Merge branch 'irq/numa' into x86/mce3
[deliverable/linux.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
45 #include <asm/io.h>
46
47 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49 EXPORT_SYMBOL(jiffies_64);
50
51 /*
52 * per-CPU timer vector definitions:
53 */
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
60
61 struct tvec {
62 struct list_head vec[TVN_SIZE];
63 };
64
65 struct tvec_root {
66 struct list_head vec[TVR_SIZE];
67 };
68
69 struct tvec_base {
70 spinlock_t lock;
71 struct timer_list *running_timer;
72 unsigned long timer_jiffies;
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
78 } ____cacheline_aligned;
79
80 struct tvec_base boot_tvec_bases;
81 EXPORT_SYMBOL(boot_tvec_bases);
82 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
83
84 /*
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89 #define TBASE_DEFERRABLE_FLAG (0x1)
90
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93 {
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 }
96
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98 {
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 }
101
102 static inline void timer_set_deferrable(struct timer_list *timer)
103 {
104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
105 TBASE_DEFERRABLE_FLAG));
106 }
107
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 {
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
113 }
114
115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
117 {
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
139 */
140 if (rem < HZ/4 && !force_up) /* round down */
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151 }
152
153 /**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173 unsigned long __round_jiffies(unsigned long j, int cpu)
174 {
175 return round_jiffies_common(j, cpu, false);
176 }
177 EXPORT_SYMBOL_GPL(__round_jiffies);
178
179 /**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
197 * The return value is the rounded version of the @j parameter.
198 */
199 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200 {
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
205 }
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208 /**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
221 * The return value is the rounded version of the @j parameter.
222 */
223 unsigned long round_jiffies(unsigned long j)
224 {
225 return round_jiffies_common(j, raw_smp_processor_id(), false);
226 }
227 EXPORT_SYMBOL_GPL(round_jiffies);
228
229 /**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
242 * The return value is the rounded version of the @j parameter.
243 */
244 unsigned long round_jiffies_relative(unsigned long j)
245 {
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247 }
248 EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
250 /**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260 unsigned long __round_jiffies_up(unsigned long j, int cpu)
261 {
262 return round_jiffies_common(j, cpu, true);
263 }
264 EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266 /**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277 {
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282 }
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285 /**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294 unsigned long round_jiffies_up(unsigned long j)
295 {
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297 }
298 EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300 /**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309 unsigned long round_jiffies_up_relative(unsigned long j)
310 {
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312 }
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
315
316 static inline void set_running_timer(struct tvec_base *base,
317 struct timer_list *timer)
318 {
319 #ifdef CONFIG_SMP
320 base->running_timer = timer;
321 #endif
322 }
323
324 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
325 {
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
329
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
343 /*
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
346 */
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
352 */
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
356 }
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
359 }
360 /*
361 * Timers are FIFO:
362 */
363 list_add_tail(&timer->entry, vec);
364 }
365
366 #ifdef CONFIG_TIMER_STATS
367 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
368 {
369 if (timer->start_site)
370 return;
371
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
375 }
376
377 static void timer_stats_account_timer(struct timer_list *timer)
378 {
379 unsigned int flag = 0;
380
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
383
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
386 }
387
388 #else
389 static void timer_stats_account_timer(struct timer_list *timer) {}
390 #endif
391
392 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393
394 static struct debug_obj_descr timer_debug_descr;
395
396 /*
397 * fixup_init is called when:
398 * - an active object is initialized
399 */
400 static int timer_fixup_init(void *addr, enum debug_obj_state state)
401 {
402 struct timer_list *timer = addr;
403
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
411 }
412 }
413
414 /*
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
418 */
419 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
420 {
421 struct timer_list *timer = addr;
422
423 switch (state) {
424
425 case ODEBUG_STATE_NOTAVAILABLE:
426 /*
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
430 */
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
438 }
439 return 0;
440
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
443
444 default:
445 return 0;
446 }
447 }
448
449 /*
450 * fixup_free is called when:
451 * - an active object is freed
452 */
453 static int timer_fixup_free(void *addr, enum debug_obj_state state)
454 {
455 struct timer_list *timer = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
464 }
465 }
466
467 static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
472 };
473
474 static inline void debug_timer_init(struct timer_list *timer)
475 {
476 debug_object_init(timer, &timer_debug_descr);
477 }
478
479 static inline void debug_timer_activate(struct timer_list *timer)
480 {
481 debug_object_activate(timer, &timer_debug_descr);
482 }
483
484 static inline void debug_timer_deactivate(struct timer_list *timer)
485 {
486 debug_object_deactivate(timer, &timer_debug_descr);
487 }
488
489 static inline void debug_timer_free(struct timer_list *timer)
490 {
491 debug_object_free(timer, &timer_debug_descr);
492 }
493
494 static void __init_timer(struct timer_list *timer,
495 const char *name,
496 struct lock_class_key *key);
497
498 void init_timer_on_stack_key(struct timer_list *timer,
499 const char *name,
500 struct lock_class_key *key)
501 {
502 debug_object_init_on_stack(timer, &timer_debug_descr);
503 __init_timer(timer, name, key);
504 }
505 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
506
507 void destroy_timer_on_stack(struct timer_list *timer)
508 {
509 debug_object_free(timer, &timer_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
512
513 #else
514 static inline void debug_timer_init(struct timer_list *timer) { }
515 static inline void debug_timer_activate(struct timer_list *timer) { }
516 static inline void debug_timer_deactivate(struct timer_list *timer) { }
517 #endif
518
519 static void __init_timer(struct timer_list *timer,
520 const char *name,
521 struct lock_class_key *key)
522 {
523 timer->entry.next = NULL;
524 timer->base = __raw_get_cpu_var(tvec_bases);
525 #ifdef CONFIG_TIMER_STATS
526 timer->start_site = NULL;
527 timer->start_pid = -1;
528 memset(timer->start_comm, 0, TASK_COMM_LEN);
529 #endif
530 lockdep_init_map(&timer->lockdep_map, name, key, 0);
531 }
532
533 /**
534 * init_timer_key - initialize a timer
535 * @timer: the timer to be initialized
536 * @name: name of the timer
537 * @key: lockdep class key of the fake lock used for tracking timer
538 * sync lock dependencies
539 *
540 * init_timer_key() must be done to a timer prior calling *any* of the
541 * other timer functions.
542 */
543 void init_timer_key(struct timer_list *timer,
544 const char *name,
545 struct lock_class_key *key)
546 {
547 debug_timer_init(timer);
548 __init_timer(timer, name, key);
549 }
550 EXPORT_SYMBOL(init_timer_key);
551
552 void init_timer_deferrable_key(struct timer_list *timer,
553 const char *name,
554 struct lock_class_key *key)
555 {
556 init_timer_key(timer, name, key);
557 timer_set_deferrable(timer);
558 }
559 EXPORT_SYMBOL(init_timer_deferrable_key);
560
561 static inline void detach_timer(struct timer_list *timer,
562 int clear_pending)
563 {
564 struct list_head *entry = &timer->entry;
565
566 debug_timer_deactivate(timer);
567
568 __list_del(entry->prev, entry->next);
569 if (clear_pending)
570 entry->next = NULL;
571 entry->prev = LIST_POISON2;
572 }
573
574 /*
575 * We are using hashed locking: holding per_cpu(tvec_bases).lock
576 * means that all timers which are tied to this base via timer->base are
577 * locked, and the base itself is locked too.
578 *
579 * So __run_timers/migrate_timers can safely modify all timers which could
580 * be found on ->tvX lists.
581 *
582 * When the timer's base is locked, and the timer removed from list, it is
583 * possible to set timer->base = NULL and drop the lock: the timer remains
584 * locked.
585 */
586 static struct tvec_base *lock_timer_base(struct timer_list *timer,
587 unsigned long *flags)
588 __acquires(timer->base->lock)
589 {
590 struct tvec_base *base;
591
592 for (;;) {
593 struct tvec_base *prelock_base = timer->base;
594 base = tbase_get_base(prelock_base);
595 if (likely(base != NULL)) {
596 spin_lock_irqsave(&base->lock, *flags);
597 if (likely(prelock_base == timer->base))
598 return base;
599 /* The timer has migrated to another CPU */
600 spin_unlock_irqrestore(&base->lock, *flags);
601 }
602 cpu_relax();
603 }
604 }
605
606 static inline int
607 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
608 {
609 struct tvec_base *base, *new_base;
610 unsigned long flags;
611 int ret;
612
613 ret = 0;
614
615 timer_stats_timer_set_start_info(timer);
616 BUG_ON(!timer->function);
617
618 base = lock_timer_base(timer, &flags);
619
620 if (timer_pending(timer)) {
621 detach_timer(timer, 0);
622 ret = 1;
623 } else {
624 if (pending_only)
625 goto out_unlock;
626 }
627
628 debug_timer_activate(timer);
629
630 new_base = __get_cpu_var(tvec_bases);
631
632 if (base != new_base) {
633 /*
634 * We are trying to schedule the timer on the local CPU.
635 * However we can't change timer's base while it is running,
636 * otherwise del_timer_sync() can't detect that the timer's
637 * handler yet has not finished. This also guarantees that
638 * the timer is serialized wrt itself.
639 */
640 if (likely(base->running_timer != timer)) {
641 /* See the comment in lock_timer_base() */
642 timer_set_base(timer, NULL);
643 spin_unlock(&base->lock);
644 base = new_base;
645 spin_lock(&base->lock);
646 timer_set_base(timer, base);
647 }
648 }
649
650 timer->expires = expires;
651 internal_add_timer(base, timer);
652
653 out_unlock:
654 spin_unlock_irqrestore(&base->lock, flags);
655
656 return ret;
657 }
658
659 /**
660 * mod_timer_pending - modify a pending timer's timeout
661 * @timer: the pending timer to be modified
662 * @expires: new timeout in jiffies
663 *
664 * mod_timer_pending() is the same for pending timers as mod_timer(),
665 * but will not re-activate and modify already deleted timers.
666 *
667 * It is useful for unserialized use of timers.
668 */
669 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
670 {
671 return __mod_timer(timer, expires, true);
672 }
673 EXPORT_SYMBOL(mod_timer_pending);
674
675 /**
676 * mod_timer - modify a timer's timeout
677 * @timer: the timer to be modified
678 * @expires: new timeout in jiffies
679 *
680 * mod_timer() is a more efficient way to update the expire field of an
681 * active timer (if the timer is inactive it will be activated)
682 *
683 * mod_timer(timer, expires) is equivalent to:
684 *
685 * del_timer(timer); timer->expires = expires; add_timer(timer);
686 *
687 * Note that if there are multiple unserialized concurrent users of the
688 * same timer, then mod_timer() is the only safe way to modify the timeout,
689 * since add_timer() cannot modify an already running timer.
690 *
691 * The function returns whether it has modified a pending timer or not.
692 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
693 * active timer returns 1.)
694 */
695 int mod_timer(struct timer_list *timer, unsigned long expires)
696 {
697 /*
698 * This is a common optimization triggered by the
699 * networking code - if the timer is re-modified
700 * to be the same thing then just return:
701 */
702 if (timer->expires == expires && timer_pending(timer))
703 return 1;
704
705 return __mod_timer(timer, expires, false);
706 }
707 EXPORT_SYMBOL(mod_timer);
708
709 /**
710 * add_timer - start a timer
711 * @timer: the timer to be added
712 *
713 * The kernel will do a ->function(->data) callback from the
714 * timer interrupt at the ->expires point in the future. The
715 * current time is 'jiffies'.
716 *
717 * The timer's ->expires, ->function (and if the handler uses it, ->data)
718 * fields must be set prior calling this function.
719 *
720 * Timers with an ->expires field in the past will be executed in the next
721 * timer tick.
722 */
723 void add_timer(struct timer_list *timer)
724 {
725 BUG_ON(timer_pending(timer));
726 mod_timer(timer, timer->expires);
727 }
728 EXPORT_SYMBOL(add_timer);
729
730 /**
731 * add_timer_on - start a timer on a particular CPU
732 * @timer: the timer to be added
733 * @cpu: the CPU to start it on
734 *
735 * This is not very scalable on SMP. Double adds are not possible.
736 */
737 void add_timer_on(struct timer_list *timer, int cpu)
738 {
739 struct tvec_base *base = per_cpu(tvec_bases, cpu);
740 unsigned long flags;
741
742 timer_stats_timer_set_start_info(timer);
743 BUG_ON(timer_pending(timer) || !timer->function);
744 spin_lock_irqsave(&base->lock, flags);
745 timer_set_base(timer, base);
746 debug_timer_activate(timer);
747 internal_add_timer(base, timer);
748 /*
749 * Check whether the other CPU is idle and needs to be
750 * triggered to reevaluate the timer wheel when nohz is
751 * active. We are protected against the other CPU fiddling
752 * with the timer by holding the timer base lock. This also
753 * makes sure that a CPU on the way to idle can not evaluate
754 * the timer wheel.
755 */
756 wake_up_idle_cpu(cpu);
757 spin_unlock_irqrestore(&base->lock, flags);
758 }
759 EXPORT_SYMBOL_GPL(add_timer_on);
760
761 /**
762 * del_timer - deactive a timer.
763 * @timer: the timer to be deactivated
764 *
765 * del_timer() deactivates a timer - this works on both active and inactive
766 * timers.
767 *
768 * The function returns whether it has deactivated a pending timer or not.
769 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
770 * active timer returns 1.)
771 */
772 int del_timer(struct timer_list *timer)
773 {
774 struct tvec_base *base;
775 unsigned long flags;
776 int ret = 0;
777
778 timer_stats_timer_clear_start_info(timer);
779 if (timer_pending(timer)) {
780 base = lock_timer_base(timer, &flags);
781 if (timer_pending(timer)) {
782 detach_timer(timer, 1);
783 ret = 1;
784 }
785 spin_unlock_irqrestore(&base->lock, flags);
786 }
787
788 return ret;
789 }
790 EXPORT_SYMBOL(del_timer);
791
792 #ifdef CONFIG_SMP
793 /**
794 * try_to_del_timer_sync - Try to deactivate a timer
795 * @timer: timer do del
796 *
797 * This function tries to deactivate a timer. Upon successful (ret >= 0)
798 * exit the timer is not queued and the handler is not running on any CPU.
799 *
800 * It must not be called from interrupt contexts.
801 */
802 int try_to_del_timer_sync(struct timer_list *timer)
803 {
804 struct tvec_base *base;
805 unsigned long flags;
806 int ret = -1;
807
808 base = lock_timer_base(timer, &flags);
809
810 if (base->running_timer == timer)
811 goto out;
812
813 ret = 0;
814 if (timer_pending(timer)) {
815 detach_timer(timer, 1);
816 ret = 1;
817 }
818 out:
819 spin_unlock_irqrestore(&base->lock, flags);
820
821 return ret;
822 }
823 EXPORT_SYMBOL(try_to_del_timer_sync);
824
825 /**
826 * del_timer_sync - deactivate a timer and wait for the handler to finish.
827 * @timer: the timer to be deactivated
828 *
829 * This function only differs from del_timer() on SMP: besides deactivating
830 * the timer it also makes sure the handler has finished executing on other
831 * CPUs.
832 *
833 * Synchronization rules: Callers must prevent restarting of the timer,
834 * otherwise this function is meaningless. It must not be called from
835 * interrupt contexts. The caller must not hold locks which would prevent
836 * completion of the timer's handler. The timer's handler must not call
837 * add_timer_on(). Upon exit the timer is not queued and the handler is
838 * not running on any CPU.
839 *
840 * The function returns whether it has deactivated a pending timer or not.
841 */
842 int del_timer_sync(struct timer_list *timer)
843 {
844 #ifdef CONFIG_LOCKDEP
845 unsigned long flags;
846
847 local_irq_save(flags);
848 lock_map_acquire(&timer->lockdep_map);
849 lock_map_release(&timer->lockdep_map);
850 local_irq_restore(flags);
851 #endif
852
853 for (;;) {
854 int ret = try_to_del_timer_sync(timer);
855 if (ret >= 0)
856 return ret;
857 cpu_relax();
858 }
859 }
860 EXPORT_SYMBOL(del_timer_sync);
861 #endif
862
863 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
864 {
865 /* cascade all the timers from tv up one level */
866 struct timer_list *timer, *tmp;
867 struct list_head tv_list;
868
869 list_replace_init(tv->vec + index, &tv_list);
870
871 /*
872 * We are removing _all_ timers from the list, so we
873 * don't have to detach them individually.
874 */
875 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
876 BUG_ON(tbase_get_base(timer->base) != base);
877 internal_add_timer(base, timer);
878 }
879
880 return index;
881 }
882
883 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
884
885 /**
886 * __run_timers - run all expired timers (if any) on this CPU.
887 * @base: the timer vector to be processed.
888 *
889 * This function cascades all vectors and executes all expired timer
890 * vectors.
891 */
892 static inline void __run_timers(struct tvec_base *base)
893 {
894 struct timer_list *timer;
895
896 spin_lock_irq(&base->lock);
897 while (time_after_eq(jiffies, base->timer_jiffies)) {
898 struct list_head work_list;
899 struct list_head *head = &work_list;
900 int index = base->timer_jiffies & TVR_MASK;
901
902 /*
903 * Cascade timers:
904 */
905 if (!index &&
906 (!cascade(base, &base->tv2, INDEX(0))) &&
907 (!cascade(base, &base->tv3, INDEX(1))) &&
908 !cascade(base, &base->tv4, INDEX(2)))
909 cascade(base, &base->tv5, INDEX(3));
910 ++base->timer_jiffies;
911 list_replace_init(base->tv1.vec + index, &work_list);
912 while (!list_empty(head)) {
913 void (*fn)(unsigned long);
914 unsigned long data;
915
916 timer = list_first_entry(head, struct timer_list,entry);
917 fn = timer->function;
918 data = timer->data;
919
920 timer_stats_account_timer(timer);
921
922 set_running_timer(base, timer);
923 detach_timer(timer, 1);
924
925 spin_unlock_irq(&base->lock);
926 {
927 int preempt_count = preempt_count();
928
929 #ifdef CONFIG_LOCKDEP
930 /*
931 * It is permissible to free the timer from
932 * inside the function that is called from
933 * it, this we need to take into account for
934 * lockdep too. To avoid bogus "held lock
935 * freed" warnings as well as problems when
936 * looking into timer->lockdep_map, make a
937 * copy and use that here.
938 */
939 struct lockdep_map lockdep_map =
940 timer->lockdep_map;
941 #endif
942 /*
943 * Couple the lock chain with the lock chain at
944 * del_timer_sync() by acquiring the lock_map
945 * around the fn() call here and in
946 * del_timer_sync().
947 */
948 lock_map_acquire(&lockdep_map);
949
950 fn(data);
951
952 lock_map_release(&lockdep_map);
953
954 if (preempt_count != preempt_count()) {
955 printk(KERN_ERR "huh, entered %p "
956 "with preempt_count %08x, exited"
957 " with %08x?\n",
958 fn, preempt_count,
959 preempt_count());
960 BUG();
961 }
962 }
963 spin_lock_irq(&base->lock);
964 }
965 }
966 set_running_timer(base, NULL);
967 spin_unlock_irq(&base->lock);
968 }
969
970 #ifdef CONFIG_NO_HZ
971 /*
972 * Find out when the next timer event is due to happen. This
973 * is used on S/390 to stop all activity when a cpus is idle.
974 * This functions needs to be called disabled.
975 */
976 static unsigned long __next_timer_interrupt(struct tvec_base *base)
977 {
978 unsigned long timer_jiffies = base->timer_jiffies;
979 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
980 int index, slot, array, found = 0;
981 struct timer_list *nte;
982 struct tvec *varray[4];
983
984 /* Look for timer events in tv1. */
985 index = slot = timer_jiffies & TVR_MASK;
986 do {
987 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
988 if (tbase_get_deferrable(nte->base))
989 continue;
990
991 found = 1;
992 expires = nte->expires;
993 /* Look at the cascade bucket(s)? */
994 if (!index || slot < index)
995 goto cascade;
996 return expires;
997 }
998 slot = (slot + 1) & TVR_MASK;
999 } while (slot != index);
1000
1001 cascade:
1002 /* Calculate the next cascade event */
1003 if (index)
1004 timer_jiffies += TVR_SIZE - index;
1005 timer_jiffies >>= TVR_BITS;
1006
1007 /* Check tv2-tv5. */
1008 varray[0] = &base->tv2;
1009 varray[1] = &base->tv3;
1010 varray[2] = &base->tv4;
1011 varray[3] = &base->tv5;
1012
1013 for (array = 0; array < 4; array++) {
1014 struct tvec *varp = varray[array];
1015
1016 index = slot = timer_jiffies & TVN_MASK;
1017 do {
1018 list_for_each_entry(nte, varp->vec + slot, entry) {
1019 found = 1;
1020 if (time_before(nte->expires, expires))
1021 expires = nte->expires;
1022 }
1023 /*
1024 * Do we still search for the first timer or are
1025 * we looking up the cascade buckets ?
1026 */
1027 if (found) {
1028 /* Look at the cascade bucket(s)? */
1029 if (!index || slot < index)
1030 break;
1031 return expires;
1032 }
1033 slot = (slot + 1) & TVN_MASK;
1034 } while (slot != index);
1035
1036 if (index)
1037 timer_jiffies += TVN_SIZE - index;
1038 timer_jiffies >>= TVN_BITS;
1039 }
1040 return expires;
1041 }
1042
1043 /*
1044 * Check, if the next hrtimer event is before the next timer wheel
1045 * event:
1046 */
1047 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1048 unsigned long expires)
1049 {
1050 ktime_t hr_delta = hrtimer_get_next_event();
1051 struct timespec tsdelta;
1052 unsigned long delta;
1053
1054 if (hr_delta.tv64 == KTIME_MAX)
1055 return expires;
1056
1057 /*
1058 * Expired timer available, let it expire in the next tick
1059 */
1060 if (hr_delta.tv64 <= 0)
1061 return now + 1;
1062
1063 tsdelta = ktime_to_timespec(hr_delta);
1064 delta = timespec_to_jiffies(&tsdelta);
1065
1066 /*
1067 * Limit the delta to the max value, which is checked in
1068 * tick_nohz_stop_sched_tick():
1069 */
1070 if (delta > NEXT_TIMER_MAX_DELTA)
1071 delta = NEXT_TIMER_MAX_DELTA;
1072
1073 /*
1074 * Take rounding errors in to account and make sure, that it
1075 * expires in the next tick. Otherwise we go into an endless
1076 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1077 * the timer softirq
1078 */
1079 if (delta < 1)
1080 delta = 1;
1081 now += delta;
1082 if (time_before(now, expires))
1083 return now;
1084 return expires;
1085 }
1086
1087 /**
1088 * get_next_timer_interrupt - return the jiffy of the next pending timer
1089 * @now: current time (in jiffies)
1090 */
1091 unsigned long get_next_timer_interrupt(unsigned long now)
1092 {
1093 struct tvec_base *base = __get_cpu_var(tvec_bases);
1094 unsigned long expires;
1095
1096 spin_lock(&base->lock);
1097 expires = __next_timer_interrupt(base);
1098 spin_unlock(&base->lock);
1099
1100 if (time_before_eq(expires, now))
1101 return now;
1102
1103 return cmp_next_hrtimer_event(now, expires);
1104 }
1105 #endif
1106
1107 /*
1108 * Called from the timer interrupt handler to charge one tick to the current
1109 * process. user_tick is 1 if the tick is user time, 0 for system.
1110 */
1111 void update_process_times(int user_tick)
1112 {
1113 struct task_struct *p = current;
1114 int cpu = smp_processor_id();
1115
1116 /* Note: this timer irq context must be accounted for as well. */
1117 account_process_tick(p, user_tick);
1118 run_local_timers();
1119 if (rcu_pending(cpu))
1120 rcu_check_callbacks(cpu, user_tick);
1121 printk_tick();
1122 scheduler_tick();
1123 run_posix_cpu_timers(p);
1124 }
1125
1126 /*
1127 * Nr of active tasks - counted in fixed-point numbers
1128 */
1129 static unsigned long count_active_tasks(void)
1130 {
1131 return nr_active() * FIXED_1;
1132 }
1133
1134 /*
1135 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1136 * imply that avenrun[] is the standard name for this kind of thing.
1137 * Nothing else seems to be standardized: the fractional size etc
1138 * all seem to differ on different machines.
1139 *
1140 * Requires xtime_lock to access.
1141 */
1142 unsigned long avenrun[3];
1143
1144 EXPORT_SYMBOL(avenrun);
1145
1146 /*
1147 * calc_load - given tick count, update the avenrun load estimates.
1148 * This is called while holding a write_lock on xtime_lock.
1149 */
1150 static inline void calc_load(unsigned long ticks)
1151 {
1152 unsigned long active_tasks; /* fixed-point */
1153 static int count = LOAD_FREQ;
1154
1155 count -= ticks;
1156 if (unlikely(count < 0)) {
1157 active_tasks = count_active_tasks();
1158 do {
1159 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1160 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1161 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1162 count += LOAD_FREQ;
1163 } while (count < 0);
1164 }
1165 }
1166
1167 /*
1168 * This function runs timers and the timer-tq in bottom half context.
1169 */
1170 static void run_timer_softirq(struct softirq_action *h)
1171 {
1172 struct tvec_base *base = __get_cpu_var(tvec_bases);
1173
1174 hrtimer_run_pending();
1175
1176 if (time_after_eq(jiffies, base->timer_jiffies))
1177 __run_timers(base);
1178 }
1179
1180 /*
1181 * Called by the local, per-CPU timer interrupt on SMP.
1182 */
1183 void run_local_timers(void)
1184 {
1185 hrtimer_run_queues();
1186 raise_softirq(TIMER_SOFTIRQ);
1187 softlockup_tick();
1188 }
1189
1190 /*
1191 * Called by the timer interrupt. xtime_lock must already be taken
1192 * by the timer IRQ!
1193 */
1194 static inline void update_times(unsigned long ticks)
1195 {
1196 update_wall_time();
1197 calc_load(ticks);
1198 }
1199
1200 /*
1201 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1202 * without sampling the sequence number in xtime_lock.
1203 * jiffies is defined in the linker script...
1204 */
1205
1206 void do_timer(unsigned long ticks)
1207 {
1208 jiffies_64 += ticks;
1209 update_times(ticks);
1210 }
1211
1212 #ifdef __ARCH_WANT_SYS_ALARM
1213
1214 /*
1215 * For backwards compatibility? This can be done in libc so Alpha
1216 * and all newer ports shouldn't need it.
1217 */
1218 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1219 {
1220 return alarm_setitimer(seconds);
1221 }
1222
1223 #endif
1224
1225 #ifndef __alpha__
1226
1227 /*
1228 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1229 * should be moved into arch/i386 instead?
1230 */
1231
1232 /**
1233 * sys_getpid - return the thread group id of the current process
1234 *
1235 * Note, despite the name, this returns the tgid not the pid. The tgid and
1236 * the pid are identical unless CLONE_THREAD was specified on clone() in
1237 * which case the tgid is the same in all threads of the same group.
1238 *
1239 * This is SMP safe as current->tgid does not change.
1240 */
1241 SYSCALL_DEFINE0(getpid)
1242 {
1243 return task_tgid_vnr(current);
1244 }
1245
1246 /*
1247 * Accessing ->real_parent is not SMP-safe, it could
1248 * change from under us. However, we can use a stale
1249 * value of ->real_parent under rcu_read_lock(), see
1250 * release_task()->call_rcu(delayed_put_task_struct).
1251 */
1252 SYSCALL_DEFINE0(getppid)
1253 {
1254 int pid;
1255
1256 rcu_read_lock();
1257 pid = task_tgid_vnr(current->real_parent);
1258 rcu_read_unlock();
1259
1260 return pid;
1261 }
1262
1263 SYSCALL_DEFINE0(getuid)
1264 {
1265 /* Only we change this so SMP safe */
1266 return current_uid();
1267 }
1268
1269 SYSCALL_DEFINE0(geteuid)
1270 {
1271 /* Only we change this so SMP safe */
1272 return current_euid();
1273 }
1274
1275 SYSCALL_DEFINE0(getgid)
1276 {
1277 /* Only we change this so SMP safe */
1278 return current_gid();
1279 }
1280
1281 SYSCALL_DEFINE0(getegid)
1282 {
1283 /* Only we change this so SMP safe */
1284 return current_egid();
1285 }
1286
1287 #endif
1288
1289 static void process_timeout(unsigned long __data)
1290 {
1291 wake_up_process((struct task_struct *)__data);
1292 }
1293
1294 /**
1295 * schedule_timeout - sleep until timeout
1296 * @timeout: timeout value in jiffies
1297 *
1298 * Make the current task sleep until @timeout jiffies have
1299 * elapsed. The routine will return immediately unless
1300 * the current task state has been set (see set_current_state()).
1301 *
1302 * You can set the task state as follows -
1303 *
1304 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1305 * pass before the routine returns. The routine will return 0
1306 *
1307 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1308 * delivered to the current task. In this case the remaining time
1309 * in jiffies will be returned, or 0 if the timer expired in time
1310 *
1311 * The current task state is guaranteed to be TASK_RUNNING when this
1312 * routine returns.
1313 *
1314 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1315 * the CPU away without a bound on the timeout. In this case the return
1316 * value will be %MAX_SCHEDULE_TIMEOUT.
1317 *
1318 * In all cases the return value is guaranteed to be non-negative.
1319 */
1320 signed long __sched schedule_timeout(signed long timeout)
1321 {
1322 struct timer_list timer;
1323 unsigned long expire;
1324
1325 switch (timeout)
1326 {
1327 case MAX_SCHEDULE_TIMEOUT:
1328 /*
1329 * These two special cases are useful to be comfortable
1330 * in the caller. Nothing more. We could take
1331 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1332 * but I' d like to return a valid offset (>=0) to allow
1333 * the caller to do everything it want with the retval.
1334 */
1335 schedule();
1336 goto out;
1337 default:
1338 /*
1339 * Another bit of PARANOID. Note that the retval will be
1340 * 0 since no piece of kernel is supposed to do a check
1341 * for a negative retval of schedule_timeout() (since it
1342 * should never happens anyway). You just have the printk()
1343 * that will tell you if something is gone wrong and where.
1344 */
1345 if (timeout < 0) {
1346 printk(KERN_ERR "schedule_timeout: wrong timeout "
1347 "value %lx\n", timeout);
1348 dump_stack();
1349 current->state = TASK_RUNNING;
1350 goto out;
1351 }
1352 }
1353
1354 expire = timeout + jiffies;
1355
1356 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1357 __mod_timer(&timer, expire, false);
1358 schedule();
1359 del_singleshot_timer_sync(&timer);
1360
1361 /* Remove the timer from the object tracker */
1362 destroy_timer_on_stack(&timer);
1363
1364 timeout = expire - jiffies;
1365
1366 out:
1367 return timeout < 0 ? 0 : timeout;
1368 }
1369 EXPORT_SYMBOL(schedule_timeout);
1370
1371 /*
1372 * We can use __set_current_state() here because schedule_timeout() calls
1373 * schedule() unconditionally.
1374 */
1375 signed long __sched schedule_timeout_interruptible(signed long timeout)
1376 {
1377 __set_current_state(TASK_INTERRUPTIBLE);
1378 return schedule_timeout(timeout);
1379 }
1380 EXPORT_SYMBOL(schedule_timeout_interruptible);
1381
1382 signed long __sched schedule_timeout_killable(signed long timeout)
1383 {
1384 __set_current_state(TASK_KILLABLE);
1385 return schedule_timeout(timeout);
1386 }
1387 EXPORT_SYMBOL(schedule_timeout_killable);
1388
1389 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1390 {
1391 __set_current_state(TASK_UNINTERRUPTIBLE);
1392 return schedule_timeout(timeout);
1393 }
1394 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1395
1396 /* Thread ID - the internal kernel "pid" */
1397 SYSCALL_DEFINE0(gettid)
1398 {
1399 return task_pid_vnr(current);
1400 }
1401
1402 /**
1403 * do_sysinfo - fill in sysinfo struct
1404 * @info: pointer to buffer to fill
1405 */
1406 int do_sysinfo(struct sysinfo *info)
1407 {
1408 unsigned long mem_total, sav_total;
1409 unsigned int mem_unit, bitcount;
1410 unsigned long seq;
1411
1412 memset(info, 0, sizeof(struct sysinfo));
1413
1414 do {
1415 struct timespec tp;
1416 seq = read_seqbegin(&xtime_lock);
1417
1418 /*
1419 * This is annoying. The below is the same thing
1420 * posix_get_clock_monotonic() does, but it wants to
1421 * take the lock which we want to cover the loads stuff
1422 * too.
1423 */
1424
1425 getnstimeofday(&tp);
1426 tp.tv_sec += wall_to_monotonic.tv_sec;
1427 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1428 monotonic_to_bootbased(&tp);
1429 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1430 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1431 tp.tv_sec++;
1432 }
1433 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1434
1435 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1436 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1437 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1438
1439 info->procs = nr_threads;
1440 } while (read_seqretry(&xtime_lock, seq));
1441
1442 si_meminfo(info);
1443 si_swapinfo(info);
1444
1445 /*
1446 * If the sum of all the available memory (i.e. ram + swap)
1447 * is less than can be stored in a 32 bit unsigned long then
1448 * we can be binary compatible with 2.2.x kernels. If not,
1449 * well, in that case 2.2.x was broken anyways...
1450 *
1451 * -Erik Andersen <andersee@debian.org>
1452 */
1453
1454 mem_total = info->totalram + info->totalswap;
1455 if (mem_total < info->totalram || mem_total < info->totalswap)
1456 goto out;
1457 bitcount = 0;
1458 mem_unit = info->mem_unit;
1459 while (mem_unit > 1) {
1460 bitcount++;
1461 mem_unit >>= 1;
1462 sav_total = mem_total;
1463 mem_total <<= 1;
1464 if (mem_total < sav_total)
1465 goto out;
1466 }
1467
1468 /*
1469 * If mem_total did not overflow, multiply all memory values by
1470 * info->mem_unit and set it to 1. This leaves things compatible
1471 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1472 * kernels...
1473 */
1474
1475 info->mem_unit = 1;
1476 info->totalram <<= bitcount;
1477 info->freeram <<= bitcount;
1478 info->sharedram <<= bitcount;
1479 info->bufferram <<= bitcount;
1480 info->totalswap <<= bitcount;
1481 info->freeswap <<= bitcount;
1482 info->totalhigh <<= bitcount;
1483 info->freehigh <<= bitcount;
1484
1485 out:
1486 return 0;
1487 }
1488
1489 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1490 {
1491 struct sysinfo val;
1492
1493 do_sysinfo(&val);
1494
1495 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1496 return -EFAULT;
1497
1498 return 0;
1499 }
1500
1501 static int __cpuinit init_timers_cpu(int cpu)
1502 {
1503 int j;
1504 struct tvec_base *base;
1505 static char __cpuinitdata tvec_base_done[NR_CPUS];
1506
1507 if (!tvec_base_done[cpu]) {
1508 static char boot_done;
1509
1510 if (boot_done) {
1511 /*
1512 * The APs use this path later in boot
1513 */
1514 base = kmalloc_node(sizeof(*base),
1515 GFP_KERNEL | __GFP_ZERO,
1516 cpu_to_node(cpu));
1517 if (!base)
1518 return -ENOMEM;
1519
1520 /* Make sure that tvec_base is 2 byte aligned */
1521 if (tbase_get_deferrable(base)) {
1522 WARN_ON(1);
1523 kfree(base);
1524 return -ENOMEM;
1525 }
1526 per_cpu(tvec_bases, cpu) = base;
1527 } else {
1528 /*
1529 * This is for the boot CPU - we use compile-time
1530 * static initialisation because per-cpu memory isn't
1531 * ready yet and because the memory allocators are not
1532 * initialised either.
1533 */
1534 boot_done = 1;
1535 base = &boot_tvec_bases;
1536 }
1537 tvec_base_done[cpu] = 1;
1538 } else {
1539 base = per_cpu(tvec_bases, cpu);
1540 }
1541
1542 spin_lock_init(&base->lock);
1543
1544 for (j = 0; j < TVN_SIZE; j++) {
1545 INIT_LIST_HEAD(base->tv5.vec + j);
1546 INIT_LIST_HEAD(base->tv4.vec + j);
1547 INIT_LIST_HEAD(base->tv3.vec + j);
1548 INIT_LIST_HEAD(base->tv2.vec + j);
1549 }
1550 for (j = 0; j < TVR_SIZE; j++)
1551 INIT_LIST_HEAD(base->tv1.vec + j);
1552
1553 base->timer_jiffies = jiffies;
1554 return 0;
1555 }
1556
1557 #ifdef CONFIG_HOTPLUG_CPU
1558 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1559 {
1560 struct timer_list *timer;
1561
1562 while (!list_empty(head)) {
1563 timer = list_first_entry(head, struct timer_list, entry);
1564 detach_timer(timer, 0);
1565 timer_set_base(timer, new_base);
1566 internal_add_timer(new_base, timer);
1567 }
1568 }
1569
1570 static void __cpuinit migrate_timers(int cpu)
1571 {
1572 struct tvec_base *old_base;
1573 struct tvec_base *new_base;
1574 int i;
1575
1576 BUG_ON(cpu_online(cpu));
1577 old_base = per_cpu(tvec_bases, cpu);
1578 new_base = get_cpu_var(tvec_bases);
1579 /*
1580 * The caller is globally serialized and nobody else
1581 * takes two locks at once, deadlock is not possible.
1582 */
1583 spin_lock_irq(&new_base->lock);
1584 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1585
1586 BUG_ON(old_base->running_timer);
1587
1588 for (i = 0; i < TVR_SIZE; i++)
1589 migrate_timer_list(new_base, old_base->tv1.vec + i);
1590 for (i = 0; i < TVN_SIZE; i++) {
1591 migrate_timer_list(new_base, old_base->tv2.vec + i);
1592 migrate_timer_list(new_base, old_base->tv3.vec + i);
1593 migrate_timer_list(new_base, old_base->tv4.vec + i);
1594 migrate_timer_list(new_base, old_base->tv5.vec + i);
1595 }
1596
1597 spin_unlock(&old_base->lock);
1598 spin_unlock_irq(&new_base->lock);
1599 put_cpu_var(tvec_bases);
1600 }
1601 #endif /* CONFIG_HOTPLUG_CPU */
1602
1603 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1604 unsigned long action, void *hcpu)
1605 {
1606 long cpu = (long)hcpu;
1607 switch(action) {
1608 case CPU_UP_PREPARE:
1609 case CPU_UP_PREPARE_FROZEN:
1610 if (init_timers_cpu(cpu) < 0)
1611 return NOTIFY_BAD;
1612 break;
1613 #ifdef CONFIG_HOTPLUG_CPU
1614 case CPU_DEAD:
1615 case CPU_DEAD_FROZEN:
1616 migrate_timers(cpu);
1617 break;
1618 #endif
1619 default:
1620 break;
1621 }
1622 return NOTIFY_OK;
1623 }
1624
1625 static struct notifier_block __cpuinitdata timers_nb = {
1626 .notifier_call = timer_cpu_notify,
1627 };
1628
1629
1630 void __init init_timers(void)
1631 {
1632 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1633 (void *)(long)smp_processor_id());
1634
1635 init_timer_stats();
1636
1637 BUG_ON(err == NOTIFY_BAD);
1638 register_cpu_notifier(&timers_nb);
1639 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1640 }
1641
1642 /**
1643 * msleep - sleep safely even with waitqueue interruptions
1644 * @msecs: Time in milliseconds to sleep for
1645 */
1646 void msleep(unsigned int msecs)
1647 {
1648 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1649
1650 while (timeout)
1651 timeout = schedule_timeout_uninterruptible(timeout);
1652 }
1653
1654 EXPORT_SYMBOL(msleep);
1655
1656 /**
1657 * msleep_interruptible - sleep waiting for signals
1658 * @msecs: Time in milliseconds to sleep for
1659 */
1660 unsigned long msleep_interruptible(unsigned int msecs)
1661 {
1662 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1663
1664 while (timeout && !signal_pending(current))
1665 timeout = schedule_timeout_interruptible(timeout);
1666 return jiffies_to_msecs(timeout);
1667 }
1668
1669 EXPORT_SYMBOL(msleep_interruptible);
This page took 0.07252 seconds and 6 git commands to generate.