ip: ip_ra_control() rcu fix
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23
24 #include <asm/local.h>
25 #include "trace.h"
26
27 /*
28 * The ring buffer header is special. We must manually up keep it.
29 */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32 int ret;
33
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45
46 return ret;
47 }
48
49 /*
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
54 *
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
58 *
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
62 *
63 * Here's some silly ASCII art.
64 *
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
74 *
75 *
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
85 *
86 *
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
96 *
97 *
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
107 *
108 *
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
112 *
113 * We will be using cmpxchg soon to make all this lockless.
114 *
115 */
116
117 /*
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
123 *
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
126 *
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
130 *
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
133 */
134
135 /*
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
138 *
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
144 */
145
146 enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
149 };
150
151 enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
160 /**
161 * tracing_on - enable all tracing buffers
162 *
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
165 */
166 void tracing_on(void)
167 {
168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171
172 /**
173 * tracing_off - turn off all tracing buffers
174 *
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
179 */
180 void tracing_off(void)
181 {
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185
186 /**
187 * tracing_off_permanent - permanently disable ring buffers
188 *
189 * This function, once called, will disable all ring buffers
190 * permanently.
191 */
192 void tracing_off_permanent(void)
193 {
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196
197 /**
198 * tracing_is_on - show state of ring buffers enabled
199 */
200 int tracing_is_on(void)
201 {
202 return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT 0
213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT 1
216 # define RB_ARCH_ALIGNMENT 8U
217 #endif
218
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221
222 enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
225 };
226
227 static inline int rb_null_event(struct ring_buffer_event *event)
228 {
229 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230 }
231
232 static void rb_event_set_padding(struct ring_buffer_event *event)
233 {
234 /* padding has a NULL time_delta */
235 event->type_len = RINGBUF_TYPE_PADDING;
236 event->time_delta = 0;
237 }
238
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
241 {
242 unsigned length;
243
244 if (event->type_len)
245 length = event->type_len * RB_ALIGNMENT;
246 else
247 length = event->array[0];
248 return length + RB_EVNT_HDR_SIZE;
249 }
250
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
254 {
255 switch (event->type_len) {
256 case RINGBUF_TYPE_PADDING:
257 if (rb_null_event(event))
258 /* undefined */
259 return -1;
260 return event->array[0] + RB_EVNT_HDR_SIZE;
261
262 case RINGBUF_TYPE_TIME_EXTEND:
263 return RB_LEN_TIME_EXTEND;
264
265 case RINGBUF_TYPE_TIME_STAMP:
266 return RB_LEN_TIME_STAMP;
267
268 case RINGBUF_TYPE_DATA:
269 return rb_event_data_length(event);
270 default:
271 BUG();
272 }
273 /* not hit */
274 return 0;
275 }
276
277 /**
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
280 */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283 unsigned length = rb_event_length(event);
284 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285 return length;
286 length -= RB_EVNT_HDR_SIZE;
287 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288 length -= sizeof(event->array[0]);
289 return length;
290 }
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
296 {
297 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298 /* If length is in len field, then array[0] has the data */
299 if (event->type_len)
300 return (void *)&event->array[0];
301 /* Otherwise length is in array[0] and array[1] has the data */
302 return (void *)&event->array[1];
303 }
304
305 /**
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
308 */
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
310 {
311 return rb_event_data(event);
312 }
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314
315 #define for_each_buffer_cpu(buffer, cpu) \
316 for_each_cpu(cpu, buffer->cpumask)
317
318 #define TS_SHIFT 27
319 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST (~TS_MASK)
321
322 /* Flag when events were overwritten */
323 #define RB_MISSED_EVENTS (1 << 31)
324 /* Missed count stored at end */
325 #define RB_MISSED_STORED (1 << 30)
326
327 struct buffer_data_page {
328 u64 time_stamp; /* page time stamp */
329 local_t commit; /* write committed index */
330 unsigned char data[]; /* data of buffer page */
331 };
332
333 /*
334 * Note, the buffer_page list must be first. The buffer pages
335 * are allocated in cache lines, which means that each buffer
336 * page will be at the beginning of a cache line, and thus
337 * the least significant bits will be zero. We use this to
338 * add flags in the list struct pointers, to make the ring buffer
339 * lockless.
340 */
341 struct buffer_page {
342 struct list_head list; /* list of buffer pages */
343 local_t write; /* index for next write */
344 unsigned read; /* index for next read */
345 local_t entries; /* entries on this page */
346 unsigned long real_end; /* real end of data */
347 struct buffer_data_page *page; /* Actual data page */
348 };
349
350 /*
351 * The buffer page counters, write and entries, must be reset
352 * atomically when crossing page boundaries. To synchronize this
353 * update, two counters are inserted into the number. One is
354 * the actual counter for the write position or count on the page.
355 *
356 * The other is a counter of updaters. Before an update happens
357 * the update partition of the counter is incremented. This will
358 * allow the updater to update the counter atomically.
359 *
360 * The counter is 20 bits, and the state data is 12.
361 */
362 #define RB_WRITE_MASK 0xfffff
363 #define RB_WRITE_INTCNT (1 << 20)
364
365 static void rb_init_page(struct buffer_data_page *bpage)
366 {
367 local_set(&bpage->commit, 0);
368 }
369
370 /**
371 * ring_buffer_page_len - the size of data on the page.
372 * @page: The page to read
373 *
374 * Returns the amount of data on the page, including buffer page header.
375 */
376 size_t ring_buffer_page_len(void *page)
377 {
378 return local_read(&((struct buffer_data_page *)page)->commit)
379 + BUF_PAGE_HDR_SIZE;
380 }
381
382 /*
383 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
384 * this issue out.
385 */
386 static void free_buffer_page(struct buffer_page *bpage)
387 {
388 free_page((unsigned long)bpage->page);
389 kfree(bpage);
390 }
391
392 /*
393 * We need to fit the time_stamp delta into 27 bits.
394 */
395 static inline int test_time_stamp(u64 delta)
396 {
397 if (delta & TS_DELTA_TEST)
398 return 1;
399 return 0;
400 }
401
402 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
403
404 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
405 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
406
407 /* Max number of timestamps that can fit on a page */
408 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
409
410 int ring_buffer_print_page_header(struct trace_seq *s)
411 {
412 struct buffer_data_page field;
413 int ret;
414
415 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
416 "offset:0;\tsize:%u;\tsigned:%u;\n",
417 (unsigned int)sizeof(field.time_stamp),
418 (unsigned int)is_signed_type(u64));
419
420 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
421 "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)offsetof(typeof(field), commit),
423 (unsigned int)sizeof(field.commit),
424 (unsigned int)is_signed_type(long));
425
426 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
427 "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 (unsigned int)offsetof(typeof(field), commit),
429 1,
430 (unsigned int)is_signed_type(long));
431
432 ret = trace_seq_printf(s, "\tfield: char data;\t"
433 "offset:%u;\tsize:%u;\tsigned:%u;\n",
434 (unsigned int)offsetof(typeof(field), data),
435 (unsigned int)BUF_PAGE_SIZE,
436 (unsigned int)is_signed_type(char));
437
438 return ret;
439 }
440
441 /*
442 * head_page == tail_page && head == tail then buffer is empty.
443 */
444 struct ring_buffer_per_cpu {
445 int cpu;
446 struct ring_buffer *buffer;
447 spinlock_t reader_lock; /* serialize readers */
448 arch_spinlock_t lock;
449 struct lock_class_key lock_key;
450 struct list_head *pages;
451 struct buffer_page *head_page; /* read from head */
452 struct buffer_page *tail_page; /* write to tail */
453 struct buffer_page *commit_page; /* committed pages */
454 struct buffer_page *reader_page;
455 unsigned long lost_events;
456 unsigned long last_overrun;
457 local_t commit_overrun;
458 local_t overrun;
459 local_t entries;
460 local_t committing;
461 local_t commits;
462 unsigned long read;
463 u64 write_stamp;
464 u64 read_stamp;
465 atomic_t record_disabled;
466 };
467
468 struct ring_buffer {
469 unsigned pages;
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 cpumask_var_t cpumask;
474
475 struct lock_class_key *reader_lock_key;
476
477 struct mutex mutex;
478
479 struct ring_buffer_per_cpu **buffers;
480
481 #ifdef CONFIG_HOTPLUG_CPU
482 struct notifier_block cpu_notify;
483 #endif
484 u64 (*clock)(void);
485 };
486
487 struct ring_buffer_iter {
488 struct ring_buffer_per_cpu *cpu_buffer;
489 unsigned long head;
490 struct buffer_page *head_page;
491 struct buffer_page *cache_reader_page;
492 unsigned long cache_read;
493 u64 read_stamp;
494 };
495
496 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
497 #define RB_WARN_ON(b, cond) \
498 ({ \
499 int _____ret = unlikely(cond); \
500 if (_____ret) { \
501 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
502 struct ring_buffer_per_cpu *__b = \
503 (void *)b; \
504 atomic_inc(&__b->buffer->record_disabled); \
505 } else \
506 atomic_inc(&b->record_disabled); \
507 WARN_ON(1); \
508 } \
509 _____ret; \
510 })
511
512 /* Up this if you want to test the TIME_EXTENTS and normalization */
513 #define DEBUG_SHIFT 0
514
515 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
516 {
517 /* shift to debug/test normalization and TIME_EXTENTS */
518 return buffer->clock() << DEBUG_SHIFT;
519 }
520
521 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
522 {
523 u64 time;
524
525 preempt_disable_notrace();
526 time = rb_time_stamp(buffer);
527 preempt_enable_no_resched_notrace();
528
529 return time;
530 }
531 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
532
533 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
534 int cpu, u64 *ts)
535 {
536 /* Just stupid testing the normalize function and deltas */
537 *ts >>= DEBUG_SHIFT;
538 }
539 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
540
541 /*
542 * Making the ring buffer lockless makes things tricky.
543 * Although writes only happen on the CPU that they are on,
544 * and they only need to worry about interrupts. Reads can
545 * happen on any CPU.
546 *
547 * The reader page is always off the ring buffer, but when the
548 * reader finishes with a page, it needs to swap its page with
549 * a new one from the buffer. The reader needs to take from
550 * the head (writes go to the tail). But if a writer is in overwrite
551 * mode and wraps, it must push the head page forward.
552 *
553 * Here lies the problem.
554 *
555 * The reader must be careful to replace only the head page, and
556 * not another one. As described at the top of the file in the
557 * ASCII art, the reader sets its old page to point to the next
558 * page after head. It then sets the page after head to point to
559 * the old reader page. But if the writer moves the head page
560 * during this operation, the reader could end up with the tail.
561 *
562 * We use cmpxchg to help prevent this race. We also do something
563 * special with the page before head. We set the LSB to 1.
564 *
565 * When the writer must push the page forward, it will clear the
566 * bit that points to the head page, move the head, and then set
567 * the bit that points to the new head page.
568 *
569 * We also don't want an interrupt coming in and moving the head
570 * page on another writer. Thus we use the second LSB to catch
571 * that too. Thus:
572 *
573 * head->list->prev->next bit 1 bit 0
574 * ------- -------
575 * Normal page 0 0
576 * Points to head page 0 1
577 * New head page 1 0
578 *
579 * Note we can not trust the prev pointer of the head page, because:
580 *
581 * +----+ +-----+ +-----+
582 * | |------>| T |---X--->| N |
583 * | |<------| | | |
584 * +----+ +-----+ +-----+
585 * ^ ^ |
586 * | +-----+ | |
587 * +----------| R |----------+ |
588 * | |<-----------+
589 * +-----+
590 *
591 * Key: ---X--> HEAD flag set in pointer
592 * T Tail page
593 * R Reader page
594 * N Next page
595 *
596 * (see __rb_reserve_next() to see where this happens)
597 *
598 * What the above shows is that the reader just swapped out
599 * the reader page with a page in the buffer, but before it
600 * could make the new header point back to the new page added
601 * it was preempted by a writer. The writer moved forward onto
602 * the new page added by the reader and is about to move forward
603 * again.
604 *
605 * You can see, it is legitimate for the previous pointer of
606 * the head (or any page) not to point back to itself. But only
607 * temporarially.
608 */
609
610 #define RB_PAGE_NORMAL 0UL
611 #define RB_PAGE_HEAD 1UL
612 #define RB_PAGE_UPDATE 2UL
613
614
615 #define RB_FLAG_MASK 3UL
616
617 /* PAGE_MOVED is not part of the mask */
618 #define RB_PAGE_MOVED 4UL
619
620 /*
621 * rb_list_head - remove any bit
622 */
623 static struct list_head *rb_list_head(struct list_head *list)
624 {
625 unsigned long val = (unsigned long)list;
626
627 return (struct list_head *)(val & ~RB_FLAG_MASK);
628 }
629
630 /*
631 * rb_is_head_page - test if the given page is the head page
632 *
633 * Because the reader may move the head_page pointer, we can
634 * not trust what the head page is (it may be pointing to
635 * the reader page). But if the next page is a header page,
636 * its flags will be non zero.
637 */
638 static int inline
639 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
640 struct buffer_page *page, struct list_head *list)
641 {
642 unsigned long val;
643
644 val = (unsigned long)list->next;
645
646 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
647 return RB_PAGE_MOVED;
648
649 return val & RB_FLAG_MASK;
650 }
651
652 /*
653 * rb_is_reader_page
654 *
655 * The unique thing about the reader page, is that, if the
656 * writer is ever on it, the previous pointer never points
657 * back to the reader page.
658 */
659 static int rb_is_reader_page(struct buffer_page *page)
660 {
661 struct list_head *list = page->list.prev;
662
663 return rb_list_head(list->next) != &page->list;
664 }
665
666 /*
667 * rb_set_list_to_head - set a list_head to be pointing to head.
668 */
669 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
670 struct list_head *list)
671 {
672 unsigned long *ptr;
673
674 ptr = (unsigned long *)&list->next;
675 *ptr |= RB_PAGE_HEAD;
676 *ptr &= ~RB_PAGE_UPDATE;
677 }
678
679 /*
680 * rb_head_page_activate - sets up head page
681 */
682 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
683 {
684 struct buffer_page *head;
685
686 head = cpu_buffer->head_page;
687 if (!head)
688 return;
689
690 /*
691 * Set the previous list pointer to have the HEAD flag.
692 */
693 rb_set_list_to_head(cpu_buffer, head->list.prev);
694 }
695
696 static void rb_list_head_clear(struct list_head *list)
697 {
698 unsigned long *ptr = (unsigned long *)&list->next;
699
700 *ptr &= ~RB_FLAG_MASK;
701 }
702
703 /*
704 * rb_head_page_dactivate - clears head page ptr (for free list)
705 */
706 static void
707 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
708 {
709 struct list_head *hd;
710
711 /* Go through the whole list and clear any pointers found. */
712 rb_list_head_clear(cpu_buffer->pages);
713
714 list_for_each(hd, cpu_buffer->pages)
715 rb_list_head_clear(hd);
716 }
717
718 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
719 struct buffer_page *head,
720 struct buffer_page *prev,
721 int old_flag, int new_flag)
722 {
723 struct list_head *list;
724 unsigned long val = (unsigned long)&head->list;
725 unsigned long ret;
726
727 list = &prev->list;
728
729 val &= ~RB_FLAG_MASK;
730
731 ret = cmpxchg((unsigned long *)&list->next,
732 val | old_flag, val | new_flag);
733
734 /* check if the reader took the page */
735 if ((ret & ~RB_FLAG_MASK) != val)
736 return RB_PAGE_MOVED;
737
738 return ret & RB_FLAG_MASK;
739 }
740
741 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
742 struct buffer_page *head,
743 struct buffer_page *prev,
744 int old_flag)
745 {
746 return rb_head_page_set(cpu_buffer, head, prev,
747 old_flag, RB_PAGE_UPDATE);
748 }
749
750 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
751 struct buffer_page *head,
752 struct buffer_page *prev,
753 int old_flag)
754 {
755 return rb_head_page_set(cpu_buffer, head, prev,
756 old_flag, RB_PAGE_HEAD);
757 }
758
759 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
760 struct buffer_page *head,
761 struct buffer_page *prev,
762 int old_flag)
763 {
764 return rb_head_page_set(cpu_buffer, head, prev,
765 old_flag, RB_PAGE_NORMAL);
766 }
767
768 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
769 struct buffer_page **bpage)
770 {
771 struct list_head *p = rb_list_head((*bpage)->list.next);
772
773 *bpage = list_entry(p, struct buffer_page, list);
774 }
775
776 static struct buffer_page *
777 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
778 {
779 struct buffer_page *head;
780 struct buffer_page *page;
781 struct list_head *list;
782 int i;
783
784 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
785 return NULL;
786
787 /* sanity check */
788 list = cpu_buffer->pages;
789 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
790 return NULL;
791
792 page = head = cpu_buffer->head_page;
793 /*
794 * It is possible that the writer moves the header behind
795 * where we started, and we miss in one loop.
796 * A second loop should grab the header, but we'll do
797 * three loops just because I'm paranoid.
798 */
799 for (i = 0; i < 3; i++) {
800 do {
801 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
802 cpu_buffer->head_page = page;
803 return page;
804 }
805 rb_inc_page(cpu_buffer, &page);
806 } while (page != head);
807 }
808
809 RB_WARN_ON(cpu_buffer, 1);
810
811 return NULL;
812 }
813
814 static int rb_head_page_replace(struct buffer_page *old,
815 struct buffer_page *new)
816 {
817 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
818 unsigned long val;
819 unsigned long ret;
820
821 val = *ptr & ~RB_FLAG_MASK;
822 val |= RB_PAGE_HEAD;
823
824 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
825
826 return ret == val;
827 }
828
829 /*
830 * rb_tail_page_update - move the tail page forward
831 *
832 * Returns 1 if moved tail page, 0 if someone else did.
833 */
834 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
835 struct buffer_page *tail_page,
836 struct buffer_page *next_page)
837 {
838 struct buffer_page *old_tail;
839 unsigned long old_entries;
840 unsigned long old_write;
841 int ret = 0;
842
843 /*
844 * The tail page now needs to be moved forward.
845 *
846 * We need to reset the tail page, but without messing
847 * with possible erasing of data brought in by interrupts
848 * that have moved the tail page and are currently on it.
849 *
850 * We add a counter to the write field to denote this.
851 */
852 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
853 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
854
855 /*
856 * Just make sure we have seen our old_write and synchronize
857 * with any interrupts that come in.
858 */
859 barrier();
860
861 /*
862 * If the tail page is still the same as what we think
863 * it is, then it is up to us to update the tail
864 * pointer.
865 */
866 if (tail_page == cpu_buffer->tail_page) {
867 /* Zero the write counter */
868 unsigned long val = old_write & ~RB_WRITE_MASK;
869 unsigned long eval = old_entries & ~RB_WRITE_MASK;
870
871 /*
872 * This will only succeed if an interrupt did
873 * not come in and change it. In which case, we
874 * do not want to modify it.
875 *
876 * We add (void) to let the compiler know that we do not care
877 * about the return value of these functions. We use the
878 * cmpxchg to only update if an interrupt did not already
879 * do it for us. If the cmpxchg fails, we don't care.
880 */
881 (void)local_cmpxchg(&next_page->write, old_write, val);
882 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
883
884 /*
885 * No need to worry about races with clearing out the commit.
886 * it only can increment when a commit takes place. But that
887 * only happens in the outer most nested commit.
888 */
889 local_set(&next_page->page->commit, 0);
890
891 old_tail = cmpxchg(&cpu_buffer->tail_page,
892 tail_page, next_page);
893
894 if (old_tail == tail_page)
895 ret = 1;
896 }
897
898 return ret;
899 }
900
901 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *bpage)
903 {
904 unsigned long val = (unsigned long)bpage;
905
906 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
907 return 1;
908
909 return 0;
910 }
911
912 /**
913 * rb_check_list - make sure a pointer to a list has the last bits zero
914 */
915 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
916 struct list_head *list)
917 {
918 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
919 return 1;
920 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
921 return 1;
922 return 0;
923 }
924
925 /**
926 * check_pages - integrity check of buffer pages
927 * @cpu_buffer: CPU buffer with pages to test
928 *
929 * As a safety measure we check to make sure the data pages have not
930 * been corrupted.
931 */
932 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
933 {
934 struct list_head *head = cpu_buffer->pages;
935 struct buffer_page *bpage, *tmp;
936
937 rb_head_page_deactivate(cpu_buffer);
938
939 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
940 return -1;
941 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
942 return -1;
943
944 if (rb_check_list(cpu_buffer, head))
945 return -1;
946
947 list_for_each_entry_safe(bpage, tmp, head, list) {
948 if (RB_WARN_ON(cpu_buffer,
949 bpage->list.next->prev != &bpage->list))
950 return -1;
951 if (RB_WARN_ON(cpu_buffer,
952 bpage->list.prev->next != &bpage->list))
953 return -1;
954 if (rb_check_list(cpu_buffer, &bpage->list))
955 return -1;
956 }
957
958 rb_head_page_activate(cpu_buffer);
959
960 return 0;
961 }
962
963 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
964 unsigned nr_pages)
965 {
966 struct buffer_page *bpage, *tmp;
967 unsigned long addr;
968 LIST_HEAD(pages);
969 unsigned i;
970
971 WARN_ON(!nr_pages);
972
973 for (i = 0; i < nr_pages; i++) {
974 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
975 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
976 if (!bpage)
977 goto free_pages;
978
979 rb_check_bpage(cpu_buffer, bpage);
980
981 list_add(&bpage->list, &pages);
982
983 addr = __get_free_page(GFP_KERNEL);
984 if (!addr)
985 goto free_pages;
986 bpage->page = (void *)addr;
987 rb_init_page(bpage->page);
988 }
989
990 /*
991 * The ring buffer page list is a circular list that does not
992 * start and end with a list head. All page list items point to
993 * other pages.
994 */
995 cpu_buffer->pages = pages.next;
996 list_del(&pages);
997
998 rb_check_pages(cpu_buffer);
999
1000 return 0;
1001
1002 free_pages:
1003 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1004 list_del_init(&bpage->list);
1005 free_buffer_page(bpage);
1006 }
1007 return -ENOMEM;
1008 }
1009
1010 static struct ring_buffer_per_cpu *
1011 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1012 {
1013 struct ring_buffer_per_cpu *cpu_buffer;
1014 struct buffer_page *bpage;
1015 unsigned long addr;
1016 int ret;
1017
1018 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1019 GFP_KERNEL, cpu_to_node(cpu));
1020 if (!cpu_buffer)
1021 return NULL;
1022
1023 cpu_buffer->cpu = cpu;
1024 cpu_buffer->buffer = buffer;
1025 spin_lock_init(&cpu_buffer->reader_lock);
1026 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1027 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1028
1029 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1030 GFP_KERNEL, cpu_to_node(cpu));
1031 if (!bpage)
1032 goto fail_free_buffer;
1033
1034 rb_check_bpage(cpu_buffer, bpage);
1035
1036 cpu_buffer->reader_page = bpage;
1037 addr = __get_free_page(GFP_KERNEL);
1038 if (!addr)
1039 goto fail_free_reader;
1040 bpage->page = (void *)addr;
1041 rb_init_page(bpage->page);
1042
1043 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1044
1045 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1046 if (ret < 0)
1047 goto fail_free_reader;
1048
1049 cpu_buffer->head_page
1050 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1051 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1052
1053 rb_head_page_activate(cpu_buffer);
1054
1055 return cpu_buffer;
1056
1057 fail_free_reader:
1058 free_buffer_page(cpu_buffer->reader_page);
1059
1060 fail_free_buffer:
1061 kfree(cpu_buffer);
1062 return NULL;
1063 }
1064
1065 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1066 {
1067 struct list_head *head = cpu_buffer->pages;
1068 struct buffer_page *bpage, *tmp;
1069
1070 free_buffer_page(cpu_buffer->reader_page);
1071
1072 rb_head_page_deactivate(cpu_buffer);
1073
1074 if (head) {
1075 list_for_each_entry_safe(bpage, tmp, head, list) {
1076 list_del_init(&bpage->list);
1077 free_buffer_page(bpage);
1078 }
1079 bpage = list_entry(head, struct buffer_page, list);
1080 free_buffer_page(bpage);
1081 }
1082
1083 kfree(cpu_buffer);
1084 }
1085
1086 #ifdef CONFIG_HOTPLUG_CPU
1087 static int rb_cpu_notify(struct notifier_block *self,
1088 unsigned long action, void *hcpu);
1089 #endif
1090
1091 /**
1092 * ring_buffer_alloc - allocate a new ring_buffer
1093 * @size: the size in bytes per cpu that is needed.
1094 * @flags: attributes to set for the ring buffer.
1095 *
1096 * Currently the only flag that is available is the RB_FL_OVERWRITE
1097 * flag. This flag means that the buffer will overwrite old data
1098 * when the buffer wraps. If this flag is not set, the buffer will
1099 * drop data when the tail hits the head.
1100 */
1101 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1102 struct lock_class_key *key)
1103 {
1104 struct ring_buffer *buffer;
1105 int bsize;
1106 int cpu;
1107
1108 /* keep it in its own cache line */
1109 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1110 GFP_KERNEL);
1111 if (!buffer)
1112 return NULL;
1113
1114 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1115 goto fail_free_buffer;
1116
1117 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1118 buffer->flags = flags;
1119 buffer->clock = trace_clock_local;
1120 buffer->reader_lock_key = key;
1121
1122 /* need at least two pages */
1123 if (buffer->pages < 2)
1124 buffer->pages = 2;
1125
1126 /*
1127 * In case of non-hotplug cpu, if the ring-buffer is allocated
1128 * in early initcall, it will not be notified of secondary cpus.
1129 * In that off case, we need to allocate for all possible cpus.
1130 */
1131 #ifdef CONFIG_HOTPLUG_CPU
1132 get_online_cpus();
1133 cpumask_copy(buffer->cpumask, cpu_online_mask);
1134 #else
1135 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1136 #endif
1137 buffer->cpus = nr_cpu_ids;
1138
1139 bsize = sizeof(void *) * nr_cpu_ids;
1140 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1141 GFP_KERNEL);
1142 if (!buffer->buffers)
1143 goto fail_free_cpumask;
1144
1145 for_each_buffer_cpu(buffer, cpu) {
1146 buffer->buffers[cpu] =
1147 rb_allocate_cpu_buffer(buffer, cpu);
1148 if (!buffer->buffers[cpu])
1149 goto fail_free_buffers;
1150 }
1151
1152 #ifdef CONFIG_HOTPLUG_CPU
1153 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1154 buffer->cpu_notify.priority = 0;
1155 register_cpu_notifier(&buffer->cpu_notify);
1156 #endif
1157
1158 put_online_cpus();
1159 mutex_init(&buffer->mutex);
1160
1161 return buffer;
1162
1163 fail_free_buffers:
1164 for_each_buffer_cpu(buffer, cpu) {
1165 if (buffer->buffers[cpu])
1166 rb_free_cpu_buffer(buffer->buffers[cpu]);
1167 }
1168 kfree(buffer->buffers);
1169
1170 fail_free_cpumask:
1171 free_cpumask_var(buffer->cpumask);
1172 put_online_cpus();
1173
1174 fail_free_buffer:
1175 kfree(buffer);
1176 return NULL;
1177 }
1178 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1179
1180 /**
1181 * ring_buffer_free - free a ring buffer.
1182 * @buffer: the buffer to free.
1183 */
1184 void
1185 ring_buffer_free(struct ring_buffer *buffer)
1186 {
1187 int cpu;
1188
1189 get_online_cpus();
1190
1191 #ifdef CONFIG_HOTPLUG_CPU
1192 unregister_cpu_notifier(&buffer->cpu_notify);
1193 #endif
1194
1195 for_each_buffer_cpu(buffer, cpu)
1196 rb_free_cpu_buffer(buffer->buffers[cpu]);
1197
1198 put_online_cpus();
1199
1200 kfree(buffer->buffers);
1201 free_cpumask_var(buffer->cpumask);
1202
1203 kfree(buffer);
1204 }
1205 EXPORT_SYMBOL_GPL(ring_buffer_free);
1206
1207 void ring_buffer_set_clock(struct ring_buffer *buffer,
1208 u64 (*clock)(void))
1209 {
1210 buffer->clock = clock;
1211 }
1212
1213 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1214
1215 static void
1216 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1217 {
1218 struct buffer_page *bpage;
1219 struct list_head *p;
1220 unsigned i;
1221
1222 spin_lock_irq(&cpu_buffer->reader_lock);
1223 rb_head_page_deactivate(cpu_buffer);
1224
1225 for (i = 0; i < nr_pages; i++) {
1226 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1227 goto out;
1228 p = cpu_buffer->pages->next;
1229 bpage = list_entry(p, struct buffer_page, list);
1230 list_del_init(&bpage->list);
1231 free_buffer_page(bpage);
1232 }
1233 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1234 goto out;
1235
1236 rb_reset_cpu(cpu_buffer);
1237 rb_check_pages(cpu_buffer);
1238
1239 out:
1240 spin_unlock_irq(&cpu_buffer->reader_lock);
1241 }
1242
1243 static void
1244 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1245 struct list_head *pages, unsigned nr_pages)
1246 {
1247 struct buffer_page *bpage;
1248 struct list_head *p;
1249 unsigned i;
1250
1251 spin_lock_irq(&cpu_buffer->reader_lock);
1252 rb_head_page_deactivate(cpu_buffer);
1253
1254 for (i = 0; i < nr_pages; i++) {
1255 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1256 goto out;
1257 p = pages->next;
1258 bpage = list_entry(p, struct buffer_page, list);
1259 list_del_init(&bpage->list);
1260 list_add_tail(&bpage->list, cpu_buffer->pages);
1261 }
1262 rb_reset_cpu(cpu_buffer);
1263 rb_check_pages(cpu_buffer);
1264
1265 out:
1266 spin_unlock_irq(&cpu_buffer->reader_lock);
1267 }
1268
1269 /**
1270 * ring_buffer_resize - resize the ring buffer
1271 * @buffer: the buffer to resize.
1272 * @size: the new size.
1273 *
1274 * Minimum size is 2 * BUF_PAGE_SIZE.
1275 *
1276 * Returns -1 on failure.
1277 */
1278 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1279 {
1280 struct ring_buffer_per_cpu *cpu_buffer;
1281 unsigned nr_pages, rm_pages, new_pages;
1282 struct buffer_page *bpage, *tmp;
1283 unsigned long buffer_size;
1284 unsigned long addr;
1285 LIST_HEAD(pages);
1286 int i, cpu;
1287
1288 /*
1289 * Always succeed at resizing a non-existent buffer:
1290 */
1291 if (!buffer)
1292 return size;
1293
1294 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1295 size *= BUF_PAGE_SIZE;
1296 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1297
1298 /* we need a minimum of two pages */
1299 if (size < BUF_PAGE_SIZE * 2)
1300 size = BUF_PAGE_SIZE * 2;
1301
1302 if (size == buffer_size)
1303 return size;
1304
1305 atomic_inc(&buffer->record_disabled);
1306
1307 /* Make sure all writers are done with this buffer. */
1308 synchronize_sched();
1309
1310 mutex_lock(&buffer->mutex);
1311 get_online_cpus();
1312
1313 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1314
1315 if (size < buffer_size) {
1316
1317 /* easy case, just free pages */
1318 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1319 goto out_fail;
1320
1321 rm_pages = buffer->pages - nr_pages;
1322
1323 for_each_buffer_cpu(buffer, cpu) {
1324 cpu_buffer = buffer->buffers[cpu];
1325 rb_remove_pages(cpu_buffer, rm_pages);
1326 }
1327 goto out;
1328 }
1329
1330 /*
1331 * This is a bit more difficult. We only want to add pages
1332 * when we can allocate enough for all CPUs. We do this
1333 * by allocating all the pages and storing them on a local
1334 * link list. If we succeed in our allocation, then we
1335 * add these pages to the cpu_buffers. Otherwise we just free
1336 * them all and return -ENOMEM;
1337 */
1338 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1339 goto out_fail;
1340
1341 new_pages = nr_pages - buffer->pages;
1342
1343 for_each_buffer_cpu(buffer, cpu) {
1344 for (i = 0; i < new_pages; i++) {
1345 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1346 cache_line_size()),
1347 GFP_KERNEL, cpu_to_node(cpu));
1348 if (!bpage)
1349 goto free_pages;
1350 list_add(&bpage->list, &pages);
1351 addr = __get_free_page(GFP_KERNEL);
1352 if (!addr)
1353 goto free_pages;
1354 bpage->page = (void *)addr;
1355 rb_init_page(bpage->page);
1356 }
1357 }
1358
1359 for_each_buffer_cpu(buffer, cpu) {
1360 cpu_buffer = buffer->buffers[cpu];
1361 rb_insert_pages(cpu_buffer, &pages, new_pages);
1362 }
1363
1364 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1365 goto out_fail;
1366
1367 out:
1368 buffer->pages = nr_pages;
1369 put_online_cpus();
1370 mutex_unlock(&buffer->mutex);
1371
1372 atomic_dec(&buffer->record_disabled);
1373
1374 return size;
1375
1376 free_pages:
1377 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1378 list_del_init(&bpage->list);
1379 free_buffer_page(bpage);
1380 }
1381 put_online_cpus();
1382 mutex_unlock(&buffer->mutex);
1383 atomic_dec(&buffer->record_disabled);
1384 return -ENOMEM;
1385
1386 /*
1387 * Something went totally wrong, and we are too paranoid
1388 * to even clean up the mess.
1389 */
1390 out_fail:
1391 put_online_cpus();
1392 mutex_unlock(&buffer->mutex);
1393 atomic_dec(&buffer->record_disabled);
1394 return -1;
1395 }
1396 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1397
1398 static inline void *
1399 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1400 {
1401 return bpage->data + index;
1402 }
1403
1404 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1405 {
1406 return bpage->page->data + index;
1407 }
1408
1409 static inline struct ring_buffer_event *
1410 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1411 {
1412 return __rb_page_index(cpu_buffer->reader_page,
1413 cpu_buffer->reader_page->read);
1414 }
1415
1416 static inline struct ring_buffer_event *
1417 rb_iter_head_event(struct ring_buffer_iter *iter)
1418 {
1419 return __rb_page_index(iter->head_page, iter->head);
1420 }
1421
1422 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1423 {
1424 return local_read(&bpage->write) & RB_WRITE_MASK;
1425 }
1426
1427 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1428 {
1429 return local_read(&bpage->page->commit);
1430 }
1431
1432 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1433 {
1434 return local_read(&bpage->entries) & RB_WRITE_MASK;
1435 }
1436
1437 /* Size is determined by what has been commited */
1438 static inline unsigned rb_page_size(struct buffer_page *bpage)
1439 {
1440 return rb_page_commit(bpage);
1441 }
1442
1443 static inline unsigned
1444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1445 {
1446 return rb_page_commit(cpu_buffer->commit_page);
1447 }
1448
1449 static inline unsigned
1450 rb_event_index(struct ring_buffer_event *event)
1451 {
1452 unsigned long addr = (unsigned long)event;
1453
1454 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1455 }
1456
1457 static inline int
1458 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1459 struct ring_buffer_event *event)
1460 {
1461 unsigned long addr = (unsigned long)event;
1462 unsigned long index;
1463
1464 index = rb_event_index(event);
1465 addr &= PAGE_MASK;
1466
1467 return cpu_buffer->commit_page->page == (void *)addr &&
1468 rb_commit_index(cpu_buffer) == index;
1469 }
1470
1471 static void
1472 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1473 {
1474 unsigned long max_count;
1475
1476 /*
1477 * We only race with interrupts and NMIs on this CPU.
1478 * If we own the commit event, then we can commit
1479 * all others that interrupted us, since the interruptions
1480 * are in stack format (they finish before they come
1481 * back to us). This allows us to do a simple loop to
1482 * assign the commit to the tail.
1483 */
1484 again:
1485 max_count = cpu_buffer->buffer->pages * 100;
1486
1487 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1488 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1489 return;
1490 if (RB_WARN_ON(cpu_buffer,
1491 rb_is_reader_page(cpu_buffer->tail_page)))
1492 return;
1493 local_set(&cpu_buffer->commit_page->page->commit,
1494 rb_page_write(cpu_buffer->commit_page));
1495 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1496 cpu_buffer->write_stamp =
1497 cpu_buffer->commit_page->page->time_stamp;
1498 /* add barrier to keep gcc from optimizing too much */
1499 barrier();
1500 }
1501 while (rb_commit_index(cpu_buffer) !=
1502 rb_page_write(cpu_buffer->commit_page)) {
1503
1504 local_set(&cpu_buffer->commit_page->page->commit,
1505 rb_page_write(cpu_buffer->commit_page));
1506 RB_WARN_ON(cpu_buffer,
1507 local_read(&cpu_buffer->commit_page->page->commit) &
1508 ~RB_WRITE_MASK);
1509 barrier();
1510 }
1511
1512 /* again, keep gcc from optimizing */
1513 barrier();
1514
1515 /*
1516 * If an interrupt came in just after the first while loop
1517 * and pushed the tail page forward, we will be left with
1518 * a dangling commit that will never go forward.
1519 */
1520 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1521 goto again;
1522 }
1523
1524 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1525 {
1526 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1527 cpu_buffer->reader_page->read = 0;
1528 }
1529
1530 static void rb_inc_iter(struct ring_buffer_iter *iter)
1531 {
1532 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1533
1534 /*
1535 * The iterator could be on the reader page (it starts there).
1536 * But the head could have moved, since the reader was
1537 * found. Check for this case and assign the iterator
1538 * to the head page instead of next.
1539 */
1540 if (iter->head_page == cpu_buffer->reader_page)
1541 iter->head_page = rb_set_head_page(cpu_buffer);
1542 else
1543 rb_inc_page(cpu_buffer, &iter->head_page);
1544
1545 iter->read_stamp = iter->head_page->page->time_stamp;
1546 iter->head = 0;
1547 }
1548
1549 /**
1550 * ring_buffer_update_event - update event type and data
1551 * @event: the even to update
1552 * @type: the type of event
1553 * @length: the size of the event field in the ring buffer
1554 *
1555 * Update the type and data fields of the event. The length
1556 * is the actual size that is written to the ring buffer,
1557 * and with this, we can determine what to place into the
1558 * data field.
1559 */
1560 static void
1561 rb_update_event(struct ring_buffer_event *event,
1562 unsigned type, unsigned length)
1563 {
1564 event->type_len = type;
1565
1566 switch (type) {
1567
1568 case RINGBUF_TYPE_PADDING:
1569 case RINGBUF_TYPE_TIME_EXTEND:
1570 case RINGBUF_TYPE_TIME_STAMP:
1571 break;
1572
1573 case 0:
1574 length -= RB_EVNT_HDR_SIZE;
1575 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1576 event->array[0] = length;
1577 else
1578 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1579 break;
1580 default:
1581 BUG();
1582 }
1583 }
1584
1585 /*
1586 * rb_handle_head_page - writer hit the head page
1587 *
1588 * Returns: +1 to retry page
1589 * 0 to continue
1590 * -1 on error
1591 */
1592 static int
1593 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1594 struct buffer_page *tail_page,
1595 struct buffer_page *next_page)
1596 {
1597 struct buffer_page *new_head;
1598 int entries;
1599 int type;
1600 int ret;
1601
1602 entries = rb_page_entries(next_page);
1603
1604 /*
1605 * The hard part is here. We need to move the head
1606 * forward, and protect against both readers on
1607 * other CPUs and writers coming in via interrupts.
1608 */
1609 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1610 RB_PAGE_HEAD);
1611
1612 /*
1613 * type can be one of four:
1614 * NORMAL - an interrupt already moved it for us
1615 * HEAD - we are the first to get here.
1616 * UPDATE - we are the interrupt interrupting
1617 * a current move.
1618 * MOVED - a reader on another CPU moved the next
1619 * pointer to its reader page. Give up
1620 * and try again.
1621 */
1622
1623 switch (type) {
1624 case RB_PAGE_HEAD:
1625 /*
1626 * We changed the head to UPDATE, thus
1627 * it is our responsibility to update
1628 * the counters.
1629 */
1630 local_add(entries, &cpu_buffer->overrun);
1631
1632 /*
1633 * The entries will be zeroed out when we move the
1634 * tail page.
1635 */
1636
1637 /* still more to do */
1638 break;
1639
1640 case RB_PAGE_UPDATE:
1641 /*
1642 * This is an interrupt that interrupt the
1643 * previous update. Still more to do.
1644 */
1645 break;
1646 case RB_PAGE_NORMAL:
1647 /*
1648 * An interrupt came in before the update
1649 * and processed this for us.
1650 * Nothing left to do.
1651 */
1652 return 1;
1653 case RB_PAGE_MOVED:
1654 /*
1655 * The reader is on another CPU and just did
1656 * a swap with our next_page.
1657 * Try again.
1658 */
1659 return 1;
1660 default:
1661 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1662 return -1;
1663 }
1664
1665 /*
1666 * Now that we are here, the old head pointer is
1667 * set to UPDATE. This will keep the reader from
1668 * swapping the head page with the reader page.
1669 * The reader (on another CPU) will spin till
1670 * we are finished.
1671 *
1672 * We just need to protect against interrupts
1673 * doing the job. We will set the next pointer
1674 * to HEAD. After that, we set the old pointer
1675 * to NORMAL, but only if it was HEAD before.
1676 * otherwise we are an interrupt, and only
1677 * want the outer most commit to reset it.
1678 */
1679 new_head = next_page;
1680 rb_inc_page(cpu_buffer, &new_head);
1681
1682 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1683 RB_PAGE_NORMAL);
1684
1685 /*
1686 * Valid returns are:
1687 * HEAD - an interrupt came in and already set it.
1688 * NORMAL - One of two things:
1689 * 1) We really set it.
1690 * 2) A bunch of interrupts came in and moved
1691 * the page forward again.
1692 */
1693 switch (ret) {
1694 case RB_PAGE_HEAD:
1695 case RB_PAGE_NORMAL:
1696 /* OK */
1697 break;
1698 default:
1699 RB_WARN_ON(cpu_buffer, 1);
1700 return -1;
1701 }
1702
1703 /*
1704 * It is possible that an interrupt came in,
1705 * set the head up, then more interrupts came in
1706 * and moved it again. When we get back here,
1707 * the page would have been set to NORMAL but we
1708 * just set it back to HEAD.
1709 *
1710 * How do you detect this? Well, if that happened
1711 * the tail page would have moved.
1712 */
1713 if (ret == RB_PAGE_NORMAL) {
1714 /*
1715 * If the tail had moved passed next, then we need
1716 * to reset the pointer.
1717 */
1718 if (cpu_buffer->tail_page != tail_page &&
1719 cpu_buffer->tail_page != next_page)
1720 rb_head_page_set_normal(cpu_buffer, new_head,
1721 next_page,
1722 RB_PAGE_HEAD);
1723 }
1724
1725 /*
1726 * If this was the outer most commit (the one that
1727 * changed the original pointer from HEAD to UPDATE),
1728 * then it is up to us to reset it to NORMAL.
1729 */
1730 if (type == RB_PAGE_HEAD) {
1731 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1732 tail_page,
1733 RB_PAGE_UPDATE);
1734 if (RB_WARN_ON(cpu_buffer,
1735 ret != RB_PAGE_UPDATE))
1736 return -1;
1737 }
1738
1739 return 0;
1740 }
1741
1742 static unsigned rb_calculate_event_length(unsigned length)
1743 {
1744 struct ring_buffer_event event; /* Used only for sizeof array */
1745
1746 /* zero length can cause confusions */
1747 if (!length)
1748 length = 1;
1749
1750 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1751 length += sizeof(event.array[0]);
1752
1753 length += RB_EVNT_HDR_SIZE;
1754 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1755
1756 return length;
1757 }
1758
1759 static inline void
1760 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1761 struct buffer_page *tail_page,
1762 unsigned long tail, unsigned long length)
1763 {
1764 struct ring_buffer_event *event;
1765
1766 /*
1767 * Only the event that crossed the page boundary
1768 * must fill the old tail_page with padding.
1769 */
1770 if (tail >= BUF_PAGE_SIZE) {
1771 /*
1772 * If the page was filled, then we still need
1773 * to update the real_end. Reset it to zero
1774 * and the reader will ignore it.
1775 */
1776 if (tail == BUF_PAGE_SIZE)
1777 tail_page->real_end = 0;
1778
1779 local_sub(length, &tail_page->write);
1780 return;
1781 }
1782
1783 event = __rb_page_index(tail_page, tail);
1784 kmemcheck_annotate_bitfield(event, bitfield);
1785
1786 /*
1787 * Save the original length to the meta data.
1788 * This will be used by the reader to add lost event
1789 * counter.
1790 */
1791 tail_page->real_end = tail;
1792
1793 /*
1794 * If this event is bigger than the minimum size, then
1795 * we need to be careful that we don't subtract the
1796 * write counter enough to allow another writer to slip
1797 * in on this page.
1798 * We put in a discarded commit instead, to make sure
1799 * that this space is not used again.
1800 *
1801 * If we are less than the minimum size, we don't need to
1802 * worry about it.
1803 */
1804 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1805 /* No room for any events */
1806
1807 /* Mark the rest of the page with padding */
1808 rb_event_set_padding(event);
1809
1810 /* Set the write back to the previous setting */
1811 local_sub(length, &tail_page->write);
1812 return;
1813 }
1814
1815 /* Put in a discarded event */
1816 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1817 event->type_len = RINGBUF_TYPE_PADDING;
1818 /* time delta must be non zero */
1819 event->time_delta = 1;
1820
1821 /* Set write to end of buffer */
1822 length = (tail + length) - BUF_PAGE_SIZE;
1823 local_sub(length, &tail_page->write);
1824 }
1825
1826 static struct ring_buffer_event *
1827 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1828 unsigned long length, unsigned long tail,
1829 struct buffer_page *tail_page, u64 *ts)
1830 {
1831 struct buffer_page *commit_page = cpu_buffer->commit_page;
1832 struct ring_buffer *buffer = cpu_buffer->buffer;
1833 struct buffer_page *next_page;
1834 int ret;
1835
1836 next_page = tail_page;
1837
1838 rb_inc_page(cpu_buffer, &next_page);
1839
1840 /*
1841 * If for some reason, we had an interrupt storm that made
1842 * it all the way around the buffer, bail, and warn
1843 * about it.
1844 */
1845 if (unlikely(next_page == commit_page)) {
1846 local_inc(&cpu_buffer->commit_overrun);
1847 goto out_reset;
1848 }
1849
1850 /*
1851 * This is where the fun begins!
1852 *
1853 * We are fighting against races between a reader that
1854 * could be on another CPU trying to swap its reader
1855 * page with the buffer head.
1856 *
1857 * We are also fighting against interrupts coming in and
1858 * moving the head or tail on us as well.
1859 *
1860 * If the next page is the head page then we have filled
1861 * the buffer, unless the commit page is still on the
1862 * reader page.
1863 */
1864 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1865
1866 /*
1867 * If the commit is not on the reader page, then
1868 * move the header page.
1869 */
1870 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1871 /*
1872 * If we are not in overwrite mode,
1873 * this is easy, just stop here.
1874 */
1875 if (!(buffer->flags & RB_FL_OVERWRITE))
1876 goto out_reset;
1877
1878 ret = rb_handle_head_page(cpu_buffer,
1879 tail_page,
1880 next_page);
1881 if (ret < 0)
1882 goto out_reset;
1883 if (ret)
1884 goto out_again;
1885 } else {
1886 /*
1887 * We need to be careful here too. The
1888 * commit page could still be on the reader
1889 * page. We could have a small buffer, and
1890 * have filled up the buffer with events
1891 * from interrupts and such, and wrapped.
1892 *
1893 * Note, if the tail page is also the on the
1894 * reader_page, we let it move out.
1895 */
1896 if (unlikely((cpu_buffer->commit_page !=
1897 cpu_buffer->tail_page) &&
1898 (cpu_buffer->commit_page ==
1899 cpu_buffer->reader_page))) {
1900 local_inc(&cpu_buffer->commit_overrun);
1901 goto out_reset;
1902 }
1903 }
1904 }
1905
1906 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1907 if (ret) {
1908 /*
1909 * Nested commits always have zero deltas, so
1910 * just reread the time stamp
1911 */
1912 *ts = rb_time_stamp(buffer);
1913 next_page->page->time_stamp = *ts;
1914 }
1915
1916 out_again:
1917
1918 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1919
1920 /* fail and let the caller try again */
1921 return ERR_PTR(-EAGAIN);
1922
1923 out_reset:
1924 /* reset write */
1925 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1926
1927 return NULL;
1928 }
1929
1930 static struct ring_buffer_event *
1931 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1932 unsigned type, unsigned long length, u64 *ts)
1933 {
1934 struct buffer_page *tail_page;
1935 struct ring_buffer_event *event;
1936 unsigned long tail, write;
1937
1938 tail_page = cpu_buffer->tail_page;
1939 write = local_add_return(length, &tail_page->write);
1940
1941 /* set write to only the index of the write */
1942 write &= RB_WRITE_MASK;
1943 tail = write - length;
1944
1945 /* See if we shot pass the end of this buffer page */
1946 if (write > BUF_PAGE_SIZE)
1947 return rb_move_tail(cpu_buffer, length, tail,
1948 tail_page, ts);
1949
1950 /* We reserved something on the buffer */
1951
1952 event = __rb_page_index(tail_page, tail);
1953 kmemcheck_annotate_bitfield(event, bitfield);
1954 rb_update_event(event, type, length);
1955
1956 /* The passed in type is zero for DATA */
1957 if (likely(!type))
1958 local_inc(&tail_page->entries);
1959
1960 /*
1961 * If this is the first commit on the page, then update
1962 * its timestamp.
1963 */
1964 if (!tail)
1965 tail_page->page->time_stamp = *ts;
1966
1967 return event;
1968 }
1969
1970 static inline int
1971 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1972 struct ring_buffer_event *event)
1973 {
1974 unsigned long new_index, old_index;
1975 struct buffer_page *bpage;
1976 unsigned long index;
1977 unsigned long addr;
1978
1979 new_index = rb_event_index(event);
1980 old_index = new_index + rb_event_length(event);
1981 addr = (unsigned long)event;
1982 addr &= PAGE_MASK;
1983
1984 bpage = cpu_buffer->tail_page;
1985
1986 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1987 unsigned long write_mask =
1988 local_read(&bpage->write) & ~RB_WRITE_MASK;
1989 /*
1990 * This is on the tail page. It is possible that
1991 * a write could come in and move the tail page
1992 * and write to the next page. That is fine
1993 * because we just shorten what is on this page.
1994 */
1995 old_index += write_mask;
1996 new_index += write_mask;
1997 index = local_cmpxchg(&bpage->write, old_index, new_index);
1998 if (index == old_index)
1999 return 1;
2000 }
2001
2002 /* could not discard */
2003 return 0;
2004 }
2005
2006 static int
2007 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2008 u64 *ts, u64 *delta)
2009 {
2010 struct ring_buffer_event *event;
2011 int ret;
2012
2013 WARN_ONCE(*delta > (1ULL << 59),
2014 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2015 (unsigned long long)*delta,
2016 (unsigned long long)*ts,
2017 (unsigned long long)cpu_buffer->write_stamp);
2018
2019 /*
2020 * The delta is too big, we to add a
2021 * new timestamp.
2022 */
2023 event = __rb_reserve_next(cpu_buffer,
2024 RINGBUF_TYPE_TIME_EXTEND,
2025 RB_LEN_TIME_EXTEND,
2026 ts);
2027 if (!event)
2028 return -EBUSY;
2029
2030 if (PTR_ERR(event) == -EAGAIN)
2031 return -EAGAIN;
2032
2033 /* Only a commited time event can update the write stamp */
2034 if (rb_event_is_commit(cpu_buffer, event)) {
2035 /*
2036 * If this is the first on the page, then it was
2037 * updated with the page itself. Try to discard it
2038 * and if we can't just make it zero.
2039 */
2040 if (rb_event_index(event)) {
2041 event->time_delta = *delta & TS_MASK;
2042 event->array[0] = *delta >> TS_SHIFT;
2043 } else {
2044 /* try to discard, since we do not need this */
2045 if (!rb_try_to_discard(cpu_buffer, event)) {
2046 /* nope, just zero it */
2047 event->time_delta = 0;
2048 event->array[0] = 0;
2049 }
2050 }
2051 cpu_buffer->write_stamp = *ts;
2052 /* let the caller know this was the commit */
2053 ret = 1;
2054 } else {
2055 /* Try to discard the event */
2056 if (!rb_try_to_discard(cpu_buffer, event)) {
2057 /* Darn, this is just wasted space */
2058 event->time_delta = 0;
2059 event->array[0] = 0;
2060 }
2061 ret = 0;
2062 }
2063
2064 *delta = 0;
2065
2066 return ret;
2067 }
2068
2069 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2070 {
2071 local_inc(&cpu_buffer->committing);
2072 local_inc(&cpu_buffer->commits);
2073 }
2074
2075 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2076 {
2077 unsigned long commits;
2078
2079 if (RB_WARN_ON(cpu_buffer,
2080 !local_read(&cpu_buffer->committing)))
2081 return;
2082
2083 again:
2084 commits = local_read(&cpu_buffer->commits);
2085 /* synchronize with interrupts */
2086 barrier();
2087 if (local_read(&cpu_buffer->committing) == 1)
2088 rb_set_commit_to_write(cpu_buffer);
2089
2090 local_dec(&cpu_buffer->committing);
2091
2092 /* synchronize with interrupts */
2093 barrier();
2094
2095 /*
2096 * Need to account for interrupts coming in between the
2097 * updating of the commit page and the clearing of the
2098 * committing counter.
2099 */
2100 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2101 !local_read(&cpu_buffer->committing)) {
2102 local_inc(&cpu_buffer->committing);
2103 goto again;
2104 }
2105 }
2106
2107 static struct ring_buffer_event *
2108 rb_reserve_next_event(struct ring_buffer *buffer,
2109 struct ring_buffer_per_cpu *cpu_buffer,
2110 unsigned long length)
2111 {
2112 struct ring_buffer_event *event;
2113 u64 ts, delta = 0;
2114 int commit = 0;
2115 int nr_loops = 0;
2116
2117 rb_start_commit(cpu_buffer);
2118
2119 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2120 /*
2121 * Due to the ability to swap a cpu buffer from a buffer
2122 * it is possible it was swapped before we committed.
2123 * (committing stops a swap). We check for it here and
2124 * if it happened, we have to fail the write.
2125 */
2126 barrier();
2127 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2128 local_dec(&cpu_buffer->committing);
2129 local_dec(&cpu_buffer->commits);
2130 return NULL;
2131 }
2132 #endif
2133
2134 length = rb_calculate_event_length(length);
2135 again:
2136 /*
2137 * We allow for interrupts to reenter here and do a trace.
2138 * If one does, it will cause this original code to loop
2139 * back here. Even with heavy interrupts happening, this
2140 * should only happen a few times in a row. If this happens
2141 * 1000 times in a row, there must be either an interrupt
2142 * storm or we have something buggy.
2143 * Bail!
2144 */
2145 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2146 goto out_fail;
2147
2148 ts = rb_time_stamp(cpu_buffer->buffer);
2149
2150 /*
2151 * Only the first commit can update the timestamp.
2152 * Yes there is a race here. If an interrupt comes in
2153 * just after the conditional and it traces too, then it
2154 * will also check the deltas. More than one timestamp may
2155 * also be made. But only the entry that did the actual
2156 * commit will be something other than zero.
2157 */
2158 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2159 rb_page_write(cpu_buffer->tail_page) ==
2160 rb_commit_index(cpu_buffer))) {
2161 u64 diff;
2162
2163 diff = ts - cpu_buffer->write_stamp;
2164
2165 /* make sure this diff is calculated here */
2166 barrier();
2167
2168 /* Did the write stamp get updated already? */
2169 if (unlikely(ts < cpu_buffer->write_stamp))
2170 goto get_event;
2171
2172 delta = diff;
2173 if (unlikely(test_time_stamp(delta))) {
2174
2175 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2176 if (commit == -EBUSY)
2177 goto out_fail;
2178
2179 if (commit == -EAGAIN)
2180 goto again;
2181
2182 RB_WARN_ON(cpu_buffer, commit < 0);
2183 }
2184 }
2185
2186 get_event:
2187 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2188 if (unlikely(PTR_ERR(event) == -EAGAIN))
2189 goto again;
2190
2191 if (!event)
2192 goto out_fail;
2193
2194 if (!rb_event_is_commit(cpu_buffer, event))
2195 delta = 0;
2196
2197 event->time_delta = delta;
2198
2199 return event;
2200
2201 out_fail:
2202 rb_end_commit(cpu_buffer);
2203 return NULL;
2204 }
2205
2206 #ifdef CONFIG_TRACING
2207
2208 #define TRACE_RECURSIVE_DEPTH 16
2209
2210 static int trace_recursive_lock(void)
2211 {
2212 current->trace_recursion++;
2213
2214 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2215 return 0;
2216
2217 /* Disable all tracing before we do anything else */
2218 tracing_off_permanent();
2219
2220 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2221 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2222 current->trace_recursion,
2223 hardirq_count() >> HARDIRQ_SHIFT,
2224 softirq_count() >> SOFTIRQ_SHIFT,
2225 in_nmi());
2226
2227 WARN_ON_ONCE(1);
2228 return -1;
2229 }
2230
2231 static void trace_recursive_unlock(void)
2232 {
2233 WARN_ON_ONCE(!current->trace_recursion);
2234
2235 current->trace_recursion--;
2236 }
2237
2238 #else
2239
2240 #define trace_recursive_lock() (0)
2241 #define trace_recursive_unlock() do { } while (0)
2242
2243 #endif
2244
2245 static DEFINE_PER_CPU(int, rb_need_resched);
2246
2247 /**
2248 * ring_buffer_lock_reserve - reserve a part of the buffer
2249 * @buffer: the ring buffer to reserve from
2250 * @length: the length of the data to reserve (excluding event header)
2251 *
2252 * Returns a reseverd event on the ring buffer to copy directly to.
2253 * The user of this interface will need to get the body to write into
2254 * and can use the ring_buffer_event_data() interface.
2255 *
2256 * The length is the length of the data needed, not the event length
2257 * which also includes the event header.
2258 *
2259 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2260 * If NULL is returned, then nothing has been allocated or locked.
2261 */
2262 struct ring_buffer_event *
2263 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2264 {
2265 struct ring_buffer_per_cpu *cpu_buffer;
2266 struct ring_buffer_event *event;
2267 int cpu, resched;
2268
2269 if (ring_buffer_flags != RB_BUFFERS_ON)
2270 return NULL;
2271
2272 /* If we are tracing schedule, we don't want to recurse */
2273 resched = ftrace_preempt_disable();
2274
2275 if (atomic_read(&buffer->record_disabled))
2276 goto out_nocheck;
2277
2278 if (trace_recursive_lock())
2279 goto out_nocheck;
2280
2281 cpu = raw_smp_processor_id();
2282
2283 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2284 goto out;
2285
2286 cpu_buffer = buffer->buffers[cpu];
2287
2288 if (atomic_read(&cpu_buffer->record_disabled))
2289 goto out;
2290
2291 if (length > BUF_MAX_DATA_SIZE)
2292 goto out;
2293
2294 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2295 if (!event)
2296 goto out;
2297
2298 /*
2299 * Need to store resched state on this cpu.
2300 * Only the first needs to.
2301 */
2302
2303 if (preempt_count() == 1)
2304 per_cpu(rb_need_resched, cpu) = resched;
2305
2306 return event;
2307
2308 out:
2309 trace_recursive_unlock();
2310
2311 out_nocheck:
2312 ftrace_preempt_enable(resched);
2313 return NULL;
2314 }
2315 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2316
2317 static void
2318 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2319 struct ring_buffer_event *event)
2320 {
2321 /*
2322 * The event first in the commit queue updates the
2323 * time stamp.
2324 */
2325 if (rb_event_is_commit(cpu_buffer, event))
2326 cpu_buffer->write_stamp += event->time_delta;
2327 }
2328
2329 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2330 struct ring_buffer_event *event)
2331 {
2332 local_inc(&cpu_buffer->entries);
2333 rb_update_write_stamp(cpu_buffer, event);
2334 rb_end_commit(cpu_buffer);
2335 }
2336
2337 /**
2338 * ring_buffer_unlock_commit - commit a reserved
2339 * @buffer: The buffer to commit to
2340 * @event: The event pointer to commit.
2341 *
2342 * This commits the data to the ring buffer, and releases any locks held.
2343 *
2344 * Must be paired with ring_buffer_lock_reserve.
2345 */
2346 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2347 struct ring_buffer_event *event)
2348 {
2349 struct ring_buffer_per_cpu *cpu_buffer;
2350 int cpu = raw_smp_processor_id();
2351
2352 cpu_buffer = buffer->buffers[cpu];
2353
2354 rb_commit(cpu_buffer, event);
2355
2356 trace_recursive_unlock();
2357
2358 /*
2359 * Only the last preempt count needs to restore preemption.
2360 */
2361 if (preempt_count() == 1)
2362 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2363 else
2364 preempt_enable_no_resched_notrace();
2365
2366 return 0;
2367 }
2368 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2369
2370 static inline void rb_event_discard(struct ring_buffer_event *event)
2371 {
2372 /* array[0] holds the actual length for the discarded event */
2373 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2374 event->type_len = RINGBUF_TYPE_PADDING;
2375 /* time delta must be non zero */
2376 if (!event->time_delta)
2377 event->time_delta = 1;
2378 }
2379
2380 /*
2381 * Decrement the entries to the page that an event is on.
2382 * The event does not even need to exist, only the pointer
2383 * to the page it is on. This may only be called before the commit
2384 * takes place.
2385 */
2386 static inline void
2387 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2388 struct ring_buffer_event *event)
2389 {
2390 unsigned long addr = (unsigned long)event;
2391 struct buffer_page *bpage = cpu_buffer->commit_page;
2392 struct buffer_page *start;
2393
2394 addr &= PAGE_MASK;
2395
2396 /* Do the likely case first */
2397 if (likely(bpage->page == (void *)addr)) {
2398 local_dec(&bpage->entries);
2399 return;
2400 }
2401
2402 /*
2403 * Because the commit page may be on the reader page we
2404 * start with the next page and check the end loop there.
2405 */
2406 rb_inc_page(cpu_buffer, &bpage);
2407 start = bpage;
2408 do {
2409 if (bpage->page == (void *)addr) {
2410 local_dec(&bpage->entries);
2411 return;
2412 }
2413 rb_inc_page(cpu_buffer, &bpage);
2414 } while (bpage != start);
2415
2416 /* commit not part of this buffer?? */
2417 RB_WARN_ON(cpu_buffer, 1);
2418 }
2419
2420 /**
2421 * ring_buffer_commit_discard - discard an event that has not been committed
2422 * @buffer: the ring buffer
2423 * @event: non committed event to discard
2424 *
2425 * Sometimes an event that is in the ring buffer needs to be ignored.
2426 * This function lets the user discard an event in the ring buffer
2427 * and then that event will not be read later.
2428 *
2429 * This function only works if it is called before the the item has been
2430 * committed. It will try to free the event from the ring buffer
2431 * if another event has not been added behind it.
2432 *
2433 * If another event has been added behind it, it will set the event
2434 * up as discarded, and perform the commit.
2435 *
2436 * If this function is called, do not call ring_buffer_unlock_commit on
2437 * the event.
2438 */
2439 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2440 struct ring_buffer_event *event)
2441 {
2442 struct ring_buffer_per_cpu *cpu_buffer;
2443 int cpu;
2444
2445 /* The event is discarded regardless */
2446 rb_event_discard(event);
2447
2448 cpu = smp_processor_id();
2449 cpu_buffer = buffer->buffers[cpu];
2450
2451 /*
2452 * This must only be called if the event has not been
2453 * committed yet. Thus we can assume that preemption
2454 * is still disabled.
2455 */
2456 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2457
2458 rb_decrement_entry(cpu_buffer, event);
2459 if (rb_try_to_discard(cpu_buffer, event))
2460 goto out;
2461
2462 /*
2463 * The commit is still visible by the reader, so we
2464 * must still update the timestamp.
2465 */
2466 rb_update_write_stamp(cpu_buffer, event);
2467 out:
2468 rb_end_commit(cpu_buffer);
2469
2470 trace_recursive_unlock();
2471
2472 /*
2473 * Only the last preempt count needs to restore preemption.
2474 */
2475 if (preempt_count() == 1)
2476 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2477 else
2478 preempt_enable_no_resched_notrace();
2479
2480 }
2481 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2482
2483 /**
2484 * ring_buffer_write - write data to the buffer without reserving
2485 * @buffer: The ring buffer to write to.
2486 * @length: The length of the data being written (excluding the event header)
2487 * @data: The data to write to the buffer.
2488 *
2489 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2490 * one function. If you already have the data to write to the buffer, it
2491 * may be easier to simply call this function.
2492 *
2493 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2494 * and not the length of the event which would hold the header.
2495 */
2496 int ring_buffer_write(struct ring_buffer *buffer,
2497 unsigned long length,
2498 void *data)
2499 {
2500 struct ring_buffer_per_cpu *cpu_buffer;
2501 struct ring_buffer_event *event;
2502 void *body;
2503 int ret = -EBUSY;
2504 int cpu, resched;
2505
2506 if (ring_buffer_flags != RB_BUFFERS_ON)
2507 return -EBUSY;
2508
2509 resched = ftrace_preempt_disable();
2510
2511 if (atomic_read(&buffer->record_disabled))
2512 goto out;
2513
2514 cpu = raw_smp_processor_id();
2515
2516 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2517 goto out;
2518
2519 cpu_buffer = buffer->buffers[cpu];
2520
2521 if (atomic_read(&cpu_buffer->record_disabled))
2522 goto out;
2523
2524 if (length > BUF_MAX_DATA_SIZE)
2525 goto out;
2526
2527 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2528 if (!event)
2529 goto out;
2530
2531 body = rb_event_data(event);
2532
2533 memcpy(body, data, length);
2534
2535 rb_commit(cpu_buffer, event);
2536
2537 ret = 0;
2538 out:
2539 ftrace_preempt_enable(resched);
2540
2541 return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(ring_buffer_write);
2544
2545 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2546 {
2547 struct buffer_page *reader = cpu_buffer->reader_page;
2548 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2549 struct buffer_page *commit = cpu_buffer->commit_page;
2550
2551 /* In case of error, head will be NULL */
2552 if (unlikely(!head))
2553 return 1;
2554
2555 return reader->read == rb_page_commit(reader) &&
2556 (commit == reader ||
2557 (commit == head &&
2558 head->read == rb_page_commit(commit)));
2559 }
2560
2561 /**
2562 * ring_buffer_record_disable - stop all writes into the buffer
2563 * @buffer: The ring buffer to stop writes to.
2564 *
2565 * This prevents all writes to the buffer. Any attempt to write
2566 * to the buffer after this will fail and return NULL.
2567 *
2568 * The caller should call synchronize_sched() after this.
2569 */
2570 void ring_buffer_record_disable(struct ring_buffer *buffer)
2571 {
2572 atomic_inc(&buffer->record_disabled);
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2575
2576 /**
2577 * ring_buffer_record_enable - enable writes to the buffer
2578 * @buffer: The ring buffer to enable writes
2579 *
2580 * Note, multiple disables will need the same number of enables
2581 * to truly enable the writing (much like preempt_disable).
2582 */
2583 void ring_buffer_record_enable(struct ring_buffer *buffer)
2584 {
2585 atomic_dec(&buffer->record_disabled);
2586 }
2587 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2588
2589 /**
2590 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2591 * @buffer: The ring buffer to stop writes to.
2592 * @cpu: The CPU buffer to stop
2593 *
2594 * This prevents all writes to the buffer. Any attempt to write
2595 * to the buffer after this will fail and return NULL.
2596 *
2597 * The caller should call synchronize_sched() after this.
2598 */
2599 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2600 {
2601 struct ring_buffer_per_cpu *cpu_buffer;
2602
2603 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2604 return;
2605
2606 cpu_buffer = buffer->buffers[cpu];
2607 atomic_inc(&cpu_buffer->record_disabled);
2608 }
2609 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2610
2611 /**
2612 * ring_buffer_record_enable_cpu - enable writes to the buffer
2613 * @buffer: The ring buffer to enable writes
2614 * @cpu: The CPU to enable.
2615 *
2616 * Note, multiple disables will need the same number of enables
2617 * to truly enable the writing (much like preempt_disable).
2618 */
2619 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2620 {
2621 struct ring_buffer_per_cpu *cpu_buffer;
2622
2623 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2624 return;
2625
2626 cpu_buffer = buffer->buffers[cpu];
2627 atomic_dec(&cpu_buffer->record_disabled);
2628 }
2629 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2630
2631 /**
2632 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2633 * @buffer: The ring buffer
2634 * @cpu: The per CPU buffer to get the entries from.
2635 */
2636 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2637 {
2638 struct ring_buffer_per_cpu *cpu_buffer;
2639 unsigned long ret;
2640
2641 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2642 return 0;
2643
2644 cpu_buffer = buffer->buffers[cpu];
2645 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2646 - cpu_buffer->read;
2647
2648 return ret;
2649 }
2650 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2651
2652 /**
2653 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2654 * @buffer: The ring buffer
2655 * @cpu: The per CPU buffer to get the number of overruns from
2656 */
2657 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2658 {
2659 struct ring_buffer_per_cpu *cpu_buffer;
2660 unsigned long ret;
2661
2662 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2663 return 0;
2664
2665 cpu_buffer = buffer->buffers[cpu];
2666 ret = local_read(&cpu_buffer->overrun);
2667
2668 return ret;
2669 }
2670 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2671
2672 /**
2673 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2674 * @buffer: The ring buffer
2675 * @cpu: The per CPU buffer to get the number of overruns from
2676 */
2677 unsigned long
2678 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2679 {
2680 struct ring_buffer_per_cpu *cpu_buffer;
2681 unsigned long ret;
2682
2683 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2684 return 0;
2685
2686 cpu_buffer = buffer->buffers[cpu];
2687 ret = local_read(&cpu_buffer->commit_overrun);
2688
2689 return ret;
2690 }
2691 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2692
2693 /**
2694 * ring_buffer_entries - get the number of entries in a buffer
2695 * @buffer: The ring buffer
2696 *
2697 * Returns the total number of entries in the ring buffer
2698 * (all CPU entries)
2699 */
2700 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2701 {
2702 struct ring_buffer_per_cpu *cpu_buffer;
2703 unsigned long entries = 0;
2704 int cpu;
2705
2706 /* if you care about this being correct, lock the buffer */
2707 for_each_buffer_cpu(buffer, cpu) {
2708 cpu_buffer = buffer->buffers[cpu];
2709 entries += (local_read(&cpu_buffer->entries) -
2710 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2711 }
2712
2713 return entries;
2714 }
2715 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2716
2717 /**
2718 * ring_buffer_overruns - get the number of overruns in buffer
2719 * @buffer: The ring buffer
2720 *
2721 * Returns the total number of overruns in the ring buffer
2722 * (all CPU entries)
2723 */
2724 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2725 {
2726 struct ring_buffer_per_cpu *cpu_buffer;
2727 unsigned long overruns = 0;
2728 int cpu;
2729
2730 /* if you care about this being correct, lock the buffer */
2731 for_each_buffer_cpu(buffer, cpu) {
2732 cpu_buffer = buffer->buffers[cpu];
2733 overruns += local_read(&cpu_buffer->overrun);
2734 }
2735
2736 return overruns;
2737 }
2738 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2739
2740 static void rb_iter_reset(struct ring_buffer_iter *iter)
2741 {
2742 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2743
2744 /* Iterator usage is expected to have record disabled */
2745 if (list_empty(&cpu_buffer->reader_page->list)) {
2746 iter->head_page = rb_set_head_page(cpu_buffer);
2747 if (unlikely(!iter->head_page))
2748 return;
2749 iter->head = iter->head_page->read;
2750 } else {
2751 iter->head_page = cpu_buffer->reader_page;
2752 iter->head = cpu_buffer->reader_page->read;
2753 }
2754 if (iter->head)
2755 iter->read_stamp = cpu_buffer->read_stamp;
2756 else
2757 iter->read_stamp = iter->head_page->page->time_stamp;
2758 iter->cache_reader_page = cpu_buffer->reader_page;
2759 iter->cache_read = cpu_buffer->read;
2760 }
2761
2762 /**
2763 * ring_buffer_iter_reset - reset an iterator
2764 * @iter: The iterator to reset
2765 *
2766 * Resets the iterator, so that it will start from the beginning
2767 * again.
2768 */
2769 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2770 {
2771 struct ring_buffer_per_cpu *cpu_buffer;
2772 unsigned long flags;
2773
2774 if (!iter)
2775 return;
2776
2777 cpu_buffer = iter->cpu_buffer;
2778
2779 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2780 rb_iter_reset(iter);
2781 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2782 }
2783 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2784
2785 /**
2786 * ring_buffer_iter_empty - check if an iterator has no more to read
2787 * @iter: The iterator to check
2788 */
2789 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2790 {
2791 struct ring_buffer_per_cpu *cpu_buffer;
2792
2793 cpu_buffer = iter->cpu_buffer;
2794
2795 return iter->head_page == cpu_buffer->commit_page &&
2796 iter->head == rb_commit_index(cpu_buffer);
2797 }
2798 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2799
2800 static void
2801 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2802 struct ring_buffer_event *event)
2803 {
2804 u64 delta;
2805
2806 switch (event->type_len) {
2807 case RINGBUF_TYPE_PADDING:
2808 return;
2809
2810 case RINGBUF_TYPE_TIME_EXTEND:
2811 delta = event->array[0];
2812 delta <<= TS_SHIFT;
2813 delta += event->time_delta;
2814 cpu_buffer->read_stamp += delta;
2815 return;
2816
2817 case RINGBUF_TYPE_TIME_STAMP:
2818 /* FIXME: not implemented */
2819 return;
2820
2821 case RINGBUF_TYPE_DATA:
2822 cpu_buffer->read_stamp += event->time_delta;
2823 return;
2824
2825 default:
2826 BUG();
2827 }
2828 return;
2829 }
2830
2831 static void
2832 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2833 struct ring_buffer_event *event)
2834 {
2835 u64 delta;
2836
2837 switch (event->type_len) {
2838 case RINGBUF_TYPE_PADDING:
2839 return;
2840
2841 case RINGBUF_TYPE_TIME_EXTEND:
2842 delta = event->array[0];
2843 delta <<= TS_SHIFT;
2844 delta += event->time_delta;
2845 iter->read_stamp += delta;
2846 return;
2847
2848 case RINGBUF_TYPE_TIME_STAMP:
2849 /* FIXME: not implemented */
2850 return;
2851
2852 case RINGBUF_TYPE_DATA:
2853 iter->read_stamp += event->time_delta;
2854 return;
2855
2856 default:
2857 BUG();
2858 }
2859 return;
2860 }
2861
2862 static struct buffer_page *
2863 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2864 {
2865 struct buffer_page *reader = NULL;
2866 unsigned long overwrite;
2867 unsigned long flags;
2868 int nr_loops = 0;
2869 int ret;
2870
2871 local_irq_save(flags);
2872 arch_spin_lock(&cpu_buffer->lock);
2873
2874 again:
2875 /*
2876 * This should normally only loop twice. But because the
2877 * start of the reader inserts an empty page, it causes
2878 * a case where we will loop three times. There should be no
2879 * reason to loop four times (that I know of).
2880 */
2881 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2882 reader = NULL;
2883 goto out;
2884 }
2885
2886 reader = cpu_buffer->reader_page;
2887
2888 /* If there's more to read, return this page */
2889 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2890 goto out;
2891
2892 /* Never should we have an index greater than the size */
2893 if (RB_WARN_ON(cpu_buffer,
2894 cpu_buffer->reader_page->read > rb_page_size(reader)))
2895 goto out;
2896
2897 /* check if we caught up to the tail */
2898 reader = NULL;
2899 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2900 goto out;
2901
2902 /*
2903 * Reset the reader page to size zero.
2904 */
2905 local_set(&cpu_buffer->reader_page->write, 0);
2906 local_set(&cpu_buffer->reader_page->entries, 0);
2907 local_set(&cpu_buffer->reader_page->page->commit, 0);
2908 cpu_buffer->reader_page->real_end = 0;
2909
2910 spin:
2911 /*
2912 * Splice the empty reader page into the list around the head.
2913 */
2914 reader = rb_set_head_page(cpu_buffer);
2915 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2916 cpu_buffer->reader_page->list.prev = reader->list.prev;
2917
2918 /*
2919 * cpu_buffer->pages just needs to point to the buffer, it
2920 * has no specific buffer page to point to. Lets move it out
2921 * of our way so we don't accidently swap it.
2922 */
2923 cpu_buffer->pages = reader->list.prev;
2924
2925 /* The reader page will be pointing to the new head */
2926 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2927
2928 /*
2929 * We want to make sure we read the overruns after we set up our
2930 * pointers to the next object. The writer side does a
2931 * cmpxchg to cross pages which acts as the mb on the writer
2932 * side. Note, the reader will constantly fail the swap
2933 * while the writer is updating the pointers, so this
2934 * guarantees that the overwrite recorded here is the one we
2935 * want to compare with the last_overrun.
2936 */
2937 smp_mb();
2938 overwrite = local_read(&(cpu_buffer->overrun));
2939
2940 /*
2941 * Here's the tricky part.
2942 *
2943 * We need to move the pointer past the header page.
2944 * But we can only do that if a writer is not currently
2945 * moving it. The page before the header page has the
2946 * flag bit '1' set if it is pointing to the page we want.
2947 * but if the writer is in the process of moving it
2948 * than it will be '2' or already moved '0'.
2949 */
2950
2951 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2952
2953 /*
2954 * If we did not convert it, then we must try again.
2955 */
2956 if (!ret)
2957 goto spin;
2958
2959 /*
2960 * Yeah! We succeeded in replacing the page.
2961 *
2962 * Now make the new head point back to the reader page.
2963 */
2964 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2965 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2966
2967 /* Finally update the reader page to the new head */
2968 cpu_buffer->reader_page = reader;
2969 rb_reset_reader_page(cpu_buffer);
2970
2971 if (overwrite != cpu_buffer->last_overrun) {
2972 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2973 cpu_buffer->last_overrun = overwrite;
2974 }
2975
2976 goto again;
2977
2978 out:
2979 arch_spin_unlock(&cpu_buffer->lock);
2980 local_irq_restore(flags);
2981
2982 return reader;
2983 }
2984
2985 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2986 {
2987 struct ring_buffer_event *event;
2988 struct buffer_page *reader;
2989 unsigned length;
2990
2991 reader = rb_get_reader_page(cpu_buffer);
2992
2993 /* This function should not be called when buffer is empty */
2994 if (RB_WARN_ON(cpu_buffer, !reader))
2995 return;
2996
2997 event = rb_reader_event(cpu_buffer);
2998
2999 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3000 cpu_buffer->read++;
3001
3002 rb_update_read_stamp(cpu_buffer, event);
3003
3004 length = rb_event_length(event);
3005 cpu_buffer->reader_page->read += length;
3006 }
3007
3008 static void rb_advance_iter(struct ring_buffer_iter *iter)
3009 {
3010 struct ring_buffer *buffer;
3011 struct ring_buffer_per_cpu *cpu_buffer;
3012 struct ring_buffer_event *event;
3013 unsigned length;
3014
3015 cpu_buffer = iter->cpu_buffer;
3016 buffer = cpu_buffer->buffer;
3017
3018 /*
3019 * Check if we are at the end of the buffer.
3020 */
3021 if (iter->head >= rb_page_size(iter->head_page)) {
3022 /* discarded commits can make the page empty */
3023 if (iter->head_page == cpu_buffer->commit_page)
3024 return;
3025 rb_inc_iter(iter);
3026 return;
3027 }
3028
3029 event = rb_iter_head_event(iter);
3030
3031 length = rb_event_length(event);
3032
3033 /*
3034 * This should not be called to advance the header if we are
3035 * at the tail of the buffer.
3036 */
3037 if (RB_WARN_ON(cpu_buffer,
3038 (iter->head_page == cpu_buffer->commit_page) &&
3039 (iter->head + length > rb_commit_index(cpu_buffer))))
3040 return;
3041
3042 rb_update_iter_read_stamp(iter, event);
3043
3044 iter->head += length;
3045
3046 /* check for end of page padding */
3047 if ((iter->head >= rb_page_size(iter->head_page)) &&
3048 (iter->head_page != cpu_buffer->commit_page))
3049 rb_advance_iter(iter);
3050 }
3051
3052 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3053 {
3054 return cpu_buffer->lost_events;
3055 }
3056
3057 static struct ring_buffer_event *
3058 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3059 unsigned long *lost_events)
3060 {
3061 struct ring_buffer_event *event;
3062 struct buffer_page *reader;
3063 int nr_loops = 0;
3064
3065 again:
3066 /*
3067 * We repeat when a timestamp is encountered. It is possible
3068 * to get multiple timestamps from an interrupt entering just
3069 * as one timestamp is about to be written, or from discarded
3070 * commits. The most that we can have is the number on a single page.
3071 */
3072 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3073 return NULL;
3074
3075 reader = rb_get_reader_page(cpu_buffer);
3076 if (!reader)
3077 return NULL;
3078
3079 event = rb_reader_event(cpu_buffer);
3080
3081 switch (event->type_len) {
3082 case RINGBUF_TYPE_PADDING:
3083 if (rb_null_event(event))
3084 RB_WARN_ON(cpu_buffer, 1);
3085 /*
3086 * Because the writer could be discarding every
3087 * event it creates (which would probably be bad)
3088 * if we were to go back to "again" then we may never
3089 * catch up, and will trigger the warn on, or lock
3090 * the box. Return the padding, and we will release
3091 * the current locks, and try again.
3092 */
3093 return event;
3094
3095 case RINGBUF_TYPE_TIME_EXTEND:
3096 /* Internal data, OK to advance */
3097 rb_advance_reader(cpu_buffer);
3098 goto again;
3099
3100 case RINGBUF_TYPE_TIME_STAMP:
3101 /* FIXME: not implemented */
3102 rb_advance_reader(cpu_buffer);
3103 goto again;
3104
3105 case RINGBUF_TYPE_DATA:
3106 if (ts) {
3107 *ts = cpu_buffer->read_stamp + event->time_delta;
3108 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3109 cpu_buffer->cpu, ts);
3110 }
3111 if (lost_events)
3112 *lost_events = rb_lost_events(cpu_buffer);
3113 return event;
3114
3115 default:
3116 BUG();
3117 }
3118
3119 return NULL;
3120 }
3121 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3122
3123 static struct ring_buffer_event *
3124 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3125 {
3126 struct ring_buffer *buffer;
3127 struct ring_buffer_per_cpu *cpu_buffer;
3128 struct ring_buffer_event *event;
3129 int nr_loops = 0;
3130
3131 cpu_buffer = iter->cpu_buffer;
3132 buffer = cpu_buffer->buffer;
3133
3134 /*
3135 * Check if someone performed a consuming read to
3136 * the buffer. A consuming read invalidates the iterator
3137 * and we need to reset the iterator in this case.
3138 */
3139 if (unlikely(iter->cache_read != cpu_buffer->read ||
3140 iter->cache_reader_page != cpu_buffer->reader_page))
3141 rb_iter_reset(iter);
3142
3143 again:
3144 if (ring_buffer_iter_empty(iter))
3145 return NULL;
3146
3147 /*
3148 * We repeat when a timestamp is encountered.
3149 * We can get multiple timestamps by nested interrupts or also
3150 * if filtering is on (discarding commits). Since discarding
3151 * commits can be frequent we can get a lot of timestamps.
3152 * But we limit them by not adding timestamps if they begin
3153 * at the start of a page.
3154 */
3155 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3156 return NULL;
3157
3158 if (rb_per_cpu_empty(cpu_buffer))
3159 return NULL;
3160
3161 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3162 rb_inc_iter(iter);
3163 goto again;
3164 }
3165
3166 event = rb_iter_head_event(iter);
3167
3168 switch (event->type_len) {
3169 case RINGBUF_TYPE_PADDING:
3170 if (rb_null_event(event)) {
3171 rb_inc_iter(iter);
3172 goto again;
3173 }
3174 rb_advance_iter(iter);
3175 return event;
3176
3177 case RINGBUF_TYPE_TIME_EXTEND:
3178 /* Internal data, OK to advance */
3179 rb_advance_iter(iter);
3180 goto again;
3181
3182 case RINGBUF_TYPE_TIME_STAMP:
3183 /* FIXME: not implemented */
3184 rb_advance_iter(iter);
3185 goto again;
3186
3187 case RINGBUF_TYPE_DATA:
3188 if (ts) {
3189 *ts = iter->read_stamp + event->time_delta;
3190 ring_buffer_normalize_time_stamp(buffer,
3191 cpu_buffer->cpu, ts);
3192 }
3193 return event;
3194
3195 default:
3196 BUG();
3197 }
3198
3199 return NULL;
3200 }
3201 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3202
3203 static inline int rb_ok_to_lock(void)
3204 {
3205 /*
3206 * If an NMI die dumps out the content of the ring buffer
3207 * do not grab locks. We also permanently disable the ring
3208 * buffer too. A one time deal is all you get from reading
3209 * the ring buffer from an NMI.
3210 */
3211 if (likely(!in_nmi()))
3212 return 1;
3213
3214 tracing_off_permanent();
3215 return 0;
3216 }
3217
3218 /**
3219 * ring_buffer_peek - peek at the next event to be read
3220 * @buffer: The ring buffer to read
3221 * @cpu: The cpu to peak at
3222 * @ts: The timestamp counter of this event.
3223 * @lost_events: a variable to store if events were lost (may be NULL)
3224 *
3225 * This will return the event that will be read next, but does
3226 * not consume the data.
3227 */
3228 struct ring_buffer_event *
3229 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3230 unsigned long *lost_events)
3231 {
3232 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3233 struct ring_buffer_event *event;
3234 unsigned long flags;
3235 int dolock;
3236
3237 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3238 return NULL;
3239
3240 dolock = rb_ok_to_lock();
3241 again:
3242 local_irq_save(flags);
3243 if (dolock)
3244 spin_lock(&cpu_buffer->reader_lock);
3245 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3246 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3247 rb_advance_reader(cpu_buffer);
3248 if (dolock)
3249 spin_unlock(&cpu_buffer->reader_lock);
3250 local_irq_restore(flags);
3251
3252 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3253 goto again;
3254
3255 return event;
3256 }
3257
3258 /**
3259 * ring_buffer_iter_peek - peek at the next event to be read
3260 * @iter: The ring buffer iterator
3261 * @ts: The timestamp counter of this event.
3262 *
3263 * This will return the event that will be read next, but does
3264 * not increment the iterator.
3265 */
3266 struct ring_buffer_event *
3267 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3268 {
3269 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3270 struct ring_buffer_event *event;
3271 unsigned long flags;
3272
3273 again:
3274 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3275 event = rb_iter_peek(iter, ts);
3276 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3277
3278 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3279 goto again;
3280
3281 return event;
3282 }
3283
3284 /**
3285 * ring_buffer_consume - return an event and consume it
3286 * @buffer: The ring buffer to get the next event from
3287 * @cpu: the cpu to read the buffer from
3288 * @ts: a variable to store the timestamp (may be NULL)
3289 * @lost_events: a variable to store if events were lost (may be NULL)
3290 *
3291 * Returns the next event in the ring buffer, and that event is consumed.
3292 * Meaning, that sequential reads will keep returning a different event,
3293 * and eventually empty the ring buffer if the producer is slower.
3294 */
3295 struct ring_buffer_event *
3296 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3297 unsigned long *lost_events)
3298 {
3299 struct ring_buffer_per_cpu *cpu_buffer;
3300 struct ring_buffer_event *event = NULL;
3301 unsigned long flags;
3302 int dolock;
3303
3304 dolock = rb_ok_to_lock();
3305
3306 again:
3307 /* might be called in atomic */
3308 preempt_disable();
3309
3310 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3311 goto out;
3312
3313 cpu_buffer = buffer->buffers[cpu];
3314 local_irq_save(flags);
3315 if (dolock)
3316 spin_lock(&cpu_buffer->reader_lock);
3317
3318 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3319 if (event) {
3320 cpu_buffer->lost_events = 0;
3321 rb_advance_reader(cpu_buffer);
3322 }
3323
3324 if (dolock)
3325 spin_unlock(&cpu_buffer->reader_lock);
3326 local_irq_restore(flags);
3327
3328 out:
3329 preempt_enable();
3330
3331 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3332 goto again;
3333
3334 return event;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3337
3338 /**
3339 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3340 * @buffer: The ring buffer to read from
3341 * @cpu: The cpu buffer to iterate over
3342 *
3343 * This performs the initial preparations necessary to iterate
3344 * through the buffer. Memory is allocated, buffer recording
3345 * is disabled, and the iterator pointer is returned to the caller.
3346 *
3347 * Disabling buffer recordng prevents the reading from being
3348 * corrupted. This is not a consuming read, so a producer is not
3349 * expected.
3350 *
3351 * After a sequence of ring_buffer_read_prepare calls, the user is
3352 * expected to make at least one call to ring_buffer_prepare_sync.
3353 * Afterwards, ring_buffer_read_start is invoked to get things going
3354 * for real.
3355 *
3356 * This overall must be paired with ring_buffer_finish.
3357 */
3358 struct ring_buffer_iter *
3359 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3360 {
3361 struct ring_buffer_per_cpu *cpu_buffer;
3362 struct ring_buffer_iter *iter;
3363
3364 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3365 return NULL;
3366
3367 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3368 if (!iter)
3369 return NULL;
3370
3371 cpu_buffer = buffer->buffers[cpu];
3372
3373 iter->cpu_buffer = cpu_buffer;
3374
3375 atomic_inc(&cpu_buffer->record_disabled);
3376
3377 return iter;
3378 }
3379 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3380
3381 /**
3382 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3383 *
3384 * All previously invoked ring_buffer_read_prepare calls to prepare
3385 * iterators will be synchronized. Afterwards, read_buffer_read_start
3386 * calls on those iterators are allowed.
3387 */
3388 void
3389 ring_buffer_read_prepare_sync(void)
3390 {
3391 synchronize_sched();
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3394
3395 /**
3396 * ring_buffer_read_start - start a non consuming read of the buffer
3397 * @iter: The iterator returned by ring_buffer_read_prepare
3398 *
3399 * This finalizes the startup of an iteration through the buffer.
3400 * The iterator comes from a call to ring_buffer_read_prepare and
3401 * an intervening ring_buffer_read_prepare_sync must have been
3402 * performed.
3403 *
3404 * Must be paired with ring_buffer_finish.
3405 */
3406 void
3407 ring_buffer_read_start(struct ring_buffer_iter *iter)
3408 {
3409 struct ring_buffer_per_cpu *cpu_buffer;
3410 unsigned long flags;
3411
3412 if (!iter)
3413 return;
3414
3415 cpu_buffer = iter->cpu_buffer;
3416
3417 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3418 arch_spin_lock(&cpu_buffer->lock);
3419 rb_iter_reset(iter);
3420 arch_spin_unlock(&cpu_buffer->lock);
3421 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3422 }
3423 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3424
3425 /**
3426 * ring_buffer_finish - finish reading the iterator of the buffer
3427 * @iter: The iterator retrieved by ring_buffer_start
3428 *
3429 * This re-enables the recording to the buffer, and frees the
3430 * iterator.
3431 */
3432 void
3433 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3434 {
3435 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3436
3437 atomic_dec(&cpu_buffer->record_disabled);
3438 kfree(iter);
3439 }
3440 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3441
3442 /**
3443 * ring_buffer_read - read the next item in the ring buffer by the iterator
3444 * @iter: The ring buffer iterator
3445 * @ts: The time stamp of the event read.
3446 *
3447 * This reads the next event in the ring buffer and increments the iterator.
3448 */
3449 struct ring_buffer_event *
3450 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3451 {
3452 struct ring_buffer_event *event;
3453 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3454 unsigned long flags;
3455
3456 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3457 again:
3458 event = rb_iter_peek(iter, ts);
3459 if (!event)
3460 goto out;
3461
3462 if (event->type_len == RINGBUF_TYPE_PADDING)
3463 goto again;
3464
3465 rb_advance_iter(iter);
3466 out:
3467 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3468
3469 return event;
3470 }
3471 EXPORT_SYMBOL_GPL(ring_buffer_read);
3472
3473 /**
3474 * ring_buffer_size - return the size of the ring buffer (in bytes)
3475 * @buffer: The ring buffer.
3476 */
3477 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3478 {
3479 return BUF_PAGE_SIZE * buffer->pages;
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_size);
3482
3483 static void
3484 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3485 {
3486 rb_head_page_deactivate(cpu_buffer);
3487
3488 cpu_buffer->head_page
3489 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3490 local_set(&cpu_buffer->head_page->write, 0);
3491 local_set(&cpu_buffer->head_page->entries, 0);
3492 local_set(&cpu_buffer->head_page->page->commit, 0);
3493
3494 cpu_buffer->head_page->read = 0;
3495
3496 cpu_buffer->tail_page = cpu_buffer->head_page;
3497 cpu_buffer->commit_page = cpu_buffer->head_page;
3498
3499 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3500 local_set(&cpu_buffer->reader_page->write, 0);
3501 local_set(&cpu_buffer->reader_page->entries, 0);
3502 local_set(&cpu_buffer->reader_page->page->commit, 0);
3503 cpu_buffer->reader_page->read = 0;
3504
3505 local_set(&cpu_buffer->commit_overrun, 0);
3506 local_set(&cpu_buffer->overrun, 0);
3507 local_set(&cpu_buffer->entries, 0);
3508 local_set(&cpu_buffer->committing, 0);
3509 local_set(&cpu_buffer->commits, 0);
3510 cpu_buffer->read = 0;
3511
3512 cpu_buffer->write_stamp = 0;
3513 cpu_buffer->read_stamp = 0;
3514
3515 cpu_buffer->lost_events = 0;
3516 cpu_buffer->last_overrun = 0;
3517
3518 rb_head_page_activate(cpu_buffer);
3519 }
3520
3521 /**
3522 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3523 * @buffer: The ring buffer to reset a per cpu buffer of
3524 * @cpu: The CPU buffer to be reset
3525 */
3526 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3527 {
3528 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3529 unsigned long flags;
3530
3531 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3532 return;
3533
3534 atomic_inc(&cpu_buffer->record_disabled);
3535
3536 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3537
3538 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3539 goto out;
3540
3541 arch_spin_lock(&cpu_buffer->lock);
3542
3543 rb_reset_cpu(cpu_buffer);
3544
3545 arch_spin_unlock(&cpu_buffer->lock);
3546
3547 out:
3548 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3549
3550 atomic_dec(&cpu_buffer->record_disabled);
3551 }
3552 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3553
3554 /**
3555 * ring_buffer_reset - reset a ring buffer
3556 * @buffer: The ring buffer to reset all cpu buffers
3557 */
3558 void ring_buffer_reset(struct ring_buffer *buffer)
3559 {
3560 int cpu;
3561
3562 for_each_buffer_cpu(buffer, cpu)
3563 ring_buffer_reset_cpu(buffer, cpu);
3564 }
3565 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3566
3567 /**
3568 * rind_buffer_empty - is the ring buffer empty?
3569 * @buffer: The ring buffer to test
3570 */
3571 int ring_buffer_empty(struct ring_buffer *buffer)
3572 {
3573 struct ring_buffer_per_cpu *cpu_buffer;
3574 unsigned long flags;
3575 int dolock;
3576 int cpu;
3577 int ret;
3578
3579 dolock = rb_ok_to_lock();
3580
3581 /* yes this is racy, but if you don't like the race, lock the buffer */
3582 for_each_buffer_cpu(buffer, cpu) {
3583 cpu_buffer = buffer->buffers[cpu];
3584 local_irq_save(flags);
3585 if (dolock)
3586 spin_lock(&cpu_buffer->reader_lock);
3587 ret = rb_per_cpu_empty(cpu_buffer);
3588 if (dolock)
3589 spin_unlock(&cpu_buffer->reader_lock);
3590 local_irq_restore(flags);
3591
3592 if (!ret)
3593 return 0;
3594 }
3595
3596 return 1;
3597 }
3598 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3599
3600 /**
3601 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3602 * @buffer: The ring buffer
3603 * @cpu: The CPU buffer to test
3604 */
3605 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3606 {
3607 struct ring_buffer_per_cpu *cpu_buffer;
3608 unsigned long flags;
3609 int dolock;
3610 int ret;
3611
3612 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3613 return 1;
3614
3615 dolock = rb_ok_to_lock();
3616
3617 cpu_buffer = buffer->buffers[cpu];
3618 local_irq_save(flags);
3619 if (dolock)
3620 spin_lock(&cpu_buffer->reader_lock);
3621 ret = rb_per_cpu_empty(cpu_buffer);
3622 if (dolock)
3623 spin_unlock(&cpu_buffer->reader_lock);
3624 local_irq_restore(flags);
3625
3626 return ret;
3627 }
3628 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3629
3630 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3631 /**
3632 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3633 * @buffer_a: One buffer to swap with
3634 * @buffer_b: The other buffer to swap with
3635 *
3636 * This function is useful for tracers that want to take a "snapshot"
3637 * of a CPU buffer and has another back up buffer lying around.
3638 * it is expected that the tracer handles the cpu buffer not being
3639 * used at the moment.
3640 */
3641 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3642 struct ring_buffer *buffer_b, int cpu)
3643 {
3644 struct ring_buffer_per_cpu *cpu_buffer_a;
3645 struct ring_buffer_per_cpu *cpu_buffer_b;
3646 int ret = -EINVAL;
3647
3648 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3649 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3650 goto out;
3651
3652 /* At least make sure the two buffers are somewhat the same */
3653 if (buffer_a->pages != buffer_b->pages)
3654 goto out;
3655
3656 ret = -EAGAIN;
3657
3658 if (ring_buffer_flags != RB_BUFFERS_ON)
3659 goto out;
3660
3661 if (atomic_read(&buffer_a->record_disabled))
3662 goto out;
3663
3664 if (atomic_read(&buffer_b->record_disabled))
3665 goto out;
3666
3667 cpu_buffer_a = buffer_a->buffers[cpu];
3668 cpu_buffer_b = buffer_b->buffers[cpu];
3669
3670 if (atomic_read(&cpu_buffer_a->record_disabled))
3671 goto out;
3672
3673 if (atomic_read(&cpu_buffer_b->record_disabled))
3674 goto out;
3675
3676 /*
3677 * We can't do a synchronize_sched here because this
3678 * function can be called in atomic context.
3679 * Normally this will be called from the same CPU as cpu.
3680 * If not it's up to the caller to protect this.
3681 */
3682 atomic_inc(&cpu_buffer_a->record_disabled);
3683 atomic_inc(&cpu_buffer_b->record_disabled);
3684
3685 ret = -EBUSY;
3686 if (local_read(&cpu_buffer_a->committing))
3687 goto out_dec;
3688 if (local_read(&cpu_buffer_b->committing))
3689 goto out_dec;
3690
3691 buffer_a->buffers[cpu] = cpu_buffer_b;
3692 buffer_b->buffers[cpu] = cpu_buffer_a;
3693
3694 cpu_buffer_b->buffer = buffer_a;
3695 cpu_buffer_a->buffer = buffer_b;
3696
3697 ret = 0;
3698
3699 out_dec:
3700 atomic_dec(&cpu_buffer_a->record_disabled);
3701 atomic_dec(&cpu_buffer_b->record_disabled);
3702 out:
3703 return ret;
3704 }
3705 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3706 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3707
3708 /**
3709 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3710 * @buffer: the buffer to allocate for.
3711 *
3712 * This function is used in conjunction with ring_buffer_read_page.
3713 * When reading a full page from the ring buffer, these functions
3714 * can be used to speed up the process. The calling function should
3715 * allocate a few pages first with this function. Then when it
3716 * needs to get pages from the ring buffer, it passes the result
3717 * of this function into ring_buffer_read_page, which will swap
3718 * the page that was allocated, with the read page of the buffer.
3719 *
3720 * Returns:
3721 * The page allocated, or NULL on error.
3722 */
3723 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3724 {
3725 struct buffer_data_page *bpage;
3726 unsigned long addr;
3727
3728 addr = __get_free_page(GFP_KERNEL);
3729 if (!addr)
3730 return NULL;
3731
3732 bpage = (void *)addr;
3733
3734 rb_init_page(bpage);
3735
3736 return bpage;
3737 }
3738 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3739
3740 /**
3741 * ring_buffer_free_read_page - free an allocated read page
3742 * @buffer: the buffer the page was allocate for
3743 * @data: the page to free
3744 *
3745 * Free a page allocated from ring_buffer_alloc_read_page.
3746 */
3747 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3748 {
3749 free_page((unsigned long)data);
3750 }
3751 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3752
3753 /**
3754 * ring_buffer_read_page - extract a page from the ring buffer
3755 * @buffer: buffer to extract from
3756 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3757 * @len: amount to extract
3758 * @cpu: the cpu of the buffer to extract
3759 * @full: should the extraction only happen when the page is full.
3760 *
3761 * This function will pull out a page from the ring buffer and consume it.
3762 * @data_page must be the address of the variable that was returned
3763 * from ring_buffer_alloc_read_page. This is because the page might be used
3764 * to swap with a page in the ring buffer.
3765 *
3766 * for example:
3767 * rpage = ring_buffer_alloc_read_page(buffer);
3768 * if (!rpage)
3769 * return error;
3770 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3771 * if (ret >= 0)
3772 * process_page(rpage, ret);
3773 *
3774 * When @full is set, the function will not return true unless
3775 * the writer is off the reader page.
3776 *
3777 * Note: it is up to the calling functions to handle sleeps and wakeups.
3778 * The ring buffer can be used anywhere in the kernel and can not
3779 * blindly call wake_up. The layer that uses the ring buffer must be
3780 * responsible for that.
3781 *
3782 * Returns:
3783 * >=0 if data has been transferred, returns the offset of consumed data.
3784 * <0 if no data has been transferred.
3785 */
3786 int ring_buffer_read_page(struct ring_buffer *buffer,
3787 void **data_page, size_t len, int cpu, int full)
3788 {
3789 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3790 struct ring_buffer_event *event;
3791 struct buffer_data_page *bpage;
3792 struct buffer_page *reader;
3793 unsigned long missed_events;
3794 unsigned long flags;
3795 unsigned int commit;
3796 unsigned int read;
3797 u64 save_timestamp;
3798 int ret = -1;
3799
3800 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3801 goto out;
3802
3803 /*
3804 * If len is not big enough to hold the page header, then
3805 * we can not copy anything.
3806 */
3807 if (len <= BUF_PAGE_HDR_SIZE)
3808 goto out;
3809
3810 len -= BUF_PAGE_HDR_SIZE;
3811
3812 if (!data_page)
3813 goto out;
3814
3815 bpage = *data_page;
3816 if (!bpage)
3817 goto out;
3818
3819 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3820
3821 reader = rb_get_reader_page(cpu_buffer);
3822 if (!reader)
3823 goto out_unlock;
3824
3825 event = rb_reader_event(cpu_buffer);
3826
3827 read = reader->read;
3828 commit = rb_page_commit(reader);
3829
3830 /* Check if any events were dropped */
3831 missed_events = cpu_buffer->lost_events;
3832
3833 /*
3834 * If this page has been partially read or
3835 * if len is not big enough to read the rest of the page or
3836 * a writer is still on the page, then
3837 * we must copy the data from the page to the buffer.
3838 * Otherwise, we can simply swap the page with the one passed in.
3839 */
3840 if (read || (len < (commit - read)) ||
3841 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3842 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3843 unsigned int rpos = read;
3844 unsigned int pos = 0;
3845 unsigned int size;
3846
3847 if (full)
3848 goto out_unlock;
3849
3850 if (len > (commit - read))
3851 len = (commit - read);
3852
3853 size = rb_event_length(event);
3854
3855 if (len < size)
3856 goto out_unlock;
3857
3858 /* save the current timestamp, since the user will need it */
3859 save_timestamp = cpu_buffer->read_stamp;
3860
3861 /* Need to copy one event at a time */
3862 do {
3863 memcpy(bpage->data + pos, rpage->data + rpos, size);
3864
3865 len -= size;
3866
3867 rb_advance_reader(cpu_buffer);
3868 rpos = reader->read;
3869 pos += size;
3870
3871 event = rb_reader_event(cpu_buffer);
3872 size = rb_event_length(event);
3873 } while (len > size);
3874
3875 /* update bpage */
3876 local_set(&bpage->commit, pos);
3877 bpage->time_stamp = save_timestamp;
3878
3879 /* we copied everything to the beginning */
3880 read = 0;
3881 } else {
3882 /* update the entry counter */
3883 cpu_buffer->read += rb_page_entries(reader);
3884
3885 /* swap the pages */
3886 rb_init_page(bpage);
3887 bpage = reader->page;
3888 reader->page = *data_page;
3889 local_set(&reader->write, 0);
3890 local_set(&reader->entries, 0);
3891 reader->read = 0;
3892 *data_page = bpage;
3893
3894 /*
3895 * Use the real_end for the data size,
3896 * This gives us a chance to store the lost events
3897 * on the page.
3898 */
3899 if (reader->real_end)
3900 local_set(&bpage->commit, reader->real_end);
3901 }
3902 ret = read;
3903
3904 cpu_buffer->lost_events = 0;
3905
3906 commit = local_read(&bpage->commit);
3907 /*
3908 * Set a flag in the commit field if we lost events
3909 */
3910 if (missed_events) {
3911 /* If there is room at the end of the page to save the
3912 * missed events, then record it there.
3913 */
3914 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3915 memcpy(&bpage->data[commit], &missed_events,
3916 sizeof(missed_events));
3917 local_add(RB_MISSED_STORED, &bpage->commit);
3918 commit += sizeof(missed_events);
3919 }
3920 local_add(RB_MISSED_EVENTS, &bpage->commit);
3921 }
3922
3923 /*
3924 * This page may be off to user land. Zero it out here.
3925 */
3926 if (commit < BUF_PAGE_SIZE)
3927 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3928
3929 out_unlock:
3930 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3931
3932 out:
3933 return ret;
3934 }
3935 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3936
3937 #ifdef CONFIG_TRACING
3938 static ssize_t
3939 rb_simple_read(struct file *filp, char __user *ubuf,
3940 size_t cnt, loff_t *ppos)
3941 {
3942 unsigned long *p = filp->private_data;
3943 char buf[64];
3944 int r;
3945
3946 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3947 r = sprintf(buf, "permanently disabled\n");
3948 else
3949 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3950
3951 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3952 }
3953
3954 static ssize_t
3955 rb_simple_write(struct file *filp, const char __user *ubuf,
3956 size_t cnt, loff_t *ppos)
3957 {
3958 unsigned long *p = filp->private_data;
3959 char buf[64];
3960 unsigned long val;
3961 int ret;
3962
3963 if (cnt >= sizeof(buf))
3964 return -EINVAL;
3965
3966 if (copy_from_user(&buf, ubuf, cnt))
3967 return -EFAULT;
3968
3969 buf[cnt] = 0;
3970
3971 ret = strict_strtoul(buf, 10, &val);
3972 if (ret < 0)
3973 return ret;
3974
3975 if (val)
3976 set_bit(RB_BUFFERS_ON_BIT, p);
3977 else
3978 clear_bit(RB_BUFFERS_ON_BIT, p);
3979
3980 (*ppos)++;
3981
3982 return cnt;
3983 }
3984
3985 static const struct file_operations rb_simple_fops = {
3986 .open = tracing_open_generic,
3987 .read = rb_simple_read,
3988 .write = rb_simple_write,
3989 };
3990
3991
3992 static __init int rb_init_debugfs(void)
3993 {
3994 struct dentry *d_tracer;
3995
3996 d_tracer = tracing_init_dentry();
3997
3998 trace_create_file("tracing_on", 0644, d_tracer,
3999 &ring_buffer_flags, &rb_simple_fops);
4000
4001 return 0;
4002 }
4003
4004 fs_initcall(rb_init_debugfs);
4005 #endif
4006
4007 #ifdef CONFIG_HOTPLUG_CPU
4008 static int rb_cpu_notify(struct notifier_block *self,
4009 unsigned long action, void *hcpu)
4010 {
4011 struct ring_buffer *buffer =
4012 container_of(self, struct ring_buffer, cpu_notify);
4013 long cpu = (long)hcpu;
4014
4015 switch (action) {
4016 case CPU_UP_PREPARE:
4017 case CPU_UP_PREPARE_FROZEN:
4018 if (cpumask_test_cpu(cpu, buffer->cpumask))
4019 return NOTIFY_OK;
4020
4021 buffer->buffers[cpu] =
4022 rb_allocate_cpu_buffer(buffer, cpu);
4023 if (!buffer->buffers[cpu]) {
4024 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4025 cpu);
4026 return NOTIFY_OK;
4027 }
4028 smp_wmb();
4029 cpumask_set_cpu(cpu, buffer->cpumask);
4030 break;
4031 case CPU_DOWN_PREPARE:
4032 case CPU_DOWN_PREPARE_FROZEN:
4033 /*
4034 * Do nothing.
4035 * If we were to free the buffer, then the user would
4036 * lose any trace that was in the buffer.
4037 */
4038 break;
4039 default:
4040 break;
4041 }
4042 return NOTIFY_OK;
4043 }
4044 #endif
This page took 0.117333 seconds and 5 git commands to generate.