Merge branch 'core-futexes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55 EXPORT_SYMBOL(jiffies_64);
56
57 /*
58 * per-CPU timer vector definitions:
59 */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
69 };
70
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
73 };
74
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
86
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
90
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93 {
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95 }
96
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98 {
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100 }
101
102 static inline void timer_set_deferrable(struct timer_list *timer)
103 {
104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
105 }
106
107 static inline void
108 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
109 {
110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111 tbase_get_deferrable(timer->base));
112 }
113
114 static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
116 {
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
137 * But never round down if @force_up is set.
138 */
139 if (rem < HZ/4 && !force_up) /* round down */
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150 }
151
152 /**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172 unsigned long __round_jiffies(unsigned long j, int cpu)
173 {
174 return round_jiffies_common(j, cpu, false);
175 }
176 EXPORT_SYMBOL_GPL(__round_jiffies);
177
178 /**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
196 * The return value is the rounded version of the @j parameter.
197 */
198 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199 {
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
204 }
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207 /**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
220 * The return value is the rounded version of the @j parameter.
221 */
222 unsigned long round_jiffies(unsigned long j)
223 {
224 return round_jiffies_common(j, raw_smp_processor_id(), false);
225 }
226 EXPORT_SYMBOL_GPL(round_jiffies);
227
228 /**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
241 * The return value is the rounded version of the @j parameter.
242 */
243 unsigned long round_jiffies_relative(unsigned long j)
244 {
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246 }
247 EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
249 /**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259 unsigned long __round_jiffies_up(unsigned long j, int cpu)
260 {
261 return round_jiffies_common(j, cpu, true);
262 }
263 EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265 /**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276 {
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281 }
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284 /**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293 unsigned long round_jiffies_up(unsigned long j)
294 {
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296 }
297 EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299 /**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308 unsigned long round_jiffies_up_relative(unsigned long j)
309 {
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311 }
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
314 /**
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327 void set_timer_slack(struct timer_list *timer, int slack_hz)
328 {
329 timer->slack = slack_hz;
330 }
331 EXPORT_SYMBOL_GPL(set_timer_slack);
332
333 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
334 {
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373 }
374
375 #ifdef CONFIG_TIMER_STATS
376 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377 {
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384 }
385
386 static void timer_stats_account_timer(struct timer_list *timer)
387 {
388 unsigned int flag = 0;
389
390 if (likely(!timer->start_site))
391 return;
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397 }
398
399 #else
400 static void timer_stats_account_timer(struct timer_list *timer) {}
401 #endif
402
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405 static struct debug_obj_descr timer_debug_descr;
406
407 static void *timer_debug_hint(void *addr)
408 {
409 return ((struct timer_list *) addr)->function;
410 }
411
412 /*
413 * fixup_init is called when:
414 * - an active object is initialized
415 */
416 static int timer_fixup_init(void *addr, enum debug_obj_state state)
417 {
418 struct timer_list *timer = addr;
419
420 switch (state) {
421 case ODEBUG_STATE_ACTIVE:
422 del_timer_sync(timer);
423 debug_object_init(timer, &timer_debug_descr);
424 return 1;
425 default:
426 return 0;
427 }
428 }
429
430 /*
431 * fixup_activate is called when:
432 * - an active object is activated
433 * - an unknown object is activated (might be a statically initialized object)
434 */
435 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
436 {
437 struct timer_list *timer = addr;
438
439 switch (state) {
440
441 case ODEBUG_STATE_NOTAVAILABLE:
442 /*
443 * This is not really a fixup. The timer was
444 * statically initialized. We just make sure that it
445 * is tracked in the object tracker.
446 */
447 if (timer->entry.next == NULL &&
448 timer->entry.prev == TIMER_ENTRY_STATIC) {
449 debug_object_init(timer, &timer_debug_descr);
450 debug_object_activate(timer, &timer_debug_descr);
451 return 0;
452 } else {
453 WARN_ON_ONCE(1);
454 }
455 return 0;
456
457 case ODEBUG_STATE_ACTIVE:
458 WARN_ON(1);
459
460 default:
461 return 0;
462 }
463 }
464
465 /*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469 static int timer_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 struct timer_list *timer = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 del_timer_sync(timer);
476 debug_object_free(timer, &timer_debug_descr);
477 return 1;
478 default:
479 return 0;
480 }
481 }
482
483 static struct debug_obj_descr timer_debug_descr = {
484 .name = "timer_list",
485 .debug_hint = timer_debug_hint,
486 .fixup_init = timer_fixup_init,
487 .fixup_activate = timer_fixup_activate,
488 .fixup_free = timer_fixup_free,
489 };
490
491 static inline void debug_timer_init(struct timer_list *timer)
492 {
493 debug_object_init(timer, &timer_debug_descr);
494 }
495
496 static inline void debug_timer_activate(struct timer_list *timer)
497 {
498 debug_object_activate(timer, &timer_debug_descr);
499 }
500
501 static inline void debug_timer_deactivate(struct timer_list *timer)
502 {
503 debug_object_deactivate(timer, &timer_debug_descr);
504 }
505
506 static inline void debug_timer_free(struct timer_list *timer)
507 {
508 debug_object_free(timer, &timer_debug_descr);
509 }
510
511 static void __init_timer(struct timer_list *timer,
512 const char *name,
513 struct lock_class_key *key);
514
515 void init_timer_on_stack_key(struct timer_list *timer,
516 const char *name,
517 struct lock_class_key *key)
518 {
519 debug_object_init_on_stack(timer, &timer_debug_descr);
520 __init_timer(timer, name, key);
521 }
522 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
523
524 void destroy_timer_on_stack(struct timer_list *timer)
525 {
526 debug_object_free(timer, &timer_debug_descr);
527 }
528 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
529
530 #else
531 static inline void debug_timer_init(struct timer_list *timer) { }
532 static inline void debug_timer_activate(struct timer_list *timer) { }
533 static inline void debug_timer_deactivate(struct timer_list *timer) { }
534 #endif
535
536 static inline void debug_init(struct timer_list *timer)
537 {
538 debug_timer_init(timer);
539 trace_timer_init(timer);
540 }
541
542 static inline void
543 debug_activate(struct timer_list *timer, unsigned long expires)
544 {
545 debug_timer_activate(timer);
546 trace_timer_start(timer, expires);
547 }
548
549 static inline void debug_deactivate(struct timer_list *timer)
550 {
551 debug_timer_deactivate(timer);
552 trace_timer_cancel(timer);
553 }
554
555 static void __init_timer(struct timer_list *timer,
556 const char *name,
557 struct lock_class_key *key)
558 {
559 timer->entry.next = NULL;
560 timer->base = __raw_get_cpu_var(tvec_bases);
561 timer->slack = -1;
562 #ifdef CONFIG_TIMER_STATS
563 timer->start_site = NULL;
564 timer->start_pid = -1;
565 memset(timer->start_comm, 0, TASK_COMM_LEN);
566 #endif
567 lockdep_init_map(&timer->lockdep_map, name, key, 0);
568 }
569
570 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key,
573 void (*function)(unsigned long),
574 unsigned long data)
575 {
576 timer->function = function;
577 timer->data = data;
578 init_timer_on_stack_key(timer, name, key);
579 timer_set_deferrable(timer);
580 }
581 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
582
583 /**
584 * init_timer_key - initialize a timer
585 * @timer: the timer to be initialized
586 * @name: name of the timer
587 * @key: lockdep class key of the fake lock used for tracking timer
588 * sync lock dependencies
589 *
590 * init_timer_key() must be done to a timer prior calling *any* of the
591 * other timer functions.
592 */
593 void init_timer_key(struct timer_list *timer,
594 const char *name,
595 struct lock_class_key *key)
596 {
597 debug_init(timer);
598 __init_timer(timer, name, key);
599 }
600 EXPORT_SYMBOL(init_timer_key);
601
602 void init_timer_deferrable_key(struct timer_list *timer,
603 const char *name,
604 struct lock_class_key *key)
605 {
606 init_timer_key(timer, name, key);
607 timer_set_deferrable(timer);
608 }
609 EXPORT_SYMBOL(init_timer_deferrable_key);
610
611 static inline void detach_timer(struct timer_list *timer,
612 int clear_pending)
613 {
614 struct list_head *entry = &timer->entry;
615
616 debug_deactivate(timer);
617
618 __list_del(entry->prev, entry->next);
619 if (clear_pending)
620 entry->next = NULL;
621 entry->prev = LIST_POISON2;
622 }
623
624 /*
625 * We are using hashed locking: holding per_cpu(tvec_bases).lock
626 * means that all timers which are tied to this base via timer->base are
627 * locked, and the base itself is locked too.
628 *
629 * So __run_timers/migrate_timers can safely modify all timers which could
630 * be found on ->tvX lists.
631 *
632 * When the timer's base is locked, and the timer removed from list, it is
633 * possible to set timer->base = NULL and drop the lock: the timer remains
634 * locked.
635 */
636 static struct tvec_base *lock_timer_base(struct timer_list *timer,
637 unsigned long *flags)
638 __acquires(timer->base->lock)
639 {
640 struct tvec_base *base;
641
642 for (;;) {
643 struct tvec_base *prelock_base = timer->base;
644 base = tbase_get_base(prelock_base);
645 if (likely(base != NULL)) {
646 spin_lock_irqsave(&base->lock, *flags);
647 if (likely(prelock_base == timer->base))
648 return base;
649 /* The timer has migrated to another CPU */
650 spin_unlock_irqrestore(&base->lock, *flags);
651 }
652 cpu_relax();
653 }
654 }
655
656 static inline int
657 __mod_timer(struct timer_list *timer, unsigned long expires,
658 bool pending_only, int pinned)
659 {
660 struct tvec_base *base, *new_base;
661 unsigned long flags;
662 int ret = 0 , cpu;
663
664 timer_stats_timer_set_start_info(timer);
665 BUG_ON(!timer->function);
666
667 base = lock_timer_base(timer, &flags);
668
669 if (timer_pending(timer)) {
670 detach_timer(timer, 0);
671 if (timer->expires == base->next_timer &&
672 !tbase_get_deferrable(timer->base))
673 base->next_timer = base->timer_jiffies;
674 ret = 1;
675 } else {
676 if (pending_only)
677 goto out_unlock;
678 }
679
680 debug_activate(timer, expires);
681
682 cpu = smp_processor_id();
683
684 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
685 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
686 cpu = get_nohz_timer_target();
687 #endif
688 new_base = per_cpu(tvec_bases, cpu);
689
690 if (base != new_base) {
691 /*
692 * We are trying to schedule the timer on the local CPU.
693 * However we can't change timer's base while it is running,
694 * otherwise del_timer_sync() can't detect that the timer's
695 * handler yet has not finished. This also guarantees that
696 * the timer is serialized wrt itself.
697 */
698 if (likely(base->running_timer != timer)) {
699 /* See the comment in lock_timer_base() */
700 timer_set_base(timer, NULL);
701 spin_unlock(&base->lock);
702 base = new_base;
703 spin_lock(&base->lock);
704 timer_set_base(timer, base);
705 }
706 }
707
708 timer->expires = expires;
709 if (time_before(timer->expires, base->next_timer) &&
710 !tbase_get_deferrable(timer->base))
711 base->next_timer = timer->expires;
712 internal_add_timer(base, timer);
713
714 out_unlock:
715 spin_unlock_irqrestore(&base->lock, flags);
716
717 return ret;
718 }
719
720 /**
721 * mod_timer_pending - modify a pending timer's timeout
722 * @timer: the pending timer to be modified
723 * @expires: new timeout in jiffies
724 *
725 * mod_timer_pending() is the same for pending timers as mod_timer(),
726 * but will not re-activate and modify already deleted timers.
727 *
728 * It is useful for unserialized use of timers.
729 */
730 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
731 {
732 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
733 }
734 EXPORT_SYMBOL(mod_timer_pending);
735
736 /*
737 * Decide where to put the timer while taking the slack into account
738 *
739 * Algorithm:
740 * 1) calculate the maximum (absolute) time
741 * 2) calculate the highest bit where the expires and new max are different
742 * 3) use this bit to make a mask
743 * 4) use the bitmask to round down the maximum time, so that all last
744 * bits are zeros
745 */
746 static inline
747 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
748 {
749 unsigned long expires_limit, mask;
750 int bit;
751
752 expires_limit = expires;
753
754 if (timer->slack >= 0) {
755 expires_limit = expires + timer->slack;
756 } else {
757 unsigned long now = jiffies;
758
759 /* No slack, if already expired else auto slack 0.4% */
760 if (time_after(expires, now))
761 expires_limit = expires + (expires - now)/256;
762 }
763 mask = expires ^ expires_limit;
764 if (mask == 0)
765 return expires;
766
767 bit = find_last_bit(&mask, BITS_PER_LONG);
768
769 mask = (1 << bit) - 1;
770
771 expires_limit = expires_limit & ~(mask);
772
773 return expires_limit;
774 }
775
776 /**
777 * mod_timer - modify a timer's timeout
778 * @timer: the timer to be modified
779 * @expires: new timeout in jiffies
780 *
781 * mod_timer() is a more efficient way to update the expire field of an
782 * active timer (if the timer is inactive it will be activated)
783 *
784 * mod_timer(timer, expires) is equivalent to:
785 *
786 * del_timer(timer); timer->expires = expires; add_timer(timer);
787 *
788 * Note that if there are multiple unserialized concurrent users of the
789 * same timer, then mod_timer() is the only safe way to modify the timeout,
790 * since add_timer() cannot modify an already running timer.
791 *
792 * The function returns whether it has modified a pending timer or not.
793 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
794 * active timer returns 1.)
795 */
796 int mod_timer(struct timer_list *timer, unsigned long expires)
797 {
798 /*
799 * This is a common optimization triggered by the
800 * networking code - if the timer is re-modified
801 * to be the same thing then just return:
802 */
803 if (timer_pending(timer) && timer->expires == expires)
804 return 1;
805
806 expires = apply_slack(timer, expires);
807
808 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
809 }
810 EXPORT_SYMBOL(mod_timer);
811
812 /**
813 * mod_timer_pinned - modify a timer's timeout
814 * @timer: the timer to be modified
815 * @expires: new timeout in jiffies
816 *
817 * mod_timer_pinned() is a way to update the expire field of an
818 * active timer (if the timer is inactive it will be activated)
819 * and not allow the timer to be migrated to a different CPU.
820 *
821 * mod_timer_pinned(timer, expires) is equivalent to:
822 *
823 * del_timer(timer); timer->expires = expires; add_timer(timer);
824 */
825 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
826 {
827 if (timer->expires == expires && timer_pending(timer))
828 return 1;
829
830 return __mod_timer(timer, expires, false, TIMER_PINNED);
831 }
832 EXPORT_SYMBOL(mod_timer_pinned);
833
834 /**
835 * add_timer - start a timer
836 * @timer: the timer to be added
837 *
838 * The kernel will do a ->function(->data) callback from the
839 * timer interrupt at the ->expires point in the future. The
840 * current time is 'jiffies'.
841 *
842 * The timer's ->expires, ->function (and if the handler uses it, ->data)
843 * fields must be set prior calling this function.
844 *
845 * Timers with an ->expires field in the past will be executed in the next
846 * timer tick.
847 */
848 void add_timer(struct timer_list *timer)
849 {
850 BUG_ON(timer_pending(timer));
851 mod_timer(timer, timer->expires);
852 }
853 EXPORT_SYMBOL(add_timer);
854
855 /**
856 * add_timer_on - start a timer on a particular CPU
857 * @timer: the timer to be added
858 * @cpu: the CPU to start it on
859 *
860 * This is not very scalable on SMP. Double adds are not possible.
861 */
862 void add_timer_on(struct timer_list *timer, int cpu)
863 {
864 struct tvec_base *base = per_cpu(tvec_bases, cpu);
865 unsigned long flags;
866
867 timer_stats_timer_set_start_info(timer);
868 BUG_ON(timer_pending(timer) || !timer->function);
869 spin_lock_irqsave(&base->lock, flags);
870 timer_set_base(timer, base);
871 debug_activate(timer, timer->expires);
872 if (time_before(timer->expires, base->next_timer) &&
873 !tbase_get_deferrable(timer->base))
874 base->next_timer = timer->expires;
875 internal_add_timer(base, timer);
876 /*
877 * Check whether the other CPU is idle and needs to be
878 * triggered to reevaluate the timer wheel when nohz is
879 * active. We are protected against the other CPU fiddling
880 * with the timer by holding the timer base lock. This also
881 * makes sure that a CPU on the way to idle can not evaluate
882 * the timer wheel.
883 */
884 wake_up_idle_cpu(cpu);
885 spin_unlock_irqrestore(&base->lock, flags);
886 }
887 EXPORT_SYMBOL_GPL(add_timer_on);
888
889 /**
890 * del_timer - deactive a timer.
891 * @timer: the timer to be deactivated
892 *
893 * del_timer() deactivates a timer - this works on both active and inactive
894 * timers.
895 *
896 * The function returns whether it has deactivated a pending timer or not.
897 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
898 * active timer returns 1.)
899 */
900 int del_timer(struct timer_list *timer)
901 {
902 struct tvec_base *base;
903 unsigned long flags;
904 int ret = 0;
905
906 timer_stats_timer_clear_start_info(timer);
907 if (timer_pending(timer)) {
908 base = lock_timer_base(timer, &flags);
909 if (timer_pending(timer)) {
910 detach_timer(timer, 1);
911 if (timer->expires == base->next_timer &&
912 !tbase_get_deferrable(timer->base))
913 base->next_timer = base->timer_jiffies;
914 ret = 1;
915 }
916 spin_unlock_irqrestore(&base->lock, flags);
917 }
918
919 return ret;
920 }
921 EXPORT_SYMBOL(del_timer);
922
923 /**
924 * try_to_del_timer_sync - Try to deactivate a timer
925 * @timer: timer do del
926 *
927 * This function tries to deactivate a timer. Upon successful (ret >= 0)
928 * exit the timer is not queued and the handler is not running on any CPU.
929 */
930 int try_to_del_timer_sync(struct timer_list *timer)
931 {
932 struct tvec_base *base;
933 unsigned long flags;
934 int ret = -1;
935
936 base = lock_timer_base(timer, &flags);
937
938 if (base->running_timer == timer)
939 goto out;
940
941 timer_stats_timer_clear_start_info(timer);
942 ret = 0;
943 if (timer_pending(timer)) {
944 detach_timer(timer, 1);
945 if (timer->expires == base->next_timer &&
946 !tbase_get_deferrable(timer->base))
947 base->next_timer = base->timer_jiffies;
948 ret = 1;
949 }
950 out:
951 spin_unlock_irqrestore(&base->lock, flags);
952
953 return ret;
954 }
955 EXPORT_SYMBOL(try_to_del_timer_sync);
956
957 #ifdef CONFIG_SMP
958 /**
959 * del_timer_sync - deactivate a timer and wait for the handler to finish.
960 * @timer: the timer to be deactivated
961 *
962 * This function only differs from del_timer() on SMP: besides deactivating
963 * the timer it also makes sure the handler has finished executing on other
964 * CPUs.
965 *
966 * Synchronization rules: Callers must prevent restarting of the timer,
967 * otherwise this function is meaningless. It must not be called from
968 * interrupt contexts. The caller must not hold locks which would prevent
969 * completion of the timer's handler. The timer's handler must not call
970 * add_timer_on(). Upon exit the timer is not queued and the handler is
971 * not running on any CPU.
972 *
973 * The function returns whether it has deactivated a pending timer or not.
974 */
975 int del_timer_sync(struct timer_list *timer)
976 {
977 #ifdef CONFIG_LOCKDEP
978 unsigned long flags;
979
980 local_irq_save(flags);
981 lock_map_acquire(&timer->lockdep_map);
982 lock_map_release(&timer->lockdep_map);
983 local_irq_restore(flags);
984 #endif
985 /*
986 * don't use it in hardirq context, because it
987 * could lead to deadlock.
988 */
989 WARN_ON(in_irq());
990 for (;;) {
991 int ret = try_to_del_timer_sync(timer);
992 if (ret >= 0)
993 return ret;
994 cpu_relax();
995 }
996 }
997 EXPORT_SYMBOL(del_timer_sync);
998 #endif
999
1000 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1001 {
1002 /* cascade all the timers from tv up one level */
1003 struct timer_list *timer, *tmp;
1004 struct list_head tv_list;
1005
1006 list_replace_init(tv->vec + index, &tv_list);
1007
1008 /*
1009 * We are removing _all_ timers from the list, so we
1010 * don't have to detach them individually.
1011 */
1012 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1013 BUG_ON(tbase_get_base(timer->base) != base);
1014 internal_add_timer(base, timer);
1015 }
1016
1017 return index;
1018 }
1019
1020 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1021 unsigned long data)
1022 {
1023 int preempt_count = preempt_count();
1024
1025 #ifdef CONFIG_LOCKDEP
1026 /*
1027 * It is permissible to free the timer from inside the
1028 * function that is called from it, this we need to take into
1029 * account for lockdep too. To avoid bogus "held lock freed"
1030 * warnings as well as problems when looking into
1031 * timer->lockdep_map, make a copy and use that here.
1032 */
1033 struct lockdep_map lockdep_map = timer->lockdep_map;
1034 #endif
1035 /*
1036 * Couple the lock chain with the lock chain at
1037 * del_timer_sync() by acquiring the lock_map around the fn()
1038 * call here and in del_timer_sync().
1039 */
1040 lock_map_acquire(&lockdep_map);
1041
1042 trace_timer_expire_entry(timer);
1043 fn(data);
1044 trace_timer_expire_exit(timer);
1045
1046 lock_map_release(&lockdep_map);
1047
1048 if (preempt_count != preempt_count()) {
1049 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1050 fn, preempt_count, preempt_count());
1051 /*
1052 * Restore the preempt count. That gives us a decent
1053 * chance to survive and extract information. If the
1054 * callback kept a lock held, bad luck, but not worse
1055 * than the BUG() we had.
1056 */
1057 preempt_count() = preempt_count;
1058 }
1059 }
1060
1061 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1062
1063 /**
1064 * __run_timers - run all expired timers (if any) on this CPU.
1065 * @base: the timer vector to be processed.
1066 *
1067 * This function cascades all vectors and executes all expired timer
1068 * vectors.
1069 */
1070 static inline void __run_timers(struct tvec_base *base)
1071 {
1072 struct timer_list *timer;
1073
1074 spin_lock_irq(&base->lock);
1075 while (time_after_eq(jiffies, base->timer_jiffies)) {
1076 struct list_head work_list;
1077 struct list_head *head = &work_list;
1078 int index = base->timer_jiffies & TVR_MASK;
1079
1080 /*
1081 * Cascade timers:
1082 */
1083 if (!index &&
1084 (!cascade(base, &base->tv2, INDEX(0))) &&
1085 (!cascade(base, &base->tv3, INDEX(1))) &&
1086 !cascade(base, &base->tv4, INDEX(2)))
1087 cascade(base, &base->tv5, INDEX(3));
1088 ++base->timer_jiffies;
1089 list_replace_init(base->tv1.vec + index, &work_list);
1090 while (!list_empty(head)) {
1091 void (*fn)(unsigned long);
1092 unsigned long data;
1093
1094 timer = list_first_entry(head, struct timer_list,entry);
1095 fn = timer->function;
1096 data = timer->data;
1097
1098 timer_stats_account_timer(timer);
1099
1100 base->running_timer = timer;
1101 detach_timer(timer, 1);
1102
1103 spin_unlock_irq(&base->lock);
1104 call_timer_fn(timer, fn, data);
1105 spin_lock_irq(&base->lock);
1106 }
1107 }
1108 base->running_timer = NULL;
1109 spin_unlock_irq(&base->lock);
1110 }
1111
1112 #ifdef CONFIG_NO_HZ
1113 /*
1114 * Find out when the next timer event is due to happen. This
1115 * is used on S/390 to stop all activity when a CPU is idle.
1116 * This function needs to be called with interrupts disabled.
1117 */
1118 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1119 {
1120 unsigned long timer_jiffies = base->timer_jiffies;
1121 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1122 int index, slot, array, found = 0;
1123 struct timer_list *nte;
1124 struct tvec *varray[4];
1125
1126 /* Look for timer events in tv1. */
1127 index = slot = timer_jiffies & TVR_MASK;
1128 do {
1129 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1130 if (tbase_get_deferrable(nte->base))
1131 continue;
1132
1133 found = 1;
1134 expires = nte->expires;
1135 /* Look at the cascade bucket(s)? */
1136 if (!index || slot < index)
1137 goto cascade;
1138 return expires;
1139 }
1140 slot = (slot + 1) & TVR_MASK;
1141 } while (slot != index);
1142
1143 cascade:
1144 /* Calculate the next cascade event */
1145 if (index)
1146 timer_jiffies += TVR_SIZE - index;
1147 timer_jiffies >>= TVR_BITS;
1148
1149 /* Check tv2-tv5. */
1150 varray[0] = &base->tv2;
1151 varray[1] = &base->tv3;
1152 varray[2] = &base->tv4;
1153 varray[3] = &base->tv5;
1154
1155 for (array = 0; array < 4; array++) {
1156 struct tvec *varp = varray[array];
1157
1158 index = slot = timer_jiffies & TVN_MASK;
1159 do {
1160 list_for_each_entry(nte, varp->vec + slot, entry) {
1161 if (tbase_get_deferrable(nte->base))
1162 continue;
1163
1164 found = 1;
1165 if (time_before(nte->expires, expires))
1166 expires = nte->expires;
1167 }
1168 /*
1169 * Do we still search for the first timer or are
1170 * we looking up the cascade buckets ?
1171 */
1172 if (found) {
1173 /* Look at the cascade bucket(s)? */
1174 if (!index || slot < index)
1175 break;
1176 return expires;
1177 }
1178 slot = (slot + 1) & TVN_MASK;
1179 } while (slot != index);
1180
1181 if (index)
1182 timer_jiffies += TVN_SIZE - index;
1183 timer_jiffies >>= TVN_BITS;
1184 }
1185 return expires;
1186 }
1187
1188 /*
1189 * Check, if the next hrtimer event is before the next timer wheel
1190 * event:
1191 */
1192 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1193 unsigned long expires)
1194 {
1195 ktime_t hr_delta = hrtimer_get_next_event();
1196 struct timespec tsdelta;
1197 unsigned long delta;
1198
1199 if (hr_delta.tv64 == KTIME_MAX)
1200 return expires;
1201
1202 /*
1203 * Expired timer available, let it expire in the next tick
1204 */
1205 if (hr_delta.tv64 <= 0)
1206 return now + 1;
1207
1208 tsdelta = ktime_to_timespec(hr_delta);
1209 delta = timespec_to_jiffies(&tsdelta);
1210
1211 /*
1212 * Limit the delta to the max value, which is checked in
1213 * tick_nohz_stop_sched_tick():
1214 */
1215 if (delta > NEXT_TIMER_MAX_DELTA)
1216 delta = NEXT_TIMER_MAX_DELTA;
1217
1218 /*
1219 * Take rounding errors in to account and make sure, that it
1220 * expires in the next tick. Otherwise we go into an endless
1221 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1222 * the timer softirq
1223 */
1224 if (delta < 1)
1225 delta = 1;
1226 now += delta;
1227 if (time_before(now, expires))
1228 return now;
1229 return expires;
1230 }
1231
1232 /**
1233 * get_next_timer_interrupt - return the jiffy of the next pending timer
1234 * @now: current time (in jiffies)
1235 */
1236 unsigned long get_next_timer_interrupt(unsigned long now)
1237 {
1238 struct tvec_base *base = __this_cpu_read(tvec_bases);
1239 unsigned long expires;
1240
1241 /*
1242 * Pretend that there is no timer pending if the cpu is offline.
1243 * Possible pending timers will be migrated later to an active cpu.
1244 */
1245 if (cpu_is_offline(smp_processor_id()))
1246 return now + NEXT_TIMER_MAX_DELTA;
1247 spin_lock(&base->lock);
1248 if (time_before_eq(base->next_timer, base->timer_jiffies))
1249 base->next_timer = __next_timer_interrupt(base);
1250 expires = base->next_timer;
1251 spin_unlock(&base->lock);
1252
1253 if (time_before_eq(expires, now))
1254 return now;
1255
1256 return cmp_next_hrtimer_event(now, expires);
1257 }
1258 #endif
1259
1260 /*
1261 * Called from the timer interrupt handler to charge one tick to the current
1262 * process. user_tick is 1 if the tick is user time, 0 for system.
1263 */
1264 void update_process_times(int user_tick)
1265 {
1266 struct task_struct *p = current;
1267 int cpu = smp_processor_id();
1268
1269 /* Note: this timer irq context must be accounted for as well. */
1270 account_process_tick(p, user_tick);
1271 run_local_timers();
1272 rcu_check_callbacks(cpu, user_tick);
1273 printk_tick();
1274 #ifdef CONFIG_IRQ_WORK
1275 if (in_irq())
1276 irq_work_run();
1277 #endif
1278 scheduler_tick();
1279 run_posix_cpu_timers(p);
1280 }
1281
1282 /*
1283 * This function runs timers and the timer-tq in bottom half context.
1284 */
1285 static void run_timer_softirq(struct softirq_action *h)
1286 {
1287 struct tvec_base *base = __this_cpu_read(tvec_bases);
1288
1289 hrtimer_run_pending();
1290
1291 if (time_after_eq(jiffies, base->timer_jiffies))
1292 __run_timers(base);
1293 }
1294
1295 /*
1296 * Called by the local, per-CPU timer interrupt on SMP.
1297 */
1298 void run_local_timers(void)
1299 {
1300 hrtimer_run_queues();
1301 raise_softirq(TIMER_SOFTIRQ);
1302 }
1303
1304 /*
1305 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1306 * without sampling the sequence number in xtime_lock.
1307 * jiffies is defined in the linker script...
1308 */
1309
1310 void do_timer(unsigned long ticks)
1311 {
1312 jiffies_64 += ticks;
1313 update_wall_time();
1314 calc_global_load(ticks);
1315 }
1316
1317 #ifdef __ARCH_WANT_SYS_ALARM
1318
1319 /*
1320 * For backwards compatibility? This can be done in libc so Alpha
1321 * and all newer ports shouldn't need it.
1322 */
1323 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1324 {
1325 return alarm_setitimer(seconds);
1326 }
1327
1328 #endif
1329
1330 #ifndef __alpha__
1331
1332 /*
1333 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1334 * should be moved into arch/i386 instead?
1335 */
1336
1337 /**
1338 * sys_getpid - return the thread group id of the current process
1339 *
1340 * Note, despite the name, this returns the tgid not the pid. The tgid and
1341 * the pid are identical unless CLONE_THREAD was specified on clone() in
1342 * which case the tgid is the same in all threads of the same group.
1343 *
1344 * This is SMP safe as current->tgid does not change.
1345 */
1346 SYSCALL_DEFINE0(getpid)
1347 {
1348 return task_tgid_vnr(current);
1349 }
1350
1351 /*
1352 * Accessing ->real_parent is not SMP-safe, it could
1353 * change from under us. However, we can use a stale
1354 * value of ->real_parent under rcu_read_lock(), see
1355 * release_task()->call_rcu(delayed_put_task_struct).
1356 */
1357 SYSCALL_DEFINE0(getppid)
1358 {
1359 int pid;
1360
1361 rcu_read_lock();
1362 pid = task_tgid_vnr(current->real_parent);
1363 rcu_read_unlock();
1364
1365 return pid;
1366 }
1367
1368 SYSCALL_DEFINE0(getuid)
1369 {
1370 /* Only we change this so SMP safe */
1371 return current_uid();
1372 }
1373
1374 SYSCALL_DEFINE0(geteuid)
1375 {
1376 /* Only we change this so SMP safe */
1377 return current_euid();
1378 }
1379
1380 SYSCALL_DEFINE0(getgid)
1381 {
1382 /* Only we change this so SMP safe */
1383 return current_gid();
1384 }
1385
1386 SYSCALL_DEFINE0(getegid)
1387 {
1388 /* Only we change this so SMP safe */
1389 return current_egid();
1390 }
1391
1392 #endif
1393
1394 static void process_timeout(unsigned long __data)
1395 {
1396 wake_up_process((struct task_struct *)__data);
1397 }
1398
1399 /**
1400 * schedule_timeout - sleep until timeout
1401 * @timeout: timeout value in jiffies
1402 *
1403 * Make the current task sleep until @timeout jiffies have
1404 * elapsed. The routine will return immediately unless
1405 * the current task state has been set (see set_current_state()).
1406 *
1407 * You can set the task state as follows -
1408 *
1409 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1410 * pass before the routine returns. The routine will return 0
1411 *
1412 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1413 * delivered to the current task. In this case the remaining time
1414 * in jiffies will be returned, or 0 if the timer expired in time
1415 *
1416 * The current task state is guaranteed to be TASK_RUNNING when this
1417 * routine returns.
1418 *
1419 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1420 * the CPU away without a bound on the timeout. In this case the return
1421 * value will be %MAX_SCHEDULE_TIMEOUT.
1422 *
1423 * In all cases the return value is guaranteed to be non-negative.
1424 */
1425 signed long __sched schedule_timeout(signed long timeout)
1426 {
1427 struct timer_list timer;
1428 unsigned long expire;
1429
1430 switch (timeout)
1431 {
1432 case MAX_SCHEDULE_TIMEOUT:
1433 /*
1434 * These two special cases are useful to be comfortable
1435 * in the caller. Nothing more. We could take
1436 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1437 * but I' d like to return a valid offset (>=0) to allow
1438 * the caller to do everything it want with the retval.
1439 */
1440 schedule();
1441 goto out;
1442 default:
1443 /*
1444 * Another bit of PARANOID. Note that the retval will be
1445 * 0 since no piece of kernel is supposed to do a check
1446 * for a negative retval of schedule_timeout() (since it
1447 * should never happens anyway). You just have the printk()
1448 * that will tell you if something is gone wrong and where.
1449 */
1450 if (timeout < 0) {
1451 printk(KERN_ERR "schedule_timeout: wrong timeout "
1452 "value %lx\n", timeout);
1453 dump_stack();
1454 current->state = TASK_RUNNING;
1455 goto out;
1456 }
1457 }
1458
1459 expire = timeout + jiffies;
1460
1461 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1462 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1463 schedule();
1464 del_singleshot_timer_sync(&timer);
1465
1466 /* Remove the timer from the object tracker */
1467 destroy_timer_on_stack(&timer);
1468
1469 timeout = expire - jiffies;
1470
1471 out:
1472 return timeout < 0 ? 0 : timeout;
1473 }
1474 EXPORT_SYMBOL(schedule_timeout);
1475
1476 /*
1477 * We can use __set_current_state() here because schedule_timeout() calls
1478 * schedule() unconditionally.
1479 */
1480 signed long __sched schedule_timeout_interruptible(signed long timeout)
1481 {
1482 __set_current_state(TASK_INTERRUPTIBLE);
1483 return schedule_timeout(timeout);
1484 }
1485 EXPORT_SYMBOL(schedule_timeout_interruptible);
1486
1487 signed long __sched schedule_timeout_killable(signed long timeout)
1488 {
1489 __set_current_state(TASK_KILLABLE);
1490 return schedule_timeout(timeout);
1491 }
1492 EXPORT_SYMBOL(schedule_timeout_killable);
1493
1494 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1495 {
1496 __set_current_state(TASK_UNINTERRUPTIBLE);
1497 return schedule_timeout(timeout);
1498 }
1499 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1500
1501 /* Thread ID - the internal kernel "pid" */
1502 SYSCALL_DEFINE0(gettid)
1503 {
1504 return task_pid_vnr(current);
1505 }
1506
1507 /**
1508 * do_sysinfo - fill in sysinfo struct
1509 * @info: pointer to buffer to fill
1510 */
1511 int do_sysinfo(struct sysinfo *info)
1512 {
1513 unsigned long mem_total, sav_total;
1514 unsigned int mem_unit, bitcount;
1515 struct timespec tp;
1516
1517 memset(info, 0, sizeof(struct sysinfo));
1518
1519 ktime_get_ts(&tp);
1520 monotonic_to_bootbased(&tp);
1521 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1522
1523 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1524
1525 info->procs = nr_threads;
1526
1527 si_meminfo(info);
1528 si_swapinfo(info);
1529
1530 /*
1531 * If the sum of all the available memory (i.e. ram + swap)
1532 * is less than can be stored in a 32 bit unsigned long then
1533 * we can be binary compatible with 2.2.x kernels. If not,
1534 * well, in that case 2.2.x was broken anyways...
1535 *
1536 * -Erik Andersen <andersee@debian.org>
1537 */
1538
1539 mem_total = info->totalram + info->totalswap;
1540 if (mem_total < info->totalram || mem_total < info->totalswap)
1541 goto out;
1542 bitcount = 0;
1543 mem_unit = info->mem_unit;
1544 while (mem_unit > 1) {
1545 bitcount++;
1546 mem_unit >>= 1;
1547 sav_total = mem_total;
1548 mem_total <<= 1;
1549 if (mem_total < sav_total)
1550 goto out;
1551 }
1552
1553 /*
1554 * If mem_total did not overflow, multiply all memory values by
1555 * info->mem_unit and set it to 1. This leaves things compatible
1556 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1557 * kernels...
1558 */
1559
1560 info->mem_unit = 1;
1561 info->totalram <<= bitcount;
1562 info->freeram <<= bitcount;
1563 info->sharedram <<= bitcount;
1564 info->bufferram <<= bitcount;
1565 info->totalswap <<= bitcount;
1566 info->freeswap <<= bitcount;
1567 info->totalhigh <<= bitcount;
1568 info->freehigh <<= bitcount;
1569
1570 out:
1571 return 0;
1572 }
1573
1574 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1575 {
1576 struct sysinfo val;
1577
1578 do_sysinfo(&val);
1579
1580 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1581 return -EFAULT;
1582
1583 return 0;
1584 }
1585
1586 static int __cpuinit init_timers_cpu(int cpu)
1587 {
1588 int j;
1589 struct tvec_base *base;
1590 static char __cpuinitdata tvec_base_done[NR_CPUS];
1591
1592 if (!tvec_base_done[cpu]) {
1593 static char boot_done;
1594
1595 if (boot_done) {
1596 /*
1597 * The APs use this path later in boot
1598 */
1599 base = kmalloc_node(sizeof(*base),
1600 GFP_KERNEL | __GFP_ZERO,
1601 cpu_to_node(cpu));
1602 if (!base)
1603 return -ENOMEM;
1604
1605 /* Make sure that tvec_base is 2 byte aligned */
1606 if (tbase_get_deferrable(base)) {
1607 WARN_ON(1);
1608 kfree(base);
1609 return -ENOMEM;
1610 }
1611 per_cpu(tvec_bases, cpu) = base;
1612 } else {
1613 /*
1614 * This is for the boot CPU - we use compile-time
1615 * static initialisation because per-cpu memory isn't
1616 * ready yet and because the memory allocators are not
1617 * initialised either.
1618 */
1619 boot_done = 1;
1620 base = &boot_tvec_bases;
1621 }
1622 tvec_base_done[cpu] = 1;
1623 } else {
1624 base = per_cpu(tvec_bases, cpu);
1625 }
1626
1627 spin_lock_init(&base->lock);
1628
1629 for (j = 0; j < TVN_SIZE; j++) {
1630 INIT_LIST_HEAD(base->tv5.vec + j);
1631 INIT_LIST_HEAD(base->tv4.vec + j);
1632 INIT_LIST_HEAD(base->tv3.vec + j);
1633 INIT_LIST_HEAD(base->tv2.vec + j);
1634 }
1635 for (j = 0; j < TVR_SIZE; j++)
1636 INIT_LIST_HEAD(base->tv1.vec + j);
1637
1638 base->timer_jiffies = jiffies;
1639 base->next_timer = base->timer_jiffies;
1640 return 0;
1641 }
1642
1643 #ifdef CONFIG_HOTPLUG_CPU
1644 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1645 {
1646 struct timer_list *timer;
1647
1648 while (!list_empty(head)) {
1649 timer = list_first_entry(head, struct timer_list, entry);
1650 detach_timer(timer, 0);
1651 timer_set_base(timer, new_base);
1652 if (time_before(timer->expires, new_base->next_timer) &&
1653 !tbase_get_deferrable(timer->base))
1654 new_base->next_timer = timer->expires;
1655 internal_add_timer(new_base, timer);
1656 }
1657 }
1658
1659 static void __cpuinit migrate_timers(int cpu)
1660 {
1661 struct tvec_base *old_base;
1662 struct tvec_base *new_base;
1663 int i;
1664
1665 BUG_ON(cpu_online(cpu));
1666 old_base = per_cpu(tvec_bases, cpu);
1667 new_base = get_cpu_var(tvec_bases);
1668 /*
1669 * The caller is globally serialized and nobody else
1670 * takes two locks at once, deadlock is not possible.
1671 */
1672 spin_lock_irq(&new_base->lock);
1673 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1674
1675 BUG_ON(old_base->running_timer);
1676
1677 for (i = 0; i < TVR_SIZE; i++)
1678 migrate_timer_list(new_base, old_base->tv1.vec + i);
1679 for (i = 0; i < TVN_SIZE; i++) {
1680 migrate_timer_list(new_base, old_base->tv2.vec + i);
1681 migrate_timer_list(new_base, old_base->tv3.vec + i);
1682 migrate_timer_list(new_base, old_base->tv4.vec + i);
1683 migrate_timer_list(new_base, old_base->tv5.vec + i);
1684 }
1685
1686 spin_unlock(&old_base->lock);
1687 spin_unlock_irq(&new_base->lock);
1688 put_cpu_var(tvec_bases);
1689 }
1690 #endif /* CONFIG_HOTPLUG_CPU */
1691
1692 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1693 unsigned long action, void *hcpu)
1694 {
1695 long cpu = (long)hcpu;
1696 int err;
1697
1698 switch(action) {
1699 case CPU_UP_PREPARE:
1700 case CPU_UP_PREPARE_FROZEN:
1701 err = init_timers_cpu(cpu);
1702 if (err < 0)
1703 return notifier_from_errno(err);
1704 break;
1705 #ifdef CONFIG_HOTPLUG_CPU
1706 case CPU_DEAD:
1707 case CPU_DEAD_FROZEN:
1708 migrate_timers(cpu);
1709 break;
1710 #endif
1711 default:
1712 break;
1713 }
1714 return NOTIFY_OK;
1715 }
1716
1717 static struct notifier_block __cpuinitdata timers_nb = {
1718 .notifier_call = timer_cpu_notify,
1719 };
1720
1721
1722 void __init init_timers(void)
1723 {
1724 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1725 (void *)(long)smp_processor_id());
1726
1727 init_timer_stats();
1728
1729 BUG_ON(err != NOTIFY_OK);
1730 register_cpu_notifier(&timers_nb);
1731 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1732 }
1733
1734 /**
1735 * msleep - sleep safely even with waitqueue interruptions
1736 * @msecs: Time in milliseconds to sleep for
1737 */
1738 void msleep(unsigned int msecs)
1739 {
1740 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1741
1742 while (timeout)
1743 timeout = schedule_timeout_uninterruptible(timeout);
1744 }
1745
1746 EXPORT_SYMBOL(msleep);
1747
1748 /**
1749 * msleep_interruptible - sleep waiting for signals
1750 * @msecs: Time in milliseconds to sleep for
1751 */
1752 unsigned long msleep_interruptible(unsigned int msecs)
1753 {
1754 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1755
1756 while (timeout && !signal_pending(current))
1757 timeout = schedule_timeout_interruptible(timeout);
1758 return jiffies_to_msecs(timeout);
1759 }
1760
1761 EXPORT_SYMBOL(msleep_interruptible);
1762
1763 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1764 {
1765 ktime_t kmin;
1766 unsigned long delta;
1767
1768 kmin = ktime_set(0, min * NSEC_PER_USEC);
1769 delta = (max - min) * NSEC_PER_USEC;
1770 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1771 }
1772
1773 /**
1774 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1775 * @min: Minimum time in usecs to sleep
1776 * @max: Maximum time in usecs to sleep
1777 */
1778 void usleep_range(unsigned long min, unsigned long max)
1779 {
1780 __set_current_state(TASK_UNINTERRUPTIBLE);
1781 do_usleep_range(min, max);
1782 }
1783 EXPORT_SYMBOL(usleep_range);
This page took 0.067494 seconds and 6 git commands to generate.