {
1504 struct sysinfo val;
1505
1506 do_sysinfo(&val);
1507
1508 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1509 return -EFAULT;
1510
1511 return 0;
1512 }
1513
1514 static int __cpuinit init_timers_cpu(int cpu)
1515 {
1516 int j;
1517 struct tvec_base *base;
1518 static char __cpuinitdata tvec_base_done[NR_CPUS];
1519
1520 if (!tvec_base_done[cpu]) {
1521 static char boot_done;
1522
1523 if (boot_done) {
1524 /*
1525 * The APs use this path later in boot
1526 */
1527 base = kmalloc_node(sizeof(*base),
1528 GFP_KERNEL | __GFP_ZERO,
1529 cpu_to_node(cpu));
1530 if (!base)
1531 return -ENOMEM;
1532
1533 /* Make sure that tvec_base is 2 byte aligned */
1534 if (tbase_get_deferrable(base)) {
1535 WARN_ON(1);
1536 kfree(base);
1537 return -ENOMEM;
1538 }
1539 per_cpu(tvec_bases, cpu) = base;
1540 } else {
1541 /*
1542 * This is for the boot CPU - we use compile-time
1543 * static initialisation because per-cpu memory isn't
1544 * ready yet and because the memory allocators are not
1545 * initialised either.
1546 */
1547 boot_done = 1;
1548 base = &boot_tvec_bases;
1549 }
1550 tvec_base_done[cpu] = 1;
1551 } else {
1552 base = per_cpu(tvec_bases, cpu);
1553 }
1554
1555 spin_lock_init(&base->lock);
1556
1557 for (j = 0; j < TVN_SIZE; j++) {
1558 INIT_LIST_HEAD(base->tv5.vec + j);
1559 INIT_LIST_HEAD(base->tv4.vec + j);
1560 INIT_LIST_HEAD(base->tv3.vec + j);
1561 INIT_LIST_HEAD(base->tv2.vec + j);
1562 }
1563 for (j = 0; j < TVR_SIZE; j++)
1564 INIT_LIST_HEAD(base->tv1.vec + j);
1565
1566 base->timer_jiffies = jiffies;
1567 base->next_timer = base->timer_jiffies;
1568 return 0;
1569 }
1570
1571 #ifdef CONFIG_HOTPLUG_CPU
1572 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1573 {
1574 struct timer_list *timer;
1575
1576 while (!list_empty(head)) {
1577 timer = list_first_entry(head, struct timer_list, entry);
1578 detach_timer(timer, 0);
1579 timer_set_base(timer, new_base);
1580 if (time_before(timer->expires, new_base->next_timer) &&
1581 !tbase_get_deferrable(timer->base))
1582 new_base->next_timer = timer->expires;
1583 internal_add_timer(new_base, timer);
1584 }
1585 }
1586
1587 static void __cpuinit migrate_timers(int cpu)
1588 {
1589 struct tvec_base *old_base;
1590 struct tvec_base *new_base;
1591 int i;
1592
1593 BUG_ON(cpu_online(cpu));
1594 old_base = per_cpu(tvec_bases, cpu);
1595 new_base = get_cpu_var(tvec_bases);
1596 /*
1597 * The caller is globally serialized and nobody else
1598 * takes two locks at once, deadlock is not possible.
1599 */
1600 spin_lock_irq(&new_base->lock);
1601 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1602
1603 BUG_ON(old_base->running_timer);
1604
1605 for (i = 0; i < TVR_SIZE; i++)
1606 migrate_timer_list(new_base, old_base->tv1.vec + i);
1607 for (i = 0; i < TVN_SIZE; i++) {
1608 migrate_timer_list(new_base, old_base->tv2.vec + i);
1609 migrate_timer_list(new_base, old_base->tv3.vec + i);
1610 migrate_timer_list(new_base, old_base->tv4.vec + i);
1611 migrate_timer_list(new_base, old_base->tv5.vec + i);
1612 }
1613
1614 spin_unlock(&old_base->lock);
1615 spin_unlock_irq(&new_base->lock);
1616 put_cpu_var(tvec_bases);
1617 }
1618 #endif /* CONFIG_HOTPLUG_CPU */
1619
1620 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1621 unsigned long action, void *hcpu)
1622 {
1623 long cpu = (long)hcpu;
1624 switch(action) {
1625 case CPU_UP_PREPARE:
1626 case CPU_UP_PREPARE_FROZEN:
1627 if (init_timers_cpu(cpu) < 0)
1628 return NOTIFY_BAD;
1629 break;
1630 #ifdef CONFIG_HOTPLUG_CPU
1631 case CPU_DEAD:
1632 case CPU_DEAD_FROZEN:
1633 migrate_timers(cpu);
1634 break;
1635 #endif
1636 default:
1637 break;
1638 }
1639 return NOTIFY_OK;
1640 }
1641
1642 static struct notifier_block __cpuinitdata timers_nb = {
1643 .notifier_call = timer_cpu_notify,
1644 };
1645
1646
1647 void __init init_timers(void)
1648 {
1649 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1650 (void *)(long)smp_processor_id());
1651
1652 init_timer_stats();
1653
1654 BUG_ON(err == NOTIFY_BAD);
1655 register_cpu_notifier(&timers_nb);
1656 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1657 }
1658
1659 /**
1660 * msleep - sleep safely even with waitqueue interruptions
1661 * @msecs: Time in milliseconds to sleep for
1662 */
1663 void msleep(unsigned int msecs)
1664 {
1665 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1666
1667 while (timeout)
1668 timeout = schedule_timeout_uninterruptible(timeout);
1669 }
1670
1671 EXPORT_SYMBOL(msleep);
1672
1673 /**
1674 * msleep_interruptible - sleep waiting for signals
1675 * @msecs: Time in milliseconds to sleep for
1676 */
1677 unsigned long msleep_interruptible(unsigned int msecs)
1678 {
1679 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1680
1681 while (timeout && !signal_pending(current))
1682 timeout = schedule_timeout_interruptible(timeout);
1683 return jiffies_to_msecs(timeout);
1684 }
1685
1686 EXPORT_SYMBOL(msleep_interruptible);
This page took 0.106842 seconds and 5 git commands to generate.