ARM: 8255/1: perf: Prevent wraparound during overflow
[deliverable/linux.git] / kernel / trace / ftrace.c
1 /*
2 * Infrastructure for profiling code inserted by 'gcc -pg'.
3 *
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
5 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
6 *
7 * Originally ported from the -rt patch by:
8 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
9 *
10 * Based on code in the latency_tracer, that is:
11 *
12 * Copyright (C) 2004-2006 Ingo Molnar
13 * Copyright (C) 2004 Nadia Yvette Chambers
14 */
15
16 #include <linux/stop_machine.h>
17 #include <linux/clocksource.h>
18 #include <linux/kallsyms.h>
19 #include <linux/seq_file.h>
20 #include <linux/suspend.h>
21 #include <linux/debugfs.h>
22 #include <linux/hardirq.h>
23 #include <linux/kthread.h>
24 #include <linux/uaccess.h>
25 #include <linux/bsearch.h>
26 #include <linux/module.h>
27 #include <linux/ftrace.h>
28 #include <linux/sysctl.h>
29 #include <linux/slab.h>
30 #include <linux/ctype.h>
31 #include <linux/sort.h>
32 #include <linux/list.h>
33 #include <linux/hash.h>
34 #include <linux/rcupdate.h>
35
36 #include <trace/events/sched.h>
37
38 #include <asm/setup.h>
39
40 #include "trace_output.h"
41 #include "trace_stat.h"
42
43 #define FTRACE_WARN_ON(cond) \
44 ({ \
45 int ___r = cond; \
46 if (WARN_ON(___r)) \
47 ftrace_kill(); \
48 ___r; \
49 })
50
51 #define FTRACE_WARN_ON_ONCE(cond) \
52 ({ \
53 int ___r = cond; \
54 if (WARN_ON_ONCE(___r)) \
55 ftrace_kill(); \
56 ___r; \
57 })
58
59 /* hash bits for specific function selection */
60 #define FTRACE_HASH_BITS 7
61 #define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS)
62 #define FTRACE_HASH_DEFAULT_BITS 10
63 #define FTRACE_HASH_MAX_BITS 12
64
65 #define FL_GLOBAL_CONTROL_MASK (FTRACE_OPS_FL_CONTROL)
66
67 #ifdef CONFIG_DYNAMIC_FTRACE
68 #define INIT_OPS_HASH(opsname) \
69 .func_hash = &opsname.local_hash, \
70 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
71 #define ASSIGN_OPS_HASH(opsname, val) \
72 .func_hash = val, \
73 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #define ASSIGN_OPS_HASH(opsname, val)
77 #endif
78
79 static struct ftrace_ops ftrace_list_end __read_mostly = {
80 .func = ftrace_stub,
81 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
82 INIT_OPS_HASH(ftrace_list_end)
83 };
84
85 /* ftrace_enabled is a method to turn ftrace on or off */
86 int ftrace_enabled __read_mostly;
87 static int last_ftrace_enabled;
88
89 /* Current function tracing op */
90 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
91 /* What to set function_trace_op to */
92 static struct ftrace_ops *set_function_trace_op;
93
94 /* List for set_ftrace_pid's pids. */
95 LIST_HEAD(ftrace_pids);
96 struct ftrace_pid {
97 struct list_head list;
98 struct pid *pid;
99 };
100
101 /*
102 * ftrace_disabled is set when an anomaly is discovered.
103 * ftrace_disabled is much stronger than ftrace_enabled.
104 */
105 static int ftrace_disabled __read_mostly;
106
107 static DEFINE_MUTEX(ftrace_lock);
108
109 static struct ftrace_ops *ftrace_control_list __read_mostly = &ftrace_list_end;
110 static struct ftrace_ops *ftrace_ops_list __read_mostly = &ftrace_list_end;
111 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
112 ftrace_func_t ftrace_pid_function __read_mostly = ftrace_stub;
113 static struct ftrace_ops global_ops;
114 static struct ftrace_ops control_ops;
115
116 static void ftrace_ops_recurs_func(unsigned long ip, unsigned long parent_ip,
117 struct ftrace_ops *op, struct pt_regs *regs);
118
119 #if ARCH_SUPPORTS_FTRACE_OPS
120 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
121 struct ftrace_ops *op, struct pt_regs *regs);
122 #else
123 /* See comment below, where ftrace_ops_list_func is defined */
124 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
125 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
126 #endif
127
128 /*
129 * Traverse the ftrace_global_list, invoking all entries. The reason that we
130 * can use rcu_dereference_raw_notrace() is that elements removed from this list
131 * are simply leaked, so there is no need to interact with a grace-period
132 * mechanism. The rcu_dereference_raw_notrace() calls are needed to handle
133 * concurrent insertions into the ftrace_global_list.
134 *
135 * Silly Alpha and silly pointer-speculation compiler optimizations!
136 */
137 #define do_for_each_ftrace_op(op, list) \
138 op = rcu_dereference_raw_notrace(list); \
139 do
140
141 /*
142 * Optimized for just a single item in the list (as that is the normal case).
143 */
144 #define while_for_each_ftrace_op(op) \
145 while (likely(op = rcu_dereference_raw_notrace((op)->next)) && \
146 unlikely((op) != &ftrace_list_end))
147
148 static inline void ftrace_ops_init(struct ftrace_ops *ops)
149 {
150 #ifdef CONFIG_DYNAMIC_FTRACE
151 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
152 mutex_init(&ops->local_hash.regex_lock);
153 ops->func_hash = &ops->local_hash;
154 ops->flags |= FTRACE_OPS_FL_INITIALIZED;
155 }
156 #endif
157 }
158
159 /**
160 * ftrace_nr_registered_ops - return number of ops registered
161 *
162 * Returns the number of ftrace_ops registered and tracing functions
163 */
164 int ftrace_nr_registered_ops(void)
165 {
166 struct ftrace_ops *ops;
167 int cnt = 0;
168
169 mutex_lock(&ftrace_lock);
170
171 for (ops = ftrace_ops_list;
172 ops != &ftrace_list_end; ops = ops->next)
173 cnt++;
174
175 mutex_unlock(&ftrace_lock);
176
177 return cnt;
178 }
179
180 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
181 struct ftrace_ops *op, struct pt_regs *regs)
182 {
183 if (!test_tsk_trace_trace(current))
184 return;
185
186 ftrace_pid_function(ip, parent_ip, op, regs);
187 }
188
189 static void set_ftrace_pid_function(ftrace_func_t func)
190 {
191 /* do not set ftrace_pid_function to itself! */
192 if (func != ftrace_pid_func)
193 ftrace_pid_function = func;
194 }
195
196 /**
197 * clear_ftrace_function - reset the ftrace function
198 *
199 * This NULLs the ftrace function and in essence stops
200 * tracing. There may be lag
201 */
202 void clear_ftrace_function(void)
203 {
204 ftrace_trace_function = ftrace_stub;
205 ftrace_pid_function = ftrace_stub;
206 }
207
208 static void control_ops_disable_all(struct ftrace_ops *ops)
209 {
210 int cpu;
211
212 for_each_possible_cpu(cpu)
213 *per_cpu_ptr(ops->disabled, cpu) = 1;
214 }
215
216 static int control_ops_alloc(struct ftrace_ops *ops)
217 {
218 int __percpu *disabled;
219
220 disabled = alloc_percpu(int);
221 if (!disabled)
222 return -ENOMEM;
223
224 ops->disabled = disabled;
225 control_ops_disable_all(ops);
226 return 0;
227 }
228
229 static void ftrace_sync(struct work_struct *work)
230 {
231 /*
232 * This function is just a stub to implement a hard force
233 * of synchronize_sched(). This requires synchronizing
234 * tasks even in userspace and idle.
235 *
236 * Yes, function tracing is rude.
237 */
238 }
239
240 static void ftrace_sync_ipi(void *data)
241 {
242 /* Probably not needed, but do it anyway */
243 smp_rmb();
244 }
245
246 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
247 static void update_function_graph_func(void);
248 #else
249 static inline void update_function_graph_func(void) { }
250 #endif
251
252 static void update_ftrace_function(void)
253 {
254 ftrace_func_t func;
255
256 /*
257 * Prepare the ftrace_ops that the arch callback will use.
258 * If there's only one ftrace_ops registered, the ftrace_ops_list
259 * will point to the ops we want.
260 */
261 set_function_trace_op = ftrace_ops_list;
262
263 /* If there's no ftrace_ops registered, just call the stub function */
264 if (ftrace_ops_list == &ftrace_list_end) {
265 func = ftrace_stub;
266
267 /*
268 * If we are at the end of the list and this ops is
269 * recursion safe and not dynamic and the arch supports passing ops,
270 * then have the mcount trampoline call the function directly.
271 */
272 } else if (ftrace_ops_list->next == &ftrace_list_end) {
273 func = ftrace_ops_get_func(ftrace_ops_list);
274
275 } else {
276 /* Just use the default ftrace_ops */
277 set_function_trace_op = &ftrace_list_end;
278 func = ftrace_ops_list_func;
279 }
280
281 update_function_graph_func();
282
283 /* If there's no change, then do nothing more here */
284 if (ftrace_trace_function == func)
285 return;
286
287 /*
288 * If we are using the list function, it doesn't care
289 * about the function_trace_ops.
290 */
291 if (func == ftrace_ops_list_func) {
292 ftrace_trace_function = func;
293 /*
294 * Don't even bother setting function_trace_ops,
295 * it would be racy to do so anyway.
296 */
297 return;
298 }
299
300 #ifndef CONFIG_DYNAMIC_FTRACE
301 /*
302 * For static tracing, we need to be a bit more careful.
303 * The function change takes affect immediately. Thus,
304 * we need to coorditate the setting of the function_trace_ops
305 * with the setting of the ftrace_trace_function.
306 *
307 * Set the function to the list ops, which will call the
308 * function we want, albeit indirectly, but it handles the
309 * ftrace_ops and doesn't depend on function_trace_op.
310 */
311 ftrace_trace_function = ftrace_ops_list_func;
312 /*
313 * Make sure all CPUs see this. Yes this is slow, but static
314 * tracing is slow and nasty to have enabled.
315 */
316 schedule_on_each_cpu(ftrace_sync);
317 /* Now all cpus are using the list ops. */
318 function_trace_op = set_function_trace_op;
319 /* Make sure the function_trace_op is visible on all CPUs */
320 smp_wmb();
321 /* Nasty way to force a rmb on all cpus */
322 smp_call_function(ftrace_sync_ipi, NULL, 1);
323 /* OK, we are all set to update the ftrace_trace_function now! */
324 #endif /* !CONFIG_DYNAMIC_FTRACE */
325
326 ftrace_trace_function = func;
327 }
328
329 int using_ftrace_ops_list_func(void)
330 {
331 return ftrace_trace_function == ftrace_ops_list_func;
332 }
333
334 static void add_ftrace_ops(struct ftrace_ops **list, struct ftrace_ops *ops)
335 {
336 ops->next = *list;
337 /*
338 * We are entering ops into the list but another
339 * CPU might be walking that list. We need to make sure
340 * the ops->next pointer is valid before another CPU sees
341 * the ops pointer included into the list.
342 */
343 rcu_assign_pointer(*list, ops);
344 }
345
346 static int remove_ftrace_ops(struct ftrace_ops **list, struct ftrace_ops *ops)
347 {
348 struct ftrace_ops **p;
349
350 /*
351 * If we are removing the last function, then simply point
352 * to the ftrace_stub.
353 */
354 if (*list == ops && ops->next == &ftrace_list_end) {
355 *list = &ftrace_list_end;
356 return 0;
357 }
358
359 for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
360 if (*p == ops)
361 break;
362
363 if (*p != ops)
364 return -1;
365
366 *p = (*p)->next;
367 return 0;
368 }
369
370 static void add_ftrace_list_ops(struct ftrace_ops **list,
371 struct ftrace_ops *main_ops,
372 struct ftrace_ops *ops)
373 {
374 int first = *list == &ftrace_list_end;
375 add_ftrace_ops(list, ops);
376 if (first)
377 add_ftrace_ops(&ftrace_ops_list, main_ops);
378 }
379
380 static int remove_ftrace_list_ops(struct ftrace_ops **list,
381 struct ftrace_ops *main_ops,
382 struct ftrace_ops *ops)
383 {
384 int ret = remove_ftrace_ops(list, ops);
385 if (!ret && *list == &ftrace_list_end)
386 ret = remove_ftrace_ops(&ftrace_ops_list, main_ops);
387 return ret;
388 }
389
390 static void ftrace_update_trampoline(struct ftrace_ops *ops);
391
392 static int __register_ftrace_function(struct ftrace_ops *ops)
393 {
394 if (ops->flags & FTRACE_OPS_FL_DELETED)
395 return -EINVAL;
396
397 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
398 return -EBUSY;
399
400 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
401 /*
402 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
403 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
404 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
405 */
406 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
407 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
408 return -EINVAL;
409
410 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
411 ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
412 #endif
413
414 if (!core_kernel_data((unsigned long)ops))
415 ops->flags |= FTRACE_OPS_FL_DYNAMIC;
416
417 if (ops->flags & FTRACE_OPS_FL_CONTROL) {
418 if (control_ops_alloc(ops))
419 return -ENOMEM;
420 add_ftrace_list_ops(&ftrace_control_list, &control_ops, ops);
421 /* The control_ops needs the trampoline update */
422 ops = &control_ops;
423 } else
424 add_ftrace_ops(&ftrace_ops_list, ops);
425
426 ftrace_update_trampoline(ops);
427
428 if (ftrace_enabled)
429 update_ftrace_function();
430
431 return 0;
432 }
433
434 static int __unregister_ftrace_function(struct ftrace_ops *ops)
435 {
436 int ret;
437
438 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
439 return -EBUSY;
440
441 if (ops->flags & FTRACE_OPS_FL_CONTROL) {
442 ret = remove_ftrace_list_ops(&ftrace_control_list,
443 &control_ops, ops);
444 } else
445 ret = remove_ftrace_ops(&ftrace_ops_list, ops);
446
447 if (ret < 0)
448 return ret;
449
450 if (ftrace_enabled)
451 update_ftrace_function();
452
453 return 0;
454 }
455
456 static void ftrace_update_pid_func(void)
457 {
458 /* Only do something if we are tracing something */
459 if (ftrace_trace_function == ftrace_stub)
460 return;
461
462 update_ftrace_function();
463 }
464
465 #ifdef CONFIG_FUNCTION_PROFILER
466 struct ftrace_profile {
467 struct hlist_node node;
468 unsigned long ip;
469 unsigned long counter;
470 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
471 unsigned long long time;
472 unsigned long long time_squared;
473 #endif
474 };
475
476 struct ftrace_profile_page {
477 struct ftrace_profile_page *next;
478 unsigned long index;
479 struct ftrace_profile records[];
480 };
481
482 struct ftrace_profile_stat {
483 atomic_t disabled;
484 struct hlist_head *hash;
485 struct ftrace_profile_page *pages;
486 struct ftrace_profile_page *start;
487 struct tracer_stat stat;
488 };
489
490 #define PROFILE_RECORDS_SIZE \
491 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
492
493 #define PROFILES_PER_PAGE \
494 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
495
496 static int ftrace_profile_enabled __read_mostly;
497
498 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
499 static DEFINE_MUTEX(ftrace_profile_lock);
500
501 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
502
503 #define FTRACE_PROFILE_HASH_BITS 10
504 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
505
506 static void *
507 function_stat_next(void *v, int idx)
508 {
509 struct ftrace_profile *rec = v;
510 struct ftrace_profile_page *pg;
511
512 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
513
514 again:
515 if (idx != 0)
516 rec++;
517
518 if ((void *)rec >= (void *)&pg->records[pg->index]) {
519 pg = pg->next;
520 if (!pg)
521 return NULL;
522 rec = &pg->records[0];
523 if (!rec->counter)
524 goto again;
525 }
526
527 return rec;
528 }
529
530 static void *function_stat_start(struct tracer_stat *trace)
531 {
532 struct ftrace_profile_stat *stat =
533 container_of(trace, struct ftrace_profile_stat, stat);
534
535 if (!stat || !stat->start)
536 return NULL;
537
538 return function_stat_next(&stat->start->records[0], 0);
539 }
540
541 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
542 /* function graph compares on total time */
543 static int function_stat_cmp(void *p1, void *p2)
544 {
545 struct ftrace_profile *a = p1;
546 struct ftrace_profile *b = p2;
547
548 if (a->time < b->time)
549 return -1;
550 if (a->time > b->time)
551 return 1;
552 else
553 return 0;
554 }
555 #else
556 /* not function graph compares against hits */
557 static int function_stat_cmp(void *p1, void *p2)
558 {
559 struct ftrace_profile *a = p1;
560 struct ftrace_profile *b = p2;
561
562 if (a->counter < b->counter)
563 return -1;
564 if (a->counter > b->counter)
565 return 1;
566 else
567 return 0;
568 }
569 #endif
570
571 static int function_stat_headers(struct seq_file *m)
572 {
573 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
574 seq_puts(m, " Function "
575 "Hit Time Avg s^2\n"
576 " -------- "
577 "--- ---- --- ---\n");
578 #else
579 seq_puts(m, " Function Hit\n"
580 " -------- ---\n");
581 #endif
582 return 0;
583 }
584
585 static int function_stat_show(struct seq_file *m, void *v)
586 {
587 struct ftrace_profile *rec = v;
588 char str[KSYM_SYMBOL_LEN];
589 int ret = 0;
590 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
591 static struct trace_seq s;
592 unsigned long long avg;
593 unsigned long long stddev;
594 #endif
595 mutex_lock(&ftrace_profile_lock);
596
597 /* we raced with function_profile_reset() */
598 if (unlikely(rec->counter == 0)) {
599 ret = -EBUSY;
600 goto out;
601 }
602
603 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
604 seq_printf(m, " %-30.30s %10lu", str, rec->counter);
605
606 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
607 seq_puts(m, " ");
608 avg = rec->time;
609 do_div(avg, rec->counter);
610
611 /* Sample standard deviation (s^2) */
612 if (rec->counter <= 1)
613 stddev = 0;
614 else {
615 /*
616 * Apply Welford's method:
617 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
618 */
619 stddev = rec->counter * rec->time_squared -
620 rec->time * rec->time;
621
622 /*
623 * Divide only 1000 for ns^2 -> us^2 conversion.
624 * trace_print_graph_duration will divide 1000 again.
625 */
626 do_div(stddev, rec->counter * (rec->counter - 1) * 1000);
627 }
628
629 trace_seq_init(&s);
630 trace_print_graph_duration(rec->time, &s);
631 trace_seq_puts(&s, " ");
632 trace_print_graph_duration(avg, &s);
633 trace_seq_puts(&s, " ");
634 trace_print_graph_duration(stddev, &s);
635 trace_print_seq(m, &s);
636 #endif
637 seq_putc(m, '\n');
638 out:
639 mutex_unlock(&ftrace_profile_lock);
640
641 return ret;
642 }
643
644 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
645 {
646 struct ftrace_profile_page *pg;
647
648 pg = stat->pages = stat->start;
649
650 while (pg) {
651 memset(pg->records, 0, PROFILE_RECORDS_SIZE);
652 pg->index = 0;
653 pg = pg->next;
654 }
655
656 memset(stat->hash, 0,
657 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
658 }
659
660 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
661 {
662 struct ftrace_profile_page *pg;
663 int functions;
664 int pages;
665 int i;
666
667 /* If we already allocated, do nothing */
668 if (stat->pages)
669 return 0;
670
671 stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
672 if (!stat->pages)
673 return -ENOMEM;
674
675 #ifdef CONFIG_DYNAMIC_FTRACE
676 functions = ftrace_update_tot_cnt;
677 #else
678 /*
679 * We do not know the number of functions that exist because
680 * dynamic tracing is what counts them. With past experience
681 * we have around 20K functions. That should be more than enough.
682 * It is highly unlikely we will execute every function in
683 * the kernel.
684 */
685 functions = 20000;
686 #endif
687
688 pg = stat->start = stat->pages;
689
690 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
691
692 for (i = 1; i < pages; i++) {
693 pg->next = (void *)get_zeroed_page(GFP_KERNEL);
694 if (!pg->next)
695 goto out_free;
696 pg = pg->next;
697 }
698
699 return 0;
700
701 out_free:
702 pg = stat->start;
703 while (pg) {
704 unsigned long tmp = (unsigned long)pg;
705
706 pg = pg->next;
707 free_page(tmp);
708 }
709
710 stat->pages = NULL;
711 stat->start = NULL;
712
713 return -ENOMEM;
714 }
715
716 static int ftrace_profile_init_cpu(int cpu)
717 {
718 struct ftrace_profile_stat *stat;
719 int size;
720
721 stat = &per_cpu(ftrace_profile_stats, cpu);
722
723 if (stat->hash) {
724 /* If the profile is already created, simply reset it */
725 ftrace_profile_reset(stat);
726 return 0;
727 }
728
729 /*
730 * We are profiling all functions, but usually only a few thousand
731 * functions are hit. We'll make a hash of 1024 items.
732 */
733 size = FTRACE_PROFILE_HASH_SIZE;
734
735 stat->hash = kzalloc(sizeof(struct hlist_head) * size, GFP_KERNEL);
736
737 if (!stat->hash)
738 return -ENOMEM;
739
740 /* Preallocate the function profiling pages */
741 if (ftrace_profile_pages_init(stat) < 0) {
742 kfree(stat->hash);
743 stat->hash = NULL;
744 return -ENOMEM;
745 }
746
747 return 0;
748 }
749
750 static int ftrace_profile_init(void)
751 {
752 int cpu;
753 int ret = 0;
754
755 for_each_possible_cpu(cpu) {
756 ret = ftrace_profile_init_cpu(cpu);
757 if (ret)
758 break;
759 }
760
761 return ret;
762 }
763
764 /* interrupts must be disabled */
765 static struct ftrace_profile *
766 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
767 {
768 struct ftrace_profile *rec;
769 struct hlist_head *hhd;
770 unsigned long key;
771
772 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
773 hhd = &stat->hash[key];
774
775 if (hlist_empty(hhd))
776 return NULL;
777
778 hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
779 if (rec->ip == ip)
780 return rec;
781 }
782
783 return NULL;
784 }
785
786 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
787 struct ftrace_profile *rec)
788 {
789 unsigned long key;
790
791 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
792 hlist_add_head_rcu(&rec->node, &stat->hash[key]);
793 }
794
795 /*
796 * The memory is already allocated, this simply finds a new record to use.
797 */
798 static struct ftrace_profile *
799 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
800 {
801 struct ftrace_profile *rec = NULL;
802
803 /* prevent recursion (from NMIs) */
804 if (atomic_inc_return(&stat->disabled) != 1)
805 goto out;
806
807 /*
808 * Try to find the function again since an NMI
809 * could have added it
810 */
811 rec = ftrace_find_profiled_func(stat, ip);
812 if (rec)
813 goto out;
814
815 if (stat->pages->index == PROFILES_PER_PAGE) {
816 if (!stat->pages->next)
817 goto out;
818 stat->pages = stat->pages->next;
819 }
820
821 rec = &stat->pages->records[stat->pages->index++];
822 rec->ip = ip;
823 ftrace_add_profile(stat, rec);
824
825 out:
826 atomic_dec(&stat->disabled);
827
828 return rec;
829 }
830
831 static void
832 function_profile_call(unsigned long ip, unsigned long parent_ip,
833 struct ftrace_ops *ops, struct pt_regs *regs)
834 {
835 struct ftrace_profile_stat *stat;
836 struct ftrace_profile *rec;
837 unsigned long flags;
838
839 if (!ftrace_profile_enabled)
840 return;
841
842 local_irq_save(flags);
843
844 stat = this_cpu_ptr(&ftrace_profile_stats);
845 if (!stat->hash || !ftrace_profile_enabled)
846 goto out;
847
848 rec = ftrace_find_profiled_func(stat, ip);
849 if (!rec) {
850 rec = ftrace_profile_alloc(stat, ip);
851 if (!rec)
852 goto out;
853 }
854
855 rec->counter++;
856 out:
857 local_irq_restore(flags);
858 }
859
860 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
861 static int profile_graph_entry(struct ftrace_graph_ent *trace)
862 {
863 function_profile_call(trace->func, 0, NULL, NULL);
864 return 1;
865 }
866
867 static void profile_graph_return(struct ftrace_graph_ret *trace)
868 {
869 struct ftrace_profile_stat *stat;
870 unsigned long long calltime;
871 struct ftrace_profile *rec;
872 unsigned long flags;
873
874 local_irq_save(flags);
875 stat = this_cpu_ptr(&ftrace_profile_stats);
876 if (!stat->hash || !ftrace_profile_enabled)
877 goto out;
878
879 /* If the calltime was zero'd ignore it */
880 if (!trace->calltime)
881 goto out;
882
883 calltime = trace->rettime - trace->calltime;
884
885 if (!(trace_flags & TRACE_ITER_GRAPH_TIME)) {
886 int index;
887
888 index = trace->depth;
889
890 /* Append this call time to the parent time to subtract */
891 if (index)
892 current->ret_stack[index - 1].subtime += calltime;
893
894 if (current->ret_stack[index].subtime < calltime)
895 calltime -= current->ret_stack[index].subtime;
896 else
897 calltime = 0;
898 }
899
900 rec = ftrace_find_profiled_func(stat, trace->func);
901 if (rec) {
902 rec->time += calltime;
903 rec->time_squared += calltime * calltime;
904 }
905
906 out:
907 local_irq_restore(flags);
908 }
909
910 static int register_ftrace_profiler(void)
911 {
912 return register_ftrace_graph(&profile_graph_return,
913 &profile_graph_entry);
914 }
915
916 static void unregister_ftrace_profiler(void)
917 {
918 unregister_ftrace_graph();
919 }
920 #else
921 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
922 .func = function_profile_call,
923 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
924 INIT_OPS_HASH(ftrace_profile_ops)
925 };
926
927 static int register_ftrace_profiler(void)
928 {
929 return register_ftrace_function(&ftrace_profile_ops);
930 }
931
932 static void unregister_ftrace_profiler(void)
933 {
934 unregister_ftrace_function(&ftrace_profile_ops);
935 }
936 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
937
938 static ssize_t
939 ftrace_profile_write(struct file *filp, const char __user *ubuf,
940 size_t cnt, loff_t *ppos)
941 {
942 unsigned long val;
943 int ret;
944
945 ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
946 if (ret)
947 return ret;
948
949 val = !!val;
950
951 mutex_lock(&ftrace_profile_lock);
952 if (ftrace_profile_enabled ^ val) {
953 if (val) {
954 ret = ftrace_profile_init();
955 if (ret < 0) {
956 cnt = ret;
957 goto out;
958 }
959
960 ret = register_ftrace_profiler();
961 if (ret < 0) {
962 cnt = ret;
963 goto out;
964 }
965 ftrace_profile_enabled = 1;
966 } else {
967 ftrace_profile_enabled = 0;
968 /*
969 * unregister_ftrace_profiler calls stop_machine
970 * so this acts like an synchronize_sched.
971 */
972 unregister_ftrace_profiler();
973 }
974 }
975 out:
976 mutex_unlock(&ftrace_profile_lock);
977
978 *ppos += cnt;
979
980 return cnt;
981 }
982
983 static ssize_t
984 ftrace_profile_read(struct file *filp, char __user *ubuf,
985 size_t cnt, loff_t *ppos)
986 {
987 char buf[64]; /* big enough to hold a number */
988 int r;
989
990 r = sprintf(buf, "%u\n", ftrace_profile_enabled);
991 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
992 }
993
994 static const struct file_operations ftrace_profile_fops = {
995 .open = tracing_open_generic,
996 .read = ftrace_profile_read,
997 .write = ftrace_profile_write,
998 .llseek = default_llseek,
999 };
1000
1001 /* used to initialize the real stat files */
1002 static struct tracer_stat function_stats __initdata = {
1003 .name = "functions",
1004 .stat_start = function_stat_start,
1005 .stat_next = function_stat_next,
1006 .stat_cmp = function_stat_cmp,
1007 .stat_headers = function_stat_headers,
1008 .stat_show = function_stat_show
1009 };
1010
1011 static __init void ftrace_profile_debugfs(struct dentry *d_tracer)
1012 {
1013 struct ftrace_profile_stat *stat;
1014 struct dentry *entry;
1015 char *name;
1016 int ret;
1017 int cpu;
1018
1019 for_each_possible_cpu(cpu) {
1020 stat = &per_cpu(ftrace_profile_stats, cpu);
1021
1022 /* allocate enough for function name + cpu number */
1023 name = kmalloc(32, GFP_KERNEL);
1024 if (!name) {
1025 /*
1026 * The files created are permanent, if something happens
1027 * we still do not free memory.
1028 */
1029 WARN(1,
1030 "Could not allocate stat file for cpu %d\n",
1031 cpu);
1032 return;
1033 }
1034 stat->stat = function_stats;
1035 snprintf(name, 32, "function%d", cpu);
1036 stat->stat.name = name;
1037 ret = register_stat_tracer(&stat->stat);
1038 if (ret) {
1039 WARN(1,
1040 "Could not register function stat for cpu %d\n",
1041 cpu);
1042 kfree(name);
1043 return;
1044 }
1045 }
1046
1047 entry = debugfs_create_file("function_profile_enabled", 0644,
1048 d_tracer, NULL, &ftrace_profile_fops);
1049 if (!entry)
1050 pr_warning("Could not create debugfs "
1051 "'function_profile_enabled' entry\n");
1052 }
1053
1054 #else /* CONFIG_FUNCTION_PROFILER */
1055 static __init void ftrace_profile_debugfs(struct dentry *d_tracer)
1056 {
1057 }
1058 #endif /* CONFIG_FUNCTION_PROFILER */
1059
1060 static struct pid * const ftrace_swapper_pid = &init_struct_pid;
1061
1062 #ifdef CONFIG_DYNAMIC_FTRACE
1063
1064 static struct ftrace_ops *removed_ops;
1065
1066 /*
1067 * Set when doing a global update, like enabling all recs or disabling them.
1068 * It is not set when just updating a single ftrace_ops.
1069 */
1070 static bool update_all_ops;
1071
1072 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1073 # error Dynamic ftrace depends on MCOUNT_RECORD
1074 #endif
1075
1076 static struct hlist_head ftrace_func_hash[FTRACE_FUNC_HASHSIZE] __read_mostly;
1077
1078 struct ftrace_func_probe {
1079 struct hlist_node node;
1080 struct ftrace_probe_ops *ops;
1081 unsigned long flags;
1082 unsigned long ip;
1083 void *data;
1084 struct list_head free_list;
1085 };
1086
1087 struct ftrace_func_entry {
1088 struct hlist_node hlist;
1089 unsigned long ip;
1090 };
1091
1092 struct ftrace_hash {
1093 unsigned long size_bits;
1094 struct hlist_head *buckets;
1095 unsigned long count;
1096 struct rcu_head rcu;
1097 };
1098
1099 /*
1100 * We make these constant because no one should touch them,
1101 * but they are used as the default "empty hash", to avoid allocating
1102 * it all the time. These are in a read only section such that if
1103 * anyone does try to modify it, it will cause an exception.
1104 */
1105 static const struct hlist_head empty_buckets[1];
1106 static const struct ftrace_hash empty_hash = {
1107 .buckets = (struct hlist_head *)empty_buckets,
1108 };
1109 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash)
1110
1111 static struct ftrace_ops global_ops = {
1112 .func = ftrace_stub,
1113 .local_hash.notrace_hash = EMPTY_HASH,
1114 .local_hash.filter_hash = EMPTY_HASH,
1115 INIT_OPS_HASH(global_ops)
1116 .flags = FTRACE_OPS_FL_RECURSION_SAFE |
1117 FTRACE_OPS_FL_INITIALIZED,
1118 };
1119
1120 /*
1121 * This is used by __kernel_text_address() to return true if the
1122 * address is on a dynamically allocated trampoline that would
1123 * not return true for either core_kernel_text() or
1124 * is_module_text_address().
1125 */
1126 bool is_ftrace_trampoline(unsigned long addr)
1127 {
1128 struct ftrace_ops *op;
1129 bool ret = false;
1130
1131 /*
1132 * Some of the ops may be dynamically allocated,
1133 * they are freed after a synchronize_sched().
1134 */
1135 preempt_disable_notrace();
1136
1137 do_for_each_ftrace_op(op, ftrace_ops_list) {
1138 /*
1139 * This is to check for dynamically allocated trampolines.
1140 * Trampolines that are in kernel text will have
1141 * core_kernel_text() return true.
1142 */
1143 if (op->trampoline && op->trampoline_size)
1144 if (addr >= op->trampoline &&
1145 addr < op->trampoline + op->trampoline_size) {
1146 ret = true;
1147 goto out;
1148 }
1149 } while_for_each_ftrace_op(op);
1150
1151 out:
1152 preempt_enable_notrace();
1153
1154 return ret;
1155 }
1156
1157 struct ftrace_page {
1158 struct ftrace_page *next;
1159 struct dyn_ftrace *records;
1160 int index;
1161 int size;
1162 };
1163
1164 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1165 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1166
1167 /* estimate from running different kernels */
1168 #define NR_TO_INIT 10000
1169
1170 static struct ftrace_page *ftrace_pages_start;
1171 static struct ftrace_page *ftrace_pages;
1172
1173 static bool __always_inline ftrace_hash_empty(struct ftrace_hash *hash)
1174 {
1175 return !hash || !hash->count;
1176 }
1177
1178 static struct ftrace_func_entry *
1179 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1180 {
1181 unsigned long key;
1182 struct ftrace_func_entry *entry;
1183 struct hlist_head *hhd;
1184
1185 if (ftrace_hash_empty(hash))
1186 return NULL;
1187
1188 if (hash->size_bits > 0)
1189 key = hash_long(ip, hash->size_bits);
1190 else
1191 key = 0;
1192
1193 hhd = &hash->buckets[key];
1194
1195 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1196 if (entry->ip == ip)
1197 return entry;
1198 }
1199 return NULL;
1200 }
1201
1202 static void __add_hash_entry(struct ftrace_hash *hash,
1203 struct ftrace_func_entry *entry)
1204 {
1205 struct hlist_head *hhd;
1206 unsigned long key;
1207
1208 if (hash->size_bits)
1209 key = hash_long(entry->ip, hash->size_bits);
1210 else
1211 key = 0;
1212
1213 hhd = &hash->buckets[key];
1214 hlist_add_head(&entry->hlist, hhd);
1215 hash->count++;
1216 }
1217
1218 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1219 {
1220 struct ftrace_func_entry *entry;
1221
1222 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1223 if (!entry)
1224 return -ENOMEM;
1225
1226 entry->ip = ip;
1227 __add_hash_entry(hash, entry);
1228
1229 return 0;
1230 }
1231
1232 static void
1233 free_hash_entry(struct ftrace_hash *hash,
1234 struct ftrace_func_entry *entry)
1235 {
1236 hlist_del(&entry->hlist);
1237 kfree(entry);
1238 hash->count--;
1239 }
1240
1241 static void
1242 remove_hash_entry(struct ftrace_hash *hash,
1243 struct ftrace_func_entry *entry)
1244 {
1245 hlist_del(&entry->hlist);
1246 hash->count--;
1247 }
1248
1249 static void ftrace_hash_clear(struct ftrace_hash *hash)
1250 {
1251 struct hlist_head *hhd;
1252 struct hlist_node *tn;
1253 struct ftrace_func_entry *entry;
1254 int size = 1 << hash->size_bits;
1255 int i;
1256
1257 if (!hash->count)
1258 return;
1259
1260 for (i = 0; i < size; i++) {
1261 hhd = &hash->buckets[i];
1262 hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1263 free_hash_entry(hash, entry);
1264 }
1265 FTRACE_WARN_ON(hash->count);
1266 }
1267
1268 static void free_ftrace_hash(struct ftrace_hash *hash)
1269 {
1270 if (!hash || hash == EMPTY_HASH)
1271 return;
1272 ftrace_hash_clear(hash);
1273 kfree(hash->buckets);
1274 kfree(hash);
1275 }
1276
1277 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1278 {
1279 struct ftrace_hash *hash;
1280
1281 hash = container_of(rcu, struct ftrace_hash, rcu);
1282 free_ftrace_hash(hash);
1283 }
1284
1285 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1286 {
1287 if (!hash || hash == EMPTY_HASH)
1288 return;
1289 call_rcu_sched(&hash->rcu, __free_ftrace_hash_rcu);
1290 }
1291
1292 void ftrace_free_filter(struct ftrace_ops *ops)
1293 {
1294 ftrace_ops_init(ops);
1295 free_ftrace_hash(ops->func_hash->filter_hash);
1296 free_ftrace_hash(ops->func_hash->notrace_hash);
1297 }
1298
1299 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1300 {
1301 struct ftrace_hash *hash;
1302 int size;
1303
1304 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1305 if (!hash)
1306 return NULL;
1307
1308 size = 1 << size_bits;
1309 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1310
1311 if (!hash->buckets) {
1312 kfree(hash);
1313 return NULL;
1314 }
1315
1316 hash->size_bits = size_bits;
1317
1318 return hash;
1319 }
1320
1321 static struct ftrace_hash *
1322 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1323 {
1324 struct ftrace_func_entry *entry;
1325 struct ftrace_hash *new_hash;
1326 int size;
1327 int ret;
1328 int i;
1329
1330 new_hash = alloc_ftrace_hash(size_bits);
1331 if (!new_hash)
1332 return NULL;
1333
1334 /* Empty hash? */
1335 if (ftrace_hash_empty(hash))
1336 return new_hash;
1337
1338 size = 1 << hash->size_bits;
1339 for (i = 0; i < size; i++) {
1340 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1341 ret = add_hash_entry(new_hash, entry->ip);
1342 if (ret < 0)
1343 goto free_hash;
1344 }
1345 }
1346
1347 FTRACE_WARN_ON(new_hash->count != hash->count);
1348
1349 return new_hash;
1350
1351 free_hash:
1352 free_ftrace_hash(new_hash);
1353 return NULL;
1354 }
1355
1356 static void
1357 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1358 static void
1359 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1360
1361 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1362 struct ftrace_hash *new_hash);
1363
1364 static int
1365 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1366 struct ftrace_hash **dst, struct ftrace_hash *src)
1367 {
1368 struct ftrace_func_entry *entry;
1369 struct hlist_node *tn;
1370 struct hlist_head *hhd;
1371 struct ftrace_hash *new_hash;
1372 int size = src->count;
1373 int bits = 0;
1374 int ret;
1375 int i;
1376
1377 /* Reject setting notrace hash on IPMODIFY ftrace_ops */
1378 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1379 return -EINVAL;
1380
1381 /*
1382 * If the new source is empty, just free dst and assign it
1383 * the empty_hash.
1384 */
1385 if (!src->count) {
1386 new_hash = EMPTY_HASH;
1387 goto update;
1388 }
1389
1390 /*
1391 * Make the hash size about 1/2 the # found
1392 */
1393 for (size /= 2; size; size >>= 1)
1394 bits++;
1395
1396 /* Don't allocate too much */
1397 if (bits > FTRACE_HASH_MAX_BITS)
1398 bits = FTRACE_HASH_MAX_BITS;
1399
1400 new_hash = alloc_ftrace_hash(bits);
1401 if (!new_hash)
1402 return -ENOMEM;
1403
1404 size = 1 << src->size_bits;
1405 for (i = 0; i < size; i++) {
1406 hhd = &src->buckets[i];
1407 hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1408 remove_hash_entry(src, entry);
1409 __add_hash_entry(new_hash, entry);
1410 }
1411 }
1412
1413 update:
1414 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1415 if (enable) {
1416 /* IPMODIFY should be updated only when filter_hash updating */
1417 ret = ftrace_hash_ipmodify_update(ops, new_hash);
1418 if (ret < 0) {
1419 free_ftrace_hash(new_hash);
1420 return ret;
1421 }
1422 }
1423
1424 /*
1425 * Remove the current set, update the hash and add
1426 * them back.
1427 */
1428 ftrace_hash_rec_disable_modify(ops, enable);
1429
1430 rcu_assign_pointer(*dst, new_hash);
1431
1432 ftrace_hash_rec_enable_modify(ops, enable);
1433
1434 return 0;
1435 }
1436
1437 static bool hash_contains_ip(unsigned long ip,
1438 struct ftrace_ops_hash *hash)
1439 {
1440 /*
1441 * The function record is a match if it exists in the filter
1442 * hash and not in the notrace hash. Note, an emty hash is
1443 * considered a match for the filter hash, but an empty
1444 * notrace hash is considered not in the notrace hash.
1445 */
1446 return (ftrace_hash_empty(hash->filter_hash) ||
1447 ftrace_lookup_ip(hash->filter_hash, ip)) &&
1448 (ftrace_hash_empty(hash->notrace_hash) ||
1449 !ftrace_lookup_ip(hash->notrace_hash, ip));
1450 }
1451
1452 /*
1453 * Test the hashes for this ops to see if we want to call
1454 * the ops->func or not.
1455 *
1456 * It's a match if the ip is in the ops->filter_hash or
1457 * the filter_hash does not exist or is empty,
1458 * AND
1459 * the ip is not in the ops->notrace_hash.
1460 *
1461 * This needs to be called with preemption disabled as
1462 * the hashes are freed with call_rcu_sched().
1463 */
1464 static int
1465 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1466 {
1467 struct ftrace_ops_hash hash;
1468 int ret;
1469
1470 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1471 /*
1472 * There's a small race when adding ops that the ftrace handler
1473 * that wants regs, may be called without them. We can not
1474 * allow that handler to be called if regs is NULL.
1475 */
1476 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1477 return 0;
1478 #endif
1479
1480 hash.filter_hash = rcu_dereference_raw_notrace(ops->func_hash->filter_hash);
1481 hash.notrace_hash = rcu_dereference_raw_notrace(ops->func_hash->notrace_hash);
1482
1483 if (hash_contains_ip(ip, &hash))
1484 ret = 1;
1485 else
1486 ret = 0;
1487
1488 return ret;
1489 }
1490
1491 /*
1492 * This is a double for. Do not use 'break' to break out of the loop,
1493 * you must use a goto.
1494 */
1495 #define do_for_each_ftrace_rec(pg, rec) \
1496 for (pg = ftrace_pages_start; pg; pg = pg->next) { \
1497 int _____i; \
1498 for (_____i = 0; _____i < pg->index; _____i++) { \
1499 rec = &pg->records[_____i];
1500
1501 #define while_for_each_ftrace_rec() \
1502 } \
1503 }
1504
1505
1506 static int ftrace_cmp_recs(const void *a, const void *b)
1507 {
1508 const struct dyn_ftrace *key = a;
1509 const struct dyn_ftrace *rec = b;
1510
1511 if (key->flags < rec->ip)
1512 return -1;
1513 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1514 return 1;
1515 return 0;
1516 }
1517
1518 static unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1519 {
1520 struct ftrace_page *pg;
1521 struct dyn_ftrace *rec;
1522 struct dyn_ftrace key;
1523
1524 key.ip = start;
1525 key.flags = end; /* overload flags, as it is unsigned long */
1526
1527 for (pg = ftrace_pages_start; pg; pg = pg->next) {
1528 if (end < pg->records[0].ip ||
1529 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1530 continue;
1531 rec = bsearch(&key, pg->records, pg->index,
1532 sizeof(struct dyn_ftrace),
1533 ftrace_cmp_recs);
1534 if (rec)
1535 return rec->ip;
1536 }
1537
1538 return 0;
1539 }
1540
1541 /**
1542 * ftrace_location - return true if the ip giving is a traced location
1543 * @ip: the instruction pointer to check
1544 *
1545 * Returns rec->ip if @ip given is a pointer to a ftrace location.
1546 * That is, the instruction that is either a NOP or call to
1547 * the function tracer. It checks the ftrace internal tables to
1548 * determine if the address belongs or not.
1549 */
1550 unsigned long ftrace_location(unsigned long ip)
1551 {
1552 return ftrace_location_range(ip, ip);
1553 }
1554
1555 /**
1556 * ftrace_text_reserved - return true if range contains an ftrace location
1557 * @start: start of range to search
1558 * @end: end of range to search (inclusive). @end points to the last byte to check.
1559 *
1560 * Returns 1 if @start and @end contains a ftrace location.
1561 * That is, the instruction that is either a NOP or call to
1562 * the function tracer. It checks the ftrace internal tables to
1563 * determine if the address belongs or not.
1564 */
1565 int ftrace_text_reserved(const void *start, const void *end)
1566 {
1567 unsigned long ret;
1568
1569 ret = ftrace_location_range((unsigned long)start,
1570 (unsigned long)end);
1571
1572 return (int)!!ret;
1573 }
1574
1575 /* Test if ops registered to this rec needs regs */
1576 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1577 {
1578 struct ftrace_ops *ops;
1579 bool keep_regs = false;
1580
1581 for (ops = ftrace_ops_list;
1582 ops != &ftrace_list_end; ops = ops->next) {
1583 /* pass rec in as regs to have non-NULL val */
1584 if (ftrace_ops_test(ops, rec->ip, rec)) {
1585 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1586 keep_regs = true;
1587 break;
1588 }
1589 }
1590 }
1591
1592 return keep_regs;
1593 }
1594
1595 static void __ftrace_hash_rec_update(struct ftrace_ops *ops,
1596 int filter_hash,
1597 bool inc)
1598 {
1599 struct ftrace_hash *hash;
1600 struct ftrace_hash *other_hash;
1601 struct ftrace_page *pg;
1602 struct dyn_ftrace *rec;
1603 int count = 0;
1604 int all = 0;
1605
1606 /* Only update if the ops has been registered */
1607 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1608 return;
1609
1610 /*
1611 * In the filter_hash case:
1612 * If the count is zero, we update all records.
1613 * Otherwise we just update the items in the hash.
1614 *
1615 * In the notrace_hash case:
1616 * We enable the update in the hash.
1617 * As disabling notrace means enabling the tracing,
1618 * and enabling notrace means disabling, the inc variable
1619 * gets inversed.
1620 */
1621 if (filter_hash) {
1622 hash = ops->func_hash->filter_hash;
1623 other_hash = ops->func_hash->notrace_hash;
1624 if (ftrace_hash_empty(hash))
1625 all = 1;
1626 } else {
1627 inc = !inc;
1628 hash = ops->func_hash->notrace_hash;
1629 other_hash = ops->func_hash->filter_hash;
1630 /*
1631 * If the notrace hash has no items,
1632 * then there's nothing to do.
1633 */
1634 if (ftrace_hash_empty(hash))
1635 return;
1636 }
1637
1638 do_for_each_ftrace_rec(pg, rec) {
1639 int in_other_hash = 0;
1640 int in_hash = 0;
1641 int match = 0;
1642
1643 if (all) {
1644 /*
1645 * Only the filter_hash affects all records.
1646 * Update if the record is not in the notrace hash.
1647 */
1648 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1649 match = 1;
1650 } else {
1651 in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1652 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1653
1654 /*
1655 * If filter_hash is set, we want to match all functions
1656 * that are in the hash but not in the other hash.
1657 *
1658 * If filter_hash is not set, then we are decrementing.
1659 * That means we match anything that is in the hash
1660 * and also in the other_hash. That is, we need to turn
1661 * off functions in the other hash because they are disabled
1662 * by this hash.
1663 */
1664 if (filter_hash && in_hash && !in_other_hash)
1665 match = 1;
1666 else if (!filter_hash && in_hash &&
1667 (in_other_hash || ftrace_hash_empty(other_hash)))
1668 match = 1;
1669 }
1670 if (!match)
1671 continue;
1672
1673 if (inc) {
1674 rec->flags++;
1675 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1676 return;
1677
1678 /*
1679 * If there's only a single callback registered to a
1680 * function, and the ops has a trampoline registered
1681 * for it, then we can call it directly.
1682 */
1683 if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1684 rec->flags |= FTRACE_FL_TRAMP;
1685 else
1686 /*
1687 * If we are adding another function callback
1688 * to this function, and the previous had a
1689 * custom trampoline in use, then we need to go
1690 * back to the default trampoline.
1691 */
1692 rec->flags &= ~FTRACE_FL_TRAMP;
1693
1694 /*
1695 * If any ops wants regs saved for this function
1696 * then all ops will get saved regs.
1697 */
1698 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1699 rec->flags |= FTRACE_FL_REGS;
1700 } else {
1701 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1702 return;
1703 rec->flags--;
1704
1705 /*
1706 * If the rec had REGS enabled and the ops that is
1707 * being removed had REGS set, then see if there is
1708 * still any ops for this record that wants regs.
1709 * If not, we can stop recording them.
1710 */
1711 if (ftrace_rec_count(rec) > 0 &&
1712 rec->flags & FTRACE_FL_REGS &&
1713 ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1714 if (!test_rec_ops_needs_regs(rec))
1715 rec->flags &= ~FTRACE_FL_REGS;
1716 }
1717
1718 /*
1719 * If the rec had TRAMP enabled, then it needs to
1720 * be cleared. As TRAMP can only be enabled iff
1721 * there is only a single ops attached to it.
1722 * In otherwords, always disable it on decrementing.
1723 * In the future, we may set it if rec count is
1724 * decremented to one, and the ops that is left
1725 * has a trampoline.
1726 */
1727 rec->flags &= ~FTRACE_FL_TRAMP;
1728
1729 /*
1730 * flags will be cleared in ftrace_check_record()
1731 * if rec count is zero.
1732 */
1733 }
1734 count++;
1735 /* Shortcut, if we handled all records, we are done. */
1736 if (!all && count == hash->count)
1737 return;
1738 } while_for_each_ftrace_rec();
1739 }
1740
1741 static void ftrace_hash_rec_disable(struct ftrace_ops *ops,
1742 int filter_hash)
1743 {
1744 __ftrace_hash_rec_update(ops, filter_hash, 0);
1745 }
1746
1747 static void ftrace_hash_rec_enable(struct ftrace_ops *ops,
1748 int filter_hash)
1749 {
1750 __ftrace_hash_rec_update(ops, filter_hash, 1);
1751 }
1752
1753 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1754 int filter_hash, int inc)
1755 {
1756 struct ftrace_ops *op;
1757
1758 __ftrace_hash_rec_update(ops, filter_hash, inc);
1759
1760 if (ops->func_hash != &global_ops.local_hash)
1761 return;
1762
1763 /*
1764 * If the ops shares the global_ops hash, then we need to update
1765 * all ops that are enabled and use this hash.
1766 */
1767 do_for_each_ftrace_op(op, ftrace_ops_list) {
1768 /* Already done */
1769 if (op == ops)
1770 continue;
1771 if (op->func_hash == &global_ops.local_hash)
1772 __ftrace_hash_rec_update(op, filter_hash, inc);
1773 } while_for_each_ftrace_op(op);
1774 }
1775
1776 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1777 int filter_hash)
1778 {
1779 ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1780 }
1781
1782 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1783 int filter_hash)
1784 {
1785 ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1786 }
1787
1788 /*
1789 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1790 * or no-needed to update, -EBUSY if it detects a conflict of the flag
1791 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1792 * Note that old_hash and new_hash has below meanings
1793 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1794 * - If the hash is EMPTY_HASH, it hits nothing
1795 * - Anything else hits the recs which match the hash entries.
1796 */
1797 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1798 struct ftrace_hash *old_hash,
1799 struct ftrace_hash *new_hash)
1800 {
1801 struct ftrace_page *pg;
1802 struct dyn_ftrace *rec, *end = NULL;
1803 int in_old, in_new;
1804
1805 /* Only update if the ops has been registered */
1806 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1807 return 0;
1808
1809 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1810 return 0;
1811
1812 /*
1813 * Since the IPMODIFY is a very address sensitive action, we do not
1814 * allow ftrace_ops to set all functions to new hash.
1815 */
1816 if (!new_hash || !old_hash)
1817 return -EINVAL;
1818
1819 /* Update rec->flags */
1820 do_for_each_ftrace_rec(pg, rec) {
1821 /* We need to update only differences of filter_hash */
1822 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1823 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1824 if (in_old == in_new)
1825 continue;
1826
1827 if (in_new) {
1828 /* New entries must ensure no others are using it */
1829 if (rec->flags & FTRACE_FL_IPMODIFY)
1830 goto rollback;
1831 rec->flags |= FTRACE_FL_IPMODIFY;
1832 } else /* Removed entry */
1833 rec->flags &= ~FTRACE_FL_IPMODIFY;
1834 } while_for_each_ftrace_rec();
1835
1836 return 0;
1837
1838 rollback:
1839 end = rec;
1840
1841 /* Roll back what we did above */
1842 do_for_each_ftrace_rec(pg, rec) {
1843 if (rec == end)
1844 goto err_out;
1845
1846 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1847 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1848 if (in_old == in_new)
1849 continue;
1850
1851 if (in_new)
1852 rec->flags &= ~FTRACE_FL_IPMODIFY;
1853 else
1854 rec->flags |= FTRACE_FL_IPMODIFY;
1855 } while_for_each_ftrace_rec();
1856
1857 err_out:
1858 return -EBUSY;
1859 }
1860
1861 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1862 {
1863 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1864
1865 if (ftrace_hash_empty(hash))
1866 hash = NULL;
1867
1868 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1869 }
1870
1871 /* Disabling always succeeds */
1872 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1873 {
1874 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1875
1876 if (ftrace_hash_empty(hash))
1877 hash = NULL;
1878
1879 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1880 }
1881
1882 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1883 struct ftrace_hash *new_hash)
1884 {
1885 struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1886
1887 if (ftrace_hash_empty(old_hash))
1888 old_hash = NULL;
1889
1890 if (ftrace_hash_empty(new_hash))
1891 new_hash = NULL;
1892
1893 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1894 }
1895
1896 static void print_ip_ins(const char *fmt, unsigned char *p)
1897 {
1898 int i;
1899
1900 printk(KERN_CONT "%s", fmt);
1901
1902 for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1903 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1904 }
1905
1906 static struct ftrace_ops *
1907 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1908
1909 /**
1910 * ftrace_bug - report and shutdown function tracer
1911 * @failed: The failed type (EFAULT, EINVAL, EPERM)
1912 * @rec: The record that failed
1913 *
1914 * The arch code that enables or disables the function tracing
1915 * can call ftrace_bug() when it has detected a problem in
1916 * modifying the code. @failed should be one of either:
1917 * EFAULT - if the problem happens on reading the @ip address
1918 * EINVAL - if what is read at @ip is not what was expected
1919 * EPERM - if the problem happens on writting to the @ip address
1920 */
1921 void ftrace_bug(int failed, struct dyn_ftrace *rec)
1922 {
1923 unsigned long ip = rec ? rec->ip : 0;
1924
1925 switch (failed) {
1926 case -EFAULT:
1927 FTRACE_WARN_ON_ONCE(1);
1928 pr_info("ftrace faulted on modifying ");
1929 print_ip_sym(ip);
1930 break;
1931 case -EINVAL:
1932 FTRACE_WARN_ON_ONCE(1);
1933 pr_info("ftrace failed to modify ");
1934 print_ip_sym(ip);
1935 print_ip_ins(" actual: ", (unsigned char *)ip);
1936 pr_cont("\n");
1937 break;
1938 case -EPERM:
1939 FTRACE_WARN_ON_ONCE(1);
1940 pr_info("ftrace faulted on writing ");
1941 print_ip_sym(ip);
1942 break;
1943 default:
1944 FTRACE_WARN_ON_ONCE(1);
1945 pr_info("ftrace faulted on unknown error ");
1946 print_ip_sym(ip);
1947 }
1948 if (rec) {
1949 struct ftrace_ops *ops = NULL;
1950
1951 pr_info("ftrace record flags: %lx\n", rec->flags);
1952 pr_cont(" (%ld)%s", ftrace_rec_count(rec),
1953 rec->flags & FTRACE_FL_REGS ? " R" : " ");
1954 if (rec->flags & FTRACE_FL_TRAMP_EN) {
1955 ops = ftrace_find_tramp_ops_any(rec);
1956 if (ops)
1957 pr_cont("\ttramp: %pS",
1958 (void *)ops->trampoline);
1959 else
1960 pr_cont("\ttramp: ERROR!");
1961
1962 }
1963 ip = ftrace_get_addr_curr(rec);
1964 pr_cont(" expected tramp: %lx\n", ip);
1965 }
1966 }
1967
1968 static int ftrace_check_record(struct dyn_ftrace *rec, int enable, int update)
1969 {
1970 unsigned long flag = 0UL;
1971
1972 /*
1973 * If we are updating calls:
1974 *
1975 * If the record has a ref count, then we need to enable it
1976 * because someone is using it.
1977 *
1978 * Otherwise we make sure its disabled.
1979 *
1980 * If we are disabling calls, then disable all records that
1981 * are enabled.
1982 */
1983 if (enable && ftrace_rec_count(rec))
1984 flag = FTRACE_FL_ENABLED;
1985
1986 /*
1987 * If enabling and the REGS flag does not match the REGS_EN, or
1988 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
1989 * this record. Set flags to fail the compare against ENABLED.
1990 */
1991 if (flag) {
1992 if (!(rec->flags & FTRACE_FL_REGS) !=
1993 !(rec->flags & FTRACE_FL_REGS_EN))
1994 flag |= FTRACE_FL_REGS;
1995
1996 if (!(rec->flags & FTRACE_FL_TRAMP) !=
1997 !(rec->flags & FTRACE_FL_TRAMP_EN))
1998 flag |= FTRACE_FL_TRAMP;
1999 }
2000
2001 /* If the state of this record hasn't changed, then do nothing */
2002 if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2003 return FTRACE_UPDATE_IGNORE;
2004
2005 if (flag) {
2006 /* Save off if rec is being enabled (for return value) */
2007 flag ^= rec->flags & FTRACE_FL_ENABLED;
2008
2009 if (update) {
2010 rec->flags |= FTRACE_FL_ENABLED;
2011 if (flag & FTRACE_FL_REGS) {
2012 if (rec->flags & FTRACE_FL_REGS)
2013 rec->flags |= FTRACE_FL_REGS_EN;
2014 else
2015 rec->flags &= ~FTRACE_FL_REGS_EN;
2016 }
2017 if (flag & FTRACE_FL_TRAMP) {
2018 if (rec->flags & FTRACE_FL_TRAMP)
2019 rec->flags |= FTRACE_FL_TRAMP_EN;
2020 else
2021 rec->flags &= ~FTRACE_FL_TRAMP_EN;
2022 }
2023 }
2024
2025 /*
2026 * If this record is being updated from a nop, then
2027 * return UPDATE_MAKE_CALL.
2028 * Otherwise,
2029 * return UPDATE_MODIFY_CALL to tell the caller to convert
2030 * from the save regs, to a non-save regs function or
2031 * vice versa, or from a trampoline call.
2032 */
2033 if (flag & FTRACE_FL_ENABLED)
2034 return FTRACE_UPDATE_MAKE_CALL;
2035
2036 return FTRACE_UPDATE_MODIFY_CALL;
2037 }
2038
2039 if (update) {
2040 /* If there's no more users, clear all flags */
2041 if (!ftrace_rec_count(rec))
2042 rec->flags = 0;
2043 else
2044 /* Just disable the record (keep REGS state) */
2045 rec->flags &= ~FTRACE_FL_ENABLED;
2046 }
2047
2048 return FTRACE_UPDATE_MAKE_NOP;
2049 }
2050
2051 /**
2052 * ftrace_update_record, set a record that now is tracing or not
2053 * @rec: the record to update
2054 * @enable: set to 1 if the record is tracing, zero to force disable
2055 *
2056 * The records that represent all functions that can be traced need
2057 * to be updated when tracing has been enabled.
2058 */
2059 int ftrace_update_record(struct dyn_ftrace *rec, int enable)
2060 {
2061 return ftrace_check_record(rec, enable, 1);
2062 }
2063
2064 /**
2065 * ftrace_test_record, check if the record has been enabled or not
2066 * @rec: the record to test
2067 * @enable: set to 1 to check if enabled, 0 if it is disabled
2068 *
2069 * The arch code may need to test if a record is already set to
2070 * tracing to determine how to modify the function code that it
2071 * represents.
2072 */
2073 int ftrace_test_record(struct dyn_ftrace *rec, int enable)
2074 {
2075 return ftrace_check_record(rec, enable, 0);
2076 }
2077
2078 static struct ftrace_ops *
2079 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2080 {
2081 struct ftrace_ops *op;
2082 unsigned long ip = rec->ip;
2083
2084 do_for_each_ftrace_op(op, ftrace_ops_list) {
2085
2086 if (!op->trampoline)
2087 continue;
2088
2089 if (hash_contains_ip(ip, op->func_hash))
2090 return op;
2091 } while_for_each_ftrace_op(op);
2092
2093 return NULL;
2094 }
2095
2096 static struct ftrace_ops *
2097 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2098 {
2099 struct ftrace_ops *op;
2100 unsigned long ip = rec->ip;
2101
2102 /*
2103 * Need to check removed ops first.
2104 * If they are being removed, and this rec has a tramp,
2105 * and this rec is in the ops list, then it would be the
2106 * one with the tramp.
2107 */
2108 if (removed_ops) {
2109 if (hash_contains_ip(ip, &removed_ops->old_hash))
2110 return removed_ops;
2111 }
2112
2113 /*
2114 * Need to find the current trampoline for a rec.
2115 * Now, a trampoline is only attached to a rec if there
2116 * was a single 'ops' attached to it. But this can be called
2117 * when we are adding another op to the rec or removing the
2118 * current one. Thus, if the op is being added, we can
2119 * ignore it because it hasn't attached itself to the rec
2120 * yet.
2121 *
2122 * If an ops is being modified (hooking to different functions)
2123 * then we don't care about the new functions that are being
2124 * added, just the old ones (that are probably being removed).
2125 *
2126 * If we are adding an ops to a function that already is using
2127 * a trampoline, it needs to be removed (trampolines are only
2128 * for single ops connected), then an ops that is not being
2129 * modified also needs to be checked.
2130 */
2131 do_for_each_ftrace_op(op, ftrace_ops_list) {
2132
2133 if (!op->trampoline)
2134 continue;
2135
2136 /*
2137 * If the ops is being added, it hasn't gotten to
2138 * the point to be removed from this tree yet.
2139 */
2140 if (op->flags & FTRACE_OPS_FL_ADDING)
2141 continue;
2142
2143
2144 /*
2145 * If the ops is being modified and is in the old
2146 * hash, then it is probably being removed from this
2147 * function.
2148 */
2149 if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2150 hash_contains_ip(ip, &op->old_hash))
2151 return op;
2152 /*
2153 * If the ops is not being added or modified, and it's
2154 * in its normal filter hash, then this must be the one
2155 * we want!
2156 */
2157 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2158 hash_contains_ip(ip, op->func_hash))
2159 return op;
2160
2161 } while_for_each_ftrace_op(op);
2162
2163 return NULL;
2164 }
2165
2166 static struct ftrace_ops *
2167 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2168 {
2169 struct ftrace_ops *op;
2170 unsigned long ip = rec->ip;
2171
2172 do_for_each_ftrace_op(op, ftrace_ops_list) {
2173 /* pass rec in as regs to have non-NULL val */
2174 if (hash_contains_ip(ip, op->func_hash))
2175 return op;
2176 } while_for_each_ftrace_op(op);
2177
2178 return NULL;
2179 }
2180
2181 /**
2182 * ftrace_get_addr_new - Get the call address to set to
2183 * @rec: The ftrace record descriptor
2184 *
2185 * If the record has the FTRACE_FL_REGS set, that means that it
2186 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2187 * is not not set, then it wants to convert to the normal callback.
2188 *
2189 * Returns the address of the trampoline to set to
2190 */
2191 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2192 {
2193 struct ftrace_ops *ops;
2194
2195 /* Trampolines take precedence over regs */
2196 if (rec->flags & FTRACE_FL_TRAMP) {
2197 ops = ftrace_find_tramp_ops_new(rec);
2198 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2199 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2200 (void *)rec->ip, (void *)rec->ip, rec->flags);
2201 /* Ftrace is shutting down, return anything */
2202 return (unsigned long)FTRACE_ADDR;
2203 }
2204 return ops->trampoline;
2205 }
2206
2207 if (rec->flags & FTRACE_FL_REGS)
2208 return (unsigned long)FTRACE_REGS_ADDR;
2209 else
2210 return (unsigned long)FTRACE_ADDR;
2211 }
2212
2213 /**
2214 * ftrace_get_addr_curr - Get the call address that is already there
2215 * @rec: The ftrace record descriptor
2216 *
2217 * The FTRACE_FL_REGS_EN is set when the record already points to
2218 * a function that saves all the regs. Basically the '_EN' version
2219 * represents the current state of the function.
2220 *
2221 * Returns the address of the trampoline that is currently being called
2222 */
2223 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2224 {
2225 struct ftrace_ops *ops;
2226
2227 /* Trampolines take precedence over regs */
2228 if (rec->flags & FTRACE_FL_TRAMP_EN) {
2229 ops = ftrace_find_tramp_ops_curr(rec);
2230 if (FTRACE_WARN_ON(!ops)) {
2231 pr_warning("Bad trampoline accounting at: %p (%pS)\n",
2232 (void *)rec->ip, (void *)rec->ip);
2233 /* Ftrace is shutting down, return anything */
2234 return (unsigned long)FTRACE_ADDR;
2235 }
2236 return ops->trampoline;
2237 }
2238
2239 if (rec->flags & FTRACE_FL_REGS_EN)
2240 return (unsigned long)FTRACE_REGS_ADDR;
2241 else
2242 return (unsigned long)FTRACE_ADDR;
2243 }
2244
2245 static int
2246 __ftrace_replace_code(struct dyn_ftrace *rec, int enable)
2247 {
2248 unsigned long ftrace_old_addr;
2249 unsigned long ftrace_addr;
2250 int ret;
2251
2252 ftrace_addr = ftrace_get_addr_new(rec);
2253
2254 /* This needs to be done before we call ftrace_update_record */
2255 ftrace_old_addr = ftrace_get_addr_curr(rec);
2256
2257 ret = ftrace_update_record(rec, enable);
2258
2259 switch (ret) {
2260 case FTRACE_UPDATE_IGNORE:
2261 return 0;
2262
2263 case FTRACE_UPDATE_MAKE_CALL:
2264 return ftrace_make_call(rec, ftrace_addr);
2265
2266 case FTRACE_UPDATE_MAKE_NOP:
2267 return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2268
2269 case FTRACE_UPDATE_MODIFY_CALL:
2270 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2271 }
2272
2273 return -1; /* unknow ftrace bug */
2274 }
2275
2276 void __weak ftrace_replace_code(int enable)
2277 {
2278 struct dyn_ftrace *rec;
2279 struct ftrace_page *pg;
2280 int failed;
2281
2282 if (unlikely(ftrace_disabled))
2283 return;
2284
2285 do_for_each_ftrace_rec(pg, rec) {
2286 failed = __ftrace_replace_code(rec, enable);
2287 if (failed) {
2288 ftrace_bug(failed, rec);
2289 /* Stop processing */
2290 return;
2291 }
2292 } while_for_each_ftrace_rec();
2293 }
2294
2295 struct ftrace_rec_iter {
2296 struct ftrace_page *pg;
2297 int index;
2298 };
2299
2300 /**
2301 * ftrace_rec_iter_start, start up iterating over traced functions
2302 *
2303 * Returns an iterator handle that is used to iterate over all
2304 * the records that represent address locations where functions
2305 * are traced.
2306 *
2307 * May return NULL if no records are available.
2308 */
2309 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2310 {
2311 /*
2312 * We only use a single iterator.
2313 * Protected by the ftrace_lock mutex.
2314 */
2315 static struct ftrace_rec_iter ftrace_rec_iter;
2316 struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2317
2318 iter->pg = ftrace_pages_start;
2319 iter->index = 0;
2320
2321 /* Could have empty pages */
2322 while (iter->pg && !iter->pg->index)
2323 iter->pg = iter->pg->next;
2324
2325 if (!iter->pg)
2326 return NULL;
2327
2328 return iter;
2329 }
2330
2331 /**
2332 * ftrace_rec_iter_next, get the next record to process.
2333 * @iter: The handle to the iterator.
2334 *
2335 * Returns the next iterator after the given iterator @iter.
2336 */
2337 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2338 {
2339 iter->index++;
2340
2341 if (iter->index >= iter->pg->index) {
2342 iter->pg = iter->pg->next;
2343 iter->index = 0;
2344
2345 /* Could have empty pages */
2346 while (iter->pg && !iter->pg->index)
2347 iter->pg = iter->pg->next;
2348 }
2349
2350 if (!iter->pg)
2351 return NULL;
2352
2353 return iter;
2354 }
2355
2356 /**
2357 * ftrace_rec_iter_record, get the record at the iterator location
2358 * @iter: The current iterator location
2359 *
2360 * Returns the record that the current @iter is at.
2361 */
2362 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2363 {
2364 return &iter->pg->records[iter->index];
2365 }
2366
2367 static int
2368 ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec)
2369 {
2370 int ret;
2371
2372 if (unlikely(ftrace_disabled))
2373 return 0;
2374
2375 ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR);
2376 if (ret) {
2377 ftrace_bug(ret, rec);
2378 return 0;
2379 }
2380 return 1;
2381 }
2382
2383 /*
2384 * archs can override this function if they must do something
2385 * before the modifying code is performed.
2386 */
2387 int __weak ftrace_arch_code_modify_prepare(void)
2388 {
2389 return 0;
2390 }
2391
2392 /*
2393 * archs can override this function if they must do something
2394 * after the modifying code is performed.
2395 */
2396 int __weak ftrace_arch_code_modify_post_process(void)
2397 {
2398 return 0;
2399 }
2400
2401 void ftrace_modify_all_code(int command)
2402 {
2403 int update = command & FTRACE_UPDATE_TRACE_FUNC;
2404 int err = 0;
2405
2406 /*
2407 * If the ftrace_caller calls a ftrace_ops func directly,
2408 * we need to make sure that it only traces functions it
2409 * expects to trace. When doing the switch of functions,
2410 * we need to update to the ftrace_ops_list_func first
2411 * before the transition between old and new calls are set,
2412 * as the ftrace_ops_list_func will check the ops hashes
2413 * to make sure the ops are having the right functions
2414 * traced.
2415 */
2416 if (update) {
2417 err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2418 if (FTRACE_WARN_ON(err))
2419 return;
2420 }
2421
2422 if (command & FTRACE_UPDATE_CALLS)
2423 ftrace_replace_code(1);
2424 else if (command & FTRACE_DISABLE_CALLS)
2425 ftrace_replace_code(0);
2426
2427 if (update && ftrace_trace_function != ftrace_ops_list_func) {
2428 function_trace_op = set_function_trace_op;
2429 smp_wmb();
2430 /* If irqs are disabled, we are in stop machine */
2431 if (!irqs_disabled())
2432 smp_call_function(ftrace_sync_ipi, NULL, 1);
2433 err = ftrace_update_ftrace_func(ftrace_trace_function);
2434 if (FTRACE_WARN_ON(err))
2435 return;
2436 }
2437
2438 if (command & FTRACE_START_FUNC_RET)
2439 err = ftrace_enable_ftrace_graph_caller();
2440 else if (command & FTRACE_STOP_FUNC_RET)
2441 err = ftrace_disable_ftrace_graph_caller();
2442 FTRACE_WARN_ON(err);
2443 }
2444
2445 static int __ftrace_modify_code(void *data)
2446 {
2447 int *command = data;
2448
2449 ftrace_modify_all_code(*command);
2450
2451 return 0;
2452 }
2453
2454 /**
2455 * ftrace_run_stop_machine, go back to the stop machine method
2456 * @command: The command to tell ftrace what to do
2457 *
2458 * If an arch needs to fall back to the stop machine method, the
2459 * it can call this function.
2460 */
2461 void ftrace_run_stop_machine(int command)
2462 {
2463 stop_machine(__ftrace_modify_code, &command, NULL);
2464 }
2465
2466 /**
2467 * arch_ftrace_update_code, modify the code to trace or not trace
2468 * @command: The command that needs to be done
2469 *
2470 * Archs can override this function if it does not need to
2471 * run stop_machine() to modify code.
2472 */
2473 void __weak arch_ftrace_update_code(int command)
2474 {
2475 ftrace_run_stop_machine(command);
2476 }
2477
2478 static void ftrace_run_update_code(int command)
2479 {
2480 int ret;
2481
2482 ret = ftrace_arch_code_modify_prepare();
2483 FTRACE_WARN_ON(ret);
2484 if (ret)
2485 return;
2486
2487 /*
2488 * By default we use stop_machine() to modify the code.
2489 * But archs can do what ever they want as long as it
2490 * is safe. The stop_machine() is the safest, but also
2491 * produces the most overhead.
2492 */
2493 arch_ftrace_update_code(command);
2494
2495 ret = ftrace_arch_code_modify_post_process();
2496 FTRACE_WARN_ON(ret);
2497 }
2498
2499 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2500 struct ftrace_hash *old_hash)
2501 {
2502 ops->flags |= FTRACE_OPS_FL_MODIFYING;
2503 ops->old_hash.filter_hash = old_hash;
2504 ftrace_run_update_code(command);
2505 ops->old_hash.filter_hash = NULL;
2506 ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2507 }
2508
2509 static ftrace_func_t saved_ftrace_func;
2510 static int ftrace_start_up;
2511
2512 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2513 {
2514 }
2515
2516 static void control_ops_free(struct ftrace_ops *ops)
2517 {
2518 free_percpu(ops->disabled);
2519 }
2520
2521 static void ftrace_startup_enable(int command)
2522 {
2523 if (saved_ftrace_func != ftrace_trace_function) {
2524 saved_ftrace_func = ftrace_trace_function;
2525 command |= FTRACE_UPDATE_TRACE_FUNC;
2526 }
2527
2528 if (!command || !ftrace_enabled)
2529 return;
2530
2531 ftrace_run_update_code(command);
2532 }
2533
2534 static void ftrace_startup_all(int command)
2535 {
2536 update_all_ops = true;
2537 ftrace_startup_enable(command);
2538 update_all_ops = false;
2539 }
2540
2541 static int ftrace_startup(struct ftrace_ops *ops, int command)
2542 {
2543 int ret;
2544
2545 if (unlikely(ftrace_disabled))
2546 return -ENODEV;
2547
2548 ret = __register_ftrace_function(ops);
2549 if (ret)
2550 return ret;
2551
2552 ftrace_start_up++;
2553 command |= FTRACE_UPDATE_CALLS;
2554
2555 /*
2556 * Note that ftrace probes uses this to start up
2557 * and modify functions it will probe. But we still
2558 * set the ADDING flag for modification, as probes
2559 * do not have trampolines. If they add them in the
2560 * future, then the probes will need to distinguish
2561 * between adding and updating probes.
2562 */
2563 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2564
2565 ret = ftrace_hash_ipmodify_enable(ops);
2566 if (ret < 0) {
2567 /* Rollback registration process */
2568 __unregister_ftrace_function(ops);
2569 ftrace_start_up--;
2570 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2571 return ret;
2572 }
2573
2574 ftrace_hash_rec_enable(ops, 1);
2575
2576 ftrace_startup_enable(command);
2577
2578 ops->flags &= ~FTRACE_OPS_FL_ADDING;
2579
2580 return 0;
2581 }
2582
2583 static int ftrace_shutdown(struct ftrace_ops *ops, int command)
2584 {
2585 int ret;
2586
2587 if (unlikely(ftrace_disabled))
2588 return -ENODEV;
2589
2590 ret = __unregister_ftrace_function(ops);
2591 if (ret)
2592 return ret;
2593
2594 ftrace_start_up--;
2595 /*
2596 * Just warn in case of unbalance, no need to kill ftrace, it's not
2597 * critical but the ftrace_call callers may be never nopped again after
2598 * further ftrace uses.
2599 */
2600 WARN_ON_ONCE(ftrace_start_up < 0);
2601
2602 /* Disabling ipmodify never fails */
2603 ftrace_hash_ipmodify_disable(ops);
2604 ftrace_hash_rec_disable(ops, 1);
2605
2606 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2607
2608 command |= FTRACE_UPDATE_CALLS;
2609
2610 if (saved_ftrace_func != ftrace_trace_function) {
2611 saved_ftrace_func = ftrace_trace_function;
2612 command |= FTRACE_UPDATE_TRACE_FUNC;
2613 }
2614
2615 if (!command || !ftrace_enabled) {
2616 /*
2617 * If these are control ops, they still need their
2618 * per_cpu field freed. Since, function tracing is
2619 * not currently active, we can just free them
2620 * without synchronizing all CPUs.
2621 */
2622 if (ops->flags & FTRACE_OPS_FL_CONTROL)
2623 control_ops_free(ops);
2624 return 0;
2625 }
2626
2627 /*
2628 * If the ops uses a trampoline, then it needs to be
2629 * tested first on update.
2630 */
2631 ops->flags |= FTRACE_OPS_FL_REMOVING;
2632 removed_ops = ops;
2633
2634 /* The trampoline logic checks the old hashes */
2635 ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2636 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2637
2638 ftrace_run_update_code(command);
2639
2640 /*
2641 * If there's no more ops registered with ftrace, run a
2642 * sanity check to make sure all rec flags are cleared.
2643 */
2644 if (ftrace_ops_list == &ftrace_list_end) {
2645 struct ftrace_page *pg;
2646 struct dyn_ftrace *rec;
2647
2648 do_for_each_ftrace_rec(pg, rec) {
2649 if (FTRACE_WARN_ON_ONCE(rec->flags))
2650 pr_warn(" %pS flags:%lx\n",
2651 (void *)rec->ip, rec->flags);
2652 } while_for_each_ftrace_rec();
2653 }
2654
2655 ops->old_hash.filter_hash = NULL;
2656 ops->old_hash.notrace_hash = NULL;
2657
2658 removed_ops = NULL;
2659 ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2660
2661 /*
2662 * Dynamic ops may be freed, we must make sure that all
2663 * callers are done before leaving this function.
2664 * The same goes for freeing the per_cpu data of the control
2665 * ops.
2666 *
2667 * Again, normal synchronize_sched() is not good enough.
2668 * We need to do a hard force of sched synchronization.
2669 * This is because we use preempt_disable() to do RCU, but
2670 * the function tracers can be called where RCU is not watching
2671 * (like before user_exit()). We can not rely on the RCU
2672 * infrastructure to do the synchronization, thus we must do it
2673 * ourselves.
2674 */
2675 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_CONTROL)) {
2676 schedule_on_each_cpu(ftrace_sync);
2677
2678 arch_ftrace_trampoline_free(ops);
2679
2680 if (ops->flags & FTRACE_OPS_FL_CONTROL)
2681 control_ops_free(ops);
2682 }
2683
2684 return 0;
2685 }
2686
2687 static void ftrace_startup_sysctl(void)
2688 {
2689 if (unlikely(ftrace_disabled))
2690 return;
2691
2692 /* Force update next time */
2693 saved_ftrace_func = NULL;
2694 /* ftrace_start_up is true if we want ftrace running */
2695 if (ftrace_start_up)
2696 ftrace_run_update_code(FTRACE_UPDATE_CALLS);
2697 }
2698
2699 static void ftrace_shutdown_sysctl(void)
2700 {
2701 if (unlikely(ftrace_disabled))
2702 return;
2703
2704 /* ftrace_start_up is true if ftrace is running */
2705 if (ftrace_start_up)
2706 ftrace_run_update_code(FTRACE_DISABLE_CALLS);
2707 }
2708
2709 static cycle_t ftrace_update_time;
2710 unsigned long ftrace_update_tot_cnt;
2711
2712 static inline int ops_traces_mod(struct ftrace_ops *ops)
2713 {
2714 /*
2715 * Filter_hash being empty will default to trace module.
2716 * But notrace hash requires a test of individual module functions.
2717 */
2718 return ftrace_hash_empty(ops->func_hash->filter_hash) &&
2719 ftrace_hash_empty(ops->func_hash->notrace_hash);
2720 }
2721
2722 /*
2723 * Check if the current ops references the record.
2724 *
2725 * If the ops traces all functions, then it was already accounted for.
2726 * If the ops does not trace the current record function, skip it.
2727 * If the ops ignores the function via notrace filter, skip it.
2728 */
2729 static inline bool
2730 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
2731 {
2732 /* If ops isn't enabled, ignore it */
2733 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
2734 return 0;
2735
2736 /* If ops traces all mods, we already accounted for it */
2737 if (ops_traces_mod(ops))
2738 return 0;
2739
2740 /* The function must be in the filter */
2741 if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
2742 !ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
2743 return 0;
2744
2745 /* If in notrace hash, we ignore it too */
2746 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
2747 return 0;
2748
2749 return 1;
2750 }
2751
2752 static int referenced_filters(struct dyn_ftrace *rec)
2753 {
2754 struct ftrace_ops *ops;
2755 int cnt = 0;
2756
2757 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
2758 if (ops_references_rec(ops, rec))
2759 cnt++;
2760 }
2761
2762 return cnt;
2763 }
2764
2765 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
2766 {
2767 struct ftrace_page *pg;
2768 struct dyn_ftrace *p;
2769 cycle_t start, stop;
2770 unsigned long update_cnt = 0;
2771 unsigned long ref = 0;
2772 bool test = false;
2773 int i;
2774
2775 /*
2776 * When adding a module, we need to check if tracers are
2777 * currently enabled and if they are set to trace all functions.
2778 * If they are, we need to enable the module functions as well
2779 * as update the reference counts for those function records.
2780 */
2781 if (mod) {
2782 struct ftrace_ops *ops;
2783
2784 for (ops = ftrace_ops_list;
2785 ops != &ftrace_list_end; ops = ops->next) {
2786 if (ops->flags & FTRACE_OPS_FL_ENABLED) {
2787 if (ops_traces_mod(ops))
2788 ref++;
2789 else
2790 test = true;
2791 }
2792 }
2793 }
2794
2795 start = ftrace_now(raw_smp_processor_id());
2796
2797 for (pg = new_pgs; pg; pg = pg->next) {
2798
2799 for (i = 0; i < pg->index; i++) {
2800 int cnt = ref;
2801
2802 /* If something went wrong, bail without enabling anything */
2803 if (unlikely(ftrace_disabled))
2804 return -1;
2805
2806 p = &pg->records[i];
2807 if (test)
2808 cnt += referenced_filters(p);
2809 p->flags = cnt;
2810
2811 /*
2812 * Do the initial record conversion from mcount jump
2813 * to the NOP instructions.
2814 */
2815 if (!ftrace_code_disable(mod, p))
2816 break;
2817
2818 update_cnt++;
2819
2820 /*
2821 * If the tracing is enabled, go ahead and enable the record.
2822 *
2823 * The reason not to enable the record immediatelly is the
2824 * inherent check of ftrace_make_nop/ftrace_make_call for
2825 * correct previous instructions. Making first the NOP
2826 * conversion puts the module to the correct state, thus
2827 * passing the ftrace_make_call check.
2828 */
2829 if (ftrace_start_up && cnt) {
2830 int failed = __ftrace_replace_code(p, 1);
2831 if (failed)
2832 ftrace_bug(failed, p);
2833 }
2834 }
2835 }
2836
2837 stop = ftrace_now(raw_smp_processor_id());
2838 ftrace_update_time = stop - start;
2839 ftrace_update_tot_cnt += update_cnt;
2840
2841 return 0;
2842 }
2843
2844 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
2845 {
2846 int order;
2847 int cnt;
2848
2849 if (WARN_ON(!count))
2850 return -EINVAL;
2851
2852 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
2853
2854 /*
2855 * We want to fill as much as possible. No more than a page
2856 * may be empty.
2857 */
2858 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
2859 order--;
2860
2861 again:
2862 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
2863
2864 if (!pg->records) {
2865 /* if we can't allocate this size, try something smaller */
2866 if (!order)
2867 return -ENOMEM;
2868 order >>= 1;
2869 goto again;
2870 }
2871
2872 cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
2873 pg->size = cnt;
2874
2875 if (cnt > count)
2876 cnt = count;
2877
2878 return cnt;
2879 }
2880
2881 static struct ftrace_page *
2882 ftrace_allocate_pages(unsigned long num_to_init)
2883 {
2884 struct ftrace_page *start_pg;
2885 struct ftrace_page *pg;
2886 int order;
2887 int cnt;
2888
2889 if (!num_to_init)
2890 return 0;
2891
2892 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
2893 if (!pg)
2894 return NULL;
2895
2896 /*
2897 * Try to allocate as much as possible in one continues
2898 * location that fills in all of the space. We want to
2899 * waste as little space as possible.
2900 */
2901 for (;;) {
2902 cnt = ftrace_allocate_records(pg, num_to_init);
2903 if (cnt < 0)
2904 goto free_pages;
2905
2906 num_to_init -= cnt;
2907 if (!num_to_init)
2908 break;
2909
2910 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
2911 if (!pg->next)
2912 goto free_pages;
2913
2914 pg = pg->next;
2915 }
2916
2917 return start_pg;
2918
2919 free_pages:
2920 pg = start_pg;
2921 while (pg) {
2922 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
2923 free_pages((unsigned long)pg->records, order);
2924 start_pg = pg->next;
2925 kfree(pg);
2926 pg = start_pg;
2927 }
2928 pr_info("ftrace: FAILED to allocate memory for functions\n");
2929 return NULL;
2930 }
2931
2932 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
2933
2934 struct ftrace_iterator {
2935 loff_t pos;
2936 loff_t func_pos;
2937 struct ftrace_page *pg;
2938 struct dyn_ftrace *func;
2939 struct ftrace_func_probe *probe;
2940 struct trace_parser parser;
2941 struct ftrace_hash *hash;
2942 struct ftrace_ops *ops;
2943 int hidx;
2944 int idx;
2945 unsigned flags;
2946 };
2947
2948 static void *
2949 t_hash_next(struct seq_file *m, loff_t *pos)
2950 {
2951 struct ftrace_iterator *iter = m->private;
2952 struct hlist_node *hnd = NULL;
2953 struct hlist_head *hhd;
2954
2955 (*pos)++;
2956 iter->pos = *pos;
2957
2958 if (iter->probe)
2959 hnd = &iter->probe->node;
2960 retry:
2961 if (iter->hidx >= FTRACE_FUNC_HASHSIZE)
2962 return NULL;
2963
2964 hhd = &ftrace_func_hash[iter->hidx];
2965
2966 if (hlist_empty(hhd)) {
2967 iter->hidx++;
2968 hnd = NULL;
2969 goto retry;
2970 }
2971
2972 if (!hnd)
2973 hnd = hhd->first;
2974 else {
2975 hnd = hnd->next;
2976 if (!hnd) {
2977 iter->hidx++;
2978 goto retry;
2979 }
2980 }
2981
2982 if (WARN_ON_ONCE(!hnd))
2983 return NULL;
2984
2985 iter->probe = hlist_entry(hnd, struct ftrace_func_probe, node);
2986
2987 return iter;
2988 }
2989
2990 static void *t_hash_start(struct seq_file *m, loff_t *pos)
2991 {
2992 struct ftrace_iterator *iter = m->private;
2993 void *p = NULL;
2994 loff_t l;
2995
2996 if (!(iter->flags & FTRACE_ITER_DO_HASH))
2997 return NULL;
2998
2999 if (iter->func_pos > *pos)
3000 return NULL;
3001
3002 iter->hidx = 0;
3003 for (l = 0; l <= (*pos - iter->func_pos); ) {
3004 p = t_hash_next(m, &l);
3005 if (!p)
3006 break;
3007 }
3008 if (!p)
3009 return NULL;
3010
3011 /* Only set this if we have an item */
3012 iter->flags |= FTRACE_ITER_HASH;
3013
3014 return iter;
3015 }
3016
3017 static int
3018 t_hash_show(struct seq_file *m, struct ftrace_iterator *iter)
3019 {
3020 struct ftrace_func_probe *rec;
3021
3022 rec = iter->probe;
3023 if (WARN_ON_ONCE(!rec))
3024 return -EIO;
3025
3026 if (rec->ops->print)
3027 return rec->ops->print(m, rec->ip, rec->ops, rec->data);
3028
3029 seq_printf(m, "%ps:%ps", (void *)rec->ip, (void *)rec->ops->func);
3030
3031 if (rec->data)
3032 seq_printf(m, ":%p", rec->data);
3033 seq_putc(m, '\n');
3034
3035 return 0;
3036 }
3037
3038 static void *
3039 t_next(struct seq_file *m, void *v, loff_t *pos)
3040 {
3041 struct ftrace_iterator *iter = m->private;
3042 struct ftrace_ops *ops = iter->ops;
3043 struct dyn_ftrace *rec = NULL;
3044
3045 if (unlikely(ftrace_disabled))
3046 return NULL;
3047
3048 if (iter->flags & FTRACE_ITER_HASH)
3049 return t_hash_next(m, pos);
3050
3051 (*pos)++;
3052 iter->pos = iter->func_pos = *pos;
3053
3054 if (iter->flags & FTRACE_ITER_PRINTALL)
3055 return t_hash_start(m, pos);
3056
3057 retry:
3058 if (iter->idx >= iter->pg->index) {
3059 if (iter->pg->next) {
3060 iter->pg = iter->pg->next;
3061 iter->idx = 0;
3062 goto retry;
3063 }
3064 } else {
3065 rec = &iter->pg->records[iter->idx++];
3066 if (((iter->flags & FTRACE_ITER_FILTER) &&
3067 !(ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))) ||
3068
3069 ((iter->flags & FTRACE_ITER_NOTRACE) &&
3070 !ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip)) ||
3071
3072 ((iter->flags & FTRACE_ITER_ENABLED) &&
3073 !(rec->flags & FTRACE_FL_ENABLED))) {
3074
3075 rec = NULL;
3076 goto retry;
3077 }
3078 }
3079
3080 if (!rec)
3081 return t_hash_start(m, pos);
3082
3083 iter->func = rec;
3084
3085 return iter;
3086 }
3087
3088 static void reset_iter_read(struct ftrace_iterator *iter)
3089 {
3090 iter->pos = 0;
3091 iter->func_pos = 0;
3092 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_HASH);
3093 }
3094
3095 static void *t_start(struct seq_file *m, loff_t *pos)
3096 {
3097 struct ftrace_iterator *iter = m->private;
3098 struct ftrace_ops *ops = iter->ops;
3099 void *p = NULL;
3100 loff_t l;
3101
3102 mutex_lock(&ftrace_lock);
3103
3104 if (unlikely(ftrace_disabled))
3105 return NULL;
3106
3107 /*
3108 * If an lseek was done, then reset and start from beginning.
3109 */
3110 if (*pos < iter->pos)
3111 reset_iter_read(iter);
3112
3113 /*
3114 * For set_ftrace_filter reading, if we have the filter
3115 * off, we can short cut and just print out that all
3116 * functions are enabled.
3117 */
3118 if ((iter->flags & FTRACE_ITER_FILTER &&
3119 ftrace_hash_empty(ops->func_hash->filter_hash)) ||
3120 (iter->flags & FTRACE_ITER_NOTRACE &&
3121 ftrace_hash_empty(ops->func_hash->notrace_hash))) {
3122 if (*pos > 0)
3123 return t_hash_start(m, pos);
3124 iter->flags |= FTRACE_ITER_PRINTALL;
3125 /* reset in case of seek/pread */
3126 iter->flags &= ~FTRACE_ITER_HASH;
3127 return iter;
3128 }
3129
3130 if (iter->flags & FTRACE_ITER_HASH)
3131 return t_hash_start(m, pos);
3132
3133 /*
3134 * Unfortunately, we need to restart at ftrace_pages_start
3135 * every time we let go of the ftrace_mutex. This is because
3136 * those pointers can change without the lock.
3137 */
3138 iter->pg = ftrace_pages_start;
3139 iter->idx = 0;
3140 for (l = 0; l <= *pos; ) {
3141 p = t_next(m, p, &l);
3142 if (!p)
3143 break;
3144 }
3145
3146 if (!p)
3147 return t_hash_start(m, pos);
3148
3149 return iter;
3150 }
3151
3152 static void t_stop(struct seq_file *m, void *p)
3153 {
3154 mutex_unlock(&ftrace_lock);
3155 }
3156
3157 void * __weak
3158 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3159 {
3160 return NULL;
3161 }
3162
3163 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3164 struct dyn_ftrace *rec)
3165 {
3166 void *ptr;
3167
3168 ptr = arch_ftrace_trampoline_func(ops, rec);
3169 if (ptr)
3170 seq_printf(m, " ->%pS", ptr);
3171 }
3172
3173 static int t_show(struct seq_file *m, void *v)
3174 {
3175 struct ftrace_iterator *iter = m->private;
3176 struct dyn_ftrace *rec;
3177
3178 if (iter->flags & FTRACE_ITER_HASH)
3179 return t_hash_show(m, iter);
3180
3181 if (iter->flags & FTRACE_ITER_PRINTALL) {
3182 if (iter->flags & FTRACE_ITER_NOTRACE)
3183 seq_puts(m, "#### no functions disabled ####\n");
3184 else
3185 seq_puts(m, "#### all functions enabled ####\n");
3186 return 0;
3187 }
3188
3189 rec = iter->func;
3190
3191 if (!rec)
3192 return 0;
3193
3194 seq_printf(m, "%ps", (void *)rec->ip);
3195 if (iter->flags & FTRACE_ITER_ENABLED) {
3196 struct ftrace_ops *ops = NULL;
3197
3198 seq_printf(m, " (%ld)%s%s",
3199 ftrace_rec_count(rec),
3200 rec->flags & FTRACE_FL_REGS ? " R" : " ",
3201 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ");
3202 if (rec->flags & FTRACE_FL_TRAMP_EN) {
3203 ops = ftrace_find_tramp_ops_any(rec);
3204 if (ops)
3205 seq_printf(m, "\ttramp: %pS",
3206 (void *)ops->trampoline);
3207 else
3208 seq_puts(m, "\ttramp: ERROR!");
3209
3210 }
3211 add_trampoline_func(m, ops, rec);
3212 }
3213
3214 seq_putc(m, '\n');
3215
3216 return 0;
3217 }
3218
3219 static const struct seq_operations show_ftrace_seq_ops = {
3220 .start = t_start,
3221 .next = t_next,
3222 .stop = t_stop,
3223 .show = t_show,
3224 };
3225
3226 static int
3227 ftrace_avail_open(struct inode *inode, struct file *file)
3228 {
3229 struct ftrace_iterator *iter;
3230
3231 if (unlikely(ftrace_disabled))
3232 return -ENODEV;
3233
3234 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3235 if (iter) {
3236 iter->pg = ftrace_pages_start;
3237 iter->ops = &global_ops;
3238 }
3239
3240 return iter ? 0 : -ENOMEM;
3241 }
3242
3243 static int
3244 ftrace_enabled_open(struct inode *inode, struct file *file)
3245 {
3246 struct ftrace_iterator *iter;
3247
3248 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3249 if (iter) {
3250 iter->pg = ftrace_pages_start;
3251 iter->flags = FTRACE_ITER_ENABLED;
3252 iter->ops = &global_ops;
3253 }
3254
3255 return iter ? 0 : -ENOMEM;
3256 }
3257
3258 /**
3259 * ftrace_regex_open - initialize function tracer filter files
3260 * @ops: The ftrace_ops that hold the hash filters
3261 * @flag: The type of filter to process
3262 * @inode: The inode, usually passed in to your open routine
3263 * @file: The file, usually passed in to your open routine
3264 *
3265 * ftrace_regex_open() initializes the filter files for the
3266 * @ops. Depending on @flag it may process the filter hash or
3267 * the notrace hash of @ops. With this called from the open
3268 * routine, you can use ftrace_filter_write() for the write
3269 * routine if @flag has FTRACE_ITER_FILTER set, or
3270 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3271 * tracing_lseek() should be used as the lseek routine, and
3272 * release must call ftrace_regex_release().
3273 */
3274 int
3275 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3276 struct inode *inode, struct file *file)
3277 {
3278 struct ftrace_iterator *iter;
3279 struct ftrace_hash *hash;
3280 int ret = 0;
3281
3282 ftrace_ops_init(ops);
3283
3284 if (unlikely(ftrace_disabled))
3285 return -ENODEV;
3286
3287 iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3288 if (!iter)
3289 return -ENOMEM;
3290
3291 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) {
3292 kfree(iter);
3293 return -ENOMEM;
3294 }
3295
3296 iter->ops = ops;
3297 iter->flags = flag;
3298
3299 mutex_lock(&ops->func_hash->regex_lock);
3300
3301 if (flag & FTRACE_ITER_NOTRACE)
3302 hash = ops->func_hash->notrace_hash;
3303 else
3304 hash = ops->func_hash->filter_hash;
3305
3306 if (file->f_mode & FMODE_WRITE) {
3307 const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3308
3309 if (file->f_flags & O_TRUNC)
3310 iter->hash = alloc_ftrace_hash(size_bits);
3311 else
3312 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3313
3314 if (!iter->hash) {
3315 trace_parser_put(&iter->parser);
3316 kfree(iter);
3317 ret = -ENOMEM;
3318 goto out_unlock;
3319 }
3320 }
3321
3322 if (file->f_mode & FMODE_READ) {
3323 iter->pg = ftrace_pages_start;
3324
3325 ret = seq_open(file, &show_ftrace_seq_ops);
3326 if (!ret) {
3327 struct seq_file *m = file->private_data;
3328 m->private = iter;
3329 } else {
3330 /* Failed */
3331 free_ftrace_hash(iter->hash);
3332 trace_parser_put(&iter->parser);
3333 kfree(iter);
3334 }
3335 } else
3336 file->private_data = iter;
3337
3338 out_unlock:
3339 mutex_unlock(&ops->func_hash->regex_lock);
3340
3341 return ret;
3342 }
3343
3344 static int
3345 ftrace_filter_open(struct inode *inode, struct file *file)
3346 {
3347 struct ftrace_ops *ops = inode->i_private;
3348
3349 return ftrace_regex_open(ops,
3350 FTRACE_ITER_FILTER | FTRACE_ITER_DO_HASH,
3351 inode, file);
3352 }
3353
3354 static int
3355 ftrace_notrace_open(struct inode *inode, struct file *file)
3356 {
3357 struct ftrace_ops *ops = inode->i_private;
3358
3359 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3360 inode, file);
3361 }
3362
3363 static int ftrace_match(char *str, char *regex, int len, int type)
3364 {
3365 int matched = 0;
3366 int slen;
3367
3368 switch (type) {
3369 case MATCH_FULL:
3370 if (strcmp(str, regex) == 0)
3371 matched = 1;
3372 break;
3373 case MATCH_FRONT_ONLY:
3374 if (strncmp(str, regex, len) == 0)
3375 matched = 1;
3376 break;
3377 case MATCH_MIDDLE_ONLY:
3378 if (strstr(str, regex))
3379 matched = 1;
3380 break;
3381 case MATCH_END_ONLY:
3382 slen = strlen(str);
3383 if (slen >= len && memcmp(str + slen - len, regex, len) == 0)
3384 matched = 1;
3385 break;
3386 }
3387
3388 return matched;
3389 }
3390
3391 static int
3392 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int not)
3393 {
3394 struct ftrace_func_entry *entry;
3395 int ret = 0;
3396
3397 entry = ftrace_lookup_ip(hash, rec->ip);
3398 if (not) {
3399 /* Do nothing if it doesn't exist */
3400 if (!entry)
3401 return 0;
3402
3403 free_hash_entry(hash, entry);
3404 } else {
3405 /* Do nothing if it exists */
3406 if (entry)
3407 return 0;
3408
3409 ret = add_hash_entry(hash, rec->ip);
3410 }
3411 return ret;
3412 }
3413
3414 static int
3415 ftrace_match_record(struct dyn_ftrace *rec, char *mod,
3416 char *regex, int len, int type)
3417 {
3418 char str[KSYM_SYMBOL_LEN];
3419 char *modname;
3420
3421 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3422
3423 if (mod) {
3424 /* module lookup requires matching the module */
3425 if (!modname || strcmp(modname, mod))
3426 return 0;
3427
3428 /* blank search means to match all funcs in the mod */
3429 if (!len)
3430 return 1;
3431 }
3432
3433 return ftrace_match(str, regex, len, type);
3434 }
3435
3436 static int
3437 match_records(struct ftrace_hash *hash, char *buff,
3438 int len, char *mod, int not)
3439 {
3440 unsigned search_len = 0;
3441 struct ftrace_page *pg;
3442 struct dyn_ftrace *rec;
3443 int type = MATCH_FULL;
3444 char *search = buff;
3445 int found = 0;
3446 int ret;
3447
3448 if (len) {
3449 type = filter_parse_regex(buff, len, &search, &not);
3450 search_len = strlen(search);
3451 }
3452
3453 mutex_lock(&ftrace_lock);
3454
3455 if (unlikely(ftrace_disabled))
3456 goto out_unlock;
3457
3458 do_for_each_ftrace_rec(pg, rec) {
3459 if (ftrace_match_record(rec, mod, search, search_len, type)) {
3460 ret = enter_record(hash, rec, not);
3461 if (ret < 0) {
3462 found = ret;
3463 goto out_unlock;
3464 }
3465 found = 1;
3466 }
3467 } while_for_each_ftrace_rec();
3468 out_unlock:
3469 mutex_unlock(&ftrace_lock);
3470
3471 return found;
3472 }
3473
3474 static int
3475 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
3476 {
3477 return match_records(hash, buff, len, NULL, 0);
3478 }
3479
3480 static int
3481 ftrace_match_module_records(struct ftrace_hash *hash, char *buff, char *mod)
3482 {
3483 int not = 0;
3484
3485 /* blank or '*' mean the same */
3486 if (strcmp(buff, "*") == 0)
3487 buff[0] = 0;
3488
3489 /* handle the case of 'dont filter this module' */
3490 if (strcmp(buff, "!") == 0 || strcmp(buff, "!*") == 0) {
3491 buff[0] = 0;
3492 not = 1;
3493 }
3494
3495 return match_records(hash, buff, strlen(buff), mod, not);
3496 }
3497
3498 /*
3499 * We register the module command as a template to show others how
3500 * to register the a command as well.
3501 */
3502
3503 static int
3504 ftrace_mod_callback(struct ftrace_hash *hash,
3505 char *func, char *cmd, char *param, int enable)
3506 {
3507 char *mod;
3508 int ret = -EINVAL;
3509
3510 /*
3511 * cmd == 'mod' because we only registered this func
3512 * for the 'mod' ftrace_func_command.
3513 * But if you register one func with multiple commands,
3514 * you can tell which command was used by the cmd
3515 * parameter.
3516 */
3517
3518 /* we must have a module name */
3519 if (!param)
3520 return ret;
3521
3522 mod = strsep(&param, ":");
3523 if (!strlen(mod))
3524 return ret;
3525
3526 ret = ftrace_match_module_records(hash, func, mod);
3527 if (!ret)
3528 ret = -EINVAL;
3529 if (ret < 0)
3530 return ret;
3531
3532 return 0;
3533 }
3534
3535 static struct ftrace_func_command ftrace_mod_cmd = {
3536 .name = "mod",
3537 .func = ftrace_mod_callback,
3538 };
3539
3540 static int __init ftrace_mod_cmd_init(void)
3541 {
3542 return register_ftrace_command(&ftrace_mod_cmd);
3543 }
3544 core_initcall(ftrace_mod_cmd_init);
3545
3546 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
3547 struct ftrace_ops *op, struct pt_regs *pt_regs)
3548 {
3549 struct ftrace_func_probe *entry;
3550 struct hlist_head *hhd;
3551 unsigned long key;
3552
3553 key = hash_long(ip, FTRACE_HASH_BITS);
3554
3555 hhd = &ftrace_func_hash[key];
3556
3557 if (hlist_empty(hhd))
3558 return;
3559
3560 /*
3561 * Disable preemption for these calls to prevent a RCU grace
3562 * period. This syncs the hash iteration and freeing of items
3563 * on the hash. rcu_read_lock is too dangerous here.
3564 */
3565 preempt_disable_notrace();
3566 hlist_for_each_entry_rcu_notrace(entry, hhd, node) {
3567 if (entry->ip == ip)
3568 entry->ops->func(ip, parent_ip, &entry->data);
3569 }
3570 preempt_enable_notrace();
3571 }
3572
3573 static struct ftrace_ops trace_probe_ops __read_mostly =
3574 {
3575 .func = function_trace_probe_call,
3576 .flags = FTRACE_OPS_FL_INITIALIZED,
3577 INIT_OPS_HASH(trace_probe_ops)
3578 };
3579
3580 static int ftrace_probe_registered;
3581
3582 static void __enable_ftrace_function_probe(struct ftrace_hash *old_hash)
3583 {
3584 int ret;
3585 int i;
3586
3587 if (ftrace_probe_registered) {
3588 /* still need to update the function call sites */
3589 if (ftrace_enabled)
3590 ftrace_run_modify_code(&trace_probe_ops, FTRACE_UPDATE_CALLS,
3591 old_hash);
3592 return;
3593 }
3594
3595 for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
3596 struct hlist_head *hhd = &ftrace_func_hash[i];
3597 if (hhd->first)
3598 break;
3599 }
3600 /* Nothing registered? */
3601 if (i == FTRACE_FUNC_HASHSIZE)
3602 return;
3603
3604 ret = ftrace_startup(&trace_probe_ops, 0);
3605
3606 ftrace_probe_registered = 1;
3607 }
3608
3609 static void __disable_ftrace_function_probe(void)
3610 {
3611 int i;
3612
3613 if (!ftrace_probe_registered)
3614 return;
3615
3616 for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
3617 struct hlist_head *hhd = &ftrace_func_hash[i];
3618 if (hhd->first)
3619 return;
3620 }
3621
3622 /* no more funcs left */
3623 ftrace_shutdown(&trace_probe_ops, 0);
3624
3625 ftrace_probe_registered = 0;
3626 }
3627
3628
3629 static void ftrace_free_entry(struct ftrace_func_probe *entry)
3630 {
3631 if (entry->ops->free)
3632 entry->ops->free(entry->ops, entry->ip, &entry->data);
3633 kfree(entry);
3634 }
3635
3636 int
3637 register_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
3638 void *data)
3639 {
3640 struct ftrace_func_probe *entry;
3641 struct ftrace_hash **orig_hash = &trace_probe_ops.func_hash->filter_hash;
3642 struct ftrace_hash *old_hash = *orig_hash;
3643 struct ftrace_hash *hash;
3644 struct ftrace_page *pg;
3645 struct dyn_ftrace *rec;
3646 int type, len, not;
3647 unsigned long key;
3648 int count = 0;
3649 char *search;
3650 int ret;
3651
3652 type = filter_parse_regex(glob, strlen(glob), &search, &not);
3653 len = strlen(search);
3654
3655 /* we do not support '!' for function probes */
3656 if (WARN_ON(not))
3657 return -EINVAL;
3658
3659 mutex_lock(&trace_probe_ops.func_hash->regex_lock);
3660
3661 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
3662 if (!hash) {
3663 count = -ENOMEM;
3664 goto out;
3665 }
3666
3667 if (unlikely(ftrace_disabled)) {
3668 count = -ENODEV;
3669 goto out;
3670 }
3671
3672 mutex_lock(&ftrace_lock);
3673
3674 do_for_each_ftrace_rec(pg, rec) {
3675
3676 if (!ftrace_match_record(rec, NULL, search, len, type))
3677 continue;
3678
3679 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
3680 if (!entry) {
3681 /* If we did not process any, then return error */
3682 if (!count)
3683 count = -ENOMEM;
3684 goto out_unlock;
3685 }
3686
3687 count++;
3688
3689 entry->data = data;
3690
3691 /*
3692 * The caller might want to do something special
3693 * for each function we find. We call the callback
3694 * to give the caller an opportunity to do so.
3695 */
3696 if (ops->init) {
3697 if (ops->init(ops, rec->ip, &entry->data) < 0) {
3698 /* caller does not like this func */
3699 kfree(entry);
3700 continue;
3701 }
3702 }
3703
3704 ret = enter_record(hash, rec, 0);
3705 if (ret < 0) {
3706 kfree(entry);
3707 count = ret;
3708 goto out_unlock;
3709 }
3710
3711 entry->ops = ops;
3712 entry->ip = rec->ip;
3713
3714 key = hash_long(entry->ip, FTRACE_HASH_BITS);
3715 hlist_add_head_rcu(&entry->node, &ftrace_func_hash[key]);
3716
3717 } while_for_each_ftrace_rec();
3718
3719 ret = ftrace_hash_move(&trace_probe_ops, 1, orig_hash, hash);
3720
3721 __enable_ftrace_function_probe(old_hash);
3722
3723 if (!ret)
3724 free_ftrace_hash_rcu(old_hash);
3725 else
3726 count = ret;
3727
3728 out_unlock:
3729 mutex_unlock(&ftrace_lock);
3730 out:
3731 mutex_unlock(&trace_probe_ops.func_hash->regex_lock);
3732 free_ftrace_hash(hash);
3733
3734 return count;
3735 }
3736
3737 enum {
3738 PROBE_TEST_FUNC = 1,
3739 PROBE_TEST_DATA = 2
3740 };
3741
3742 static void
3743 __unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
3744 void *data, int flags)
3745 {
3746 struct ftrace_func_entry *rec_entry;
3747 struct ftrace_func_probe *entry;
3748 struct ftrace_func_probe *p;
3749 struct ftrace_hash **orig_hash = &trace_probe_ops.func_hash->filter_hash;
3750 struct ftrace_hash *old_hash = *orig_hash;
3751 struct list_head free_list;
3752 struct ftrace_hash *hash;
3753 struct hlist_node *tmp;
3754 char str[KSYM_SYMBOL_LEN];
3755 int type = MATCH_FULL;
3756 int i, len = 0;
3757 char *search;
3758 int ret;
3759
3760 if (glob && (strcmp(glob, "*") == 0 || !strlen(glob)))
3761 glob = NULL;
3762 else if (glob) {
3763 int not;
3764
3765 type = filter_parse_regex(glob, strlen(glob), &search, &not);
3766 len = strlen(search);
3767
3768 /* we do not support '!' for function probes */
3769 if (WARN_ON(not))
3770 return;
3771 }
3772
3773 mutex_lock(&trace_probe_ops.func_hash->regex_lock);
3774
3775 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
3776 if (!hash)
3777 /* Hmm, should report this somehow */
3778 goto out_unlock;
3779
3780 INIT_LIST_HEAD(&free_list);
3781
3782 for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
3783 struct hlist_head *hhd = &ftrace_func_hash[i];
3784
3785 hlist_for_each_entry_safe(entry, tmp, hhd, node) {
3786
3787 /* break up if statements for readability */
3788 if ((flags & PROBE_TEST_FUNC) && entry->ops != ops)
3789 continue;
3790
3791 if ((flags & PROBE_TEST_DATA) && entry->data != data)
3792 continue;
3793
3794 /* do this last, since it is the most expensive */
3795 if (glob) {
3796 kallsyms_lookup(entry->ip, NULL, NULL,
3797 NULL, str);
3798 if (!ftrace_match(str, glob, len, type))
3799 continue;
3800 }
3801
3802 rec_entry = ftrace_lookup_ip(hash, entry->ip);
3803 /* It is possible more than one entry had this ip */
3804 if (rec_entry)
3805 free_hash_entry(hash, rec_entry);
3806
3807 hlist_del_rcu(&entry->node);
3808 list_add(&entry->free_list, &free_list);
3809 }
3810 }
3811 mutex_lock(&ftrace_lock);
3812 __disable_ftrace_function_probe();
3813 /*
3814 * Remove after the disable is called. Otherwise, if the last
3815 * probe is removed, a null hash means *all enabled*.
3816 */
3817 ret = ftrace_hash_move(&trace_probe_ops, 1, orig_hash, hash);
3818 synchronize_sched();
3819 if (!ret)
3820 free_ftrace_hash_rcu(old_hash);
3821
3822 list_for_each_entry_safe(entry, p, &free_list, free_list) {
3823 list_del(&entry->free_list);
3824 ftrace_free_entry(entry);
3825 }
3826 mutex_unlock(&ftrace_lock);
3827
3828 out_unlock:
3829 mutex_unlock(&trace_probe_ops.func_hash->regex_lock);
3830 free_ftrace_hash(hash);
3831 }
3832
3833 void
3834 unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
3835 void *data)
3836 {
3837 __unregister_ftrace_function_probe(glob, ops, data,
3838 PROBE_TEST_FUNC | PROBE_TEST_DATA);
3839 }
3840
3841 void
3842 unregister_ftrace_function_probe_func(char *glob, struct ftrace_probe_ops *ops)
3843 {
3844 __unregister_ftrace_function_probe(glob, ops, NULL, PROBE_TEST_FUNC);
3845 }
3846
3847 void unregister_ftrace_function_probe_all(char *glob)
3848 {
3849 __unregister_ftrace_function_probe(glob, NULL, NULL, 0);
3850 }
3851
3852 static LIST_HEAD(ftrace_commands);
3853 static DEFINE_MUTEX(ftrace_cmd_mutex);
3854
3855 /*
3856 * Currently we only register ftrace commands from __init, so mark this
3857 * __init too.
3858 */
3859 __init int register_ftrace_command(struct ftrace_func_command *cmd)
3860 {
3861 struct ftrace_func_command *p;
3862 int ret = 0;
3863
3864 mutex_lock(&ftrace_cmd_mutex);
3865 list_for_each_entry(p, &ftrace_commands, list) {
3866 if (strcmp(cmd->name, p->name) == 0) {
3867 ret = -EBUSY;
3868 goto out_unlock;
3869 }
3870 }
3871 list_add(&cmd->list, &ftrace_commands);
3872 out_unlock:
3873 mutex_unlock(&ftrace_cmd_mutex);
3874
3875 return ret;
3876 }
3877
3878 /*
3879 * Currently we only unregister ftrace commands from __init, so mark
3880 * this __init too.
3881 */
3882 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
3883 {
3884 struct ftrace_func_command *p, *n;
3885 int ret = -ENODEV;
3886
3887 mutex_lock(&ftrace_cmd_mutex);
3888 list_for_each_entry_safe(p, n, &ftrace_commands, list) {
3889 if (strcmp(cmd->name, p->name) == 0) {
3890 ret = 0;
3891 list_del_init(&p->list);
3892 goto out_unlock;
3893 }
3894 }
3895 out_unlock:
3896 mutex_unlock(&ftrace_cmd_mutex);
3897
3898 return ret;
3899 }
3900
3901 static int ftrace_process_regex(struct ftrace_hash *hash,
3902 char *buff, int len, int enable)
3903 {
3904 char *func, *command, *next = buff;
3905 struct ftrace_func_command *p;
3906 int ret = -EINVAL;
3907
3908 func = strsep(&next, ":");
3909
3910 if (!next) {
3911 ret = ftrace_match_records(hash, func, len);
3912 if (!ret)
3913 ret = -EINVAL;
3914 if (ret < 0)
3915 return ret;
3916 return 0;
3917 }
3918
3919 /* command found */
3920
3921 command = strsep(&next, ":");
3922
3923 mutex_lock(&ftrace_cmd_mutex);
3924 list_for_each_entry(p, &ftrace_commands, list) {
3925 if (strcmp(p->name, command) == 0) {
3926 ret = p->func(hash, func, command, next, enable);
3927 goto out_unlock;
3928 }
3929 }
3930 out_unlock:
3931 mutex_unlock(&ftrace_cmd_mutex);
3932
3933 return ret;
3934 }
3935
3936 static ssize_t
3937 ftrace_regex_write(struct file *file, const char __user *ubuf,
3938 size_t cnt, loff_t *ppos, int enable)
3939 {
3940 struct ftrace_iterator *iter;
3941 struct trace_parser *parser;
3942 ssize_t ret, read;
3943
3944 if (!cnt)
3945 return 0;
3946
3947 if (file->f_mode & FMODE_READ) {
3948 struct seq_file *m = file->private_data;
3949 iter = m->private;
3950 } else
3951 iter = file->private_data;
3952
3953 if (unlikely(ftrace_disabled))
3954 return -ENODEV;
3955
3956 /* iter->hash is a local copy, so we don't need regex_lock */
3957
3958 parser = &iter->parser;
3959 read = trace_get_user(parser, ubuf, cnt, ppos);
3960
3961 if (read >= 0 && trace_parser_loaded(parser) &&
3962 !trace_parser_cont(parser)) {
3963 ret = ftrace_process_regex(iter->hash, parser->buffer,
3964 parser->idx, enable);
3965 trace_parser_clear(parser);
3966 if (ret < 0)
3967 goto out;
3968 }
3969
3970 ret = read;
3971 out:
3972 return ret;
3973 }
3974
3975 ssize_t
3976 ftrace_filter_write(struct file *file, const char __user *ubuf,
3977 size_t cnt, loff_t *ppos)
3978 {
3979 return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
3980 }
3981
3982 ssize_t
3983 ftrace_notrace_write(struct file *file, const char __user *ubuf,
3984 size_t cnt, loff_t *ppos)
3985 {
3986 return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
3987 }
3988
3989 static int
3990 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
3991 {
3992 struct ftrace_func_entry *entry;
3993
3994 if (!ftrace_location(ip))
3995 return -EINVAL;
3996
3997 if (remove) {
3998 entry = ftrace_lookup_ip(hash, ip);
3999 if (!entry)
4000 return -ENOENT;
4001 free_hash_entry(hash, entry);
4002 return 0;
4003 }
4004
4005 return add_hash_entry(hash, ip);
4006 }
4007
4008 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4009 struct ftrace_hash *old_hash)
4010 {
4011 if (ops->flags & FTRACE_OPS_FL_ENABLED && ftrace_enabled)
4012 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4013 }
4014
4015 static int
4016 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4017 unsigned long ip, int remove, int reset, int enable)
4018 {
4019 struct ftrace_hash **orig_hash;
4020 struct ftrace_hash *old_hash;
4021 struct ftrace_hash *hash;
4022 int ret;
4023
4024 if (unlikely(ftrace_disabled))
4025 return -ENODEV;
4026
4027 mutex_lock(&ops->func_hash->regex_lock);
4028
4029 if (enable)
4030 orig_hash = &ops->func_hash->filter_hash;
4031 else
4032 orig_hash = &ops->func_hash->notrace_hash;
4033
4034 if (reset)
4035 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4036 else
4037 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4038
4039 if (!hash) {
4040 ret = -ENOMEM;
4041 goto out_regex_unlock;
4042 }
4043
4044 if (buf && !ftrace_match_records(hash, buf, len)) {
4045 ret = -EINVAL;
4046 goto out_regex_unlock;
4047 }
4048 if (ip) {
4049 ret = ftrace_match_addr(hash, ip, remove);
4050 if (ret < 0)
4051 goto out_regex_unlock;
4052 }
4053
4054 mutex_lock(&ftrace_lock);
4055 old_hash = *orig_hash;
4056 ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4057 if (!ret) {
4058 ftrace_ops_update_code(ops, old_hash);
4059 free_ftrace_hash_rcu(old_hash);
4060 }
4061 mutex_unlock(&ftrace_lock);
4062
4063 out_regex_unlock:
4064 mutex_unlock(&ops->func_hash->regex_lock);
4065
4066 free_ftrace_hash(hash);
4067 return ret;
4068 }
4069
4070 static int
4071 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4072 int reset, int enable)
4073 {
4074 return ftrace_set_hash(ops, 0, 0, ip, remove, reset, enable);
4075 }
4076
4077 /**
4078 * ftrace_set_filter_ip - set a function to filter on in ftrace by address
4079 * @ops - the ops to set the filter with
4080 * @ip - the address to add to or remove from the filter.
4081 * @remove - non zero to remove the ip from the filter
4082 * @reset - non zero to reset all filters before applying this filter.
4083 *
4084 * Filters denote which functions should be enabled when tracing is enabled
4085 * If @ip is NULL, it failes to update filter.
4086 */
4087 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
4088 int remove, int reset)
4089 {
4090 ftrace_ops_init(ops);
4091 return ftrace_set_addr(ops, ip, remove, reset, 1);
4092 }
4093 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
4094
4095 static int
4096 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4097 int reset, int enable)
4098 {
4099 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
4100 }
4101
4102 /**
4103 * ftrace_set_filter - set a function to filter on in ftrace
4104 * @ops - the ops to set the filter with
4105 * @buf - the string that holds the function filter text.
4106 * @len - the length of the string.
4107 * @reset - non zero to reset all filters before applying this filter.
4108 *
4109 * Filters denote which functions should be enabled when tracing is enabled.
4110 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
4111 */
4112 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
4113 int len, int reset)
4114 {
4115 ftrace_ops_init(ops);
4116 return ftrace_set_regex(ops, buf, len, reset, 1);
4117 }
4118 EXPORT_SYMBOL_GPL(ftrace_set_filter);
4119
4120 /**
4121 * ftrace_set_notrace - set a function to not trace in ftrace
4122 * @ops - the ops to set the notrace filter with
4123 * @buf - the string that holds the function notrace text.
4124 * @len - the length of the string.
4125 * @reset - non zero to reset all filters before applying this filter.
4126 *
4127 * Notrace Filters denote which functions should not be enabled when tracing
4128 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
4129 * for tracing.
4130 */
4131 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
4132 int len, int reset)
4133 {
4134 ftrace_ops_init(ops);
4135 return ftrace_set_regex(ops, buf, len, reset, 0);
4136 }
4137 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
4138 /**
4139 * ftrace_set_global_filter - set a function to filter on with global tracers
4140 * @buf - the string that holds the function filter text.
4141 * @len - the length of the string.
4142 * @reset - non zero to reset all filters before applying this filter.
4143 *
4144 * Filters denote which functions should be enabled when tracing is enabled.
4145 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
4146 */
4147 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
4148 {
4149 ftrace_set_regex(&global_ops, buf, len, reset, 1);
4150 }
4151 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
4152
4153 /**
4154 * ftrace_set_global_notrace - set a function to not trace with global tracers
4155 * @buf - the string that holds the function notrace text.
4156 * @len - the length of the string.
4157 * @reset - non zero to reset all filters before applying this filter.
4158 *
4159 * Notrace Filters denote which functions should not be enabled when tracing
4160 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
4161 * for tracing.
4162 */
4163 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
4164 {
4165 ftrace_set_regex(&global_ops, buf, len, reset, 0);
4166 }
4167 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
4168
4169 /*
4170 * command line interface to allow users to set filters on boot up.
4171 */
4172 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE
4173 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
4174 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
4175
4176 /* Used by function selftest to not test if filter is set */
4177 bool ftrace_filter_param __initdata;
4178
4179 static int __init set_ftrace_notrace(char *str)
4180 {
4181 ftrace_filter_param = true;
4182 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
4183 return 1;
4184 }
4185 __setup("ftrace_notrace=", set_ftrace_notrace);
4186
4187 static int __init set_ftrace_filter(char *str)
4188 {
4189 ftrace_filter_param = true;
4190 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
4191 return 1;
4192 }
4193 __setup("ftrace_filter=", set_ftrace_filter);
4194
4195 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
4196 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
4197 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
4198 static int ftrace_set_func(unsigned long *array, int *idx, int size, char *buffer);
4199
4200 static unsigned long save_global_trampoline;
4201 static unsigned long save_global_flags;
4202
4203 static int __init set_graph_function(char *str)
4204 {
4205 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
4206 return 1;
4207 }
4208 __setup("ftrace_graph_filter=", set_graph_function);
4209
4210 static int __init set_graph_notrace_function(char *str)
4211 {
4212 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
4213 return 1;
4214 }
4215 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
4216
4217 static void __init set_ftrace_early_graph(char *buf, int enable)
4218 {
4219 int ret;
4220 char *func;
4221 unsigned long *table = ftrace_graph_funcs;
4222 int *count = &ftrace_graph_count;
4223
4224 if (!enable) {
4225 table = ftrace_graph_notrace_funcs;
4226 count = &ftrace_graph_notrace_count;
4227 }
4228
4229 while (buf) {
4230 func = strsep(&buf, ",");
4231 /* we allow only one expression at a time */
4232 ret = ftrace_set_func(table, count, FTRACE_GRAPH_MAX_FUNCS, func);
4233 if (ret)
4234 printk(KERN_DEBUG "ftrace: function %s not "
4235 "traceable\n", func);
4236 }
4237 }
4238 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
4239
4240 void __init
4241 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
4242 {
4243 char *func;
4244
4245 ftrace_ops_init(ops);
4246
4247 while (buf) {
4248 func = strsep(&buf, ",");
4249 ftrace_set_regex(ops, func, strlen(func), 0, enable);
4250 }
4251 }
4252
4253 static void __init set_ftrace_early_filters(void)
4254 {
4255 if (ftrace_filter_buf[0])
4256 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
4257 if (ftrace_notrace_buf[0])
4258 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
4259 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
4260 if (ftrace_graph_buf[0])
4261 set_ftrace_early_graph(ftrace_graph_buf, 1);
4262 if (ftrace_graph_notrace_buf[0])
4263 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
4264 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
4265 }
4266
4267 int ftrace_regex_release(struct inode *inode, struct file *file)
4268 {
4269 struct seq_file *m = (struct seq_file *)file->private_data;
4270 struct ftrace_iterator *iter;
4271 struct ftrace_hash **orig_hash;
4272 struct ftrace_hash *old_hash;
4273 struct trace_parser *parser;
4274 int filter_hash;
4275 int ret;
4276
4277 if (file->f_mode & FMODE_READ) {
4278 iter = m->private;
4279 seq_release(inode, file);
4280 } else
4281 iter = file->private_data;
4282
4283 parser = &iter->parser;
4284 if (trace_parser_loaded(parser)) {
4285 parser->buffer[parser->idx] = 0;
4286 ftrace_match_records(iter->hash, parser->buffer, parser->idx);
4287 }
4288
4289 trace_parser_put(parser);
4290
4291 mutex_lock(&iter->ops->func_hash->regex_lock);
4292
4293 if (file->f_mode & FMODE_WRITE) {
4294 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
4295
4296 if (filter_hash)
4297 orig_hash = &iter->ops->func_hash->filter_hash;
4298 else
4299 orig_hash = &iter->ops->func_hash->notrace_hash;
4300
4301 mutex_lock(&ftrace_lock);
4302 old_hash = *orig_hash;
4303 ret = ftrace_hash_move(iter->ops, filter_hash,
4304 orig_hash, iter->hash);
4305 if (!ret) {
4306 ftrace_ops_update_code(iter->ops, old_hash);
4307 free_ftrace_hash_rcu(old_hash);
4308 }
4309 mutex_unlock(&ftrace_lock);
4310 }
4311
4312 mutex_unlock(&iter->ops->func_hash->regex_lock);
4313 free_ftrace_hash(iter->hash);
4314 kfree(iter);
4315
4316 return 0;
4317 }
4318
4319 static const struct file_operations ftrace_avail_fops = {
4320 .open = ftrace_avail_open,
4321 .read = seq_read,
4322 .llseek = seq_lseek,
4323 .release = seq_release_private,
4324 };
4325
4326 static const struct file_operations ftrace_enabled_fops = {
4327 .open = ftrace_enabled_open,
4328 .read = seq_read,
4329 .llseek = seq_lseek,
4330 .release = seq_release_private,
4331 };
4332
4333 static const struct file_operations ftrace_filter_fops = {
4334 .open = ftrace_filter_open,
4335 .read = seq_read,
4336 .write = ftrace_filter_write,
4337 .llseek = tracing_lseek,
4338 .release = ftrace_regex_release,
4339 };
4340
4341 static const struct file_operations ftrace_notrace_fops = {
4342 .open = ftrace_notrace_open,
4343 .read = seq_read,
4344 .write = ftrace_notrace_write,
4345 .llseek = tracing_lseek,
4346 .release = ftrace_regex_release,
4347 };
4348
4349 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
4350
4351 static DEFINE_MUTEX(graph_lock);
4352
4353 int ftrace_graph_count;
4354 int ftrace_graph_notrace_count;
4355 unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly;
4356 unsigned long ftrace_graph_notrace_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly;
4357
4358 struct ftrace_graph_data {
4359 unsigned long *table;
4360 size_t size;
4361 int *count;
4362 const struct seq_operations *seq_ops;
4363 };
4364
4365 static void *
4366 __g_next(struct seq_file *m, loff_t *pos)
4367 {
4368 struct ftrace_graph_data *fgd = m->private;
4369
4370 if (*pos >= *fgd->count)
4371 return NULL;
4372 return &fgd->table[*pos];
4373 }
4374
4375 static void *
4376 g_next(struct seq_file *m, void *v, loff_t *pos)
4377 {
4378 (*pos)++;
4379 return __g_next(m, pos);
4380 }
4381
4382 static void *g_start(struct seq_file *m, loff_t *pos)
4383 {
4384 struct ftrace_graph_data *fgd = m->private;
4385
4386 mutex_lock(&graph_lock);
4387
4388 /* Nothing, tell g_show to print all functions are enabled */
4389 if (!*fgd->count && !*pos)
4390 return (void *)1;
4391
4392 return __g_next(m, pos);
4393 }
4394
4395 static void g_stop(struct seq_file *m, void *p)
4396 {
4397 mutex_unlock(&graph_lock);
4398 }
4399
4400 static int g_show(struct seq_file *m, void *v)
4401 {
4402 unsigned long *ptr = v;
4403
4404 if (!ptr)
4405 return 0;
4406
4407 if (ptr == (unsigned long *)1) {
4408 struct ftrace_graph_data *fgd = m->private;
4409
4410 if (fgd->table == ftrace_graph_funcs)
4411 seq_puts(m, "#### all functions enabled ####\n");
4412 else
4413 seq_puts(m, "#### no functions disabled ####\n");
4414 return 0;
4415 }
4416
4417 seq_printf(m, "%ps\n", (void *)*ptr);
4418
4419 return 0;
4420 }
4421
4422 static const struct seq_operations ftrace_graph_seq_ops = {
4423 .start = g_start,
4424 .next = g_next,
4425 .stop = g_stop,
4426 .show = g_show,
4427 };
4428
4429 static int
4430 __ftrace_graph_open(struct inode *inode, struct file *file,
4431 struct ftrace_graph_data *fgd)
4432 {
4433 int ret = 0;
4434
4435 mutex_lock(&graph_lock);
4436 if ((file->f_mode & FMODE_WRITE) &&
4437 (file->f_flags & O_TRUNC)) {
4438 *fgd->count = 0;
4439 memset(fgd->table, 0, fgd->size * sizeof(*fgd->table));
4440 }
4441 mutex_unlock(&graph_lock);
4442
4443 if (file->f_mode & FMODE_READ) {
4444 ret = seq_open(file, fgd->seq_ops);
4445 if (!ret) {
4446 struct seq_file *m = file->private_data;
4447 m->private = fgd;
4448 }
4449 } else
4450 file->private_data = fgd;
4451
4452 return ret;
4453 }
4454
4455 static int
4456 ftrace_graph_open(struct inode *inode, struct file *file)
4457 {
4458 struct ftrace_graph_data *fgd;
4459
4460 if (unlikely(ftrace_disabled))
4461 return -ENODEV;
4462
4463 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
4464 if (fgd == NULL)
4465 return -ENOMEM;
4466
4467 fgd->table = ftrace_graph_funcs;
4468 fgd->size = FTRACE_GRAPH_MAX_FUNCS;
4469 fgd->count = &ftrace_graph_count;
4470 fgd->seq_ops = &ftrace_graph_seq_ops;
4471
4472 return __ftrace_graph_open(inode, file, fgd);
4473 }
4474
4475 static int
4476 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
4477 {
4478 struct ftrace_graph_data *fgd;
4479
4480 if (unlikely(ftrace_disabled))
4481 return -ENODEV;
4482
4483 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
4484 if (fgd == NULL)
4485 return -ENOMEM;
4486
4487 fgd->table = ftrace_graph_notrace_funcs;
4488 fgd->size = FTRACE_GRAPH_MAX_FUNCS;
4489 fgd->count = &ftrace_graph_notrace_count;
4490 fgd->seq_ops = &ftrace_graph_seq_ops;
4491
4492 return __ftrace_graph_open(inode, file, fgd);
4493 }
4494
4495 static int
4496 ftrace_graph_release(struct inode *inode, struct file *file)
4497 {
4498 if (file->f_mode & FMODE_READ) {
4499 struct seq_file *m = file->private_data;
4500
4501 kfree(m->private);
4502 seq_release(inode, file);
4503 } else {
4504 kfree(file->private_data);
4505 }
4506
4507 return 0;
4508 }
4509
4510 static int
4511 ftrace_set_func(unsigned long *array, int *idx, int size, char *buffer)
4512 {
4513 struct dyn_ftrace *rec;
4514 struct ftrace_page *pg;
4515 int search_len;
4516 int fail = 1;
4517 int type, not;
4518 char *search;
4519 bool exists;
4520 int i;
4521
4522 /* decode regex */
4523 type = filter_parse_regex(buffer, strlen(buffer), &search, &not);
4524 if (!not && *idx >= size)
4525 return -EBUSY;
4526
4527 search_len = strlen(search);
4528
4529 mutex_lock(&ftrace_lock);
4530
4531 if (unlikely(ftrace_disabled)) {
4532 mutex_unlock(&ftrace_lock);
4533 return -ENODEV;
4534 }
4535
4536 do_for_each_ftrace_rec(pg, rec) {
4537
4538 if (ftrace_match_record(rec, NULL, search, search_len, type)) {
4539 /* if it is in the array */
4540 exists = false;
4541 for (i = 0; i < *idx; i++) {
4542 if (array[i] == rec->ip) {
4543 exists = true;
4544 break;
4545 }
4546 }
4547
4548 if (!not) {
4549 fail = 0;
4550 if (!exists) {
4551 array[(*idx)++] = rec->ip;
4552 if (*idx >= size)
4553 goto out;
4554 }
4555 } else {
4556 if (exists) {
4557 array[i] = array[--(*idx)];
4558 array[*idx] = 0;
4559 fail = 0;
4560 }
4561 }
4562 }
4563 } while_for_each_ftrace_rec();
4564 out:
4565 mutex_unlock(&ftrace_lock);
4566
4567 if (fail)
4568 return -EINVAL;
4569
4570 return 0;
4571 }
4572
4573 static ssize_t
4574 ftrace_graph_write(struct file *file, const char __user *ubuf,
4575 size_t cnt, loff_t *ppos)
4576 {
4577 struct trace_parser parser;
4578 ssize_t read, ret = 0;
4579 struct ftrace_graph_data *fgd = file->private_data;
4580
4581 if (!cnt)
4582 return 0;
4583
4584 if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX))
4585 return -ENOMEM;
4586
4587 read = trace_get_user(&parser, ubuf, cnt, ppos);
4588
4589 if (read >= 0 && trace_parser_loaded((&parser))) {
4590 parser.buffer[parser.idx] = 0;
4591
4592 mutex_lock(&graph_lock);
4593
4594 /* we allow only one expression at a time */
4595 ret = ftrace_set_func(fgd->table, fgd->count, fgd->size,
4596 parser.buffer);
4597
4598 mutex_unlock(&graph_lock);
4599 }
4600
4601 if (!ret)
4602 ret = read;
4603
4604 trace_parser_put(&parser);
4605
4606 return ret;
4607 }
4608
4609 static const struct file_operations ftrace_graph_fops = {
4610 .open = ftrace_graph_open,
4611 .read = seq_read,
4612 .write = ftrace_graph_write,
4613 .llseek = tracing_lseek,
4614 .release = ftrace_graph_release,
4615 };
4616
4617 static const struct file_operations ftrace_graph_notrace_fops = {
4618 .open = ftrace_graph_notrace_open,
4619 .read = seq_read,
4620 .write = ftrace_graph_write,
4621 .llseek = tracing_lseek,
4622 .release = ftrace_graph_release,
4623 };
4624 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
4625
4626 void ftrace_create_filter_files(struct ftrace_ops *ops,
4627 struct dentry *parent)
4628 {
4629
4630 trace_create_file("set_ftrace_filter", 0644, parent,
4631 ops, &ftrace_filter_fops);
4632
4633 trace_create_file("set_ftrace_notrace", 0644, parent,
4634 ops, &ftrace_notrace_fops);
4635 }
4636
4637 /*
4638 * The name "destroy_filter_files" is really a misnomer. Although
4639 * in the future, it may actualy delete the files, but this is
4640 * really intended to make sure the ops passed in are disabled
4641 * and that when this function returns, the caller is free to
4642 * free the ops.
4643 *
4644 * The "destroy" name is only to match the "create" name that this
4645 * should be paired with.
4646 */
4647 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
4648 {
4649 mutex_lock(&ftrace_lock);
4650 if (ops->flags & FTRACE_OPS_FL_ENABLED)
4651 ftrace_shutdown(ops, 0);
4652 ops->flags |= FTRACE_OPS_FL_DELETED;
4653 mutex_unlock(&ftrace_lock);
4654 }
4655
4656 static __init int ftrace_init_dyn_debugfs(struct dentry *d_tracer)
4657 {
4658
4659 trace_create_file("available_filter_functions", 0444,
4660 d_tracer, NULL, &ftrace_avail_fops);
4661
4662 trace_create_file("enabled_functions", 0444,
4663 d_tracer, NULL, &ftrace_enabled_fops);
4664
4665 ftrace_create_filter_files(&global_ops, d_tracer);
4666
4667 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
4668 trace_create_file("set_graph_function", 0444, d_tracer,
4669 NULL,
4670 &ftrace_graph_fops);
4671 trace_create_file("set_graph_notrace", 0444, d_tracer,
4672 NULL,
4673 &ftrace_graph_notrace_fops);
4674 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
4675
4676 return 0;
4677 }
4678
4679 static int ftrace_cmp_ips(const void *a, const void *b)
4680 {
4681 const unsigned long *ipa = a;
4682 const unsigned long *ipb = b;
4683
4684 if (*ipa > *ipb)
4685 return 1;
4686 if (*ipa < *ipb)
4687 return -1;
4688 return 0;
4689 }
4690
4691 static void ftrace_swap_ips(void *a, void *b, int size)
4692 {
4693 unsigned long *ipa = a;
4694 unsigned long *ipb = b;
4695 unsigned long t;
4696
4697 t = *ipa;
4698 *ipa = *ipb;
4699 *ipb = t;
4700 }
4701
4702 static int ftrace_process_locs(struct module *mod,
4703 unsigned long *start,
4704 unsigned long *end)
4705 {
4706 struct ftrace_page *start_pg;
4707 struct ftrace_page *pg;
4708 struct dyn_ftrace *rec;
4709 unsigned long count;
4710 unsigned long *p;
4711 unsigned long addr;
4712 unsigned long flags = 0; /* Shut up gcc */
4713 int ret = -ENOMEM;
4714
4715 count = end - start;
4716
4717 if (!count)
4718 return 0;
4719
4720 sort(start, count, sizeof(*start),
4721 ftrace_cmp_ips, ftrace_swap_ips);
4722
4723 start_pg = ftrace_allocate_pages(count);
4724 if (!start_pg)
4725 return -ENOMEM;
4726
4727 mutex_lock(&ftrace_lock);
4728
4729 /*
4730 * Core and each module needs their own pages, as
4731 * modules will free them when they are removed.
4732 * Force a new page to be allocated for modules.
4733 */
4734 if (!mod) {
4735 WARN_ON(ftrace_pages || ftrace_pages_start);
4736 /* First initialization */
4737 ftrace_pages = ftrace_pages_start = start_pg;
4738 } else {
4739 if (!ftrace_pages)
4740 goto out;
4741
4742 if (WARN_ON(ftrace_pages->next)) {
4743 /* Hmm, we have free pages? */
4744 while (ftrace_pages->next)
4745 ftrace_pages = ftrace_pages->next;
4746 }
4747
4748 ftrace_pages->next = start_pg;
4749 }
4750
4751 p = start;
4752 pg = start_pg;
4753 while (p < end) {
4754 addr = ftrace_call_adjust(*p++);
4755 /*
4756 * Some architecture linkers will pad between
4757 * the different mcount_loc sections of different
4758 * object files to satisfy alignments.
4759 * Skip any NULL pointers.
4760 */
4761 if (!addr)
4762 continue;
4763
4764 if (pg->index == pg->size) {
4765 /* We should have allocated enough */
4766 if (WARN_ON(!pg->next))
4767 break;
4768 pg = pg->next;
4769 }
4770
4771 rec = &pg->records[pg->index++];
4772 rec->ip = addr;
4773 }
4774
4775 /* We should have used all pages */
4776 WARN_ON(pg->next);
4777
4778 /* Assign the last page to ftrace_pages */
4779 ftrace_pages = pg;
4780
4781 /*
4782 * We only need to disable interrupts on start up
4783 * because we are modifying code that an interrupt
4784 * may execute, and the modification is not atomic.
4785 * But for modules, nothing runs the code we modify
4786 * until we are finished with it, and there's no
4787 * reason to cause large interrupt latencies while we do it.
4788 */
4789 if (!mod)
4790 local_irq_save(flags);
4791 ftrace_update_code(mod, start_pg);
4792 if (!mod)
4793 local_irq_restore(flags);
4794 ret = 0;
4795 out:
4796 mutex_unlock(&ftrace_lock);
4797
4798 return ret;
4799 }
4800
4801 #ifdef CONFIG_MODULES
4802
4803 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
4804
4805 void ftrace_release_mod(struct module *mod)
4806 {
4807 struct dyn_ftrace *rec;
4808 struct ftrace_page **last_pg;
4809 struct ftrace_page *pg;
4810 int order;
4811
4812 mutex_lock(&ftrace_lock);
4813
4814 if (ftrace_disabled)
4815 goto out_unlock;
4816
4817 /*
4818 * Each module has its own ftrace_pages, remove
4819 * them from the list.
4820 */
4821 last_pg = &ftrace_pages_start;
4822 for (pg = ftrace_pages_start; pg; pg = *last_pg) {
4823 rec = &pg->records[0];
4824 if (within_module_core(rec->ip, mod)) {
4825 /*
4826 * As core pages are first, the first
4827 * page should never be a module page.
4828 */
4829 if (WARN_ON(pg == ftrace_pages_start))
4830 goto out_unlock;
4831
4832 /* Check if we are deleting the last page */
4833 if (pg == ftrace_pages)
4834 ftrace_pages = next_to_ftrace_page(last_pg);
4835
4836 *last_pg = pg->next;
4837 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
4838 free_pages((unsigned long)pg->records, order);
4839 kfree(pg);
4840 } else
4841 last_pg = &pg->next;
4842 }
4843 out_unlock:
4844 mutex_unlock(&ftrace_lock);
4845 }
4846
4847 static void ftrace_init_module(struct module *mod,
4848 unsigned long *start, unsigned long *end)
4849 {
4850 if (ftrace_disabled || start == end)
4851 return;
4852 ftrace_process_locs(mod, start, end);
4853 }
4854
4855 void ftrace_module_init(struct module *mod)
4856 {
4857 ftrace_init_module(mod, mod->ftrace_callsites,
4858 mod->ftrace_callsites +
4859 mod->num_ftrace_callsites);
4860 }
4861
4862 static int ftrace_module_notify_exit(struct notifier_block *self,
4863 unsigned long val, void *data)
4864 {
4865 struct module *mod = data;
4866
4867 if (val == MODULE_STATE_GOING)
4868 ftrace_release_mod(mod);
4869
4870 return 0;
4871 }
4872 #else
4873 static int ftrace_module_notify_exit(struct notifier_block *self,
4874 unsigned long val, void *data)
4875 {
4876 return 0;
4877 }
4878 #endif /* CONFIG_MODULES */
4879
4880 struct notifier_block ftrace_module_exit_nb = {
4881 .notifier_call = ftrace_module_notify_exit,
4882 .priority = INT_MIN, /* Run after anything that can remove kprobes */
4883 };
4884
4885 void __init ftrace_init(void)
4886 {
4887 extern unsigned long __start_mcount_loc[];
4888 extern unsigned long __stop_mcount_loc[];
4889 unsigned long count, flags;
4890 int ret;
4891
4892 local_irq_save(flags);
4893 ret = ftrace_dyn_arch_init();
4894 local_irq_restore(flags);
4895 if (ret)
4896 goto failed;
4897
4898 count = __stop_mcount_loc - __start_mcount_loc;
4899 if (!count) {
4900 pr_info("ftrace: No functions to be traced?\n");
4901 goto failed;
4902 }
4903
4904 pr_info("ftrace: allocating %ld entries in %ld pages\n",
4905 count, count / ENTRIES_PER_PAGE + 1);
4906
4907 last_ftrace_enabled = ftrace_enabled = 1;
4908
4909 ret = ftrace_process_locs(NULL,
4910 __start_mcount_loc,
4911 __stop_mcount_loc);
4912
4913 ret = register_module_notifier(&ftrace_module_exit_nb);
4914 if (ret)
4915 pr_warning("Failed to register trace ftrace module exit notifier\n");
4916
4917 set_ftrace_early_filters();
4918
4919 return;
4920 failed:
4921 ftrace_disabled = 1;
4922 }
4923
4924 /* Do nothing if arch does not support this */
4925 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
4926 {
4927 }
4928
4929 static void ftrace_update_trampoline(struct ftrace_ops *ops)
4930 {
4931
4932 /*
4933 * Currently there's no safe way to free a trampoline when the kernel
4934 * is configured with PREEMPT. That is because a task could be preempted
4935 * when it jumped to the trampoline, it may be preempted for a long time
4936 * depending on the system load, and currently there's no way to know
4937 * when it will be off the trampoline. If the trampoline is freed
4938 * too early, when the task runs again, it will be executing on freed
4939 * memory and crash.
4940 */
4941 #ifdef CONFIG_PREEMPT
4942 /* Currently, only non dynamic ops can have a trampoline */
4943 if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
4944 return;
4945 #endif
4946
4947 arch_ftrace_update_trampoline(ops);
4948 }
4949
4950 #else
4951
4952 static struct ftrace_ops global_ops = {
4953 .func = ftrace_stub,
4954 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
4955 };
4956
4957 static int __init ftrace_nodyn_init(void)
4958 {
4959 ftrace_enabled = 1;
4960 return 0;
4961 }
4962 core_initcall(ftrace_nodyn_init);
4963
4964 static inline int ftrace_init_dyn_debugfs(struct dentry *d_tracer) { return 0; }
4965 static inline void ftrace_startup_enable(int command) { }
4966 static inline void ftrace_startup_all(int command) { }
4967 /* Keep as macros so we do not need to define the commands */
4968 # define ftrace_startup(ops, command) \
4969 ({ \
4970 int ___ret = __register_ftrace_function(ops); \
4971 if (!___ret) \
4972 (ops)->flags |= FTRACE_OPS_FL_ENABLED; \
4973 ___ret; \
4974 })
4975 # define ftrace_shutdown(ops, command) \
4976 ({ \
4977 int ___ret = __unregister_ftrace_function(ops); \
4978 if (!___ret) \
4979 (ops)->flags &= ~FTRACE_OPS_FL_ENABLED; \
4980 ___ret; \
4981 })
4982
4983 # define ftrace_startup_sysctl() do { } while (0)
4984 # define ftrace_shutdown_sysctl() do { } while (0)
4985
4986 static inline int
4987 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
4988 {
4989 return 1;
4990 }
4991
4992 static void ftrace_update_trampoline(struct ftrace_ops *ops)
4993 {
4994 }
4995
4996 #endif /* CONFIG_DYNAMIC_FTRACE */
4997
4998 __init void ftrace_init_global_array_ops(struct trace_array *tr)
4999 {
5000 tr->ops = &global_ops;
5001 tr->ops->private = tr;
5002 }
5003
5004 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
5005 {
5006 /* If we filter on pids, update to use the pid function */
5007 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
5008 if (WARN_ON(tr->ops->func != ftrace_stub))
5009 printk("ftrace ops had %pS for function\n",
5010 tr->ops->func);
5011 /* Only the top level instance does pid tracing */
5012 if (!list_empty(&ftrace_pids)) {
5013 set_ftrace_pid_function(func);
5014 func = ftrace_pid_func;
5015 }
5016 }
5017 tr->ops->func = func;
5018 tr->ops->private = tr;
5019 }
5020
5021 void ftrace_reset_array_ops(struct trace_array *tr)
5022 {
5023 tr->ops->func = ftrace_stub;
5024 }
5025
5026 static void
5027 ftrace_ops_control_func(unsigned long ip, unsigned long parent_ip,
5028 struct ftrace_ops *op, struct pt_regs *regs)
5029 {
5030 if (unlikely(trace_recursion_test(TRACE_CONTROL_BIT)))
5031 return;
5032
5033 /*
5034 * Some of the ops may be dynamically allocated,
5035 * they must be freed after a synchronize_sched().
5036 */
5037 preempt_disable_notrace();
5038 trace_recursion_set(TRACE_CONTROL_BIT);
5039
5040 /*
5041 * Control funcs (perf) uses RCU. Only trace if
5042 * RCU is currently active.
5043 */
5044 if (!rcu_is_watching())
5045 goto out;
5046
5047 do_for_each_ftrace_op(op, ftrace_control_list) {
5048 if (!(op->flags & FTRACE_OPS_FL_STUB) &&
5049 !ftrace_function_local_disabled(op) &&
5050 ftrace_ops_test(op, ip, regs))
5051 op->func(ip, parent_ip, op, regs);
5052 } while_for_each_ftrace_op(op);
5053 out:
5054 trace_recursion_clear(TRACE_CONTROL_BIT);
5055 preempt_enable_notrace();
5056 }
5057
5058 static struct ftrace_ops control_ops = {
5059 .func = ftrace_ops_control_func,
5060 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
5061 INIT_OPS_HASH(control_ops)
5062 };
5063
5064 static inline void
5065 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
5066 struct ftrace_ops *ignored, struct pt_regs *regs)
5067 {
5068 struct ftrace_ops *op;
5069 int bit;
5070
5071 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
5072 if (bit < 0)
5073 return;
5074
5075 /*
5076 * Some of the ops may be dynamically allocated,
5077 * they must be freed after a synchronize_sched().
5078 */
5079 preempt_disable_notrace();
5080 do_for_each_ftrace_op(op, ftrace_ops_list) {
5081 if (ftrace_ops_test(op, ip, regs)) {
5082 if (FTRACE_WARN_ON(!op->func)) {
5083 pr_warn("op=%p %pS\n", op, op);
5084 goto out;
5085 }
5086 op->func(ip, parent_ip, op, regs);
5087 }
5088 } while_for_each_ftrace_op(op);
5089 out:
5090 preempt_enable_notrace();
5091 trace_clear_recursion(bit);
5092 }
5093
5094 /*
5095 * Some archs only support passing ip and parent_ip. Even though
5096 * the list function ignores the op parameter, we do not want any
5097 * C side effects, where a function is called without the caller
5098 * sending a third parameter.
5099 * Archs are to support both the regs and ftrace_ops at the same time.
5100 * If they support ftrace_ops, it is assumed they support regs.
5101 * If call backs want to use regs, they must either check for regs
5102 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
5103 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
5104 * An architecture can pass partial regs with ftrace_ops and still
5105 * set the ARCH_SUPPORT_FTARCE_OPS.
5106 */
5107 #if ARCH_SUPPORTS_FTRACE_OPS
5108 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
5109 struct ftrace_ops *op, struct pt_regs *regs)
5110 {
5111 __ftrace_ops_list_func(ip, parent_ip, NULL, regs);
5112 }
5113 #else
5114 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
5115 {
5116 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
5117 }
5118 #endif
5119
5120 /*
5121 * If there's only one function registered but it does not support
5122 * recursion, this function will be called by the mcount trampoline.
5123 * This function will handle recursion protection.
5124 */
5125 static void ftrace_ops_recurs_func(unsigned long ip, unsigned long parent_ip,
5126 struct ftrace_ops *op, struct pt_regs *regs)
5127 {
5128 int bit;
5129
5130 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
5131 if (bit < 0)
5132 return;
5133
5134 op->func(ip, parent_ip, op, regs);
5135
5136 trace_clear_recursion(bit);
5137 }
5138
5139 /**
5140 * ftrace_ops_get_func - get the function a trampoline should call
5141 * @ops: the ops to get the function for
5142 *
5143 * Normally the mcount trampoline will call the ops->func, but there
5144 * are times that it should not. For example, if the ops does not
5145 * have its own recursion protection, then it should call the
5146 * ftrace_ops_recurs_func() instead.
5147 *
5148 * Returns the function that the trampoline should call for @ops.
5149 */
5150 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
5151 {
5152 /*
5153 * If this is a dynamic ops or we force list func,
5154 * then it needs to call the list anyway.
5155 */
5156 if (ops->flags & FTRACE_OPS_FL_DYNAMIC || FTRACE_FORCE_LIST_FUNC)
5157 return ftrace_ops_list_func;
5158
5159 /*
5160 * If the func handles its own recursion, call it directly.
5161 * Otherwise call the recursion protected function that
5162 * will call the ftrace ops function.
5163 */
5164 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE))
5165 return ftrace_ops_recurs_func;
5166
5167 return ops->func;
5168 }
5169
5170 static void clear_ftrace_swapper(void)
5171 {
5172 struct task_struct *p;
5173 int cpu;
5174
5175 get_online_cpus();
5176 for_each_online_cpu(cpu) {
5177 p = idle_task(cpu);
5178 clear_tsk_trace_trace(p);
5179 }
5180 put_online_cpus();
5181 }
5182
5183 static void set_ftrace_swapper(void)
5184 {
5185 struct task_struct *p;
5186 int cpu;
5187
5188 get_online_cpus();
5189 for_each_online_cpu(cpu) {
5190 p = idle_task(cpu);
5191 set_tsk_trace_trace(p);
5192 }
5193 put_online_cpus();
5194 }
5195
5196 static void clear_ftrace_pid(struct pid *pid)
5197 {
5198 struct task_struct *p;
5199
5200 rcu_read_lock();
5201 do_each_pid_task(pid, PIDTYPE_PID, p) {
5202 clear_tsk_trace_trace(p);
5203 } while_each_pid_task(pid, PIDTYPE_PID, p);
5204 rcu_read_unlock();
5205
5206 put_pid(pid);
5207 }
5208
5209 static void set_ftrace_pid(struct pid *pid)
5210 {
5211 struct task_struct *p;
5212
5213 rcu_read_lock();
5214 do_each_pid_task(pid, PIDTYPE_PID, p) {
5215 set_tsk_trace_trace(p);
5216 } while_each_pid_task(pid, PIDTYPE_PID, p);
5217 rcu_read_unlock();
5218 }
5219
5220 static void clear_ftrace_pid_task(struct pid *pid)
5221 {
5222 if (pid == ftrace_swapper_pid)
5223 clear_ftrace_swapper();
5224 else
5225 clear_ftrace_pid(pid);
5226 }
5227
5228 static void set_ftrace_pid_task(struct pid *pid)
5229 {
5230 if (pid == ftrace_swapper_pid)
5231 set_ftrace_swapper();
5232 else
5233 set_ftrace_pid(pid);
5234 }
5235
5236 static int ftrace_pid_add(int p)
5237 {
5238 struct pid *pid;
5239 struct ftrace_pid *fpid;
5240 int ret = -EINVAL;
5241
5242 mutex_lock(&ftrace_lock);
5243
5244 if (!p)
5245 pid = ftrace_swapper_pid;
5246 else
5247 pid = find_get_pid(p);
5248
5249 if (!pid)
5250 goto out;
5251
5252 ret = 0;
5253
5254 list_for_each_entry(fpid, &ftrace_pids, list)
5255 if (fpid->pid == pid)
5256 goto out_put;
5257
5258 ret = -ENOMEM;
5259
5260 fpid = kmalloc(sizeof(*fpid), GFP_KERNEL);
5261 if (!fpid)
5262 goto out_put;
5263
5264 list_add(&fpid->list, &ftrace_pids);
5265 fpid->pid = pid;
5266
5267 set_ftrace_pid_task(pid);
5268
5269 ftrace_update_pid_func();
5270
5271 ftrace_startup_all(0);
5272
5273 mutex_unlock(&ftrace_lock);
5274 return 0;
5275
5276 out_put:
5277 if (pid != ftrace_swapper_pid)
5278 put_pid(pid);
5279
5280 out:
5281 mutex_unlock(&ftrace_lock);
5282 return ret;
5283 }
5284
5285 static void ftrace_pid_reset(void)
5286 {
5287 struct ftrace_pid *fpid, *safe;
5288
5289 mutex_lock(&ftrace_lock);
5290 list_for_each_entry_safe(fpid, safe, &ftrace_pids, list) {
5291 struct pid *pid = fpid->pid;
5292
5293 clear_ftrace_pid_task(pid);
5294
5295 list_del(&fpid->list);
5296 kfree(fpid);
5297 }
5298
5299 ftrace_update_pid_func();
5300 ftrace_startup_all(0);
5301
5302 mutex_unlock(&ftrace_lock);
5303 }
5304
5305 static void *fpid_start(struct seq_file *m, loff_t *pos)
5306 {
5307 mutex_lock(&ftrace_lock);
5308
5309 if (list_empty(&ftrace_pids) && (!*pos))
5310 return (void *) 1;
5311
5312 return seq_list_start(&ftrace_pids, *pos);
5313 }
5314
5315 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
5316 {
5317 if (v == (void *)1)
5318 return NULL;
5319
5320 return seq_list_next(v, &ftrace_pids, pos);
5321 }
5322
5323 static void fpid_stop(struct seq_file *m, void *p)
5324 {
5325 mutex_unlock(&ftrace_lock);
5326 }
5327
5328 static int fpid_show(struct seq_file *m, void *v)
5329 {
5330 const struct ftrace_pid *fpid = list_entry(v, struct ftrace_pid, list);
5331
5332 if (v == (void *)1) {
5333 seq_puts(m, "no pid\n");
5334 return 0;
5335 }
5336
5337 if (fpid->pid == ftrace_swapper_pid)
5338 seq_puts(m, "swapper tasks\n");
5339 else
5340 seq_printf(m, "%u\n", pid_vnr(fpid->pid));
5341
5342 return 0;
5343 }
5344
5345 static const struct seq_operations ftrace_pid_sops = {
5346 .start = fpid_start,
5347 .next = fpid_next,
5348 .stop = fpid_stop,
5349 .show = fpid_show,
5350 };
5351
5352 static int
5353 ftrace_pid_open(struct inode *inode, struct file *file)
5354 {
5355 int ret = 0;
5356
5357 if ((file->f_mode & FMODE_WRITE) &&
5358 (file->f_flags & O_TRUNC))
5359 ftrace_pid_reset();
5360
5361 if (file->f_mode & FMODE_READ)
5362 ret = seq_open(file, &ftrace_pid_sops);
5363
5364 return ret;
5365 }
5366
5367 static ssize_t
5368 ftrace_pid_write(struct file *filp, const char __user *ubuf,
5369 size_t cnt, loff_t *ppos)
5370 {
5371 char buf[64], *tmp;
5372 long val;
5373 int ret;
5374
5375 if (cnt >= sizeof(buf))
5376 return -EINVAL;
5377
5378 if (copy_from_user(&buf, ubuf, cnt))
5379 return -EFAULT;
5380
5381 buf[cnt] = 0;
5382
5383 /*
5384 * Allow "echo > set_ftrace_pid" or "echo -n '' > set_ftrace_pid"
5385 * to clean the filter quietly.
5386 */
5387 tmp = strstrip(buf);
5388 if (strlen(tmp) == 0)
5389 return 1;
5390
5391 ret = kstrtol(tmp, 10, &val);
5392 if (ret < 0)
5393 return ret;
5394
5395 ret = ftrace_pid_add(val);
5396
5397 return ret ? ret : cnt;
5398 }
5399
5400 static int
5401 ftrace_pid_release(struct inode *inode, struct file *file)
5402 {
5403 if (file->f_mode & FMODE_READ)
5404 seq_release(inode, file);
5405
5406 return 0;
5407 }
5408
5409 static const struct file_operations ftrace_pid_fops = {
5410 .open = ftrace_pid_open,
5411 .write = ftrace_pid_write,
5412 .read = seq_read,
5413 .llseek = tracing_lseek,
5414 .release = ftrace_pid_release,
5415 };
5416
5417 static __init int ftrace_init_debugfs(void)
5418 {
5419 struct dentry *d_tracer;
5420
5421 d_tracer = tracing_init_dentry();
5422 if (!d_tracer)
5423 return 0;
5424
5425 ftrace_init_dyn_debugfs(d_tracer);
5426
5427 trace_create_file("set_ftrace_pid", 0644, d_tracer,
5428 NULL, &ftrace_pid_fops);
5429
5430 ftrace_profile_debugfs(d_tracer);
5431
5432 return 0;
5433 }
5434 fs_initcall(ftrace_init_debugfs);
5435
5436 /**
5437 * ftrace_kill - kill ftrace
5438 *
5439 * This function should be used by panic code. It stops ftrace
5440 * but in a not so nice way. If you need to simply kill ftrace
5441 * from a non-atomic section, use ftrace_kill.
5442 */
5443 void ftrace_kill(void)
5444 {
5445 ftrace_disabled = 1;
5446 ftrace_enabled = 0;
5447 clear_ftrace_function();
5448 }
5449
5450 /**
5451 * Test if ftrace is dead or not.
5452 */
5453 int ftrace_is_dead(void)
5454 {
5455 return ftrace_disabled;
5456 }
5457
5458 /**
5459 * register_ftrace_function - register a function for profiling
5460 * @ops - ops structure that holds the function for profiling.
5461 *
5462 * Register a function to be called by all functions in the
5463 * kernel.
5464 *
5465 * Note: @ops->func and all the functions it calls must be labeled
5466 * with "notrace", otherwise it will go into a
5467 * recursive loop.
5468 */
5469 int register_ftrace_function(struct ftrace_ops *ops)
5470 {
5471 int ret = -1;
5472
5473 ftrace_ops_init(ops);
5474
5475 mutex_lock(&ftrace_lock);
5476
5477 ret = ftrace_startup(ops, 0);
5478
5479 mutex_unlock(&ftrace_lock);
5480
5481 return ret;
5482 }
5483 EXPORT_SYMBOL_GPL(register_ftrace_function);
5484
5485 /**
5486 * unregister_ftrace_function - unregister a function for profiling.
5487 * @ops - ops structure that holds the function to unregister
5488 *
5489 * Unregister a function that was added to be called by ftrace profiling.
5490 */
5491 int unregister_ftrace_function(struct ftrace_ops *ops)
5492 {
5493 int ret;
5494
5495 mutex_lock(&ftrace_lock);
5496 ret = ftrace_shutdown(ops, 0);
5497 mutex_unlock(&ftrace_lock);
5498
5499 return ret;
5500 }
5501 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
5502
5503 int
5504 ftrace_enable_sysctl(struct ctl_table *table, int write,
5505 void __user *buffer, size_t *lenp,
5506 loff_t *ppos)
5507 {
5508 int ret = -ENODEV;
5509
5510 mutex_lock(&ftrace_lock);
5511
5512 if (unlikely(ftrace_disabled))
5513 goto out;
5514
5515 ret = proc_dointvec(table, write, buffer, lenp, ppos);
5516
5517 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
5518 goto out;
5519
5520 last_ftrace_enabled = !!ftrace_enabled;
5521
5522 if (ftrace_enabled) {
5523
5524 ftrace_startup_sysctl();
5525
5526 /* we are starting ftrace again */
5527 if (ftrace_ops_list != &ftrace_list_end)
5528 update_ftrace_function();
5529
5530 } else {
5531 /* stopping ftrace calls (just send to ftrace_stub) */
5532 ftrace_trace_function = ftrace_stub;
5533
5534 ftrace_shutdown_sysctl();
5535 }
5536
5537 out:
5538 mutex_unlock(&ftrace_lock);
5539 return ret;
5540 }
5541
5542 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5543
5544 static struct ftrace_ops graph_ops = {
5545 .func = ftrace_stub,
5546 .flags = FTRACE_OPS_FL_RECURSION_SAFE |
5547 FTRACE_OPS_FL_INITIALIZED |
5548 FTRACE_OPS_FL_STUB,
5549 #ifdef FTRACE_GRAPH_TRAMP_ADDR
5550 .trampoline = FTRACE_GRAPH_TRAMP_ADDR,
5551 /* trampoline_size is only needed for dynamically allocated tramps */
5552 #endif
5553 ASSIGN_OPS_HASH(graph_ops, &global_ops.local_hash)
5554 };
5555
5556 static int ftrace_graph_active;
5557
5558 int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace)
5559 {
5560 return 0;
5561 }
5562
5563 /* The callbacks that hook a function */
5564 trace_func_graph_ret_t ftrace_graph_return =
5565 (trace_func_graph_ret_t)ftrace_stub;
5566 trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub;
5567 static trace_func_graph_ent_t __ftrace_graph_entry = ftrace_graph_entry_stub;
5568
5569 /* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */
5570 static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list)
5571 {
5572 int i;
5573 int ret = 0;
5574 unsigned long flags;
5575 int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE;
5576 struct task_struct *g, *t;
5577
5578 for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) {
5579 ret_stack_list[i] = kmalloc(FTRACE_RETFUNC_DEPTH
5580 * sizeof(struct ftrace_ret_stack),
5581 GFP_KERNEL);
5582 if (!ret_stack_list[i]) {
5583 start = 0;
5584 end = i;
5585 ret = -ENOMEM;
5586 goto free;
5587 }
5588 }
5589
5590 read_lock_irqsave(&tasklist_lock, flags);
5591 do_each_thread(g, t) {
5592 if (start == end) {
5593 ret = -EAGAIN;
5594 goto unlock;
5595 }
5596
5597 if (t->ret_stack == NULL) {
5598 atomic_set(&t->tracing_graph_pause, 0);
5599 atomic_set(&t->trace_overrun, 0);
5600 t->curr_ret_stack = -1;
5601 /* Make sure the tasks see the -1 first: */
5602 smp_wmb();
5603 t->ret_stack = ret_stack_list[start++];
5604 }
5605 } while_each_thread(g, t);
5606
5607 unlock:
5608 read_unlock_irqrestore(&tasklist_lock, flags);
5609 free:
5610 for (i = start; i < end; i++)
5611 kfree(ret_stack_list[i]);
5612 return ret;
5613 }
5614
5615 static void
5616 ftrace_graph_probe_sched_switch(void *ignore,
5617 struct task_struct *prev, struct task_struct *next)
5618 {
5619 unsigned long long timestamp;
5620 int index;
5621
5622 /*
5623 * Does the user want to count the time a function was asleep.
5624 * If so, do not update the time stamps.
5625 */
5626 if (trace_flags & TRACE_ITER_SLEEP_TIME)
5627 return;
5628
5629 timestamp = trace_clock_local();
5630
5631 prev->ftrace_timestamp = timestamp;
5632
5633 /* only process tasks that we timestamped */
5634 if (!next->ftrace_timestamp)
5635 return;
5636
5637 /*
5638 * Update all the counters in next to make up for the
5639 * time next was sleeping.
5640 */
5641 timestamp -= next->ftrace_timestamp;
5642
5643 for (index = next->curr_ret_stack; index >= 0; index--)
5644 next->ret_stack[index].calltime += timestamp;
5645 }
5646
5647 /* Allocate a return stack for each task */
5648 static int start_graph_tracing(void)
5649 {
5650 struct ftrace_ret_stack **ret_stack_list;
5651 int ret, cpu;
5652
5653 ret_stack_list = kmalloc(FTRACE_RETSTACK_ALLOC_SIZE *
5654 sizeof(struct ftrace_ret_stack *),
5655 GFP_KERNEL);
5656
5657 if (!ret_stack_list)
5658 return -ENOMEM;
5659
5660 /* The cpu_boot init_task->ret_stack will never be freed */
5661 for_each_online_cpu(cpu) {
5662 if (!idle_task(cpu)->ret_stack)
5663 ftrace_graph_init_idle_task(idle_task(cpu), cpu);
5664 }
5665
5666 do {
5667 ret = alloc_retstack_tasklist(ret_stack_list);
5668 } while (ret == -EAGAIN);
5669
5670 if (!ret) {
5671 ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
5672 if (ret)
5673 pr_info("ftrace_graph: Couldn't activate tracepoint"
5674 " probe to kernel_sched_switch\n");
5675 }
5676
5677 kfree(ret_stack_list);
5678 return ret;
5679 }
5680
5681 /*
5682 * Hibernation protection.
5683 * The state of the current task is too much unstable during
5684 * suspend/restore to disk. We want to protect against that.
5685 */
5686 static int
5687 ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state,
5688 void *unused)
5689 {
5690 switch (state) {
5691 case PM_HIBERNATION_PREPARE:
5692 pause_graph_tracing();
5693 break;
5694
5695 case PM_POST_HIBERNATION:
5696 unpause_graph_tracing();
5697 break;
5698 }
5699 return NOTIFY_DONE;
5700 }
5701
5702 static int ftrace_graph_entry_test(struct ftrace_graph_ent *trace)
5703 {
5704 if (!ftrace_ops_test(&global_ops, trace->func, NULL))
5705 return 0;
5706 return __ftrace_graph_entry(trace);
5707 }
5708
5709 /*
5710 * The function graph tracer should only trace the functions defined
5711 * by set_ftrace_filter and set_ftrace_notrace. If another function
5712 * tracer ops is registered, the graph tracer requires testing the
5713 * function against the global ops, and not just trace any function
5714 * that any ftrace_ops registered.
5715 */
5716 static void update_function_graph_func(void)
5717 {
5718 struct ftrace_ops *op;
5719 bool do_test = false;
5720
5721 /*
5722 * The graph and global ops share the same set of functions
5723 * to test. If any other ops is on the list, then
5724 * the graph tracing needs to test if its the function
5725 * it should call.
5726 */
5727 do_for_each_ftrace_op(op, ftrace_ops_list) {
5728 if (op != &global_ops && op != &graph_ops &&
5729 op != &ftrace_list_end) {
5730 do_test = true;
5731 /* in double loop, break out with goto */
5732 goto out;
5733 }
5734 } while_for_each_ftrace_op(op);
5735 out:
5736 if (do_test)
5737 ftrace_graph_entry = ftrace_graph_entry_test;
5738 else
5739 ftrace_graph_entry = __ftrace_graph_entry;
5740 }
5741
5742 static struct notifier_block ftrace_suspend_notifier = {
5743 .notifier_call = ftrace_suspend_notifier_call,
5744 };
5745
5746 int register_ftrace_graph(trace_func_graph_ret_t retfunc,
5747 trace_func_graph_ent_t entryfunc)
5748 {
5749 int ret = 0;
5750
5751 mutex_lock(&ftrace_lock);
5752
5753 /* we currently allow only one tracer registered at a time */
5754 if (ftrace_graph_active) {
5755 ret = -EBUSY;
5756 goto out;
5757 }
5758
5759 register_pm_notifier(&ftrace_suspend_notifier);
5760
5761 ftrace_graph_active++;
5762 ret = start_graph_tracing();
5763 if (ret) {
5764 ftrace_graph_active--;
5765 goto out;
5766 }
5767
5768 ftrace_graph_return = retfunc;
5769
5770 /*
5771 * Update the indirect function to the entryfunc, and the
5772 * function that gets called to the entry_test first. Then
5773 * call the update fgraph entry function to determine if
5774 * the entryfunc should be called directly or not.
5775 */
5776 __ftrace_graph_entry = entryfunc;
5777 ftrace_graph_entry = ftrace_graph_entry_test;
5778 update_function_graph_func();
5779
5780 ret = ftrace_startup(&graph_ops, FTRACE_START_FUNC_RET);
5781 out:
5782 mutex_unlock(&ftrace_lock);
5783 return ret;
5784 }
5785
5786 void unregister_ftrace_graph(void)
5787 {
5788 mutex_lock(&ftrace_lock);
5789
5790 if (unlikely(!ftrace_graph_active))
5791 goto out;
5792
5793 ftrace_graph_active--;
5794 ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub;
5795 ftrace_graph_entry = ftrace_graph_entry_stub;
5796 __ftrace_graph_entry = ftrace_graph_entry_stub;
5797 ftrace_shutdown(&graph_ops, FTRACE_STOP_FUNC_RET);
5798 unregister_pm_notifier(&ftrace_suspend_notifier);
5799 unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
5800
5801 #ifdef CONFIG_DYNAMIC_FTRACE
5802 /*
5803 * Function graph does not allocate the trampoline, but
5804 * other global_ops do. We need to reset the ALLOC_TRAMP flag
5805 * if one was used.
5806 */
5807 global_ops.trampoline = save_global_trampoline;
5808 if (save_global_flags & FTRACE_OPS_FL_ALLOC_TRAMP)
5809 global_ops.flags |= FTRACE_OPS_FL_ALLOC_TRAMP;
5810 #endif
5811
5812 out:
5813 mutex_unlock(&ftrace_lock);
5814 }
5815
5816 static DEFINE_PER_CPU(struct ftrace_ret_stack *, idle_ret_stack);
5817
5818 static void
5819 graph_init_task(struct task_struct *t, struct ftrace_ret_stack *ret_stack)
5820 {
5821 atomic_set(&t->tracing_graph_pause, 0);
5822 atomic_set(&t->trace_overrun, 0);
5823 t->ftrace_timestamp = 0;
5824 /* make curr_ret_stack visible before we add the ret_stack */
5825 smp_wmb();
5826 t->ret_stack = ret_stack;
5827 }
5828
5829 /*
5830 * Allocate a return stack for the idle task. May be the first
5831 * time through, or it may be done by CPU hotplug online.
5832 */
5833 void ftrace_graph_init_idle_task(struct task_struct *t, int cpu)
5834 {
5835 t->curr_ret_stack = -1;
5836 /*
5837 * The idle task has no parent, it either has its own
5838 * stack or no stack at all.
5839 */
5840 if (t->ret_stack)
5841 WARN_ON(t->ret_stack != per_cpu(idle_ret_stack, cpu));
5842
5843 if (ftrace_graph_active) {
5844 struct ftrace_ret_stack *ret_stack;
5845
5846 ret_stack = per_cpu(idle_ret_stack, cpu);
5847 if (!ret_stack) {
5848 ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
5849 * sizeof(struct ftrace_ret_stack),
5850 GFP_KERNEL);
5851 if (!ret_stack)
5852 return;
5853 per_cpu(idle_ret_stack, cpu) = ret_stack;
5854 }
5855 graph_init_task(t, ret_stack);
5856 }
5857 }
5858
5859 /* Allocate a return stack for newly created task */
5860 void ftrace_graph_init_task(struct task_struct *t)
5861 {
5862 /* Make sure we do not use the parent ret_stack */
5863 t->ret_stack = NULL;
5864 t->curr_ret_stack = -1;
5865
5866 if (ftrace_graph_active) {
5867 struct ftrace_ret_stack *ret_stack;
5868
5869 ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
5870 * sizeof(struct ftrace_ret_stack),
5871 GFP_KERNEL);
5872 if (!ret_stack)
5873 return;
5874 graph_init_task(t, ret_stack);
5875 }
5876 }
5877
5878 void ftrace_graph_exit_task(struct task_struct *t)
5879 {
5880 struct ftrace_ret_stack *ret_stack = t->ret_stack;
5881
5882 t->ret_stack = NULL;
5883 /* NULL must become visible to IRQs before we free it: */
5884 barrier();
5885
5886 kfree(ret_stack);
5887 }
5888 #endif
This page took 0.173241 seconds and 5 git commands to generate.