ext3: Flush disk caches on fsync when needed
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26 * The ring buffer header is special. We must manually up keep it.
27 */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 int ret;
31
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44 return ret;
45 }
46
47 /*
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
52 *
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
56 *
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
60 *
61 * Here's some silly ASCII art.
62 *
63 * +------+
64 * |reader| RING BUFFER
65 * |page |
66 * +------+ +---+ +---+ +---+
67 * | |-->| |-->| |
68 * +---+ +---+ +---+
69 * ^ |
70 * | |
71 * +---------------+
72 *
73 *
74 * +------+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
78 * | |-->| |-->| |
79 * +---+ +---+ +---+
80 * ^ |
81 * | |
82 * +---------------+
83 *
84 *
85 * +------+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
89 * ^ | |-->| |-->| |
90 * | +---+ +---+ +---+
91 * | |
92 * | |
93 * +------------------------------+
94 *
95 *
96 * +------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
100 * ^ | | | |-->| |
101 * | New +---+ +---+ +---+
102 * | Reader------^ |
103 * | page |
104 * +------------------------------+
105 *
106 *
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
110 *
111 * We will be using cmpxchg soon to make all this lockless.
112 *
113 */
114
115 /*
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
121 *
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
124 *
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
128 *
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
131 */
132
133 /*
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
136 *
137 * ON DISABLED
138 * ---- ----------
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
142 */
143
144 enum {
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159 * tracing_on - enable all tracing buffers
160 *
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
163 */
164 void tracing_on(void)
165 {
166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171 * tracing_off - turn off all tracing buffers
172 *
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
177 */
178 void tracing_off(void)
179 {
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185 * tracing_off_permanent - permanently disable ring buffers
186 *
187 * This function, once called, will disable all ring buffers
188 * permanently.
189 */
190 void tracing_off_permanent(void)
191 {
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196 * tracing_is_on - show state of ring buffers enabled
197 */
198 int tracing_is_on(void)
199 {
200 return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #include "trace.h"
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213
214 enum {
215 RB_LEN_TIME_EXTEND = 8,
216 RB_LEN_TIME_STAMP = 16,
217 };
218
219 static inline int rb_null_event(struct ring_buffer_event *event)
220 {
221 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
222 }
223
224 static void rb_event_set_padding(struct ring_buffer_event *event)
225 {
226 /* padding has a NULL time_delta */
227 event->type_len = RINGBUF_TYPE_PADDING;
228 event->time_delta = 0;
229 }
230
231 static unsigned
232 rb_event_data_length(struct ring_buffer_event *event)
233 {
234 unsigned length;
235
236 if (event->type_len)
237 length = event->type_len * RB_ALIGNMENT;
238 else
239 length = event->array[0];
240 return length + RB_EVNT_HDR_SIZE;
241 }
242
243 /* inline for ring buffer fast paths */
244 static unsigned
245 rb_event_length(struct ring_buffer_event *event)
246 {
247 switch (event->type_len) {
248 case RINGBUF_TYPE_PADDING:
249 if (rb_null_event(event))
250 /* undefined */
251 return -1;
252 return event->array[0] + RB_EVNT_HDR_SIZE;
253
254 case RINGBUF_TYPE_TIME_EXTEND:
255 return RB_LEN_TIME_EXTEND;
256
257 case RINGBUF_TYPE_TIME_STAMP:
258 return RB_LEN_TIME_STAMP;
259
260 case RINGBUF_TYPE_DATA:
261 return rb_event_data_length(event);
262 default:
263 BUG();
264 }
265 /* not hit */
266 return 0;
267 }
268
269 /**
270 * ring_buffer_event_length - return the length of the event
271 * @event: the event to get the length of
272 */
273 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
274 {
275 unsigned length = rb_event_length(event);
276 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
277 return length;
278 length -= RB_EVNT_HDR_SIZE;
279 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
280 length -= sizeof(event->array[0]);
281 return length;
282 }
283 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
284
285 /* inline for ring buffer fast paths */
286 static void *
287 rb_event_data(struct ring_buffer_event *event)
288 {
289 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
290 /* If length is in len field, then array[0] has the data */
291 if (event->type_len)
292 return (void *)&event->array[0];
293 /* Otherwise length is in array[0] and array[1] has the data */
294 return (void *)&event->array[1];
295 }
296
297 /**
298 * ring_buffer_event_data - return the data of the event
299 * @event: the event to get the data from
300 */
301 void *ring_buffer_event_data(struct ring_buffer_event *event)
302 {
303 return rb_event_data(event);
304 }
305 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
306
307 #define for_each_buffer_cpu(buffer, cpu) \
308 for_each_cpu(cpu, buffer->cpumask)
309
310 #define TS_SHIFT 27
311 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
312 #define TS_DELTA_TEST (~TS_MASK)
313
314 struct buffer_data_page {
315 u64 time_stamp; /* page time stamp */
316 local_t commit; /* write committed index */
317 unsigned char data[]; /* data of buffer page */
318 };
319
320 /*
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
326 * lockless.
327 */
328 struct buffer_page {
329 struct list_head list; /* list of buffer pages */
330 local_t write; /* index for next write */
331 unsigned read; /* index for next read */
332 local_t entries; /* entries on this page */
333 struct buffer_data_page *page; /* Actual data page */
334 };
335
336 /*
337 * The buffer page counters, write and entries, must be reset
338 * atomically when crossing page boundaries. To synchronize this
339 * update, two counters are inserted into the number. One is
340 * the actual counter for the write position or count on the page.
341 *
342 * The other is a counter of updaters. Before an update happens
343 * the update partition of the counter is incremented. This will
344 * allow the updater to update the counter atomically.
345 *
346 * The counter is 20 bits, and the state data is 12.
347 */
348 #define RB_WRITE_MASK 0xfffff
349 #define RB_WRITE_INTCNT (1 << 20)
350
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353 local_set(&bpage->commit, 0);
354 }
355
356 /**
357 * ring_buffer_page_len - the size of data on the page.
358 * @page: The page to read
359 *
360 * Returns the amount of data on the page, including buffer page header.
361 */
362 size_t ring_buffer_page_len(void *page)
363 {
364 return local_read(&((struct buffer_data_page *)page)->commit)
365 + BUF_PAGE_HDR_SIZE;
366 }
367
368 /*
369 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
370 * this issue out.
371 */
372 static void free_buffer_page(struct buffer_page *bpage)
373 {
374 free_page((unsigned long)bpage->page);
375 kfree(bpage);
376 }
377
378 /*
379 * We need to fit the time_stamp delta into 27 bits.
380 */
381 static inline int test_time_stamp(u64 delta)
382 {
383 if (delta & TS_DELTA_TEST)
384 return 1;
385 return 0;
386 }
387
388 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
389
390 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
391 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
392
393 /* Max number of timestamps that can fit on a page */
394 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
395
396 int ring_buffer_print_page_header(struct trace_seq *s)
397 {
398 struct buffer_data_page field;
399 int ret;
400
401 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
402 "offset:0;\tsize:%u;\n",
403 (unsigned int)sizeof(field.time_stamp));
404
405 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
406 "offset:%u;\tsize:%u;\n",
407 (unsigned int)offsetof(typeof(field), commit),
408 (unsigned int)sizeof(field.commit));
409
410 ret = trace_seq_printf(s, "\tfield: char data;\t"
411 "offset:%u;\tsize:%u;\n",
412 (unsigned int)offsetof(typeof(field), data),
413 (unsigned int)BUF_PAGE_SIZE);
414
415 return ret;
416 }
417
418 /*
419 * head_page == tail_page && head == tail then buffer is empty.
420 */
421 struct ring_buffer_per_cpu {
422 int cpu;
423 struct ring_buffer *buffer;
424 spinlock_t reader_lock; /* serialize readers */
425 raw_spinlock_t lock;
426 struct lock_class_key lock_key;
427 struct list_head *pages;
428 struct buffer_page *head_page; /* read from head */
429 struct buffer_page *tail_page; /* write to tail */
430 struct buffer_page *commit_page; /* committed pages */
431 struct buffer_page *reader_page;
432 local_t commit_overrun;
433 local_t overrun;
434 local_t entries;
435 local_t committing;
436 local_t commits;
437 unsigned long read;
438 u64 write_stamp;
439 u64 read_stamp;
440 atomic_t record_disabled;
441 };
442
443 struct ring_buffer {
444 unsigned pages;
445 unsigned flags;
446 int cpus;
447 atomic_t record_disabled;
448 cpumask_var_t cpumask;
449
450 struct lock_class_key *reader_lock_key;
451
452 struct mutex mutex;
453
454 struct ring_buffer_per_cpu **buffers;
455
456 #ifdef CONFIG_HOTPLUG_CPU
457 struct notifier_block cpu_notify;
458 #endif
459 u64 (*clock)(void);
460 };
461
462 struct ring_buffer_iter {
463 struct ring_buffer_per_cpu *cpu_buffer;
464 unsigned long head;
465 struct buffer_page *head_page;
466 u64 read_stamp;
467 };
468
469 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
470 #define RB_WARN_ON(b, cond) \
471 ({ \
472 int _____ret = unlikely(cond); \
473 if (_____ret) { \
474 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
475 struct ring_buffer_per_cpu *__b = \
476 (void *)b; \
477 atomic_inc(&__b->buffer->record_disabled); \
478 } else \
479 atomic_inc(&b->record_disabled); \
480 WARN_ON(1); \
481 } \
482 _____ret; \
483 })
484
485 /* Up this if you want to test the TIME_EXTENTS and normalization */
486 #define DEBUG_SHIFT 0
487
488 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
489 {
490 /* shift to debug/test normalization and TIME_EXTENTS */
491 return buffer->clock() << DEBUG_SHIFT;
492 }
493
494 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
495 {
496 u64 time;
497
498 preempt_disable_notrace();
499 time = rb_time_stamp(buffer, cpu);
500 preempt_enable_no_resched_notrace();
501
502 return time;
503 }
504 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
505
506 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
507 int cpu, u64 *ts)
508 {
509 /* Just stupid testing the normalize function and deltas */
510 *ts >>= DEBUG_SHIFT;
511 }
512 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
513
514 /*
515 * Making the ring buffer lockless makes things tricky.
516 * Although writes only happen on the CPU that they are on,
517 * and they only need to worry about interrupts. Reads can
518 * happen on any CPU.
519 *
520 * The reader page is always off the ring buffer, but when the
521 * reader finishes with a page, it needs to swap its page with
522 * a new one from the buffer. The reader needs to take from
523 * the head (writes go to the tail). But if a writer is in overwrite
524 * mode and wraps, it must push the head page forward.
525 *
526 * Here lies the problem.
527 *
528 * The reader must be careful to replace only the head page, and
529 * not another one. As described at the top of the file in the
530 * ASCII art, the reader sets its old page to point to the next
531 * page after head. It then sets the page after head to point to
532 * the old reader page. But if the writer moves the head page
533 * during this operation, the reader could end up with the tail.
534 *
535 * We use cmpxchg to help prevent this race. We also do something
536 * special with the page before head. We set the LSB to 1.
537 *
538 * When the writer must push the page forward, it will clear the
539 * bit that points to the head page, move the head, and then set
540 * the bit that points to the new head page.
541 *
542 * We also don't want an interrupt coming in and moving the head
543 * page on another writer. Thus we use the second LSB to catch
544 * that too. Thus:
545 *
546 * head->list->prev->next bit 1 bit 0
547 * ------- -------
548 * Normal page 0 0
549 * Points to head page 0 1
550 * New head page 1 0
551 *
552 * Note we can not trust the prev pointer of the head page, because:
553 *
554 * +----+ +-----+ +-----+
555 * | |------>| T |---X--->| N |
556 * | |<------| | | |
557 * +----+ +-----+ +-----+
558 * ^ ^ |
559 * | +-----+ | |
560 * +----------| R |----------+ |
561 * | |<-----------+
562 * +-----+
563 *
564 * Key: ---X--> HEAD flag set in pointer
565 * T Tail page
566 * R Reader page
567 * N Next page
568 *
569 * (see __rb_reserve_next() to see where this happens)
570 *
571 * What the above shows is that the reader just swapped out
572 * the reader page with a page in the buffer, but before it
573 * could make the new header point back to the new page added
574 * it was preempted by a writer. The writer moved forward onto
575 * the new page added by the reader and is about to move forward
576 * again.
577 *
578 * You can see, it is legitimate for the previous pointer of
579 * the head (or any page) not to point back to itself. But only
580 * temporarially.
581 */
582
583 #define RB_PAGE_NORMAL 0UL
584 #define RB_PAGE_HEAD 1UL
585 #define RB_PAGE_UPDATE 2UL
586
587
588 #define RB_FLAG_MASK 3UL
589
590 /* PAGE_MOVED is not part of the mask */
591 #define RB_PAGE_MOVED 4UL
592
593 /*
594 * rb_list_head - remove any bit
595 */
596 static struct list_head *rb_list_head(struct list_head *list)
597 {
598 unsigned long val = (unsigned long)list;
599
600 return (struct list_head *)(val & ~RB_FLAG_MASK);
601 }
602
603 /*
604 * rb_is_head_page - test if the give page is the head page
605 *
606 * Because the reader may move the head_page pointer, we can
607 * not trust what the head page is (it may be pointing to
608 * the reader page). But if the next page is a header page,
609 * its flags will be non zero.
610 */
611 static int inline
612 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
613 struct buffer_page *page, struct list_head *list)
614 {
615 unsigned long val;
616
617 val = (unsigned long)list->next;
618
619 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
620 return RB_PAGE_MOVED;
621
622 return val & RB_FLAG_MASK;
623 }
624
625 /*
626 * rb_is_reader_page
627 *
628 * The unique thing about the reader page, is that, if the
629 * writer is ever on it, the previous pointer never points
630 * back to the reader page.
631 */
632 static int rb_is_reader_page(struct buffer_page *page)
633 {
634 struct list_head *list = page->list.prev;
635
636 return rb_list_head(list->next) != &page->list;
637 }
638
639 /*
640 * rb_set_list_to_head - set a list_head to be pointing to head.
641 */
642 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
643 struct list_head *list)
644 {
645 unsigned long *ptr;
646
647 ptr = (unsigned long *)&list->next;
648 *ptr |= RB_PAGE_HEAD;
649 *ptr &= ~RB_PAGE_UPDATE;
650 }
651
652 /*
653 * rb_head_page_activate - sets up head page
654 */
655 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
656 {
657 struct buffer_page *head;
658
659 head = cpu_buffer->head_page;
660 if (!head)
661 return;
662
663 /*
664 * Set the previous list pointer to have the HEAD flag.
665 */
666 rb_set_list_to_head(cpu_buffer, head->list.prev);
667 }
668
669 static void rb_list_head_clear(struct list_head *list)
670 {
671 unsigned long *ptr = (unsigned long *)&list->next;
672
673 *ptr &= ~RB_FLAG_MASK;
674 }
675
676 /*
677 * rb_head_page_dactivate - clears head page ptr (for free list)
678 */
679 static void
680 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
681 {
682 struct list_head *hd;
683
684 /* Go through the whole list and clear any pointers found. */
685 rb_list_head_clear(cpu_buffer->pages);
686
687 list_for_each(hd, cpu_buffer->pages)
688 rb_list_head_clear(hd);
689 }
690
691 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
692 struct buffer_page *head,
693 struct buffer_page *prev,
694 int old_flag, int new_flag)
695 {
696 struct list_head *list;
697 unsigned long val = (unsigned long)&head->list;
698 unsigned long ret;
699
700 list = &prev->list;
701
702 val &= ~RB_FLAG_MASK;
703
704 ret = (unsigned long)cmpxchg(&list->next,
705 val | old_flag, val | new_flag);
706
707 /* check if the reader took the page */
708 if ((ret & ~RB_FLAG_MASK) != val)
709 return RB_PAGE_MOVED;
710
711 return ret & RB_FLAG_MASK;
712 }
713
714 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
715 struct buffer_page *head,
716 struct buffer_page *prev,
717 int old_flag)
718 {
719 return rb_head_page_set(cpu_buffer, head, prev,
720 old_flag, RB_PAGE_UPDATE);
721 }
722
723 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
724 struct buffer_page *head,
725 struct buffer_page *prev,
726 int old_flag)
727 {
728 return rb_head_page_set(cpu_buffer, head, prev,
729 old_flag, RB_PAGE_HEAD);
730 }
731
732 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
733 struct buffer_page *head,
734 struct buffer_page *prev,
735 int old_flag)
736 {
737 return rb_head_page_set(cpu_buffer, head, prev,
738 old_flag, RB_PAGE_NORMAL);
739 }
740
741 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
742 struct buffer_page **bpage)
743 {
744 struct list_head *p = rb_list_head((*bpage)->list.next);
745
746 *bpage = list_entry(p, struct buffer_page, list);
747 }
748
749 static struct buffer_page *
750 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
751 {
752 struct buffer_page *head;
753 struct buffer_page *page;
754 struct list_head *list;
755 int i;
756
757 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
758 return NULL;
759
760 /* sanity check */
761 list = cpu_buffer->pages;
762 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
763 return NULL;
764
765 page = head = cpu_buffer->head_page;
766 /*
767 * It is possible that the writer moves the header behind
768 * where we started, and we miss in one loop.
769 * A second loop should grab the header, but we'll do
770 * three loops just because I'm paranoid.
771 */
772 for (i = 0; i < 3; i++) {
773 do {
774 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
775 cpu_buffer->head_page = page;
776 return page;
777 }
778 rb_inc_page(cpu_buffer, &page);
779 } while (page != head);
780 }
781
782 RB_WARN_ON(cpu_buffer, 1);
783
784 return NULL;
785 }
786
787 static int rb_head_page_replace(struct buffer_page *old,
788 struct buffer_page *new)
789 {
790 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
791 unsigned long val;
792 unsigned long ret;
793
794 val = *ptr & ~RB_FLAG_MASK;
795 val |= RB_PAGE_HEAD;
796
797 ret = cmpxchg(ptr, val, &new->list);
798
799 return ret == val;
800 }
801
802 /*
803 * rb_tail_page_update - move the tail page forward
804 *
805 * Returns 1 if moved tail page, 0 if someone else did.
806 */
807 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
808 struct buffer_page *tail_page,
809 struct buffer_page *next_page)
810 {
811 struct buffer_page *old_tail;
812 unsigned long old_entries;
813 unsigned long old_write;
814 int ret = 0;
815
816 /*
817 * The tail page now needs to be moved forward.
818 *
819 * We need to reset the tail page, but without messing
820 * with possible erasing of data brought in by interrupts
821 * that have moved the tail page and are currently on it.
822 *
823 * We add a counter to the write field to denote this.
824 */
825 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
826 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
827
828 /*
829 * Just make sure we have seen our old_write and synchronize
830 * with any interrupts that come in.
831 */
832 barrier();
833
834 /*
835 * If the tail page is still the same as what we think
836 * it is, then it is up to us to update the tail
837 * pointer.
838 */
839 if (tail_page == cpu_buffer->tail_page) {
840 /* Zero the write counter */
841 unsigned long val = old_write & ~RB_WRITE_MASK;
842 unsigned long eval = old_entries & ~RB_WRITE_MASK;
843
844 /*
845 * This will only succeed if an interrupt did
846 * not come in and change it. In which case, we
847 * do not want to modify it.
848 *
849 * We add (void) to let the compiler know that we do not care
850 * about the return value of these functions. We use the
851 * cmpxchg to only update if an interrupt did not already
852 * do it for us. If the cmpxchg fails, we don't care.
853 */
854 (void)local_cmpxchg(&next_page->write, old_write, val);
855 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
856
857 /*
858 * No need to worry about races with clearing out the commit.
859 * it only can increment when a commit takes place. But that
860 * only happens in the outer most nested commit.
861 */
862 local_set(&next_page->page->commit, 0);
863
864 old_tail = cmpxchg(&cpu_buffer->tail_page,
865 tail_page, next_page);
866
867 if (old_tail == tail_page)
868 ret = 1;
869 }
870
871 return ret;
872 }
873
874 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
875 struct buffer_page *bpage)
876 {
877 unsigned long val = (unsigned long)bpage;
878
879 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
880 return 1;
881
882 return 0;
883 }
884
885 /**
886 * rb_check_list - make sure a pointer to a list has the last bits zero
887 */
888 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
889 struct list_head *list)
890 {
891 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
892 return 1;
893 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
894 return 1;
895 return 0;
896 }
897
898 /**
899 * check_pages - integrity check of buffer pages
900 * @cpu_buffer: CPU buffer with pages to test
901 *
902 * As a safety measure we check to make sure the data pages have not
903 * been corrupted.
904 */
905 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
906 {
907 struct list_head *head = cpu_buffer->pages;
908 struct buffer_page *bpage, *tmp;
909
910 rb_head_page_deactivate(cpu_buffer);
911
912 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
913 return -1;
914 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
915 return -1;
916
917 if (rb_check_list(cpu_buffer, head))
918 return -1;
919
920 list_for_each_entry_safe(bpage, tmp, head, list) {
921 if (RB_WARN_ON(cpu_buffer,
922 bpage->list.next->prev != &bpage->list))
923 return -1;
924 if (RB_WARN_ON(cpu_buffer,
925 bpage->list.prev->next != &bpage->list))
926 return -1;
927 if (rb_check_list(cpu_buffer, &bpage->list))
928 return -1;
929 }
930
931 rb_head_page_activate(cpu_buffer);
932
933 return 0;
934 }
935
936 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
937 unsigned nr_pages)
938 {
939 struct buffer_page *bpage, *tmp;
940 unsigned long addr;
941 LIST_HEAD(pages);
942 unsigned i;
943
944 WARN_ON(!nr_pages);
945
946 for (i = 0; i < nr_pages; i++) {
947 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
948 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
949 if (!bpage)
950 goto free_pages;
951
952 rb_check_bpage(cpu_buffer, bpage);
953
954 list_add(&bpage->list, &pages);
955
956 addr = __get_free_page(GFP_KERNEL);
957 if (!addr)
958 goto free_pages;
959 bpage->page = (void *)addr;
960 rb_init_page(bpage->page);
961 }
962
963 /*
964 * The ring buffer page list is a circular list that does not
965 * start and end with a list head. All page list items point to
966 * other pages.
967 */
968 cpu_buffer->pages = pages.next;
969 list_del(&pages);
970
971 rb_check_pages(cpu_buffer);
972
973 return 0;
974
975 free_pages:
976 list_for_each_entry_safe(bpage, tmp, &pages, list) {
977 list_del_init(&bpage->list);
978 free_buffer_page(bpage);
979 }
980 return -ENOMEM;
981 }
982
983 static struct ring_buffer_per_cpu *
984 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
985 {
986 struct ring_buffer_per_cpu *cpu_buffer;
987 struct buffer_page *bpage;
988 unsigned long addr;
989 int ret;
990
991 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
992 GFP_KERNEL, cpu_to_node(cpu));
993 if (!cpu_buffer)
994 return NULL;
995
996 cpu_buffer->cpu = cpu;
997 cpu_buffer->buffer = buffer;
998 spin_lock_init(&cpu_buffer->reader_lock);
999 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1000 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
1001
1002 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1003 GFP_KERNEL, cpu_to_node(cpu));
1004 if (!bpage)
1005 goto fail_free_buffer;
1006
1007 rb_check_bpage(cpu_buffer, bpage);
1008
1009 cpu_buffer->reader_page = bpage;
1010 addr = __get_free_page(GFP_KERNEL);
1011 if (!addr)
1012 goto fail_free_reader;
1013 bpage->page = (void *)addr;
1014 rb_init_page(bpage->page);
1015
1016 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1017
1018 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1019 if (ret < 0)
1020 goto fail_free_reader;
1021
1022 cpu_buffer->head_page
1023 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1024 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1025
1026 rb_head_page_activate(cpu_buffer);
1027
1028 return cpu_buffer;
1029
1030 fail_free_reader:
1031 free_buffer_page(cpu_buffer->reader_page);
1032
1033 fail_free_buffer:
1034 kfree(cpu_buffer);
1035 return NULL;
1036 }
1037
1038 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1039 {
1040 struct list_head *head = cpu_buffer->pages;
1041 struct buffer_page *bpage, *tmp;
1042
1043 free_buffer_page(cpu_buffer->reader_page);
1044
1045 rb_head_page_deactivate(cpu_buffer);
1046
1047 if (head) {
1048 list_for_each_entry_safe(bpage, tmp, head, list) {
1049 list_del_init(&bpage->list);
1050 free_buffer_page(bpage);
1051 }
1052 bpage = list_entry(head, struct buffer_page, list);
1053 free_buffer_page(bpage);
1054 }
1055
1056 kfree(cpu_buffer);
1057 }
1058
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 static int rb_cpu_notify(struct notifier_block *self,
1061 unsigned long action, void *hcpu);
1062 #endif
1063
1064 /**
1065 * ring_buffer_alloc - allocate a new ring_buffer
1066 * @size: the size in bytes per cpu that is needed.
1067 * @flags: attributes to set for the ring buffer.
1068 *
1069 * Currently the only flag that is available is the RB_FL_OVERWRITE
1070 * flag. This flag means that the buffer will overwrite old data
1071 * when the buffer wraps. If this flag is not set, the buffer will
1072 * drop data when the tail hits the head.
1073 */
1074 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1075 struct lock_class_key *key)
1076 {
1077 struct ring_buffer *buffer;
1078 int bsize;
1079 int cpu;
1080
1081 /* keep it in its own cache line */
1082 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1083 GFP_KERNEL);
1084 if (!buffer)
1085 return NULL;
1086
1087 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1088 goto fail_free_buffer;
1089
1090 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1091 buffer->flags = flags;
1092 buffer->clock = trace_clock_local;
1093 buffer->reader_lock_key = key;
1094
1095 /* need at least two pages */
1096 if (buffer->pages < 2)
1097 buffer->pages = 2;
1098
1099 /*
1100 * In case of non-hotplug cpu, if the ring-buffer is allocated
1101 * in early initcall, it will not be notified of secondary cpus.
1102 * In that off case, we need to allocate for all possible cpus.
1103 */
1104 #ifdef CONFIG_HOTPLUG_CPU
1105 get_online_cpus();
1106 cpumask_copy(buffer->cpumask, cpu_online_mask);
1107 #else
1108 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1109 #endif
1110 buffer->cpus = nr_cpu_ids;
1111
1112 bsize = sizeof(void *) * nr_cpu_ids;
1113 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1114 GFP_KERNEL);
1115 if (!buffer->buffers)
1116 goto fail_free_cpumask;
1117
1118 for_each_buffer_cpu(buffer, cpu) {
1119 buffer->buffers[cpu] =
1120 rb_allocate_cpu_buffer(buffer, cpu);
1121 if (!buffer->buffers[cpu])
1122 goto fail_free_buffers;
1123 }
1124
1125 #ifdef CONFIG_HOTPLUG_CPU
1126 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1127 buffer->cpu_notify.priority = 0;
1128 register_cpu_notifier(&buffer->cpu_notify);
1129 #endif
1130
1131 put_online_cpus();
1132 mutex_init(&buffer->mutex);
1133
1134 return buffer;
1135
1136 fail_free_buffers:
1137 for_each_buffer_cpu(buffer, cpu) {
1138 if (buffer->buffers[cpu])
1139 rb_free_cpu_buffer(buffer->buffers[cpu]);
1140 }
1141 kfree(buffer->buffers);
1142
1143 fail_free_cpumask:
1144 free_cpumask_var(buffer->cpumask);
1145 put_online_cpus();
1146
1147 fail_free_buffer:
1148 kfree(buffer);
1149 return NULL;
1150 }
1151 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1152
1153 /**
1154 * ring_buffer_free - free a ring buffer.
1155 * @buffer: the buffer to free.
1156 */
1157 void
1158 ring_buffer_free(struct ring_buffer *buffer)
1159 {
1160 int cpu;
1161
1162 get_online_cpus();
1163
1164 #ifdef CONFIG_HOTPLUG_CPU
1165 unregister_cpu_notifier(&buffer->cpu_notify);
1166 #endif
1167
1168 for_each_buffer_cpu(buffer, cpu)
1169 rb_free_cpu_buffer(buffer->buffers[cpu]);
1170
1171 put_online_cpus();
1172
1173 kfree(buffer->buffers);
1174 free_cpumask_var(buffer->cpumask);
1175
1176 kfree(buffer);
1177 }
1178 EXPORT_SYMBOL_GPL(ring_buffer_free);
1179
1180 void ring_buffer_set_clock(struct ring_buffer *buffer,
1181 u64 (*clock)(void))
1182 {
1183 buffer->clock = clock;
1184 }
1185
1186 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1187
1188 static void
1189 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1190 {
1191 struct buffer_page *bpage;
1192 struct list_head *p;
1193 unsigned i;
1194
1195 atomic_inc(&cpu_buffer->record_disabled);
1196 synchronize_sched();
1197
1198 rb_head_page_deactivate(cpu_buffer);
1199
1200 for (i = 0; i < nr_pages; i++) {
1201 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1202 return;
1203 p = cpu_buffer->pages->next;
1204 bpage = list_entry(p, struct buffer_page, list);
1205 list_del_init(&bpage->list);
1206 free_buffer_page(bpage);
1207 }
1208 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1209 return;
1210
1211 rb_reset_cpu(cpu_buffer);
1212
1213 rb_check_pages(cpu_buffer);
1214
1215 atomic_dec(&cpu_buffer->record_disabled);
1216
1217 }
1218
1219 static void
1220 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1221 struct list_head *pages, unsigned nr_pages)
1222 {
1223 struct buffer_page *bpage;
1224 struct list_head *p;
1225 unsigned i;
1226
1227 atomic_inc(&cpu_buffer->record_disabled);
1228 synchronize_sched();
1229
1230 spin_lock_irq(&cpu_buffer->reader_lock);
1231 rb_head_page_deactivate(cpu_buffer);
1232
1233 for (i = 0; i < nr_pages; i++) {
1234 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1235 return;
1236 p = pages->next;
1237 bpage = list_entry(p, struct buffer_page, list);
1238 list_del_init(&bpage->list);
1239 list_add_tail(&bpage->list, cpu_buffer->pages);
1240 }
1241 rb_reset_cpu(cpu_buffer);
1242 spin_unlock_irq(&cpu_buffer->reader_lock);
1243
1244 rb_check_pages(cpu_buffer);
1245
1246 atomic_dec(&cpu_buffer->record_disabled);
1247 }
1248
1249 /**
1250 * ring_buffer_resize - resize the ring buffer
1251 * @buffer: the buffer to resize.
1252 * @size: the new size.
1253 *
1254 * The tracer is responsible for making sure that the buffer is
1255 * not being used while changing the size.
1256 * Note: We may be able to change the above requirement by using
1257 * RCU synchronizations.
1258 *
1259 * Minimum size is 2 * BUF_PAGE_SIZE.
1260 *
1261 * Returns -1 on failure.
1262 */
1263 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1264 {
1265 struct ring_buffer_per_cpu *cpu_buffer;
1266 unsigned nr_pages, rm_pages, new_pages;
1267 struct buffer_page *bpage, *tmp;
1268 unsigned long buffer_size;
1269 unsigned long addr;
1270 LIST_HEAD(pages);
1271 int i, cpu;
1272
1273 /*
1274 * Always succeed at resizing a non-existent buffer:
1275 */
1276 if (!buffer)
1277 return size;
1278
1279 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1280 size *= BUF_PAGE_SIZE;
1281 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1282
1283 /* we need a minimum of two pages */
1284 if (size < BUF_PAGE_SIZE * 2)
1285 size = BUF_PAGE_SIZE * 2;
1286
1287 if (size == buffer_size)
1288 return size;
1289
1290 mutex_lock(&buffer->mutex);
1291 get_online_cpus();
1292
1293 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1294
1295 if (size < buffer_size) {
1296
1297 /* easy case, just free pages */
1298 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1299 goto out_fail;
1300
1301 rm_pages = buffer->pages - nr_pages;
1302
1303 for_each_buffer_cpu(buffer, cpu) {
1304 cpu_buffer = buffer->buffers[cpu];
1305 rb_remove_pages(cpu_buffer, rm_pages);
1306 }
1307 goto out;
1308 }
1309
1310 /*
1311 * This is a bit more difficult. We only want to add pages
1312 * when we can allocate enough for all CPUs. We do this
1313 * by allocating all the pages and storing them on a local
1314 * link list. If we succeed in our allocation, then we
1315 * add these pages to the cpu_buffers. Otherwise we just free
1316 * them all and return -ENOMEM;
1317 */
1318 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1319 goto out_fail;
1320
1321 new_pages = nr_pages - buffer->pages;
1322
1323 for_each_buffer_cpu(buffer, cpu) {
1324 for (i = 0; i < new_pages; i++) {
1325 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1326 cache_line_size()),
1327 GFP_KERNEL, cpu_to_node(cpu));
1328 if (!bpage)
1329 goto free_pages;
1330 list_add(&bpage->list, &pages);
1331 addr = __get_free_page(GFP_KERNEL);
1332 if (!addr)
1333 goto free_pages;
1334 bpage->page = (void *)addr;
1335 rb_init_page(bpage->page);
1336 }
1337 }
1338
1339 for_each_buffer_cpu(buffer, cpu) {
1340 cpu_buffer = buffer->buffers[cpu];
1341 rb_insert_pages(cpu_buffer, &pages, new_pages);
1342 }
1343
1344 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1345 goto out_fail;
1346
1347 out:
1348 buffer->pages = nr_pages;
1349 put_online_cpus();
1350 mutex_unlock(&buffer->mutex);
1351
1352 return size;
1353
1354 free_pages:
1355 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1356 list_del_init(&bpage->list);
1357 free_buffer_page(bpage);
1358 }
1359 put_online_cpus();
1360 mutex_unlock(&buffer->mutex);
1361 return -ENOMEM;
1362
1363 /*
1364 * Something went totally wrong, and we are too paranoid
1365 * to even clean up the mess.
1366 */
1367 out_fail:
1368 put_online_cpus();
1369 mutex_unlock(&buffer->mutex);
1370 return -1;
1371 }
1372 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1373
1374 static inline void *
1375 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1376 {
1377 return bpage->data + index;
1378 }
1379
1380 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1381 {
1382 return bpage->page->data + index;
1383 }
1384
1385 static inline struct ring_buffer_event *
1386 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1387 {
1388 return __rb_page_index(cpu_buffer->reader_page,
1389 cpu_buffer->reader_page->read);
1390 }
1391
1392 static inline struct ring_buffer_event *
1393 rb_iter_head_event(struct ring_buffer_iter *iter)
1394 {
1395 return __rb_page_index(iter->head_page, iter->head);
1396 }
1397
1398 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1399 {
1400 return local_read(&bpage->write) & RB_WRITE_MASK;
1401 }
1402
1403 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1404 {
1405 return local_read(&bpage->page->commit);
1406 }
1407
1408 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1409 {
1410 return local_read(&bpage->entries) & RB_WRITE_MASK;
1411 }
1412
1413 /* Size is determined by what has been commited */
1414 static inline unsigned rb_page_size(struct buffer_page *bpage)
1415 {
1416 return rb_page_commit(bpage);
1417 }
1418
1419 static inline unsigned
1420 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1421 {
1422 return rb_page_commit(cpu_buffer->commit_page);
1423 }
1424
1425 static inline unsigned
1426 rb_event_index(struct ring_buffer_event *event)
1427 {
1428 unsigned long addr = (unsigned long)event;
1429
1430 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1431 }
1432
1433 static inline int
1434 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1435 struct ring_buffer_event *event)
1436 {
1437 unsigned long addr = (unsigned long)event;
1438 unsigned long index;
1439
1440 index = rb_event_index(event);
1441 addr &= PAGE_MASK;
1442
1443 return cpu_buffer->commit_page->page == (void *)addr &&
1444 rb_commit_index(cpu_buffer) == index;
1445 }
1446
1447 static void
1448 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450 unsigned long max_count;
1451
1452 /*
1453 * We only race with interrupts and NMIs on this CPU.
1454 * If we own the commit event, then we can commit
1455 * all others that interrupted us, since the interruptions
1456 * are in stack format (they finish before they come
1457 * back to us). This allows us to do a simple loop to
1458 * assign the commit to the tail.
1459 */
1460 again:
1461 max_count = cpu_buffer->buffer->pages * 100;
1462
1463 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1464 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1465 return;
1466 if (RB_WARN_ON(cpu_buffer,
1467 rb_is_reader_page(cpu_buffer->tail_page)))
1468 return;
1469 local_set(&cpu_buffer->commit_page->page->commit,
1470 rb_page_write(cpu_buffer->commit_page));
1471 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1472 cpu_buffer->write_stamp =
1473 cpu_buffer->commit_page->page->time_stamp;
1474 /* add barrier to keep gcc from optimizing too much */
1475 barrier();
1476 }
1477 while (rb_commit_index(cpu_buffer) !=
1478 rb_page_write(cpu_buffer->commit_page)) {
1479
1480 local_set(&cpu_buffer->commit_page->page->commit,
1481 rb_page_write(cpu_buffer->commit_page));
1482 RB_WARN_ON(cpu_buffer,
1483 local_read(&cpu_buffer->commit_page->page->commit) &
1484 ~RB_WRITE_MASK);
1485 barrier();
1486 }
1487
1488 /* again, keep gcc from optimizing */
1489 barrier();
1490
1491 /*
1492 * If an interrupt came in just after the first while loop
1493 * and pushed the tail page forward, we will be left with
1494 * a dangling commit that will never go forward.
1495 */
1496 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1497 goto again;
1498 }
1499
1500 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1501 {
1502 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1503 cpu_buffer->reader_page->read = 0;
1504 }
1505
1506 static void rb_inc_iter(struct ring_buffer_iter *iter)
1507 {
1508 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509
1510 /*
1511 * The iterator could be on the reader page (it starts there).
1512 * But the head could have moved, since the reader was
1513 * found. Check for this case and assign the iterator
1514 * to the head page instead of next.
1515 */
1516 if (iter->head_page == cpu_buffer->reader_page)
1517 iter->head_page = rb_set_head_page(cpu_buffer);
1518 else
1519 rb_inc_page(cpu_buffer, &iter->head_page);
1520
1521 iter->read_stamp = iter->head_page->page->time_stamp;
1522 iter->head = 0;
1523 }
1524
1525 /**
1526 * ring_buffer_update_event - update event type and data
1527 * @event: the even to update
1528 * @type: the type of event
1529 * @length: the size of the event field in the ring buffer
1530 *
1531 * Update the type and data fields of the event. The length
1532 * is the actual size that is written to the ring buffer,
1533 * and with this, we can determine what to place into the
1534 * data field.
1535 */
1536 static void
1537 rb_update_event(struct ring_buffer_event *event,
1538 unsigned type, unsigned length)
1539 {
1540 event->type_len = type;
1541
1542 switch (type) {
1543
1544 case RINGBUF_TYPE_PADDING:
1545 case RINGBUF_TYPE_TIME_EXTEND:
1546 case RINGBUF_TYPE_TIME_STAMP:
1547 break;
1548
1549 case 0:
1550 length -= RB_EVNT_HDR_SIZE;
1551 if (length > RB_MAX_SMALL_DATA)
1552 event->array[0] = length;
1553 else
1554 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1555 break;
1556 default:
1557 BUG();
1558 }
1559 }
1560
1561 /*
1562 * rb_handle_head_page - writer hit the head page
1563 *
1564 * Returns: +1 to retry page
1565 * 0 to continue
1566 * -1 on error
1567 */
1568 static int
1569 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1570 struct buffer_page *tail_page,
1571 struct buffer_page *next_page)
1572 {
1573 struct buffer_page *new_head;
1574 int entries;
1575 int type;
1576 int ret;
1577
1578 entries = rb_page_entries(next_page);
1579
1580 /*
1581 * The hard part is here. We need to move the head
1582 * forward, and protect against both readers on
1583 * other CPUs and writers coming in via interrupts.
1584 */
1585 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1586 RB_PAGE_HEAD);
1587
1588 /*
1589 * type can be one of four:
1590 * NORMAL - an interrupt already moved it for us
1591 * HEAD - we are the first to get here.
1592 * UPDATE - we are the interrupt interrupting
1593 * a current move.
1594 * MOVED - a reader on another CPU moved the next
1595 * pointer to its reader page. Give up
1596 * and try again.
1597 */
1598
1599 switch (type) {
1600 case RB_PAGE_HEAD:
1601 /*
1602 * We changed the head to UPDATE, thus
1603 * it is our responsibility to update
1604 * the counters.
1605 */
1606 local_add(entries, &cpu_buffer->overrun);
1607
1608 /*
1609 * The entries will be zeroed out when we move the
1610 * tail page.
1611 */
1612
1613 /* still more to do */
1614 break;
1615
1616 case RB_PAGE_UPDATE:
1617 /*
1618 * This is an interrupt that interrupt the
1619 * previous update. Still more to do.
1620 */
1621 break;
1622 case RB_PAGE_NORMAL:
1623 /*
1624 * An interrupt came in before the update
1625 * and processed this for us.
1626 * Nothing left to do.
1627 */
1628 return 1;
1629 case RB_PAGE_MOVED:
1630 /*
1631 * The reader is on another CPU and just did
1632 * a swap with our next_page.
1633 * Try again.
1634 */
1635 return 1;
1636 default:
1637 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1638 return -1;
1639 }
1640
1641 /*
1642 * Now that we are here, the old head pointer is
1643 * set to UPDATE. This will keep the reader from
1644 * swapping the head page with the reader page.
1645 * The reader (on another CPU) will spin till
1646 * we are finished.
1647 *
1648 * We just need to protect against interrupts
1649 * doing the job. We will set the next pointer
1650 * to HEAD. After that, we set the old pointer
1651 * to NORMAL, but only if it was HEAD before.
1652 * otherwise we are an interrupt, and only
1653 * want the outer most commit to reset it.
1654 */
1655 new_head = next_page;
1656 rb_inc_page(cpu_buffer, &new_head);
1657
1658 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1659 RB_PAGE_NORMAL);
1660
1661 /*
1662 * Valid returns are:
1663 * HEAD - an interrupt came in and already set it.
1664 * NORMAL - One of two things:
1665 * 1) We really set it.
1666 * 2) A bunch of interrupts came in and moved
1667 * the page forward again.
1668 */
1669 switch (ret) {
1670 case RB_PAGE_HEAD:
1671 case RB_PAGE_NORMAL:
1672 /* OK */
1673 break;
1674 default:
1675 RB_WARN_ON(cpu_buffer, 1);
1676 return -1;
1677 }
1678
1679 /*
1680 * It is possible that an interrupt came in,
1681 * set the head up, then more interrupts came in
1682 * and moved it again. When we get back here,
1683 * the page would have been set to NORMAL but we
1684 * just set it back to HEAD.
1685 *
1686 * How do you detect this? Well, if that happened
1687 * the tail page would have moved.
1688 */
1689 if (ret == RB_PAGE_NORMAL) {
1690 /*
1691 * If the tail had moved passed next, then we need
1692 * to reset the pointer.
1693 */
1694 if (cpu_buffer->tail_page != tail_page &&
1695 cpu_buffer->tail_page != next_page)
1696 rb_head_page_set_normal(cpu_buffer, new_head,
1697 next_page,
1698 RB_PAGE_HEAD);
1699 }
1700
1701 /*
1702 * If this was the outer most commit (the one that
1703 * changed the original pointer from HEAD to UPDATE),
1704 * then it is up to us to reset it to NORMAL.
1705 */
1706 if (type == RB_PAGE_HEAD) {
1707 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708 tail_page,
1709 RB_PAGE_UPDATE);
1710 if (RB_WARN_ON(cpu_buffer,
1711 ret != RB_PAGE_UPDATE))
1712 return -1;
1713 }
1714
1715 return 0;
1716 }
1717
1718 static unsigned rb_calculate_event_length(unsigned length)
1719 {
1720 struct ring_buffer_event event; /* Used only for sizeof array */
1721
1722 /* zero length can cause confusions */
1723 if (!length)
1724 length = 1;
1725
1726 if (length > RB_MAX_SMALL_DATA)
1727 length += sizeof(event.array[0]);
1728
1729 length += RB_EVNT_HDR_SIZE;
1730 length = ALIGN(length, RB_ALIGNMENT);
1731
1732 return length;
1733 }
1734
1735 static inline void
1736 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1737 struct buffer_page *tail_page,
1738 unsigned long tail, unsigned long length)
1739 {
1740 struct ring_buffer_event *event;
1741
1742 /*
1743 * Only the event that crossed the page boundary
1744 * must fill the old tail_page with padding.
1745 */
1746 if (tail >= BUF_PAGE_SIZE) {
1747 local_sub(length, &tail_page->write);
1748 return;
1749 }
1750
1751 event = __rb_page_index(tail_page, tail);
1752 kmemcheck_annotate_bitfield(event, bitfield);
1753
1754 /*
1755 * If this event is bigger than the minimum size, then
1756 * we need to be careful that we don't subtract the
1757 * write counter enough to allow another writer to slip
1758 * in on this page.
1759 * We put in a discarded commit instead, to make sure
1760 * that this space is not used again.
1761 *
1762 * If we are less than the minimum size, we don't need to
1763 * worry about it.
1764 */
1765 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1766 /* No room for any events */
1767
1768 /* Mark the rest of the page with padding */
1769 rb_event_set_padding(event);
1770
1771 /* Set the write back to the previous setting */
1772 local_sub(length, &tail_page->write);
1773 return;
1774 }
1775
1776 /* Put in a discarded event */
1777 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1778 event->type_len = RINGBUF_TYPE_PADDING;
1779 /* time delta must be non zero */
1780 event->time_delta = 1;
1781
1782 /* Set write to end of buffer */
1783 length = (tail + length) - BUF_PAGE_SIZE;
1784 local_sub(length, &tail_page->write);
1785 }
1786
1787 static struct ring_buffer_event *
1788 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1789 unsigned long length, unsigned long tail,
1790 struct buffer_page *commit_page,
1791 struct buffer_page *tail_page, u64 *ts)
1792 {
1793 struct ring_buffer *buffer = cpu_buffer->buffer;
1794 struct buffer_page *next_page;
1795 int ret;
1796
1797 next_page = tail_page;
1798
1799 rb_inc_page(cpu_buffer, &next_page);
1800
1801 /*
1802 * If for some reason, we had an interrupt storm that made
1803 * it all the way around the buffer, bail, and warn
1804 * about it.
1805 */
1806 if (unlikely(next_page == commit_page)) {
1807 local_inc(&cpu_buffer->commit_overrun);
1808 goto out_reset;
1809 }
1810
1811 /*
1812 * This is where the fun begins!
1813 *
1814 * We are fighting against races between a reader that
1815 * could be on another CPU trying to swap its reader
1816 * page with the buffer head.
1817 *
1818 * We are also fighting against interrupts coming in and
1819 * moving the head or tail on us as well.
1820 *
1821 * If the next page is the head page then we have filled
1822 * the buffer, unless the commit page is still on the
1823 * reader page.
1824 */
1825 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1826
1827 /*
1828 * If the commit is not on the reader page, then
1829 * move the header page.
1830 */
1831 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1832 /*
1833 * If we are not in overwrite mode,
1834 * this is easy, just stop here.
1835 */
1836 if (!(buffer->flags & RB_FL_OVERWRITE))
1837 goto out_reset;
1838
1839 ret = rb_handle_head_page(cpu_buffer,
1840 tail_page,
1841 next_page);
1842 if (ret < 0)
1843 goto out_reset;
1844 if (ret)
1845 goto out_again;
1846 } else {
1847 /*
1848 * We need to be careful here too. The
1849 * commit page could still be on the reader
1850 * page. We could have a small buffer, and
1851 * have filled up the buffer with events
1852 * from interrupts and such, and wrapped.
1853 *
1854 * Note, if the tail page is also the on the
1855 * reader_page, we let it move out.
1856 */
1857 if (unlikely((cpu_buffer->commit_page !=
1858 cpu_buffer->tail_page) &&
1859 (cpu_buffer->commit_page ==
1860 cpu_buffer->reader_page))) {
1861 local_inc(&cpu_buffer->commit_overrun);
1862 goto out_reset;
1863 }
1864 }
1865 }
1866
1867 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1868 if (ret) {
1869 /*
1870 * Nested commits always have zero deltas, so
1871 * just reread the time stamp
1872 */
1873 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1874 next_page->page->time_stamp = *ts;
1875 }
1876
1877 out_again:
1878
1879 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1880
1881 /* fail and let the caller try again */
1882 return ERR_PTR(-EAGAIN);
1883
1884 out_reset:
1885 /* reset write */
1886 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1887
1888 return NULL;
1889 }
1890
1891 static struct ring_buffer_event *
1892 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1893 unsigned type, unsigned long length, u64 *ts)
1894 {
1895 struct buffer_page *tail_page, *commit_page;
1896 struct ring_buffer_event *event;
1897 unsigned long tail, write;
1898
1899 commit_page = cpu_buffer->commit_page;
1900 /* we just need to protect against interrupts */
1901 barrier();
1902 tail_page = cpu_buffer->tail_page;
1903 write = local_add_return(length, &tail_page->write);
1904
1905 /* set write to only the index of the write */
1906 write &= RB_WRITE_MASK;
1907 tail = write - length;
1908
1909 /* See if we shot pass the end of this buffer page */
1910 if (write > BUF_PAGE_SIZE)
1911 return rb_move_tail(cpu_buffer, length, tail,
1912 commit_page, tail_page, ts);
1913
1914 /* We reserved something on the buffer */
1915
1916 event = __rb_page_index(tail_page, tail);
1917 kmemcheck_annotate_bitfield(event, bitfield);
1918 rb_update_event(event, type, length);
1919
1920 /* The passed in type is zero for DATA */
1921 if (likely(!type))
1922 local_inc(&tail_page->entries);
1923
1924 /*
1925 * If this is the first commit on the page, then update
1926 * its timestamp.
1927 */
1928 if (!tail)
1929 tail_page->page->time_stamp = *ts;
1930
1931 return event;
1932 }
1933
1934 static inline int
1935 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1936 struct ring_buffer_event *event)
1937 {
1938 unsigned long new_index, old_index;
1939 struct buffer_page *bpage;
1940 unsigned long index;
1941 unsigned long addr;
1942
1943 new_index = rb_event_index(event);
1944 old_index = new_index + rb_event_length(event);
1945 addr = (unsigned long)event;
1946 addr &= PAGE_MASK;
1947
1948 bpage = cpu_buffer->tail_page;
1949
1950 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1951 unsigned long write_mask =
1952 local_read(&bpage->write) & ~RB_WRITE_MASK;
1953 /*
1954 * This is on the tail page. It is possible that
1955 * a write could come in and move the tail page
1956 * and write to the next page. That is fine
1957 * because we just shorten what is on this page.
1958 */
1959 old_index += write_mask;
1960 new_index += write_mask;
1961 index = local_cmpxchg(&bpage->write, old_index, new_index);
1962 if (index == old_index)
1963 return 1;
1964 }
1965
1966 /* could not discard */
1967 return 0;
1968 }
1969
1970 static int
1971 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1972 u64 *ts, u64 *delta)
1973 {
1974 struct ring_buffer_event *event;
1975 static int once;
1976 int ret;
1977
1978 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1979 printk(KERN_WARNING "Delta way too big! %llu"
1980 " ts=%llu write stamp = %llu\n",
1981 (unsigned long long)*delta,
1982 (unsigned long long)*ts,
1983 (unsigned long long)cpu_buffer->write_stamp);
1984 WARN_ON(1);
1985 }
1986
1987 /*
1988 * The delta is too big, we to add a
1989 * new timestamp.
1990 */
1991 event = __rb_reserve_next(cpu_buffer,
1992 RINGBUF_TYPE_TIME_EXTEND,
1993 RB_LEN_TIME_EXTEND,
1994 ts);
1995 if (!event)
1996 return -EBUSY;
1997
1998 if (PTR_ERR(event) == -EAGAIN)
1999 return -EAGAIN;
2000
2001 /* Only a commited time event can update the write stamp */
2002 if (rb_event_is_commit(cpu_buffer, event)) {
2003 /*
2004 * If this is the first on the page, then it was
2005 * updated with the page itself. Try to discard it
2006 * and if we can't just make it zero.
2007 */
2008 if (rb_event_index(event)) {
2009 event->time_delta = *delta & TS_MASK;
2010 event->array[0] = *delta >> TS_SHIFT;
2011 } else {
2012 /* try to discard, since we do not need this */
2013 if (!rb_try_to_discard(cpu_buffer, event)) {
2014 /* nope, just zero it */
2015 event->time_delta = 0;
2016 event->array[0] = 0;
2017 }
2018 }
2019 cpu_buffer->write_stamp = *ts;
2020 /* let the caller know this was the commit */
2021 ret = 1;
2022 } else {
2023 /* Try to discard the event */
2024 if (!rb_try_to_discard(cpu_buffer, event)) {
2025 /* Darn, this is just wasted space */
2026 event->time_delta = 0;
2027 event->array[0] = 0;
2028 }
2029 ret = 0;
2030 }
2031
2032 *delta = 0;
2033
2034 return ret;
2035 }
2036
2037 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2038 {
2039 local_inc(&cpu_buffer->committing);
2040 local_inc(&cpu_buffer->commits);
2041 }
2042
2043 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2044 {
2045 unsigned long commits;
2046
2047 if (RB_WARN_ON(cpu_buffer,
2048 !local_read(&cpu_buffer->committing)))
2049 return;
2050
2051 again:
2052 commits = local_read(&cpu_buffer->commits);
2053 /* synchronize with interrupts */
2054 barrier();
2055 if (local_read(&cpu_buffer->committing) == 1)
2056 rb_set_commit_to_write(cpu_buffer);
2057
2058 local_dec(&cpu_buffer->committing);
2059
2060 /* synchronize with interrupts */
2061 barrier();
2062
2063 /*
2064 * Need to account for interrupts coming in between the
2065 * updating of the commit page and the clearing of the
2066 * committing counter.
2067 */
2068 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2069 !local_read(&cpu_buffer->committing)) {
2070 local_inc(&cpu_buffer->committing);
2071 goto again;
2072 }
2073 }
2074
2075 static struct ring_buffer_event *
2076 rb_reserve_next_event(struct ring_buffer *buffer,
2077 struct ring_buffer_per_cpu *cpu_buffer,
2078 unsigned long length)
2079 {
2080 struct ring_buffer_event *event;
2081 u64 ts, delta = 0;
2082 int commit = 0;
2083 int nr_loops = 0;
2084
2085 rb_start_commit(cpu_buffer);
2086
2087 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2088 /*
2089 * Due to the ability to swap a cpu buffer from a buffer
2090 * it is possible it was swapped before we committed.
2091 * (committing stops a swap). We check for it here and
2092 * if it happened, we have to fail the write.
2093 */
2094 barrier();
2095 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2096 local_dec(&cpu_buffer->committing);
2097 local_dec(&cpu_buffer->commits);
2098 return NULL;
2099 }
2100 #endif
2101
2102 length = rb_calculate_event_length(length);
2103 again:
2104 /*
2105 * We allow for interrupts to reenter here and do a trace.
2106 * If one does, it will cause this original code to loop
2107 * back here. Even with heavy interrupts happening, this
2108 * should only happen a few times in a row. If this happens
2109 * 1000 times in a row, there must be either an interrupt
2110 * storm or we have something buggy.
2111 * Bail!
2112 */
2113 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2114 goto out_fail;
2115
2116 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
2117
2118 /*
2119 * Only the first commit can update the timestamp.
2120 * Yes there is a race here. If an interrupt comes in
2121 * just after the conditional and it traces too, then it
2122 * will also check the deltas. More than one timestamp may
2123 * also be made. But only the entry that did the actual
2124 * commit will be something other than zero.
2125 */
2126 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2127 rb_page_write(cpu_buffer->tail_page) ==
2128 rb_commit_index(cpu_buffer))) {
2129 u64 diff;
2130
2131 diff = ts - cpu_buffer->write_stamp;
2132
2133 /* make sure this diff is calculated here */
2134 barrier();
2135
2136 /* Did the write stamp get updated already? */
2137 if (unlikely(ts < cpu_buffer->write_stamp))
2138 goto get_event;
2139
2140 delta = diff;
2141 if (unlikely(test_time_stamp(delta))) {
2142
2143 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2144 if (commit == -EBUSY)
2145 goto out_fail;
2146
2147 if (commit == -EAGAIN)
2148 goto again;
2149
2150 RB_WARN_ON(cpu_buffer, commit < 0);
2151 }
2152 }
2153
2154 get_event:
2155 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2156 if (unlikely(PTR_ERR(event) == -EAGAIN))
2157 goto again;
2158
2159 if (!event)
2160 goto out_fail;
2161
2162 if (!rb_event_is_commit(cpu_buffer, event))
2163 delta = 0;
2164
2165 event->time_delta = delta;
2166
2167 return event;
2168
2169 out_fail:
2170 rb_end_commit(cpu_buffer);
2171 return NULL;
2172 }
2173
2174 #ifdef CONFIG_TRACING
2175
2176 #define TRACE_RECURSIVE_DEPTH 16
2177
2178 static int trace_recursive_lock(void)
2179 {
2180 current->trace_recursion++;
2181
2182 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2183 return 0;
2184
2185 /* Disable all tracing before we do anything else */
2186 tracing_off_permanent();
2187
2188 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2189 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2190 current->trace_recursion,
2191 hardirq_count() >> HARDIRQ_SHIFT,
2192 softirq_count() >> SOFTIRQ_SHIFT,
2193 in_nmi());
2194
2195 WARN_ON_ONCE(1);
2196 return -1;
2197 }
2198
2199 static void trace_recursive_unlock(void)
2200 {
2201 WARN_ON_ONCE(!current->trace_recursion);
2202
2203 current->trace_recursion--;
2204 }
2205
2206 #else
2207
2208 #define trace_recursive_lock() (0)
2209 #define trace_recursive_unlock() do { } while (0)
2210
2211 #endif
2212
2213 static DEFINE_PER_CPU(int, rb_need_resched);
2214
2215 /**
2216 * ring_buffer_lock_reserve - reserve a part of the buffer
2217 * @buffer: the ring buffer to reserve from
2218 * @length: the length of the data to reserve (excluding event header)
2219 *
2220 * Returns a reseverd event on the ring buffer to copy directly to.
2221 * The user of this interface will need to get the body to write into
2222 * and can use the ring_buffer_event_data() interface.
2223 *
2224 * The length is the length of the data needed, not the event length
2225 * which also includes the event header.
2226 *
2227 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2228 * If NULL is returned, then nothing has been allocated or locked.
2229 */
2230 struct ring_buffer_event *
2231 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2232 {
2233 struct ring_buffer_per_cpu *cpu_buffer;
2234 struct ring_buffer_event *event;
2235 int cpu, resched;
2236
2237 if (ring_buffer_flags != RB_BUFFERS_ON)
2238 return NULL;
2239
2240 if (atomic_read(&buffer->record_disabled))
2241 return NULL;
2242
2243 /* If we are tracing schedule, we don't want to recurse */
2244 resched = ftrace_preempt_disable();
2245
2246 if (trace_recursive_lock())
2247 goto out_nocheck;
2248
2249 cpu = raw_smp_processor_id();
2250
2251 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2252 goto out;
2253
2254 cpu_buffer = buffer->buffers[cpu];
2255
2256 if (atomic_read(&cpu_buffer->record_disabled))
2257 goto out;
2258
2259 if (length > BUF_MAX_DATA_SIZE)
2260 goto out;
2261
2262 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2263 if (!event)
2264 goto out;
2265
2266 /*
2267 * Need to store resched state on this cpu.
2268 * Only the first needs to.
2269 */
2270
2271 if (preempt_count() == 1)
2272 per_cpu(rb_need_resched, cpu) = resched;
2273
2274 return event;
2275
2276 out:
2277 trace_recursive_unlock();
2278
2279 out_nocheck:
2280 ftrace_preempt_enable(resched);
2281 return NULL;
2282 }
2283 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2284
2285 static void
2286 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2287 struct ring_buffer_event *event)
2288 {
2289 /*
2290 * The event first in the commit queue updates the
2291 * time stamp.
2292 */
2293 if (rb_event_is_commit(cpu_buffer, event))
2294 cpu_buffer->write_stamp += event->time_delta;
2295 }
2296
2297 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2298 struct ring_buffer_event *event)
2299 {
2300 local_inc(&cpu_buffer->entries);
2301 rb_update_write_stamp(cpu_buffer, event);
2302 rb_end_commit(cpu_buffer);
2303 }
2304
2305 /**
2306 * ring_buffer_unlock_commit - commit a reserved
2307 * @buffer: The buffer to commit to
2308 * @event: The event pointer to commit.
2309 *
2310 * This commits the data to the ring buffer, and releases any locks held.
2311 *
2312 * Must be paired with ring_buffer_lock_reserve.
2313 */
2314 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2315 struct ring_buffer_event *event)
2316 {
2317 struct ring_buffer_per_cpu *cpu_buffer;
2318 int cpu = raw_smp_processor_id();
2319
2320 cpu_buffer = buffer->buffers[cpu];
2321
2322 rb_commit(cpu_buffer, event);
2323
2324 trace_recursive_unlock();
2325
2326 /*
2327 * Only the last preempt count needs to restore preemption.
2328 */
2329 if (preempt_count() == 1)
2330 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2331 else
2332 preempt_enable_no_resched_notrace();
2333
2334 return 0;
2335 }
2336 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2337
2338 static inline void rb_event_discard(struct ring_buffer_event *event)
2339 {
2340 /* array[0] holds the actual length for the discarded event */
2341 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2342 event->type_len = RINGBUF_TYPE_PADDING;
2343 /* time delta must be non zero */
2344 if (!event->time_delta)
2345 event->time_delta = 1;
2346 }
2347
2348 /*
2349 * Decrement the entries to the page that an event is on.
2350 * The event does not even need to exist, only the pointer
2351 * to the page it is on. This may only be called before the commit
2352 * takes place.
2353 */
2354 static inline void
2355 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2356 struct ring_buffer_event *event)
2357 {
2358 unsigned long addr = (unsigned long)event;
2359 struct buffer_page *bpage = cpu_buffer->commit_page;
2360 struct buffer_page *start;
2361
2362 addr &= PAGE_MASK;
2363
2364 /* Do the likely case first */
2365 if (likely(bpage->page == (void *)addr)) {
2366 local_dec(&bpage->entries);
2367 return;
2368 }
2369
2370 /*
2371 * Because the commit page may be on the reader page we
2372 * start with the next page and check the end loop there.
2373 */
2374 rb_inc_page(cpu_buffer, &bpage);
2375 start = bpage;
2376 do {
2377 if (bpage->page == (void *)addr) {
2378 local_dec(&bpage->entries);
2379 return;
2380 }
2381 rb_inc_page(cpu_buffer, &bpage);
2382 } while (bpage != start);
2383
2384 /* commit not part of this buffer?? */
2385 RB_WARN_ON(cpu_buffer, 1);
2386 }
2387
2388 /**
2389 * ring_buffer_commit_discard - discard an event that has not been committed
2390 * @buffer: the ring buffer
2391 * @event: non committed event to discard
2392 *
2393 * Sometimes an event that is in the ring buffer needs to be ignored.
2394 * This function lets the user discard an event in the ring buffer
2395 * and then that event will not be read later.
2396 *
2397 * This function only works if it is called before the the item has been
2398 * committed. It will try to free the event from the ring buffer
2399 * if another event has not been added behind it.
2400 *
2401 * If another event has been added behind it, it will set the event
2402 * up as discarded, and perform the commit.
2403 *
2404 * If this function is called, do not call ring_buffer_unlock_commit on
2405 * the event.
2406 */
2407 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2408 struct ring_buffer_event *event)
2409 {
2410 struct ring_buffer_per_cpu *cpu_buffer;
2411 int cpu;
2412
2413 /* The event is discarded regardless */
2414 rb_event_discard(event);
2415
2416 cpu = smp_processor_id();
2417 cpu_buffer = buffer->buffers[cpu];
2418
2419 /*
2420 * This must only be called if the event has not been
2421 * committed yet. Thus we can assume that preemption
2422 * is still disabled.
2423 */
2424 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2425
2426 rb_decrement_entry(cpu_buffer, event);
2427 if (rb_try_to_discard(cpu_buffer, event))
2428 goto out;
2429
2430 /*
2431 * The commit is still visible by the reader, so we
2432 * must still update the timestamp.
2433 */
2434 rb_update_write_stamp(cpu_buffer, event);
2435 out:
2436 rb_end_commit(cpu_buffer);
2437
2438 trace_recursive_unlock();
2439
2440 /*
2441 * Only the last preempt count needs to restore preemption.
2442 */
2443 if (preempt_count() == 1)
2444 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2445 else
2446 preempt_enable_no_resched_notrace();
2447
2448 }
2449 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2450
2451 /**
2452 * ring_buffer_write - write data to the buffer without reserving
2453 * @buffer: The ring buffer to write to.
2454 * @length: The length of the data being written (excluding the event header)
2455 * @data: The data to write to the buffer.
2456 *
2457 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2458 * one function. If you already have the data to write to the buffer, it
2459 * may be easier to simply call this function.
2460 *
2461 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2462 * and not the length of the event which would hold the header.
2463 */
2464 int ring_buffer_write(struct ring_buffer *buffer,
2465 unsigned long length,
2466 void *data)
2467 {
2468 struct ring_buffer_per_cpu *cpu_buffer;
2469 struct ring_buffer_event *event;
2470 void *body;
2471 int ret = -EBUSY;
2472 int cpu, resched;
2473
2474 if (ring_buffer_flags != RB_BUFFERS_ON)
2475 return -EBUSY;
2476
2477 if (atomic_read(&buffer->record_disabled))
2478 return -EBUSY;
2479
2480 resched = ftrace_preempt_disable();
2481
2482 cpu = raw_smp_processor_id();
2483
2484 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2485 goto out;
2486
2487 cpu_buffer = buffer->buffers[cpu];
2488
2489 if (atomic_read(&cpu_buffer->record_disabled))
2490 goto out;
2491
2492 if (length > BUF_MAX_DATA_SIZE)
2493 goto out;
2494
2495 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2496 if (!event)
2497 goto out;
2498
2499 body = rb_event_data(event);
2500
2501 memcpy(body, data, length);
2502
2503 rb_commit(cpu_buffer, event);
2504
2505 ret = 0;
2506 out:
2507 ftrace_preempt_enable(resched);
2508
2509 return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(ring_buffer_write);
2512
2513 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2514 {
2515 struct buffer_page *reader = cpu_buffer->reader_page;
2516 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2517 struct buffer_page *commit = cpu_buffer->commit_page;
2518
2519 /* In case of error, head will be NULL */
2520 if (unlikely(!head))
2521 return 1;
2522
2523 return reader->read == rb_page_commit(reader) &&
2524 (commit == reader ||
2525 (commit == head &&
2526 head->read == rb_page_commit(commit)));
2527 }
2528
2529 /**
2530 * ring_buffer_record_disable - stop all writes into the buffer
2531 * @buffer: The ring buffer to stop writes to.
2532 *
2533 * This prevents all writes to the buffer. Any attempt to write
2534 * to the buffer after this will fail and return NULL.
2535 *
2536 * The caller should call synchronize_sched() after this.
2537 */
2538 void ring_buffer_record_disable(struct ring_buffer *buffer)
2539 {
2540 atomic_inc(&buffer->record_disabled);
2541 }
2542 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2543
2544 /**
2545 * ring_buffer_record_enable - enable writes to the buffer
2546 * @buffer: The ring buffer to enable writes
2547 *
2548 * Note, multiple disables will need the same number of enables
2549 * to truely enable the writing (much like preempt_disable).
2550 */
2551 void ring_buffer_record_enable(struct ring_buffer *buffer)
2552 {
2553 atomic_dec(&buffer->record_disabled);
2554 }
2555 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2556
2557 /**
2558 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2559 * @buffer: The ring buffer to stop writes to.
2560 * @cpu: The CPU buffer to stop
2561 *
2562 * This prevents all writes to the buffer. Any attempt to write
2563 * to the buffer after this will fail and return NULL.
2564 *
2565 * The caller should call synchronize_sched() after this.
2566 */
2567 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2568 {
2569 struct ring_buffer_per_cpu *cpu_buffer;
2570
2571 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2572 return;
2573
2574 cpu_buffer = buffer->buffers[cpu];
2575 atomic_inc(&cpu_buffer->record_disabled);
2576 }
2577 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2578
2579 /**
2580 * ring_buffer_record_enable_cpu - enable writes to the buffer
2581 * @buffer: The ring buffer to enable writes
2582 * @cpu: The CPU to enable.
2583 *
2584 * Note, multiple disables will need the same number of enables
2585 * to truely enable the writing (much like preempt_disable).
2586 */
2587 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2588 {
2589 struct ring_buffer_per_cpu *cpu_buffer;
2590
2591 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2592 return;
2593
2594 cpu_buffer = buffer->buffers[cpu];
2595 atomic_dec(&cpu_buffer->record_disabled);
2596 }
2597 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2598
2599 /**
2600 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2601 * @buffer: The ring buffer
2602 * @cpu: The per CPU buffer to get the entries from.
2603 */
2604 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2605 {
2606 struct ring_buffer_per_cpu *cpu_buffer;
2607 unsigned long ret;
2608
2609 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2610 return 0;
2611
2612 cpu_buffer = buffer->buffers[cpu];
2613 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2614 - cpu_buffer->read;
2615
2616 return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2619
2620 /**
2621 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2622 * @buffer: The ring buffer
2623 * @cpu: The per CPU buffer to get the number of overruns from
2624 */
2625 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2626 {
2627 struct ring_buffer_per_cpu *cpu_buffer;
2628 unsigned long ret;
2629
2630 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2631 return 0;
2632
2633 cpu_buffer = buffer->buffers[cpu];
2634 ret = local_read(&cpu_buffer->overrun);
2635
2636 return ret;
2637 }
2638 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2639
2640 /**
2641 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2642 * @buffer: The ring buffer
2643 * @cpu: The per CPU buffer to get the number of overruns from
2644 */
2645 unsigned long
2646 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2647 {
2648 struct ring_buffer_per_cpu *cpu_buffer;
2649 unsigned long ret;
2650
2651 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2652 return 0;
2653
2654 cpu_buffer = buffer->buffers[cpu];
2655 ret = local_read(&cpu_buffer->commit_overrun);
2656
2657 return ret;
2658 }
2659 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2660
2661 /**
2662 * ring_buffer_entries - get the number of entries in a buffer
2663 * @buffer: The ring buffer
2664 *
2665 * Returns the total number of entries in the ring buffer
2666 * (all CPU entries)
2667 */
2668 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2669 {
2670 struct ring_buffer_per_cpu *cpu_buffer;
2671 unsigned long entries = 0;
2672 int cpu;
2673
2674 /* if you care about this being correct, lock the buffer */
2675 for_each_buffer_cpu(buffer, cpu) {
2676 cpu_buffer = buffer->buffers[cpu];
2677 entries += (local_read(&cpu_buffer->entries) -
2678 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2679 }
2680
2681 return entries;
2682 }
2683 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2684
2685 /**
2686 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2687 * @buffer: The ring buffer
2688 *
2689 * Returns the total number of overruns in the ring buffer
2690 * (all CPU entries)
2691 */
2692 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2693 {
2694 struct ring_buffer_per_cpu *cpu_buffer;
2695 unsigned long overruns = 0;
2696 int cpu;
2697
2698 /* if you care about this being correct, lock the buffer */
2699 for_each_buffer_cpu(buffer, cpu) {
2700 cpu_buffer = buffer->buffers[cpu];
2701 overruns += local_read(&cpu_buffer->overrun);
2702 }
2703
2704 return overruns;
2705 }
2706 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2707
2708 static void rb_iter_reset(struct ring_buffer_iter *iter)
2709 {
2710 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2711
2712 /* Iterator usage is expected to have record disabled */
2713 if (list_empty(&cpu_buffer->reader_page->list)) {
2714 iter->head_page = rb_set_head_page(cpu_buffer);
2715 if (unlikely(!iter->head_page))
2716 return;
2717 iter->head = iter->head_page->read;
2718 } else {
2719 iter->head_page = cpu_buffer->reader_page;
2720 iter->head = cpu_buffer->reader_page->read;
2721 }
2722 if (iter->head)
2723 iter->read_stamp = cpu_buffer->read_stamp;
2724 else
2725 iter->read_stamp = iter->head_page->page->time_stamp;
2726 }
2727
2728 /**
2729 * ring_buffer_iter_reset - reset an iterator
2730 * @iter: The iterator to reset
2731 *
2732 * Resets the iterator, so that it will start from the beginning
2733 * again.
2734 */
2735 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2736 {
2737 struct ring_buffer_per_cpu *cpu_buffer;
2738 unsigned long flags;
2739
2740 if (!iter)
2741 return;
2742
2743 cpu_buffer = iter->cpu_buffer;
2744
2745 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2746 rb_iter_reset(iter);
2747 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2748 }
2749 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2750
2751 /**
2752 * ring_buffer_iter_empty - check if an iterator has no more to read
2753 * @iter: The iterator to check
2754 */
2755 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2756 {
2757 struct ring_buffer_per_cpu *cpu_buffer;
2758
2759 cpu_buffer = iter->cpu_buffer;
2760
2761 return iter->head_page == cpu_buffer->commit_page &&
2762 iter->head == rb_commit_index(cpu_buffer);
2763 }
2764 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2765
2766 static void
2767 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2768 struct ring_buffer_event *event)
2769 {
2770 u64 delta;
2771
2772 switch (event->type_len) {
2773 case RINGBUF_TYPE_PADDING:
2774 return;
2775
2776 case RINGBUF_TYPE_TIME_EXTEND:
2777 delta = event->array[0];
2778 delta <<= TS_SHIFT;
2779 delta += event->time_delta;
2780 cpu_buffer->read_stamp += delta;
2781 return;
2782
2783 case RINGBUF_TYPE_TIME_STAMP:
2784 /* FIXME: not implemented */
2785 return;
2786
2787 case RINGBUF_TYPE_DATA:
2788 cpu_buffer->read_stamp += event->time_delta;
2789 return;
2790
2791 default:
2792 BUG();
2793 }
2794 return;
2795 }
2796
2797 static void
2798 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2799 struct ring_buffer_event *event)
2800 {
2801 u64 delta;
2802
2803 switch (event->type_len) {
2804 case RINGBUF_TYPE_PADDING:
2805 return;
2806
2807 case RINGBUF_TYPE_TIME_EXTEND:
2808 delta = event->array[0];
2809 delta <<= TS_SHIFT;
2810 delta += event->time_delta;
2811 iter->read_stamp += delta;
2812 return;
2813
2814 case RINGBUF_TYPE_TIME_STAMP:
2815 /* FIXME: not implemented */
2816 return;
2817
2818 case RINGBUF_TYPE_DATA:
2819 iter->read_stamp += event->time_delta;
2820 return;
2821
2822 default:
2823 BUG();
2824 }
2825 return;
2826 }
2827
2828 static struct buffer_page *
2829 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2830 {
2831 struct buffer_page *reader = NULL;
2832 unsigned long flags;
2833 int nr_loops = 0;
2834 int ret;
2835
2836 local_irq_save(flags);
2837 __raw_spin_lock(&cpu_buffer->lock);
2838
2839 again:
2840 /*
2841 * This should normally only loop twice. But because the
2842 * start of the reader inserts an empty page, it causes
2843 * a case where we will loop three times. There should be no
2844 * reason to loop four times (that I know of).
2845 */
2846 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2847 reader = NULL;
2848 goto out;
2849 }
2850
2851 reader = cpu_buffer->reader_page;
2852
2853 /* If there's more to read, return this page */
2854 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2855 goto out;
2856
2857 /* Never should we have an index greater than the size */
2858 if (RB_WARN_ON(cpu_buffer,
2859 cpu_buffer->reader_page->read > rb_page_size(reader)))
2860 goto out;
2861
2862 /* check if we caught up to the tail */
2863 reader = NULL;
2864 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2865 goto out;
2866
2867 /*
2868 * Reset the reader page to size zero.
2869 */
2870 local_set(&cpu_buffer->reader_page->write, 0);
2871 local_set(&cpu_buffer->reader_page->entries, 0);
2872 local_set(&cpu_buffer->reader_page->page->commit, 0);
2873
2874 spin:
2875 /*
2876 * Splice the empty reader page into the list around the head.
2877 */
2878 reader = rb_set_head_page(cpu_buffer);
2879 cpu_buffer->reader_page->list.next = reader->list.next;
2880 cpu_buffer->reader_page->list.prev = reader->list.prev;
2881
2882 /*
2883 * cpu_buffer->pages just needs to point to the buffer, it
2884 * has no specific buffer page to point to. Lets move it out
2885 * of our way so we don't accidently swap it.
2886 */
2887 cpu_buffer->pages = reader->list.prev;
2888
2889 /* The reader page will be pointing to the new head */
2890 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2891
2892 /*
2893 * Here's the tricky part.
2894 *
2895 * We need to move the pointer past the header page.
2896 * But we can only do that if a writer is not currently
2897 * moving it. The page before the header page has the
2898 * flag bit '1' set if it is pointing to the page we want.
2899 * but if the writer is in the process of moving it
2900 * than it will be '2' or already moved '0'.
2901 */
2902
2903 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2904
2905 /*
2906 * If we did not convert it, then we must try again.
2907 */
2908 if (!ret)
2909 goto spin;
2910
2911 /*
2912 * Yeah! We succeeded in replacing the page.
2913 *
2914 * Now make the new head point back to the reader page.
2915 */
2916 reader->list.next->prev = &cpu_buffer->reader_page->list;
2917 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2918
2919 /* Finally update the reader page to the new head */
2920 cpu_buffer->reader_page = reader;
2921 rb_reset_reader_page(cpu_buffer);
2922
2923 goto again;
2924
2925 out:
2926 __raw_spin_unlock(&cpu_buffer->lock);
2927 local_irq_restore(flags);
2928
2929 return reader;
2930 }
2931
2932 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2933 {
2934 struct ring_buffer_event *event;
2935 struct buffer_page *reader;
2936 unsigned length;
2937
2938 reader = rb_get_reader_page(cpu_buffer);
2939
2940 /* This function should not be called when buffer is empty */
2941 if (RB_WARN_ON(cpu_buffer, !reader))
2942 return;
2943
2944 event = rb_reader_event(cpu_buffer);
2945
2946 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2947 cpu_buffer->read++;
2948
2949 rb_update_read_stamp(cpu_buffer, event);
2950
2951 length = rb_event_length(event);
2952 cpu_buffer->reader_page->read += length;
2953 }
2954
2955 static void rb_advance_iter(struct ring_buffer_iter *iter)
2956 {
2957 struct ring_buffer *buffer;
2958 struct ring_buffer_per_cpu *cpu_buffer;
2959 struct ring_buffer_event *event;
2960 unsigned length;
2961
2962 cpu_buffer = iter->cpu_buffer;
2963 buffer = cpu_buffer->buffer;
2964
2965 /*
2966 * Check if we are at the end of the buffer.
2967 */
2968 if (iter->head >= rb_page_size(iter->head_page)) {
2969 /* discarded commits can make the page empty */
2970 if (iter->head_page == cpu_buffer->commit_page)
2971 return;
2972 rb_inc_iter(iter);
2973 return;
2974 }
2975
2976 event = rb_iter_head_event(iter);
2977
2978 length = rb_event_length(event);
2979
2980 /*
2981 * This should not be called to advance the header if we are
2982 * at the tail of the buffer.
2983 */
2984 if (RB_WARN_ON(cpu_buffer,
2985 (iter->head_page == cpu_buffer->commit_page) &&
2986 (iter->head + length > rb_commit_index(cpu_buffer))))
2987 return;
2988
2989 rb_update_iter_read_stamp(iter, event);
2990
2991 iter->head += length;
2992
2993 /* check for end of page padding */
2994 if ((iter->head >= rb_page_size(iter->head_page)) &&
2995 (iter->head_page != cpu_buffer->commit_page))
2996 rb_advance_iter(iter);
2997 }
2998
2999 static struct ring_buffer_event *
3000 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3001 {
3002 struct ring_buffer_per_cpu *cpu_buffer;
3003 struct ring_buffer_event *event;
3004 struct buffer_page *reader;
3005 int nr_loops = 0;
3006
3007 cpu_buffer = buffer->buffers[cpu];
3008
3009 again:
3010 /*
3011 * We repeat when a timestamp is encountered. It is possible
3012 * to get multiple timestamps from an interrupt entering just
3013 * as one timestamp is about to be written, or from discarded
3014 * commits. The most that we can have is the number on a single page.
3015 */
3016 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3017 return NULL;
3018
3019 reader = rb_get_reader_page(cpu_buffer);
3020 if (!reader)
3021 return NULL;
3022
3023 event = rb_reader_event(cpu_buffer);
3024
3025 switch (event->type_len) {
3026 case RINGBUF_TYPE_PADDING:
3027 if (rb_null_event(event))
3028 RB_WARN_ON(cpu_buffer, 1);
3029 /*
3030 * Because the writer could be discarding every
3031 * event it creates (which would probably be bad)
3032 * if we were to go back to "again" then we may never
3033 * catch up, and will trigger the warn on, or lock
3034 * the box. Return the padding, and we will release
3035 * the current locks, and try again.
3036 */
3037 return event;
3038
3039 case RINGBUF_TYPE_TIME_EXTEND:
3040 /* Internal data, OK to advance */
3041 rb_advance_reader(cpu_buffer);
3042 goto again;
3043
3044 case RINGBUF_TYPE_TIME_STAMP:
3045 /* FIXME: not implemented */
3046 rb_advance_reader(cpu_buffer);
3047 goto again;
3048
3049 case RINGBUF_TYPE_DATA:
3050 if (ts) {
3051 *ts = cpu_buffer->read_stamp + event->time_delta;
3052 ring_buffer_normalize_time_stamp(buffer,
3053 cpu_buffer->cpu, ts);
3054 }
3055 return event;
3056
3057 default:
3058 BUG();
3059 }
3060
3061 return NULL;
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3064
3065 static struct ring_buffer_event *
3066 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3067 {
3068 struct ring_buffer *buffer;
3069 struct ring_buffer_per_cpu *cpu_buffer;
3070 struct ring_buffer_event *event;
3071 int nr_loops = 0;
3072
3073 if (ring_buffer_iter_empty(iter))
3074 return NULL;
3075
3076 cpu_buffer = iter->cpu_buffer;
3077 buffer = cpu_buffer->buffer;
3078
3079 again:
3080 /*
3081 * We repeat when a timestamp is encountered.
3082 * We can get multiple timestamps by nested interrupts or also
3083 * if filtering is on (discarding commits). Since discarding
3084 * commits can be frequent we can get a lot of timestamps.
3085 * But we limit them by not adding timestamps if they begin
3086 * at the start of a page.
3087 */
3088 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3089 return NULL;
3090
3091 if (rb_per_cpu_empty(cpu_buffer))
3092 return NULL;
3093
3094 event = rb_iter_head_event(iter);
3095
3096 switch (event->type_len) {
3097 case RINGBUF_TYPE_PADDING:
3098 if (rb_null_event(event)) {
3099 rb_inc_iter(iter);
3100 goto again;
3101 }
3102 rb_advance_iter(iter);
3103 return event;
3104
3105 case RINGBUF_TYPE_TIME_EXTEND:
3106 /* Internal data, OK to advance */
3107 rb_advance_iter(iter);
3108 goto again;
3109
3110 case RINGBUF_TYPE_TIME_STAMP:
3111 /* FIXME: not implemented */
3112 rb_advance_iter(iter);
3113 goto again;
3114
3115 case RINGBUF_TYPE_DATA:
3116 if (ts) {
3117 *ts = iter->read_stamp + event->time_delta;
3118 ring_buffer_normalize_time_stamp(buffer,
3119 cpu_buffer->cpu, ts);
3120 }
3121 return event;
3122
3123 default:
3124 BUG();
3125 }
3126
3127 return NULL;
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3130
3131 static inline int rb_ok_to_lock(void)
3132 {
3133 /*
3134 * If an NMI die dumps out the content of the ring buffer
3135 * do not grab locks. We also permanently disable the ring
3136 * buffer too. A one time deal is all you get from reading
3137 * the ring buffer from an NMI.
3138 */
3139 if (likely(!in_nmi()))
3140 return 1;
3141
3142 tracing_off_permanent();
3143 return 0;
3144 }
3145
3146 /**
3147 * ring_buffer_peek - peek at the next event to be read
3148 * @buffer: The ring buffer to read
3149 * @cpu: The cpu to peak at
3150 * @ts: The timestamp counter of this event.
3151 *
3152 * This will return the event that will be read next, but does
3153 * not consume the data.
3154 */
3155 struct ring_buffer_event *
3156 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3157 {
3158 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3159 struct ring_buffer_event *event;
3160 unsigned long flags;
3161 int dolock;
3162
3163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3164 return NULL;
3165
3166 dolock = rb_ok_to_lock();
3167 again:
3168 local_irq_save(flags);
3169 if (dolock)
3170 spin_lock(&cpu_buffer->reader_lock);
3171 event = rb_buffer_peek(buffer, cpu, ts);
3172 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3173 rb_advance_reader(cpu_buffer);
3174 if (dolock)
3175 spin_unlock(&cpu_buffer->reader_lock);
3176 local_irq_restore(flags);
3177
3178 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3179 goto again;
3180
3181 return event;
3182 }
3183
3184 /**
3185 * ring_buffer_iter_peek - peek at the next event to be read
3186 * @iter: The ring buffer iterator
3187 * @ts: The timestamp counter of this event.
3188 *
3189 * This will return the event that will be read next, but does
3190 * not increment the iterator.
3191 */
3192 struct ring_buffer_event *
3193 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3194 {
3195 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3196 struct ring_buffer_event *event;
3197 unsigned long flags;
3198
3199 again:
3200 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3201 event = rb_iter_peek(iter, ts);
3202 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3203
3204 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3205 goto again;
3206
3207 return event;
3208 }
3209
3210 /**
3211 * ring_buffer_consume - return an event and consume it
3212 * @buffer: The ring buffer to get the next event from
3213 *
3214 * Returns the next event in the ring buffer, and that event is consumed.
3215 * Meaning, that sequential reads will keep returning a different event,
3216 * and eventually empty the ring buffer if the producer is slower.
3217 */
3218 struct ring_buffer_event *
3219 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3220 {
3221 struct ring_buffer_per_cpu *cpu_buffer;
3222 struct ring_buffer_event *event = NULL;
3223 unsigned long flags;
3224 int dolock;
3225
3226 dolock = rb_ok_to_lock();
3227
3228 again:
3229 /* might be called in atomic */
3230 preempt_disable();
3231
3232 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3233 goto out;
3234
3235 cpu_buffer = buffer->buffers[cpu];
3236 local_irq_save(flags);
3237 if (dolock)
3238 spin_lock(&cpu_buffer->reader_lock);
3239
3240 event = rb_buffer_peek(buffer, cpu, ts);
3241 if (event)
3242 rb_advance_reader(cpu_buffer);
3243
3244 if (dolock)
3245 spin_unlock(&cpu_buffer->reader_lock);
3246 local_irq_restore(flags);
3247
3248 out:
3249 preempt_enable();
3250
3251 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3252 goto again;
3253
3254 return event;
3255 }
3256 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3257
3258 /**
3259 * ring_buffer_read_start - start a non consuming read of the buffer
3260 * @buffer: The ring buffer to read from
3261 * @cpu: The cpu buffer to iterate over
3262 *
3263 * This starts up an iteration through the buffer. It also disables
3264 * the recording to the buffer until the reading is finished.
3265 * This prevents the reading from being corrupted. This is not
3266 * a consuming read, so a producer is not expected.
3267 *
3268 * Must be paired with ring_buffer_finish.
3269 */
3270 struct ring_buffer_iter *
3271 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3272 {
3273 struct ring_buffer_per_cpu *cpu_buffer;
3274 struct ring_buffer_iter *iter;
3275 unsigned long flags;
3276
3277 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3278 return NULL;
3279
3280 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3281 if (!iter)
3282 return NULL;
3283
3284 cpu_buffer = buffer->buffers[cpu];
3285
3286 iter->cpu_buffer = cpu_buffer;
3287
3288 atomic_inc(&cpu_buffer->record_disabled);
3289 synchronize_sched();
3290
3291 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3292 __raw_spin_lock(&cpu_buffer->lock);
3293 rb_iter_reset(iter);
3294 __raw_spin_unlock(&cpu_buffer->lock);
3295 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3296
3297 return iter;
3298 }
3299 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3300
3301 /**
3302 * ring_buffer_finish - finish reading the iterator of the buffer
3303 * @iter: The iterator retrieved by ring_buffer_start
3304 *
3305 * This re-enables the recording to the buffer, and frees the
3306 * iterator.
3307 */
3308 void
3309 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3310 {
3311 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3312
3313 atomic_dec(&cpu_buffer->record_disabled);
3314 kfree(iter);
3315 }
3316 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3317
3318 /**
3319 * ring_buffer_read - read the next item in the ring buffer by the iterator
3320 * @iter: The ring buffer iterator
3321 * @ts: The time stamp of the event read.
3322 *
3323 * This reads the next event in the ring buffer and increments the iterator.
3324 */
3325 struct ring_buffer_event *
3326 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3327 {
3328 struct ring_buffer_event *event;
3329 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3330 unsigned long flags;
3331
3332 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3333 again:
3334 event = rb_iter_peek(iter, ts);
3335 if (!event)
3336 goto out;
3337
3338 if (event->type_len == RINGBUF_TYPE_PADDING)
3339 goto again;
3340
3341 rb_advance_iter(iter);
3342 out:
3343 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3344
3345 return event;
3346 }
3347 EXPORT_SYMBOL_GPL(ring_buffer_read);
3348
3349 /**
3350 * ring_buffer_size - return the size of the ring buffer (in bytes)
3351 * @buffer: The ring buffer.
3352 */
3353 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3354 {
3355 return BUF_PAGE_SIZE * buffer->pages;
3356 }
3357 EXPORT_SYMBOL_GPL(ring_buffer_size);
3358
3359 static void
3360 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3361 {
3362 rb_head_page_deactivate(cpu_buffer);
3363
3364 cpu_buffer->head_page
3365 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3366 local_set(&cpu_buffer->head_page->write, 0);
3367 local_set(&cpu_buffer->head_page->entries, 0);
3368 local_set(&cpu_buffer->head_page->page->commit, 0);
3369
3370 cpu_buffer->head_page->read = 0;
3371
3372 cpu_buffer->tail_page = cpu_buffer->head_page;
3373 cpu_buffer->commit_page = cpu_buffer->head_page;
3374
3375 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3376 local_set(&cpu_buffer->reader_page->write, 0);
3377 local_set(&cpu_buffer->reader_page->entries, 0);
3378 local_set(&cpu_buffer->reader_page->page->commit, 0);
3379 cpu_buffer->reader_page->read = 0;
3380
3381 local_set(&cpu_buffer->commit_overrun, 0);
3382 local_set(&cpu_buffer->overrun, 0);
3383 local_set(&cpu_buffer->entries, 0);
3384 local_set(&cpu_buffer->committing, 0);
3385 local_set(&cpu_buffer->commits, 0);
3386 cpu_buffer->read = 0;
3387
3388 cpu_buffer->write_stamp = 0;
3389 cpu_buffer->read_stamp = 0;
3390
3391 rb_head_page_activate(cpu_buffer);
3392 }
3393
3394 /**
3395 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3396 * @buffer: The ring buffer to reset a per cpu buffer of
3397 * @cpu: The CPU buffer to be reset
3398 */
3399 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3400 {
3401 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3402 unsigned long flags;
3403
3404 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405 return;
3406
3407 atomic_inc(&cpu_buffer->record_disabled);
3408
3409 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3410
3411 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3412 goto out;
3413
3414 __raw_spin_lock(&cpu_buffer->lock);
3415
3416 rb_reset_cpu(cpu_buffer);
3417
3418 __raw_spin_unlock(&cpu_buffer->lock);
3419
3420 out:
3421 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3422
3423 atomic_dec(&cpu_buffer->record_disabled);
3424 }
3425 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3426
3427 /**
3428 * ring_buffer_reset - reset a ring buffer
3429 * @buffer: The ring buffer to reset all cpu buffers
3430 */
3431 void ring_buffer_reset(struct ring_buffer *buffer)
3432 {
3433 int cpu;
3434
3435 for_each_buffer_cpu(buffer, cpu)
3436 ring_buffer_reset_cpu(buffer, cpu);
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3439
3440 /**
3441 * rind_buffer_empty - is the ring buffer empty?
3442 * @buffer: The ring buffer to test
3443 */
3444 int ring_buffer_empty(struct ring_buffer *buffer)
3445 {
3446 struct ring_buffer_per_cpu *cpu_buffer;
3447 unsigned long flags;
3448 int dolock;
3449 int cpu;
3450 int ret;
3451
3452 dolock = rb_ok_to_lock();
3453
3454 /* yes this is racy, but if you don't like the race, lock the buffer */
3455 for_each_buffer_cpu(buffer, cpu) {
3456 cpu_buffer = buffer->buffers[cpu];
3457 local_irq_save(flags);
3458 if (dolock)
3459 spin_lock(&cpu_buffer->reader_lock);
3460 ret = rb_per_cpu_empty(cpu_buffer);
3461 if (dolock)
3462 spin_unlock(&cpu_buffer->reader_lock);
3463 local_irq_restore(flags);
3464
3465 if (!ret)
3466 return 0;
3467 }
3468
3469 return 1;
3470 }
3471 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3472
3473 /**
3474 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3475 * @buffer: The ring buffer
3476 * @cpu: The CPU buffer to test
3477 */
3478 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3479 {
3480 struct ring_buffer_per_cpu *cpu_buffer;
3481 unsigned long flags;
3482 int dolock;
3483 int ret;
3484
3485 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3486 return 1;
3487
3488 dolock = rb_ok_to_lock();
3489
3490 cpu_buffer = buffer->buffers[cpu];
3491 local_irq_save(flags);
3492 if (dolock)
3493 spin_lock(&cpu_buffer->reader_lock);
3494 ret = rb_per_cpu_empty(cpu_buffer);
3495 if (dolock)
3496 spin_unlock(&cpu_buffer->reader_lock);
3497 local_irq_restore(flags);
3498
3499 return ret;
3500 }
3501 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3502
3503 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3504 /**
3505 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3506 * @buffer_a: One buffer to swap with
3507 * @buffer_b: The other buffer to swap with
3508 *
3509 * This function is useful for tracers that want to take a "snapshot"
3510 * of a CPU buffer and has another back up buffer lying around.
3511 * it is expected that the tracer handles the cpu buffer not being
3512 * used at the moment.
3513 */
3514 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3515 struct ring_buffer *buffer_b, int cpu)
3516 {
3517 struct ring_buffer_per_cpu *cpu_buffer_a;
3518 struct ring_buffer_per_cpu *cpu_buffer_b;
3519 int ret = -EINVAL;
3520
3521 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3522 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3523 goto out;
3524
3525 /* At least make sure the two buffers are somewhat the same */
3526 if (buffer_a->pages != buffer_b->pages)
3527 goto out;
3528
3529 ret = -EAGAIN;
3530
3531 if (ring_buffer_flags != RB_BUFFERS_ON)
3532 goto out;
3533
3534 if (atomic_read(&buffer_a->record_disabled))
3535 goto out;
3536
3537 if (atomic_read(&buffer_b->record_disabled))
3538 goto out;
3539
3540 cpu_buffer_a = buffer_a->buffers[cpu];
3541 cpu_buffer_b = buffer_b->buffers[cpu];
3542
3543 if (atomic_read(&cpu_buffer_a->record_disabled))
3544 goto out;
3545
3546 if (atomic_read(&cpu_buffer_b->record_disabled))
3547 goto out;
3548
3549 /*
3550 * We can't do a synchronize_sched here because this
3551 * function can be called in atomic context.
3552 * Normally this will be called from the same CPU as cpu.
3553 * If not it's up to the caller to protect this.
3554 */
3555 atomic_inc(&cpu_buffer_a->record_disabled);
3556 atomic_inc(&cpu_buffer_b->record_disabled);
3557
3558 ret = -EBUSY;
3559 if (local_read(&cpu_buffer_a->committing))
3560 goto out_dec;
3561 if (local_read(&cpu_buffer_b->committing))
3562 goto out_dec;
3563
3564 buffer_a->buffers[cpu] = cpu_buffer_b;
3565 buffer_b->buffers[cpu] = cpu_buffer_a;
3566
3567 cpu_buffer_b->buffer = buffer_a;
3568 cpu_buffer_a->buffer = buffer_b;
3569
3570 ret = 0;
3571
3572 out_dec:
3573 atomic_dec(&cpu_buffer_a->record_disabled);
3574 atomic_dec(&cpu_buffer_b->record_disabled);
3575 out:
3576 return ret;
3577 }
3578 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3579 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3580
3581 /**
3582 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3583 * @buffer: the buffer to allocate for.
3584 *
3585 * This function is used in conjunction with ring_buffer_read_page.
3586 * When reading a full page from the ring buffer, these functions
3587 * can be used to speed up the process. The calling function should
3588 * allocate a few pages first with this function. Then when it
3589 * needs to get pages from the ring buffer, it passes the result
3590 * of this function into ring_buffer_read_page, which will swap
3591 * the page that was allocated, with the read page of the buffer.
3592 *
3593 * Returns:
3594 * The page allocated, or NULL on error.
3595 */
3596 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3597 {
3598 struct buffer_data_page *bpage;
3599 unsigned long addr;
3600
3601 addr = __get_free_page(GFP_KERNEL);
3602 if (!addr)
3603 return NULL;
3604
3605 bpage = (void *)addr;
3606
3607 rb_init_page(bpage);
3608
3609 return bpage;
3610 }
3611 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3612
3613 /**
3614 * ring_buffer_free_read_page - free an allocated read page
3615 * @buffer: the buffer the page was allocate for
3616 * @data: the page to free
3617 *
3618 * Free a page allocated from ring_buffer_alloc_read_page.
3619 */
3620 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3621 {
3622 free_page((unsigned long)data);
3623 }
3624 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3625
3626 /**
3627 * ring_buffer_read_page - extract a page from the ring buffer
3628 * @buffer: buffer to extract from
3629 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3630 * @len: amount to extract
3631 * @cpu: the cpu of the buffer to extract
3632 * @full: should the extraction only happen when the page is full.
3633 *
3634 * This function will pull out a page from the ring buffer and consume it.
3635 * @data_page must be the address of the variable that was returned
3636 * from ring_buffer_alloc_read_page. This is because the page might be used
3637 * to swap with a page in the ring buffer.
3638 *
3639 * for example:
3640 * rpage = ring_buffer_alloc_read_page(buffer);
3641 * if (!rpage)
3642 * return error;
3643 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3644 * if (ret >= 0)
3645 * process_page(rpage, ret);
3646 *
3647 * When @full is set, the function will not return true unless
3648 * the writer is off the reader page.
3649 *
3650 * Note: it is up to the calling functions to handle sleeps and wakeups.
3651 * The ring buffer can be used anywhere in the kernel and can not
3652 * blindly call wake_up. The layer that uses the ring buffer must be
3653 * responsible for that.
3654 *
3655 * Returns:
3656 * >=0 if data has been transferred, returns the offset of consumed data.
3657 * <0 if no data has been transferred.
3658 */
3659 int ring_buffer_read_page(struct ring_buffer *buffer,
3660 void **data_page, size_t len, int cpu, int full)
3661 {
3662 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3663 struct ring_buffer_event *event;
3664 struct buffer_data_page *bpage;
3665 struct buffer_page *reader;
3666 unsigned long flags;
3667 unsigned int commit;
3668 unsigned int read;
3669 u64 save_timestamp;
3670 int ret = -1;
3671
3672 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3673 goto out;
3674
3675 /*
3676 * If len is not big enough to hold the page header, then
3677 * we can not copy anything.
3678 */
3679 if (len <= BUF_PAGE_HDR_SIZE)
3680 goto out;
3681
3682 len -= BUF_PAGE_HDR_SIZE;
3683
3684 if (!data_page)
3685 goto out;
3686
3687 bpage = *data_page;
3688 if (!bpage)
3689 goto out;
3690
3691 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3692
3693 reader = rb_get_reader_page(cpu_buffer);
3694 if (!reader)
3695 goto out_unlock;
3696
3697 event = rb_reader_event(cpu_buffer);
3698
3699 read = reader->read;
3700 commit = rb_page_commit(reader);
3701
3702 /*
3703 * If this page has been partially read or
3704 * if len is not big enough to read the rest of the page or
3705 * a writer is still on the page, then
3706 * we must copy the data from the page to the buffer.
3707 * Otherwise, we can simply swap the page with the one passed in.
3708 */
3709 if (read || (len < (commit - read)) ||
3710 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3711 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3712 unsigned int rpos = read;
3713 unsigned int pos = 0;
3714 unsigned int size;
3715
3716 if (full)
3717 goto out_unlock;
3718
3719 if (len > (commit - read))
3720 len = (commit - read);
3721
3722 size = rb_event_length(event);
3723
3724 if (len < size)
3725 goto out_unlock;
3726
3727 /* save the current timestamp, since the user will need it */
3728 save_timestamp = cpu_buffer->read_stamp;
3729
3730 /* Need to copy one event at a time */
3731 do {
3732 memcpy(bpage->data + pos, rpage->data + rpos, size);
3733
3734 len -= size;
3735
3736 rb_advance_reader(cpu_buffer);
3737 rpos = reader->read;
3738 pos += size;
3739
3740 event = rb_reader_event(cpu_buffer);
3741 size = rb_event_length(event);
3742 } while (len > size);
3743
3744 /* update bpage */
3745 local_set(&bpage->commit, pos);
3746 bpage->time_stamp = save_timestamp;
3747
3748 /* we copied everything to the beginning */
3749 read = 0;
3750 } else {
3751 /* update the entry counter */
3752 cpu_buffer->read += rb_page_entries(reader);
3753
3754 /* swap the pages */
3755 rb_init_page(bpage);
3756 bpage = reader->page;
3757 reader->page = *data_page;
3758 local_set(&reader->write, 0);
3759 local_set(&reader->entries, 0);
3760 reader->read = 0;
3761 *data_page = bpage;
3762 }
3763 ret = read;
3764
3765 out_unlock:
3766 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3767
3768 out:
3769 return ret;
3770 }
3771 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3772
3773 #ifdef CONFIG_TRACING
3774 static ssize_t
3775 rb_simple_read(struct file *filp, char __user *ubuf,
3776 size_t cnt, loff_t *ppos)
3777 {
3778 unsigned long *p = filp->private_data;
3779 char buf[64];
3780 int r;
3781
3782 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3783 r = sprintf(buf, "permanently disabled\n");
3784 else
3785 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3786
3787 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3788 }
3789
3790 static ssize_t
3791 rb_simple_write(struct file *filp, const char __user *ubuf,
3792 size_t cnt, loff_t *ppos)
3793 {
3794 unsigned long *p = filp->private_data;
3795 char buf[64];
3796 unsigned long val;
3797 int ret;
3798
3799 if (cnt >= sizeof(buf))
3800 return -EINVAL;
3801
3802 if (copy_from_user(&buf, ubuf, cnt))
3803 return -EFAULT;
3804
3805 buf[cnt] = 0;
3806
3807 ret = strict_strtoul(buf, 10, &val);
3808 if (ret < 0)
3809 return ret;
3810
3811 if (val)
3812 set_bit(RB_BUFFERS_ON_BIT, p);
3813 else
3814 clear_bit(RB_BUFFERS_ON_BIT, p);
3815
3816 (*ppos)++;
3817
3818 return cnt;
3819 }
3820
3821 static const struct file_operations rb_simple_fops = {
3822 .open = tracing_open_generic,
3823 .read = rb_simple_read,
3824 .write = rb_simple_write,
3825 };
3826
3827
3828 static __init int rb_init_debugfs(void)
3829 {
3830 struct dentry *d_tracer;
3831
3832 d_tracer = tracing_init_dentry();
3833
3834 trace_create_file("tracing_on", 0644, d_tracer,
3835 &ring_buffer_flags, &rb_simple_fops);
3836
3837 return 0;
3838 }
3839
3840 fs_initcall(rb_init_debugfs);
3841 #endif
3842
3843 #ifdef CONFIG_HOTPLUG_CPU
3844 static int rb_cpu_notify(struct notifier_block *self,
3845 unsigned long action, void *hcpu)
3846 {
3847 struct ring_buffer *buffer =
3848 container_of(self, struct ring_buffer, cpu_notify);
3849 long cpu = (long)hcpu;
3850
3851 switch (action) {
3852 case CPU_UP_PREPARE:
3853 case CPU_UP_PREPARE_FROZEN:
3854 if (cpumask_test_cpu(cpu, buffer->cpumask))
3855 return NOTIFY_OK;
3856
3857 buffer->buffers[cpu] =
3858 rb_allocate_cpu_buffer(buffer, cpu);
3859 if (!buffer->buffers[cpu]) {
3860 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3861 cpu);
3862 return NOTIFY_OK;
3863 }
3864 smp_wmb();
3865 cpumask_set_cpu(cpu, buffer->cpumask);
3866 break;
3867 case CPU_DOWN_PREPARE:
3868 case CPU_DOWN_PREPARE_FROZEN:
3869 /*
3870 * Do nothing.
3871 * If we were to free the buffer, then the user would
3872 * lose any trace that was in the buffer.
3873 */
3874 break;
3875 default:
3876 break;
3877 }
3878 return NOTIFY_OK;
3879 }
3880 #endif
This page took 0.209927 seconds and 5 git commands to generate.