hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_counter.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/div64.h>
45 #include <asm/timex.h>
46 #include <asm/io.h>
47
48 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
49
50 EXPORT_SYMBOL(jiffies_64);
51
52 /*
53 * per-CPU timer vector definitions:
54 */
55 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57 #define TVN_SIZE (1 << TVN_BITS)
58 #define TVR_SIZE (1 << TVR_BITS)
59 #define TVN_MASK (TVN_SIZE - 1)
60 #define TVR_MASK (TVR_SIZE - 1)
61
62 struct tvec {
63 struct list_head vec[TVN_SIZE];
64 };
65
66 struct tvec_root {
67 struct list_head vec[TVR_SIZE];
68 };
69
70 struct tvec_base {
71 spinlock_t lock;
72 struct timer_list *running_timer;
73 unsigned long timer_jiffies;
74 struct tvec_root tv1;
75 struct tvec tv2;
76 struct tvec tv3;
77 struct tvec tv4;
78 struct tvec tv5;
79 } ____cacheline_aligned;
80
81 struct tvec_base boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
84
85 /*
86 * Note that all tvec_bases are 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
89 */
90 #define TBASE_DEFERRABLE_FLAG (0x1)
91
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 {
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
96 }
97
98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 {
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
101 }
102
103 static inline void timer_set_deferrable(struct timer_list *timer)
104 {
105 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
106 TBASE_DEFERRABLE_FLAG));
107 }
108
109 static inline void
110 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
111 {
112 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
113 tbase_get_deferrable(timer->base));
114 }
115
116 static unsigned long round_jiffies_common(unsigned long j, int cpu,
117 bool force_up)
118 {
119 int rem;
120 unsigned long original = j;
121
122 /*
123 * We don't want all cpus firing their timers at once hitting the
124 * same lock or cachelines, so we skew each extra cpu with an extra
125 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * already did this.
127 * The skew is done by adding 3*cpunr, then round, then subtract this
128 * extra offset again.
129 */
130 j += cpu * 3;
131
132 rem = j % HZ;
133
134 /*
135 * If the target jiffie is just after a whole second (which can happen
136 * due to delays of the timer irq, long irq off times etc etc) then
137 * we should round down to the whole second, not up. Use 1/4th second
138 * as cutoff for this rounding as an extreme upper bound for this.
139 * But never round down if @force_up is set.
140 */
141 if (rem < HZ/4 && !force_up) /* round down */
142 j = j - rem;
143 else /* round up */
144 j = j - rem + HZ;
145
146 /* now that we have rounded, subtract the extra skew again */
147 j -= cpu * 3;
148
149 if (j <= jiffies) /* rounding ate our timeout entirely; */
150 return original;
151 return j;
152 }
153
154 /**
155 * __round_jiffies - function to round jiffies to a full second
156 * @j: the time in (absolute) jiffies that should be rounded
157 * @cpu: the processor number on which the timeout will happen
158 *
159 * __round_jiffies() rounds an absolute time in the future (in jiffies)
160 * up or down to (approximately) full seconds. This is useful for timers
161 * for which the exact time they fire does not matter too much, as long as
162 * they fire approximately every X seconds.
163 *
164 * By rounding these timers to whole seconds, all such timers will fire
165 * at the same time, rather than at various times spread out. The goal
166 * of this is to have the CPU wake up less, which saves power.
167 *
168 * The exact rounding is skewed for each processor to avoid all
169 * processors firing at the exact same time, which could lead
170 * to lock contention or spurious cache line bouncing.
171 *
172 * The return value is the rounded version of the @j parameter.
173 */
174 unsigned long __round_jiffies(unsigned long j, int cpu)
175 {
176 return round_jiffies_common(j, cpu, false);
177 }
178 EXPORT_SYMBOL_GPL(__round_jiffies);
179
180 /**
181 * __round_jiffies_relative - function to round jiffies to a full second
182 * @j: the time in (relative) jiffies that should be rounded
183 * @cpu: the processor number on which the timeout will happen
184 *
185 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
186 * up or down to (approximately) full seconds. This is useful for timers
187 * for which the exact time they fire does not matter too much, as long as
188 * they fire approximately every X seconds.
189 *
190 * By rounding these timers to whole seconds, all such timers will fire
191 * at the same time, rather than at various times spread out. The goal
192 * of this is to have the CPU wake up less, which saves power.
193 *
194 * The exact rounding is skewed for each processor to avoid all
195 * processors firing at the exact same time, which could lead
196 * to lock contention or spurious cache line bouncing.
197 *
198 * The return value is the rounded version of the @j parameter.
199 */
200 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
201 {
202 unsigned long j0 = jiffies;
203
204 /* Use j0 because jiffies might change while we run */
205 return round_jiffies_common(j + j0, cpu, false) - j0;
206 }
207 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
208
209 /**
210 * round_jiffies - function to round jiffies to a full second
211 * @j: the time in (absolute) jiffies that should be rounded
212 *
213 * round_jiffies() rounds an absolute time in the future (in jiffies)
214 * up or down to (approximately) full seconds. This is useful for timers
215 * for which the exact time they fire does not matter too much, as long as
216 * they fire approximately every X seconds.
217 *
218 * By rounding these timers to whole seconds, all such timers will fire
219 * at the same time, rather than at various times spread out. The goal
220 * of this is to have the CPU wake up less, which saves power.
221 *
222 * The return value is the rounded version of the @j parameter.
223 */
224 unsigned long round_jiffies(unsigned long j)
225 {
226 return round_jiffies_common(j, raw_smp_processor_id(), false);
227 }
228 EXPORT_SYMBOL_GPL(round_jiffies);
229
230 /**
231 * round_jiffies_relative - function to round jiffies to a full second
232 * @j: the time in (relative) jiffies that should be rounded
233 *
234 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
235 * up or down to (approximately) full seconds. This is useful for timers
236 * for which the exact time they fire does not matter too much, as long as
237 * they fire approximately every X seconds.
238 *
239 * By rounding these timers to whole seconds, all such timers will fire
240 * at the same time, rather than at various times spread out. The goal
241 * of this is to have the CPU wake up less, which saves power.
242 *
243 * The return value is the rounded version of the @j parameter.
244 */
245 unsigned long round_jiffies_relative(unsigned long j)
246 {
247 return __round_jiffies_relative(j, raw_smp_processor_id());
248 }
249 EXPORT_SYMBOL_GPL(round_jiffies_relative);
250
251 /**
252 * __round_jiffies_up - function to round jiffies up to a full second
253 * @j: the time in (absolute) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
255 *
256 * This is the same as __round_jiffies() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
259 * early.
260 */
261 unsigned long __round_jiffies_up(unsigned long j, int cpu)
262 {
263 return round_jiffies_common(j, cpu, true);
264 }
265 EXPORT_SYMBOL_GPL(__round_jiffies_up);
266
267 /**
268 * __round_jiffies_up_relative - function to round jiffies up to a full second
269 * @j: the time in (relative) jiffies that should be rounded
270 * @cpu: the processor number on which the timeout will happen
271 *
272 * This is the same as __round_jiffies_relative() except that it will never
273 * round down. This is useful for timeouts for which the exact time
274 * of firing does not matter too much, as long as they don't fire too
275 * early.
276 */
277 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
278 {
279 unsigned long j0 = jiffies;
280
281 /* Use j0 because jiffies might change while we run */
282 return round_jiffies_common(j + j0, cpu, true) - j0;
283 }
284 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
285
286 /**
287 * round_jiffies_up - function to round jiffies up to a full second
288 * @j: the time in (absolute) jiffies that should be rounded
289 *
290 * This is the same as round_jiffies() except that it will never
291 * round down. This is useful for timeouts for which the exact time
292 * of firing does not matter too much, as long as they don't fire too
293 * early.
294 */
295 unsigned long round_jiffies_up(unsigned long j)
296 {
297 return round_jiffies_common(j, raw_smp_processor_id(), true);
298 }
299 EXPORT_SYMBOL_GPL(round_jiffies_up);
300
301 /**
302 * round_jiffies_up_relative - function to round jiffies up to a full second
303 * @j: the time in (relative) jiffies that should be rounded
304 *
305 * This is the same as round_jiffies_relative() except that it will never
306 * round down. This is useful for timeouts for which the exact time
307 * of firing does not matter too much, as long as they don't fire too
308 * early.
309 */
310 unsigned long round_jiffies_up_relative(unsigned long j)
311 {
312 return __round_jiffies_up_relative(j, raw_smp_processor_id());
313 }
314 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
315
316
317 static inline void set_running_timer(struct tvec_base *base,
318 struct timer_list *timer)
319 {
320 #ifdef CONFIG_SMP
321 base->running_timer = timer;
322 #endif
323 }
324
325 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
326 {
327 unsigned long expires = timer->expires;
328 unsigned long idx = expires - base->timer_jiffies;
329 struct list_head *vec;
330
331 if (idx < TVR_SIZE) {
332 int i = expires & TVR_MASK;
333 vec = base->tv1.vec + i;
334 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
335 int i = (expires >> TVR_BITS) & TVN_MASK;
336 vec = base->tv2.vec + i;
337 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
338 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
339 vec = base->tv3.vec + i;
340 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
341 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
342 vec = base->tv4.vec + i;
343 } else if ((signed long) idx < 0) {
344 /*
345 * Can happen if you add a timer with expires == jiffies,
346 * or you set a timer to go off in the past
347 */
348 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
349 } else {
350 int i;
351 /* If the timeout is larger than 0xffffffff on 64-bit
352 * architectures then we use the maximum timeout:
353 */
354 if (idx > 0xffffffffUL) {
355 idx = 0xffffffffUL;
356 expires = idx + base->timer_jiffies;
357 }
358 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
359 vec = base->tv5.vec + i;
360 }
361 /*
362 * Timers are FIFO:
363 */
364 list_add_tail(&timer->entry, vec);
365 }
366
367 #ifdef CONFIG_TIMER_STATS
368 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
369 {
370 if (timer->start_site)
371 return;
372
373 timer->start_site = addr;
374 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
375 timer->start_pid = current->pid;
376 }
377
378 static void timer_stats_account_timer(struct timer_list *timer)
379 {
380 unsigned int flag = 0;
381
382 if (unlikely(tbase_get_deferrable(timer->base)))
383 flag |= TIMER_STATS_FLAG_DEFERRABLE;
384
385 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
386 timer->function, timer->start_comm, flag);
387 }
388
389 #else
390 static void timer_stats_account_timer(struct timer_list *timer) {}
391 #endif
392
393 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394
395 static struct debug_obj_descr timer_debug_descr;
396
397 /*
398 * fixup_init is called when:
399 * - an active object is initialized
400 */
401 static int timer_fixup_init(void *addr, enum debug_obj_state state)
402 {
403 struct timer_list *timer = addr;
404
405 switch (state) {
406 case ODEBUG_STATE_ACTIVE:
407 del_timer_sync(timer);
408 debug_object_init(timer, &timer_debug_descr);
409 return 1;
410 default:
411 return 0;
412 }
413 }
414
415 /*
416 * fixup_activate is called when:
417 * - an active object is activated
418 * - an unknown object is activated (might be a statically initialized object)
419 */
420 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
421 {
422 struct timer_list *timer = addr;
423
424 switch (state) {
425
426 case ODEBUG_STATE_NOTAVAILABLE:
427 /*
428 * This is not really a fixup. The timer was
429 * statically initialized. We just make sure that it
430 * is tracked in the object tracker.
431 */
432 if (timer->entry.next == NULL &&
433 timer->entry.prev == TIMER_ENTRY_STATIC) {
434 debug_object_init(timer, &timer_debug_descr);
435 debug_object_activate(timer, &timer_debug_descr);
436 return 0;
437 } else {
438 WARN_ON_ONCE(1);
439 }
440 return 0;
441
442 case ODEBUG_STATE_ACTIVE:
443 WARN_ON(1);
444
445 default:
446 return 0;
447 }
448 }
449
450 /*
451 * fixup_free is called when:
452 * - an active object is freed
453 */
454 static int timer_fixup_free(void *addr, enum debug_obj_state state)
455 {
456 struct timer_list *timer = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 del_timer_sync(timer);
461 debug_object_free(timer, &timer_debug_descr);
462 return 1;
463 default:
464 return 0;
465 }
466 }
467
468 static struct debug_obj_descr timer_debug_descr = {
469 .name = "timer_list",
470 .fixup_init = timer_fixup_init,
471 .fixup_activate = timer_fixup_activate,
472 .fixup_free = timer_fixup_free,
473 };
474
475 static inline void debug_timer_init(struct timer_list *timer)
476 {
477 debug_object_init(timer, &timer_debug_descr);
478 }
479
480 static inline void debug_timer_activate(struct timer_list *timer)
481 {
482 debug_object_activate(timer, &timer_debug_descr);
483 }
484
485 static inline void debug_timer_deactivate(struct timer_list *timer)
486 {
487 debug_object_deactivate(timer, &timer_debug_descr);
488 }
489
490 static inline void debug_timer_free(struct timer_list *timer)
491 {
492 debug_object_free(timer, &timer_debug_descr);
493 }
494
495 static void __init_timer(struct timer_list *timer,
496 const char *name,
497 struct lock_class_key *key);
498
499 void init_timer_on_stack_key(struct timer_list *timer,
500 const char *name,
501 struct lock_class_key *key)
502 {
503 debug_object_init_on_stack(timer, &timer_debug_descr);
504 __init_timer(timer, name, key);
505 }
506 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
507
508 void destroy_timer_on_stack(struct timer_list *timer)
509 {
510 debug_object_free(timer, &timer_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
513
514 #else
515 static inline void debug_timer_init(struct timer_list *timer) { }
516 static inline void debug_timer_activate(struct timer_list *timer) { }
517 static inline void debug_timer_deactivate(struct timer_list *timer) { }
518 #endif
519
520 static void __init_timer(struct timer_list *timer,
521 const char *name,
522 struct lock_class_key *key)
523 {
524 timer->entry.next = NULL;
525 timer->base = __raw_get_cpu_var(tvec_bases);
526 #ifdef CONFIG_TIMER_STATS
527 timer->start_site = NULL;
528 timer->start_pid = -1;
529 memset(timer->start_comm, 0, TASK_COMM_LEN);
530 #endif
531 lockdep_init_map(&timer->lockdep_map, name, key, 0);
532 }
533
534 /**
535 * init_timer_key - initialize a timer
536 * @timer: the timer to be initialized
537 * @name: name of the timer
538 * @key: lockdep class key of the fake lock used for tracking timer
539 * sync lock dependencies
540 *
541 * init_timer_key() must be done to a timer prior calling *any* of the
542 * other timer functions.
543 */
544 void init_timer_key(struct timer_list *timer,
545 const char *name,
546 struct lock_class_key *key)
547 {
548 debug_timer_init(timer);
549 __init_timer(timer, name, key);
550 }
551 EXPORT_SYMBOL(init_timer_key);
552
553 void init_timer_deferrable_key(struct timer_list *timer,
554 const char *name,
555 struct lock_class_key *key)
556 {
557 init_timer_key(timer, name, key);
558 timer_set_deferrable(timer);
559 }
560 EXPORT_SYMBOL(init_timer_deferrable_key);
561
562 static inline void detach_timer(struct timer_list *timer,
563 int clear_pending)
564 {
565 struct list_head *entry = &timer->entry;
566
567 debug_timer_deactivate(timer);
568
569 __list_del(entry->prev, entry->next);
570 if (clear_pending)
571 entry->next = NULL;
572 entry->prev = LIST_POISON2;
573 }
574
575 /*
576 * We are using hashed locking: holding per_cpu(tvec_bases).lock
577 * means that all timers which are tied to this base via timer->base are
578 * locked, and the base itself is locked too.
579 *
580 * So __run_timers/migrate_timers can safely modify all timers which could
581 * be found on ->tvX lists.
582 *
583 * When the timer's base is locked, and the timer removed from list, it is
584 * possible to set timer->base = NULL and drop the lock: the timer remains
585 * locked.
586 */
587 static struct tvec_base *lock_timer_base(struct timer_list *timer,
588 unsigned long *flags)
589 __acquires(timer->base->lock)
590 {
591 struct tvec_base *base;
592
593 for (;;) {
594 struct tvec_base *prelock_base = timer->base;
595 base = tbase_get_base(prelock_base);
596 if (likely(base != NULL)) {
597 spin_lock_irqsave(&base->lock, *flags);
598 if (likely(prelock_base == timer->base))
599 return base;
600 /* The timer has migrated to another CPU */
601 spin_unlock_irqrestore(&base->lock, *flags);
602 }
603 cpu_relax();
604 }
605 }
606
607 static inline int
608 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
609 {
610 struct tvec_base *base, *new_base;
611 unsigned long flags;
612 int ret;
613
614 ret = 0;
615
616 timer_stats_timer_set_start_info(timer);
617 BUG_ON(!timer->function);
618
619 base = lock_timer_base(timer, &flags);
620
621 if (timer_pending(timer)) {
622 detach_timer(timer, 0);
623 ret = 1;
624 } else {
625 if (pending_only)
626 goto out_unlock;
627 }
628
629 debug_timer_activate(timer);
630
631 new_base = __get_cpu_var(tvec_bases);
632
633 if (base != new_base) {
634 /*
635 * We are trying to schedule the timer on the local CPU.
636 * However we can't change timer's base while it is running,
637 * otherwise del_timer_sync() can't detect that the timer's
638 * handler yet has not finished. This also guarantees that
639 * the timer is serialized wrt itself.
640 */
641 if (likely(base->running_timer != timer)) {
642 /* See the comment in lock_timer_base() */
643 timer_set_base(timer, NULL);
644 spin_unlock(&base->lock);
645 base = new_base;
646 spin_lock(&base->lock);
647 timer_set_base(timer, base);
648 }
649 }
650
651 timer->expires = expires;
652 internal_add_timer(base, timer);
653
654 out_unlock:
655 spin_unlock_irqrestore(&base->lock, flags);
656
657 return ret;
658 }
659
660 /**
661 * mod_timer_pending - modify a pending timer's timeout
662 * @timer: the pending timer to be modified
663 * @expires: new timeout in jiffies
664 *
665 * mod_timer_pending() is the same for pending timers as mod_timer(),
666 * but will not re-activate and modify already deleted timers.
667 *
668 * It is useful for unserialized use of timers.
669 */
670 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
671 {
672 return __mod_timer(timer, expires, true);
673 }
674 EXPORT_SYMBOL(mod_timer_pending);
675
676 /**
677 * mod_timer - modify a timer's timeout
678 * @timer: the timer to be modified
679 * @expires: new timeout in jiffies
680 *
681 * mod_timer() is a more efficient way to update the expire field of an
682 * active timer (if the timer is inactive it will be activated)
683 *
684 * mod_timer(timer, expires) is equivalent to:
685 *
686 * del_timer(timer); timer->expires = expires; add_timer(timer);
687 *
688 * Note that if there are multiple unserialized concurrent users of the
689 * same timer, then mod_timer() is the only safe way to modify the timeout,
690 * since add_timer() cannot modify an already running timer.
691 *
692 * The function returns whether it has modified a pending timer or not.
693 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
694 * active timer returns 1.)
695 */
696 int mod_timer(struct timer_list *timer, unsigned long expires)
697 {
698 /*
699 * This is a common optimization triggered by the
700 * networking code - if the timer is re-modified
701 * to be the same thing then just return:
702 */
703 if (timer->expires == expires && timer_pending(timer))
704 return 1;
705
706 return __mod_timer(timer, expires, false);
707 }
708 EXPORT_SYMBOL(mod_timer);
709
710 /**
711 * add_timer - start a timer
712 * @timer: the timer to be added
713 *
714 * The kernel will do a ->function(->data) callback from the
715 * timer interrupt at the ->expires point in the future. The
716 * current time is 'jiffies'.
717 *
718 * The timer's ->expires, ->function (and if the handler uses it, ->data)
719 * fields must be set prior calling this function.
720 *
721 * Timers with an ->expires field in the past will be executed in the next
722 * timer tick.
723 */
724 void add_timer(struct timer_list *timer)
725 {
726 BUG_ON(timer_pending(timer));
727 mod_timer(timer, timer->expires);
728 }
729 EXPORT_SYMBOL(add_timer);
730
731 /**
732 * add_timer_on - start a timer on a particular CPU
733 * @timer: the timer to be added
734 * @cpu: the CPU to start it on
735 *
736 * This is not very scalable on SMP. Double adds are not possible.
737 */
738 void add_timer_on(struct timer_list *timer, int cpu)
739 {
740 struct tvec_base *base = per_cpu(tvec_bases, cpu);
741 unsigned long flags;
742
743 timer_stats_timer_set_start_info(timer);
744 BUG_ON(timer_pending(timer) || !timer->function);
745 spin_lock_irqsave(&base->lock, flags);
746 timer_set_base(timer, base);
747 debug_timer_activate(timer);
748 internal_add_timer(base, timer);
749 /*
750 * Check whether the other CPU is idle and needs to be
751 * triggered to reevaluate the timer wheel when nohz is
752 * active. We are protected against the other CPU fiddling
753 * with the timer by holding the timer base lock. This also
754 * makes sure that a CPU on the way to idle can not evaluate
755 * the timer wheel.
756 */
757 wake_up_idle_cpu(cpu);
758 spin_unlock_irqrestore(&base->lock, flags);
759 }
760 EXPORT_SYMBOL_GPL(add_timer_on);
761
762 /**
763 * del_timer - deactive a timer.
764 * @timer: the timer to be deactivated
765 *
766 * del_timer() deactivates a timer - this works on both active and inactive
767 * timers.
768 *
769 * The function returns whether it has deactivated a pending timer or not.
770 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
771 * active timer returns 1.)
772 */
773 int del_timer(struct timer_list *timer)
774 {
775 struct tvec_base *base;
776 unsigned long flags;
777 int ret = 0;
778
779 timer_stats_timer_clear_start_info(timer);
780 if (timer_pending(timer)) {
781 base = lock_timer_base(timer, &flags);
782 if (timer_pending(timer)) {
783 detach_timer(timer, 1);
784 ret = 1;
785 }
786 spin_unlock_irqrestore(&base->lock, flags);
787 }
788
789 return ret;
790 }
791 EXPORT_SYMBOL(del_timer);
792
793 #ifdef CONFIG_SMP
794 /**
795 * try_to_del_timer_sync - Try to deactivate a timer
796 * @timer: timer do del
797 *
798 * This function tries to deactivate a timer. Upon successful (ret >= 0)
799 * exit the timer is not queued and the handler is not running on any CPU.
800 *
801 * It must not be called from interrupt contexts.
802 */
803 int try_to_del_timer_sync(struct timer_list *timer)
804 {
805 struct tvec_base *base;
806 unsigned long flags;
807 int ret = -1;
808
809 base = lock_timer_base(timer, &flags);
810
811 if (base->running_timer == timer)
812 goto out;
813
814 ret = 0;
815 if (timer_pending(timer)) {
816 detach_timer(timer, 1);
817 ret = 1;
818 }
819 out:
820 spin_unlock_irqrestore(&base->lock, flags);
821
822 return ret;
823 }
824 EXPORT_SYMBOL(try_to_del_timer_sync);
825
826 /**
827 * del_timer_sync - deactivate a timer and wait for the handler to finish.
828 * @timer: the timer to be deactivated
829 *
830 * This function only differs from del_timer() on SMP: besides deactivating
831 * the timer it also makes sure the handler has finished executing on other
832 * CPUs.
833 *
834 * Synchronization rules: Callers must prevent restarting of the timer,
835 * otherwise this function is meaningless. It must not be called from
836 * interrupt contexts. The caller must not hold locks which would prevent
837 * completion of the timer's handler. The timer's handler must not call
838 * add_timer_on(). Upon exit the timer is not queued and the handler is
839 * not running on any CPU.
840 *
841 * The function returns whether it has deactivated a pending timer or not.
842 */
843 int del_timer_sync(struct timer_list *timer)
844 {
845 #ifdef CONFIG_LOCKDEP
846 unsigned long flags;
847
848 local_irq_save(flags);
849 lock_map_acquire(&timer->lockdep_map);
850 lock_map_release(&timer->lockdep_map);
851 local_irq_restore(flags);
852 #endif
853
854 for (;;) {
855 int ret = try_to_del_timer_sync(timer);
856 if (ret >= 0)
857 return ret;
858 cpu_relax();
859 }
860 }
861 EXPORT_SYMBOL(del_timer_sync);
862 #endif
863
864 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
865 {
866 /* cascade all the timers from tv up one level */
867 struct timer_list *timer, *tmp;
868 struct list_head tv_list;
869
870 list_replace_init(tv->vec + index, &tv_list);
871
872 /*
873 * We are removing _all_ timers from the list, so we
874 * don't have to detach them individually.
875 */
876 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
877 BUG_ON(tbase_get_base(timer->base) != base);
878 internal_add_timer(base, timer);
879 }
880
881 return index;
882 }
883
884 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
885
886 /**
887 * __run_timers - run all expired timers (if any) on this CPU.
888 * @base: the timer vector to be processed.
889 *
890 * This function cascades all vectors and executes all expired timer
891 * vectors.
892 */
893 static inline void __run_timers(struct tvec_base *base)
894 {
895 struct timer_list *timer;
896
897 spin_lock_irq(&base->lock);
898 while (time_after_eq(jiffies, base->timer_jiffies)) {
899 struct list_head work_list;
900 struct list_head *head = &work_list;
901 int index = base->timer_jiffies & TVR_MASK;
902
903 /*
904 * Cascade timers:
905 */
906 if (!index &&
907 (!cascade(base, &base->tv2, INDEX(0))) &&
908 (!cascade(base, &base->tv3, INDEX(1))) &&
909 !cascade(base, &base->tv4, INDEX(2)))
910 cascade(base, &base->tv5, INDEX(3));
911 ++base->timer_jiffies;
912 list_replace_init(base->tv1.vec + index, &work_list);
913 while (!list_empty(head)) {
914 void (*fn)(unsigned long);
915 unsigned long data;
916
917 timer = list_first_entry(head, struct timer_list,entry);
918 fn = timer->function;
919 data = timer->data;
920
921 timer_stats_account_timer(timer);
922
923 set_running_timer(base, timer);
924 detach_timer(timer, 1);
925
926 spin_unlock_irq(&base->lock);
927 {
928 int preempt_count = preempt_count();
929
930 #ifdef CONFIG_LOCKDEP
931 /*
932 * It is permissible to free the timer from
933 * inside the function that is called from
934 * it, this we need to take into account for
935 * lockdep too. To avoid bogus "held lock
936 * freed" warnings as well as problems when
937 * looking into timer->lockdep_map, make a
938 * copy and use that here.
939 */
940 struct lockdep_map lockdep_map =
941 timer->lockdep_map;
942 #endif
943 /*
944 * Couple the lock chain with the lock chain at
945 * del_timer_sync() by acquiring the lock_map
946 * around the fn() call here and in
947 * del_timer_sync().
948 */
949 lock_map_acquire(&lockdep_map);
950
951 fn(data);
952
953 lock_map_release(&lockdep_map);
954
955 if (preempt_count != preempt_count()) {
956 printk(KERN_ERR "huh, entered %p "
957 "with preempt_count %08x, exited"
958 " with %08x?\n",
959 fn, preempt_count,
960 preempt_count());
961 BUG();
962 }
963 }
964 spin_lock_irq(&base->lock);
965 }
966 }
967 set_running_timer(base, NULL);
968 spin_unlock_irq(&base->lock);
969 }
970
971 #ifdef CONFIG_NO_HZ
972 /*
973 * Find out when the next timer event is due to happen. This
974 * is used on S/390 to stop all activity when a cpus is idle.
975 * This functions needs to be called disabled.
976 */
977 static unsigned long __next_timer_interrupt(struct tvec_base *base)
978 {
979 unsigned long timer_jiffies = base->timer_jiffies;
980 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
981 int index, slot, array, found = 0;
982 struct timer_list *nte;
983 struct tvec *varray[4];
984
985 /* Look for timer events in tv1. */
986 index = slot = timer_jiffies & TVR_MASK;
987 do {
988 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
989 if (tbase_get_deferrable(nte->base))
990 continue;
991
992 found = 1;
993 expires = nte->expires;
994 /* Look at the cascade bucket(s)? */
995 if (!index || slot < index)
996 goto cascade;
997 return expires;
998 }
999 slot = (slot + 1) & TVR_MASK;
1000 } while (slot != index);
1001
1002 cascade:
1003 /* Calculate the next cascade event */
1004 if (index)
1005 timer_jiffies += TVR_SIZE - index;
1006 timer_jiffies >>= TVR_BITS;
1007
1008 /* Check tv2-tv5. */
1009 varray[0] = &base->tv2;
1010 varray[1] = &base->tv3;
1011 varray[2] = &base->tv4;
1012 varray[3] = &base->tv5;
1013
1014 for (array = 0; array < 4; array++) {
1015 struct tvec *varp = varray[array];
1016
1017 index = slot = timer_jiffies & TVN_MASK;
1018 do {
1019 list_for_each_entry(nte, varp->vec + slot, entry) {
1020 found = 1;
1021 if (time_before(nte->expires, expires))
1022 expires = nte->expires;
1023 }
1024 /*
1025 * Do we still search for the first timer or are
1026 * we looking up the cascade buckets ?
1027 */
1028 if (found) {
1029 /* Look at the cascade bucket(s)? */
1030 if (!index || slot < index)
1031 break;
1032 return expires;
1033 }
1034 slot = (slot + 1) & TVN_MASK;
1035 } while (slot != index);
1036
1037 if (index)
1038 timer_jiffies += TVN_SIZE - index;
1039 timer_jiffies >>= TVN_BITS;
1040 }
1041 return expires;
1042 }
1043
1044 /*
1045 * Check, if the next hrtimer event is before the next timer wheel
1046 * event:
1047 */
1048 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1049 unsigned long expires)
1050 {
1051 ktime_t hr_delta = hrtimer_get_next_event();
1052 struct timespec tsdelta;
1053 unsigned long delta;
1054
1055 if (hr_delta.tv64 == KTIME_MAX)
1056 return expires;
1057
1058 /*
1059 * Expired timer available, let it expire in the next tick
1060 */
1061 if (hr_delta.tv64 <= 0)
1062 return now + 1;
1063
1064 tsdelta = ktime_to_timespec(hr_delta);
1065 delta = timespec_to_jiffies(&tsdelta);
1066
1067 /*
1068 * Limit the delta to the max value, which is checked in
1069 * tick_nohz_stop_sched_tick():
1070 */
1071 if (delta > NEXT_TIMER_MAX_DELTA)
1072 delta = NEXT_TIMER_MAX_DELTA;
1073
1074 /*
1075 * Take rounding errors in to account and make sure, that it
1076 * expires in the next tick. Otherwise we go into an endless
1077 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1078 * the timer softirq
1079 */
1080 if (delta < 1)
1081 delta = 1;
1082 now += delta;
1083 if (time_before(now, expires))
1084 return now;
1085 return expires;
1086 }
1087
1088 /**
1089 * get_next_timer_interrupt - return the jiffy of the next pending timer
1090 * @now: current time (in jiffies)
1091 */
1092 unsigned long get_next_timer_interrupt(unsigned long now)
1093 {
1094 struct tvec_base *base = __get_cpu_var(tvec_bases);
1095 unsigned long expires;
1096
1097 spin_lock(&base->lock);
1098 expires = __next_timer_interrupt(base);
1099 spin_unlock(&base->lock);
1100
1101 if (time_before_eq(expires, now))
1102 return now;
1103
1104 return cmp_next_hrtimer_event(now, expires);
1105 }
1106 #endif
1107
1108 /*
1109 * Called from the timer interrupt handler to charge one tick to the current
1110 * process. user_tick is 1 if the tick is user time, 0 for system.
1111 */
1112 void update_process_times(int user_tick)
1113 {
1114 struct task_struct *p = current;
1115 int cpu = smp_processor_id();
1116
1117 /* Note: this timer irq context must be accounted for as well. */
1118 account_process_tick(p, user_tick);
1119 run_local_timers();
1120 if (rcu_pending(cpu))
1121 rcu_check_callbacks(cpu, user_tick);
1122 printk_tick();
1123 scheduler_tick();
1124 run_posix_cpu_timers(p);
1125 }
1126
1127 /*
1128 * This function runs timers and the timer-tq in bottom half context.
1129 */
1130 static void run_timer_softirq(struct softirq_action *h)
1131 {
1132 struct tvec_base *base = __get_cpu_var(tvec_bases);
1133
1134 perf_counter_do_pending();
1135
1136 hrtimer_run_pending();
1137
1138 if (time_after_eq(jiffies, base->timer_jiffies))
1139 __run_timers(base);
1140 }
1141
1142 /*
1143 * Called by the local, per-CPU timer interrupt on SMP.
1144 */
1145 void run_local_timers(void)
1146 {
1147 hrtimer_run_queues();
1148 raise_softirq(TIMER_SOFTIRQ);
1149 softlockup_tick();
1150 }
1151
1152 /*
1153 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1154 * without sampling the sequence number in xtime_lock.
1155 * jiffies is defined in the linker script...
1156 */
1157
1158 void do_timer(unsigned long ticks)
1159 {
1160 jiffies_64 += ticks;
1161 update_wall_time();
1162 calc_global_load();
1163 }
1164
1165 #ifdef __ARCH_WANT_SYS_ALARM
1166
1167 /*
1168 * For backwards compatibility? This can be done in libc so Alpha
1169 * and all newer ports shouldn't need it.
1170 */
1171 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1172 {
1173 return alarm_setitimer(seconds);
1174 }
1175
1176 #endif
1177
1178 #ifndef __alpha__
1179
1180 /*
1181 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1182 * should be moved into arch/i386 instead?
1183 */
1184
1185 /**
1186 * sys_getpid - return the thread group id of the current process
1187 *
1188 * Note, despite the name, this returns the tgid not the pid. The tgid and
1189 * the pid are identical unless CLONE_THREAD was specified on clone() in
1190 * which case the tgid is the same in all threads of the same group.
1191 *
1192 * This is SMP safe as current->tgid does not change.
1193 */
1194 SYSCALL_DEFINE0(getpid)
1195 {
1196 return task_tgid_vnr(current);
1197 }
1198
1199 /*
1200 * Accessing ->real_parent is not SMP-safe, it could
1201 * change from under us. However, we can use a stale
1202 * value of ->real_parent under rcu_read_lock(), see
1203 * release_task()->call_rcu(delayed_put_task_struct).
1204 */
1205 SYSCALL_DEFINE0(getppid)
1206 {
1207 int pid;
1208
1209 rcu_read_lock();
1210 pid = task_tgid_vnr(current->real_parent);
1211 rcu_read_unlock();
1212
1213 return pid;
1214 }
1215
1216 SYSCALL_DEFINE0(getuid)
1217 {
1218 /* Only we change this so SMP safe */
1219 return current_uid();
1220 }
1221
1222 SYSCALL_DEFINE0(geteuid)
1223 {
1224 /* Only we change this so SMP safe */
1225 return current_euid();
1226 }
1227
1228 SYSCALL_DEFINE0(getgid)
1229 {
1230 /* Only we change this so SMP safe */
1231 return current_gid();
1232 }
1233
1234 SYSCALL_DEFINE0(getegid)
1235 {
1236 /* Only we change this so SMP safe */
1237 return current_egid();
1238 }
1239
1240 #endif
1241
1242 static void process_timeout(unsigned long __data)
1243 {
1244 wake_up_process((struct task_struct *)__data);
1245 }
1246
1247 /**
1248 * schedule_timeout - sleep until timeout
1249 * @timeout: timeout value in jiffies
1250 *
1251 * Make the current task sleep until @timeout jiffies have
1252 * elapsed. The routine will return immediately unless
1253 * the current task state has been set (see set_current_state()).
1254 *
1255 * You can set the task state as follows -
1256 *
1257 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1258 * pass before the routine returns. The routine will return 0
1259 *
1260 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1261 * delivered to the current task. In this case the remaining time
1262 * in jiffies will be returned, or 0 if the timer expired in time
1263 *
1264 * The current task state is guaranteed to be TASK_RUNNING when this
1265 * routine returns.
1266 *
1267 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1268 * the CPU away without a bound on the timeout. In this case the return
1269 * value will be %MAX_SCHEDULE_TIMEOUT.
1270 *
1271 * In all cases the return value is guaranteed to be non-negative.
1272 */
1273 signed long __sched schedule_timeout(signed long timeout)
1274 {
1275 struct timer_list timer;
1276 unsigned long expire;
1277
1278 switch (timeout)
1279 {
1280 case MAX_SCHEDULE_TIMEOUT:
1281 /*
1282 * These two special cases are useful to be comfortable
1283 * in the caller. Nothing more. We could take
1284 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1285 * but I' d like to return a valid offset (>=0) to allow
1286 * the caller to do everything it want with the retval.
1287 */
1288 schedule();
1289 goto out;
1290 default:
1291 /*
1292 * Another bit of PARANOID. Note that the retval will be
1293 * 0 since no piece of kernel is supposed to do a check
1294 * for a negative retval of schedule_timeout() (since it
1295 * should never happens anyway). You just have the printk()
1296 * that will tell you if something is gone wrong and where.
1297 */
1298 if (timeout < 0) {
1299 printk(KERN_ERR "schedule_timeout: wrong timeout "
1300 "value %lx\n", timeout);
1301 dump_stack();
1302 current->state = TASK_RUNNING;
1303 goto out;
1304 }
1305 }
1306
1307 expire = timeout + jiffies;
1308
1309 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1310 __mod_timer(&timer, expire, false);
1311 schedule();
1312 del_singleshot_timer_sync(&timer);
1313
1314 /* Remove the timer from the object tracker */
1315 destroy_timer_on_stack(&timer);
1316
1317 timeout = expire - jiffies;
1318
1319 out:
1320 return timeout < 0 ? 0 : timeout;
1321 }
1322 EXPORT_SYMBOL(schedule_timeout);
1323
1324 /*
1325 * We can use __set_current_state() here because schedule_timeout() calls
1326 * schedule() unconditionally.
1327 */
1328 signed long __sched schedule_timeout_interruptible(signed long timeout)
1329 {
1330 __set_current_state(TASK_INTERRUPTIBLE);
1331 return schedule_timeout(timeout);
1332 }
1333 EXPORT_SYMBOL(schedule_timeout_interruptible);
1334
1335 signed long __sched schedule_timeout_killable(signed long timeout)
1336 {
1337 __set_current_state(TASK_KILLABLE);
1338 return schedule_timeout(timeout);
1339 }
1340 EXPORT_SYMBOL(schedule_timeout_killable);
1341
1342 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1343 {
1344 __set_current_state(TASK_UNINTERRUPTIBLE);
1345 return schedule_timeout(timeout);
1346 }
1347 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1348
1349 /* Thread ID - the internal kernel "pid" */
1350 SYSCALL_DEFINE0(gettid)
1351 {
1352 return task_pid_vnr(current);
1353 }
1354
1355 /**
1356 * do_sysinfo - fill in sysinfo struct
1357 * @info: pointer to buffer to fill
1358 */
1359 int do_sysinfo(struct sysinfo *info)
1360 {
1361 unsigned long mem_total, sav_total;
1362 unsigned int mem_unit, bitcount;
1363 struct timespec tp;
1364
1365 memset(info, 0, sizeof(struct sysinfo));
1366
1367 ktime_get_ts(&tp);
1368 monotonic_to_bootbased(&tp);
1369 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1370
1371 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1372
1373 info->procs = nr_threads;
1374
1375 si_meminfo(info);
1376 si_swapinfo(info);
1377
1378 /*
1379 * If the sum of all the available memory (i.e. ram + swap)
1380 * is less than can be stored in a 32 bit unsigned long then
1381 * we can be binary compatible with 2.2.x kernels. If not,
1382 * well, in that case 2.2.x was broken anyways...
1383 *
1384 * -Erik Andersen <andersee@debian.org>
1385 */
1386
1387 mem_total = info->totalram + info->totalswap;
1388 if (mem_total < info->totalram || mem_total < info->totalswap)
1389 goto out;
1390 bitcount = 0;
1391 mem_unit = info->mem_unit;
1392 while (mem_unit > 1) {
1393 bitcount++;
1394 mem_unit >>= 1;
1395 sav_total = mem_total;
1396 mem_total <<= 1;
1397 if (mem_total < sav_total)
1398 goto out;
1399 }
1400
1401 /*
1402 * If mem_total did not overflow, multiply all memory values by
1403 * info->mem_unit and set it to 1. This leaves things compatible
1404 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1405 * kernels...
1406 */
1407
1408 info->mem_unit = 1;
1409 info->totalram <<= bitcount;
1410 info->freeram <<= bitcount;
1411 info->sharedram <<= bitcount;
1412 info->bufferram <<= bitcount;
1413 info->totalswap <<= bitcount;
1414 info->freeswap <<= bitcount;
1415 info->totalhigh <<= bitcount;
1416 info->freehigh <<= bitcount;
1417
1418 out:
1419 return 0;
1420 }
1421
1422 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1423 {
1424 struct sysinfo val;
1425
1426 do_sysinfo(&val);
1427
1428 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1429 return -EFAULT;
1430
1431 return 0;
1432 }
1433
1434 static int __cpuinit init_timers_cpu(int cpu)
1435 {
1436 int j;
1437 struct tvec_base *base;
1438 static char __cpuinitdata tvec_base_done[NR_CPUS];
1439
1440 if (!tvec_base_done[cpu]) {
1441 static char boot_done;
1442
1443 if (boot_done) {
1444 /*
1445 * The APs use this path later in boot
1446 */
1447 base = kmalloc_node(sizeof(*base),
1448 GFP_KERNEL | __GFP_ZERO,
1449 cpu_to_node(cpu));
1450 if (!base)
1451 return -ENOMEM;
1452
1453 /* Make sure that tvec_base is 2 byte aligned */
1454 if (tbase_get_deferrable(base)) {
1455 WARN_ON(1);
1456 kfree(base);
1457 return -ENOMEM;
1458 }
1459 per_cpu(tvec_bases, cpu) = base;
1460 } else {
1461 /*
1462 * This is for the boot CPU - we use compile-time
1463 * static initialisation because per-cpu memory isn't
1464 * ready yet and because the memory allocators are not
1465 * initialised either.
1466 */
1467 boot_done = 1;
1468 base = &boot_tvec_bases;
1469 }
1470 tvec_base_done[cpu] = 1;
1471 } else {
1472 base = per_cpu(tvec_bases, cpu);
1473 }
1474
1475 spin_lock_init(&base->lock);
1476
1477 for (j = 0; j < TVN_SIZE; j++) {
1478 INIT_LIST_HEAD(base->tv5.vec + j);
1479 INIT_LIST_HEAD(base->tv4.vec + j);
1480 INIT_LIST_HEAD(base->tv3.vec + j);
1481 INIT_LIST_HEAD(base->tv2.vec + j);
1482 }
1483 for (j = 0; j < TVR_SIZE; j++)
1484 INIT_LIST_HEAD(base->tv1.vec + j);
1485
1486 base->timer_jiffies = jiffies;
1487 return 0;
1488 }
1489
1490 #ifdef CONFIG_HOTPLUG_CPU
1491 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1492 {
1493 struct timer_list *timer;
1494
1495 while (!list_empty(head)) {
1496 timer = list_first_entry(head, struct timer_list, entry);
1497 detach_timer(timer, 0);
1498 timer_set_base(timer, new_base);
1499 internal_add_timer(new_base, timer);
1500 }
1501 }
1502
1503 static void __cpuinit migrate_timers(int cpu)
1504 {
1505 struct tvec_base *old_base;
1506 struct tvec_base *new_base;
1507 int i;
1508
1509 BUG_ON(cpu_online(cpu));
1510 old_base = per_cpu(tvec_bases, cpu);
1511 new_base = get_cpu_var(tvec_bases);
1512 /*
1513 * The caller is globally serialized and nobody else
1514 * takes two locks at once, deadlock is not possible.
1515 */
1516 spin_lock_irq(&new_base->lock);
1517 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1518
1519 BUG_ON(old_base->running_timer);
1520
1521 for (i = 0; i < TVR_SIZE; i++)
1522 migrate_timer_list(new_base, old_base->tv1.vec + i);
1523 for (i = 0; i < TVN_SIZE; i++) {
1524 migrate_timer_list(new_base, old_base->tv2.vec + i);
1525 migrate_timer_list(new_base, old_base->tv3.vec + i);
1526 migrate_timer_list(new_base, old_base->tv4.vec + i);
1527 migrate_timer_list(new_base, old_base->tv5.vec + i);
1528 }
1529
1530 spin_unlock(&old_base->lock);
1531 spin_unlock_irq(&new_base->lock);
1532 put_cpu_var(tvec_bases);
1533 }
1534 #endif /* CONFIG_HOTPLUG_CPU */
1535
1536 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1537 unsigned long action, void *hcpu)
1538 {
1539 long cpu = (long)hcpu;
1540 switch(action) {
1541 case CPU_UP_PREPARE:
1542 case CPU_UP_PREPARE_FROZEN:
1543 if (init_timers_cpu(cpu) < 0)
1544 return NOTIFY_BAD;
1545 break;
1546 #ifdef CONFIG_HOTPLUG_CPU
1547 case CPU_DEAD:
1548 case CPU_DEAD_FROZEN:
1549 migrate_timers(cpu);
1550 break;
1551 #endif
1552 default:
1553 break;
1554 }
1555 return NOTIFY_OK;
1556 }
1557
1558 static struct notifier_block __cpuinitdata timers_nb = {
1559 .notifier_call = timer_cpu_notify,
1560 };
1561
1562
1563 void __init init_timers(void)
1564 {
1565 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1566 (void *)(long)smp_processor_id());
1567
1568 init_timer_stats();
1569
1570 BUG_ON(err == NOTIFY_BAD);
1571 register_cpu_notifier(&timers_nb);
1572 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1573 }
1574
1575 /**
1576 * msleep - sleep safely even with waitqueue interruptions
1577 * @msecs: Time in milliseconds to sleep for
1578 */
1579 void msleep(unsigned int msecs)
1580 {
1581 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1582
1583 while (timeout)
1584 timeout = schedule_timeout_uninterruptible(timeout);
1585 }
1586
1587 EXPORT_SYMBOL(msleep);
1588
1589 /**
1590 * msleep_interruptible - sleep waiting for signals
1591 * @msecs: Time in milliseconds to sleep for
1592 */
1593 unsigned long msleep_interruptible(unsigned int msecs)
1594 {
1595 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1596
1597 while (timeout && !signal_pending(current))
1598 timeout = schedule_timeout_interruptible(timeout);
1599 return jiffies_to_msecs(timeout);
1600 }
1601
1602 EXPORT_SYMBOL(msleep_interruptible);
This page took 0.111012 seconds and 5 git commands to generate.