Merge branches 'pm-sleep', 'pm-cpufreq' and 'pm-cpuidle'
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 int ret;
38
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return ret;
52 }
53
54 /*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122 /*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140 /*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
172 * permanently.
173 */
174 void tracing_off_permanent(void)
175 {
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
191
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 unsigned length;
221
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257 }
258
259 /*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274 }
275
276 /**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
285 */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315 }
316
317 /**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
338
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
343 };
344
345 /*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
360 };
361
362 /*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 local_set(&bpage->commit, 0);
380 }
381
382 /**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
388 size_t ring_buffer_page_len(void *page)
389 {
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
402 }
403
404 /*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407 static inline int test_time_stamp(u64 delta)
408 {
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
434
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
446
447 return ret;
448 }
449
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454 };
455
456 /*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
490
491 struct rb_irq_work irq_work;
492 };
493
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
500
501 struct lock_class_key *reader_lock_key;
502
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
511
512 struct rb_irq_work irq_work;
513 };
514
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
522 };
523
524 /*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
564 }
565
566
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569 /*
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
575 *
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
582 *
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
588 */
589 work->waiters_pending = true;
590
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
594
595 finish_wait(&work->waiters, &wait);
596 return 0;
597 }
598
599 /**
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
605 *
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
609 *
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
612 */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
615 {
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
618
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
624
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
627 }
628
629 work->waiters_pending = true;
630 poll_wait(filp, &work->waiters, poll_table);
631
632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 return POLLIN | POLLRDNORM;
635 return 0;
636 }
637
638 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
639 #define RB_WARN_ON(b, cond) \
640 ({ \
641 int _____ret = unlikely(cond); \
642 if (_____ret) { \
643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 struct ring_buffer_per_cpu *__b = \
645 (void *)b; \
646 atomic_inc(&__b->buffer->record_disabled); \
647 } else \
648 atomic_inc(&b->record_disabled); \
649 WARN_ON(1); \
650 } \
651 _____ret; \
652 })
653
654 /* Up this if you want to test the TIME_EXTENTS and normalization */
655 #define DEBUG_SHIFT 0
656
657 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
658 {
659 /* shift to debug/test normalization and TIME_EXTENTS */
660 return buffer->clock() << DEBUG_SHIFT;
661 }
662
663 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
664 {
665 u64 time;
666
667 preempt_disable_notrace();
668 time = rb_time_stamp(buffer);
669 preempt_enable_no_resched_notrace();
670
671 return time;
672 }
673 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
674
675 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 int cpu, u64 *ts)
677 {
678 /* Just stupid testing the normalize function and deltas */
679 *ts >>= DEBUG_SHIFT;
680 }
681 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
682
683 /*
684 * Making the ring buffer lockless makes things tricky.
685 * Although writes only happen on the CPU that they are on,
686 * and they only need to worry about interrupts. Reads can
687 * happen on any CPU.
688 *
689 * The reader page is always off the ring buffer, but when the
690 * reader finishes with a page, it needs to swap its page with
691 * a new one from the buffer. The reader needs to take from
692 * the head (writes go to the tail). But if a writer is in overwrite
693 * mode and wraps, it must push the head page forward.
694 *
695 * Here lies the problem.
696 *
697 * The reader must be careful to replace only the head page, and
698 * not another one. As described at the top of the file in the
699 * ASCII art, the reader sets its old page to point to the next
700 * page after head. It then sets the page after head to point to
701 * the old reader page. But if the writer moves the head page
702 * during this operation, the reader could end up with the tail.
703 *
704 * We use cmpxchg to help prevent this race. We also do something
705 * special with the page before head. We set the LSB to 1.
706 *
707 * When the writer must push the page forward, it will clear the
708 * bit that points to the head page, move the head, and then set
709 * the bit that points to the new head page.
710 *
711 * We also don't want an interrupt coming in and moving the head
712 * page on another writer. Thus we use the second LSB to catch
713 * that too. Thus:
714 *
715 * head->list->prev->next bit 1 bit 0
716 * ------- -------
717 * Normal page 0 0
718 * Points to head page 0 1
719 * New head page 1 0
720 *
721 * Note we can not trust the prev pointer of the head page, because:
722 *
723 * +----+ +-----+ +-----+
724 * | |------>| T |---X--->| N |
725 * | |<------| | | |
726 * +----+ +-----+ +-----+
727 * ^ ^ |
728 * | +-----+ | |
729 * +----------| R |----------+ |
730 * | |<-----------+
731 * +-----+
732 *
733 * Key: ---X--> HEAD flag set in pointer
734 * T Tail page
735 * R Reader page
736 * N Next page
737 *
738 * (see __rb_reserve_next() to see where this happens)
739 *
740 * What the above shows is that the reader just swapped out
741 * the reader page with a page in the buffer, but before it
742 * could make the new header point back to the new page added
743 * it was preempted by a writer. The writer moved forward onto
744 * the new page added by the reader and is about to move forward
745 * again.
746 *
747 * You can see, it is legitimate for the previous pointer of
748 * the head (or any page) not to point back to itself. But only
749 * temporarially.
750 */
751
752 #define RB_PAGE_NORMAL 0UL
753 #define RB_PAGE_HEAD 1UL
754 #define RB_PAGE_UPDATE 2UL
755
756
757 #define RB_FLAG_MASK 3UL
758
759 /* PAGE_MOVED is not part of the mask */
760 #define RB_PAGE_MOVED 4UL
761
762 /*
763 * rb_list_head - remove any bit
764 */
765 static struct list_head *rb_list_head(struct list_head *list)
766 {
767 unsigned long val = (unsigned long)list;
768
769 return (struct list_head *)(val & ~RB_FLAG_MASK);
770 }
771
772 /*
773 * rb_is_head_page - test if the given page is the head page
774 *
775 * Because the reader may move the head_page pointer, we can
776 * not trust what the head page is (it may be pointing to
777 * the reader page). But if the next page is a header page,
778 * its flags will be non zero.
779 */
780 static inline int
781 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 struct buffer_page *page, struct list_head *list)
783 {
784 unsigned long val;
785
786 val = (unsigned long)list->next;
787
788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 return RB_PAGE_MOVED;
790
791 return val & RB_FLAG_MASK;
792 }
793
794 /*
795 * rb_is_reader_page
796 *
797 * The unique thing about the reader page, is that, if the
798 * writer is ever on it, the previous pointer never points
799 * back to the reader page.
800 */
801 static int rb_is_reader_page(struct buffer_page *page)
802 {
803 struct list_head *list = page->list.prev;
804
805 return rb_list_head(list->next) != &page->list;
806 }
807
808 /*
809 * rb_set_list_to_head - set a list_head to be pointing to head.
810 */
811 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 struct list_head *list)
813 {
814 unsigned long *ptr;
815
816 ptr = (unsigned long *)&list->next;
817 *ptr |= RB_PAGE_HEAD;
818 *ptr &= ~RB_PAGE_UPDATE;
819 }
820
821 /*
822 * rb_head_page_activate - sets up head page
823 */
824 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
825 {
826 struct buffer_page *head;
827
828 head = cpu_buffer->head_page;
829 if (!head)
830 return;
831
832 /*
833 * Set the previous list pointer to have the HEAD flag.
834 */
835 rb_set_list_to_head(cpu_buffer, head->list.prev);
836 }
837
838 static void rb_list_head_clear(struct list_head *list)
839 {
840 unsigned long *ptr = (unsigned long *)&list->next;
841
842 *ptr &= ~RB_FLAG_MASK;
843 }
844
845 /*
846 * rb_head_page_dactivate - clears head page ptr (for free list)
847 */
848 static void
849 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
850 {
851 struct list_head *hd;
852
853 /* Go through the whole list and clear any pointers found. */
854 rb_list_head_clear(cpu_buffer->pages);
855
856 list_for_each(hd, cpu_buffer->pages)
857 rb_list_head_clear(hd);
858 }
859
860 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 struct buffer_page *head,
862 struct buffer_page *prev,
863 int old_flag, int new_flag)
864 {
865 struct list_head *list;
866 unsigned long val = (unsigned long)&head->list;
867 unsigned long ret;
868
869 list = &prev->list;
870
871 val &= ~RB_FLAG_MASK;
872
873 ret = cmpxchg((unsigned long *)&list->next,
874 val | old_flag, val | new_flag);
875
876 /* check if the reader took the page */
877 if ((ret & ~RB_FLAG_MASK) != val)
878 return RB_PAGE_MOVED;
879
880 return ret & RB_FLAG_MASK;
881 }
882
883 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag)
887 {
888 return rb_head_page_set(cpu_buffer, head, prev,
889 old_flag, RB_PAGE_UPDATE);
890 }
891
892 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 struct buffer_page *head,
894 struct buffer_page *prev,
895 int old_flag)
896 {
897 return rb_head_page_set(cpu_buffer, head, prev,
898 old_flag, RB_PAGE_HEAD);
899 }
900
901 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *head,
903 struct buffer_page *prev,
904 int old_flag)
905 {
906 return rb_head_page_set(cpu_buffer, head, prev,
907 old_flag, RB_PAGE_NORMAL);
908 }
909
910 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 struct buffer_page **bpage)
912 {
913 struct list_head *p = rb_list_head((*bpage)->list.next);
914
915 *bpage = list_entry(p, struct buffer_page, list);
916 }
917
918 static struct buffer_page *
919 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
920 {
921 struct buffer_page *head;
922 struct buffer_page *page;
923 struct list_head *list;
924 int i;
925
926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 return NULL;
928
929 /* sanity check */
930 list = cpu_buffer->pages;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 return NULL;
933
934 page = head = cpu_buffer->head_page;
935 /*
936 * It is possible that the writer moves the header behind
937 * where we started, and we miss in one loop.
938 * A second loop should grab the header, but we'll do
939 * three loops just because I'm paranoid.
940 */
941 for (i = 0; i < 3; i++) {
942 do {
943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 cpu_buffer->head_page = page;
945 return page;
946 }
947 rb_inc_page(cpu_buffer, &page);
948 } while (page != head);
949 }
950
951 RB_WARN_ON(cpu_buffer, 1);
952
953 return NULL;
954 }
955
956 static int rb_head_page_replace(struct buffer_page *old,
957 struct buffer_page *new)
958 {
959 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 unsigned long val;
961 unsigned long ret;
962
963 val = *ptr & ~RB_FLAG_MASK;
964 val |= RB_PAGE_HEAD;
965
966 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
967
968 return ret == val;
969 }
970
971 /*
972 * rb_tail_page_update - move the tail page forward
973 *
974 * Returns 1 if moved tail page, 0 if someone else did.
975 */
976 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 struct buffer_page *tail_page,
978 struct buffer_page *next_page)
979 {
980 struct buffer_page *old_tail;
981 unsigned long old_entries;
982 unsigned long old_write;
983 int ret = 0;
984
985 /*
986 * The tail page now needs to be moved forward.
987 *
988 * We need to reset the tail page, but without messing
989 * with possible erasing of data brought in by interrupts
990 * that have moved the tail page and are currently on it.
991 *
992 * We add a counter to the write field to denote this.
993 */
994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
996
997 /*
998 * Just make sure we have seen our old_write and synchronize
999 * with any interrupts that come in.
1000 */
1001 barrier();
1002
1003 /*
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1006 * pointer.
1007 */
1008 if (tail_page == cpu_buffer->tail_page) {
1009 /* Zero the write counter */
1010 unsigned long val = old_write & ~RB_WRITE_MASK;
1011 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012
1013 /*
1014 * This will only succeed if an interrupt did
1015 * not come in and change it. In which case, we
1016 * do not want to modify it.
1017 *
1018 * We add (void) to let the compiler know that we do not care
1019 * about the return value of these functions. We use the
1020 * cmpxchg to only update if an interrupt did not already
1021 * do it for us. If the cmpxchg fails, we don't care.
1022 */
1023 (void)local_cmpxchg(&next_page->write, old_write, val);
1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1025
1026 /*
1027 * No need to worry about races with clearing out the commit.
1028 * it only can increment when a commit takes place. But that
1029 * only happens in the outer most nested commit.
1030 */
1031 local_set(&next_page->page->commit, 0);
1032
1033 old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 tail_page, next_page);
1035
1036 if (old_tail == tail_page)
1037 ret = 1;
1038 }
1039
1040 return ret;
1041 }
1042
1043 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 struct buffer_page *bpage)
1045 {
1046 unsigned long val = (unsigned long)bpage;
1047
1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 return 1;
1050
1051 return 0;
1052 }
1053
1054 /**
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1056 */
1057 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct list_head *list)
1059 {
1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 return 1;
1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 return 1;
1064 return 0;
1065 }
1066
1067 /**
1068 * rb_check_pages - integrity check of buffer pages
1069 * @cpu_buffer: CPU buffer with pages to test
1070 *
1071 * As a safety measure we check to make sure the data pages have not
1072 * been corrupted.
1073 */
1074 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075 {
1076 struct list_head *head = cpu_buffer->pages;
1077 struct buffer_page *bpage, *tmp;
1078
1079 /* Reset the head page if it exists */
1080 if (cpu_buffer->head_page)
1081 rb_set_head_page(cpu_buffer);
1082
1083 rb_head_page_deactivate(cpu_buffer);
1084
1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 return -1;
1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 return -1;
1089
1090 if (rb_check_list(cpu_buffer, head))
1091 return -1;
1092
1093 list_for_each_entry_safe(bpage, tmp, head, list) {
1094 if (RB_WARN_ON(cpu_buffer,
1095 bpage->list.next->prev != &bpage->list))
1096 return -1;
1097 if (RB_WARN_ON(cpu_buffer,
1098 bpage->list.prev->next != &bpage->list))
1099 return -1;
1100 if (rb_check_list(cpu_buffer, &bpage->list))
1101 return -1;
1102 }
1103
1104 rb_head_page_activate(cpu_buffer);
1105
1106 return 0;
1107 }
1108
1109 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1110 {
1111 int i;
1112 struct buffer_page *bpage, *tmp;
1113
1114 for (i = 0; i < nr_pages; i++) {
1115 struct page *page;
1116 /*
1117 * __GFP_NORETRY flag makes sure that the allocation fails
1118 * gracefully without invoking oom-killer and the system is
1119 * not destabilized.
1120 */
1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1122 GFP_KERNEL | __GFP_NORETRY,
1123 cpu_to_node(cpu));
1124 if (!bpage)
1125 goto free_pages;
1126
1127 list_add(&bpage->list, pages);
1128
1129 page = alloc_pages_node(cpu_to_node(cpu),
1130 GFP_KERNEL | __GFP_NORETRY, 0);
1131 if (!page)
1132 goto free_pages;
1133 bpage->page = page_address(page);
1134 rb_init_page(bpage->page);
1135 }
1136
1137 return 0;
1138
1139 free_pages:
1140 list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 list_del_init(&bpage->list);
1142 free_buffer_page(bpage);
1143 }
1144
1145 return -ENOMEM;
1146 }
1147
1148 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 unsigned nr_pages)
1150 {
1151 LIST_HEAD(pages);
1152
1153 WARN_ON(!nr_pages);
1154
1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 return -ENOMEM;
1157
1158 /*
1159 * The ring buffer page list is a circular list that does not
1160 * start and end with a list head. All page list items point to
1161 * other pages.
1162 */
1163 cpu_buffer->pages = pages.next;
1164 list_del(&pages);
1165
1166 cpu_buffer->nr_pages = nr_pages;
1167
1168 rb_check_pages(cpu_buffer);
1169
1170 return 0;
1171 }
1172
1173 static struct ring_buffer_per_cpu *
1174 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1175 {
1176 struct ring_buffer_per_cpu *cpu_buffer;
1177 struct buffer_page *bpage;
1178 struct page *page;
1179 int ret;
1180
1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 GFP_KERNEL, cpu_to_node(cpu));
1183 if (!cpu_buffer)
1184 return NULL;
1185
1186 cpu_buffer->cpu = cpu;
1187 cpu_buffer->buffer = buffer;
1188 raw_spin_lock_init(&cpu_buffer->reader_lock);
1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1192 init_completion(&cpu_buffer->update_done);
1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1195
1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1197 GFP_KERNEL, cpu_to_node(cpu));
1198 if (!bpage)
1199 goto fail_free_buffer;
1200
1201 rb_check_bpage(cpu_buffer, bpage);
1202
1203 cpu_buffer->reader_page = bpage;
1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 if (!page)
1206 goto fail_free_reader;
1207 bpage->page = page_address(page);
1208 rb_init_page(bpage->page);
1209
1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1211 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1212
1213 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1214 if (ret < 0)
1215 goto fail_free_reader;
1216
1217 cpu_buffer->head_page
1218 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1220
1221 rb_head_page_activate(cpu_buffer);
1222
1223 return cpu_buffer;
1224
1225 fail_free_reader:
1226 free_buffer_page(cpu_buffer->reader_page);
1227
1228 fail_free_buffer:
1229 kfree(cpu_buffer);
1230 return NULL;
1231 }
1232
1233 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234 {
1235 struct list_head *head = cpu_buffer->pages;
1236 struct buffer_page *bpage, *tmp;
1237
1238 free_buffer_page(cpu_buffer->reader_page);
1239
1240 rb_head_page_deactivate(cpu_buffer);
1241
1242 if (head) {
1243 list_for_each_entry_safe(bpage, tmp, head, list) {
1244 list_del_init(&bpage->list);
1245 free_buffer_page(bpage);
1246 }
1247 bpage = list_entry(head, struct buffer_page, list);
1248 free_buffer_page(bpage);
1249 }
1250
1251 kfree(cpu_buffer);
1252 }
1253
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 static int rb_cpu_notify(struct notifier_block *self,
1256 unsigned long action, void *hcpu);
1257 #endif
1258
1259 /**
1260 * __ring_buffer_alloc - allocate a new ring_buffer
1261 * @size: the size in bytes per cpu that is needed.
1262 * @flags: attributes to set for the ring buffer.
1263 *
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1268 */
1269 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 struct lock_class_key *key)
1271 {
1272 struct ring_buffer *buffer;
1273 int bsize;
1274 int cpu, nr_pages;
1275
1276 /* keep it in its own cache line */
1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 GFP_KERNEL);
1279 if (!buffer)
1280 return NULL;
1281
1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 goto fail_free_buffer;
1284
1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286 buffer->flags = flags;
1287 buffer->clock = trace_clock_local;
1288 buffer->reader_lock_key = key;
1289
1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1291 init_waitqueue_head(&buffer->irq_work.waiters);
1292
1293 /* need at least two pages */
1294 if (nr_pages < 2)
1295 nr_pages = 2;
1296
1297 /*
1298 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 * in early initcall, it will not be notified of secondary cpus.
1300 * In that off case, we need to allocate for all possible cpus.
1301 */
1302 #ifdef CONFIG_HOTPLUG_CPU
1303 cpu_notifier_register_begin();
1304 cpumask_copy(buffer->cpumask, cpu_online_mask);
1305 #else
1306 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307 #endif
1308 buffer->cpus = nr_cpu_ids;
1309
1310 bsize = sizeof(void *) * nr_cpu_ids;
1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 GFP_KERNEL);
1313 if (!buffer->buffers)
1314 goto fail_free_cpumask;
1315
1316 for_each_buffer_cpu(buffer, cpu) {
1317 buffer->buffers[cpu] =
1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1319 if (!buffer->buffers[cpu])
1320 goto fail_free_buffers;
1321 }
1322
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 buffer->cpu_notify.priority = 0;
1326 __register_cpu_notifier(&buffer->cpu_notify);
1327 cpu_notifier_register_done();
1328 #endif
1329
1330 mutex_init(&buffer->mutex);
1331
1332 return buffer;
1333
1334 fail_free_buffers:
1335 for_each_buffer_cpu(buffer, cpu) {
1336 if (buffer->buffers[cpu])
1337 rb_free_cpu_buffer(buffer->buffers[cpu]);
1338 }
1339 kfree(buffer->buffers);
1340
1341 fail_free_cpumask:
1342 free_cpumask_var(buffer->cpumask);
1343 #ifdef CONFIG_HOTPLUG_CPU
1344 cpu_notifier_register_done();
1345 #endif
1346
1347 fail_free_buffer:
1348 kfree(buffer);
1349 return NULL;
1350 }
1351 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352
1353 /**
1354 * ring_buffer_free - free a ring buffer.
1355 * @buffer: the buffer to free.
1356 */
1357 void
1358 ring_buffer_free(struct ring_buffer *buffer)
1359 {
1360 int cpu;
1361
1362 #ifdef CONFIG_HOTPLUG_CPU
1363 cpu_notifier_register_begin();
1364 __unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366
1367 for_each_buffer_cpu(buffer, cpu)
1368 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
1370 #ifdef CONFIG_HOTPLUG_CPU
1371 cpu_notifier_register_done();
1372 #endif
1373
1374 kfree(buffer->buffers);
1375 free_cpumask_var(buffer->cpumask);
1376
1377 kfree(buffer);
1378 }
1379 EXPORT_SYMBOL_GPL(ring_buffer_free);
1380
1381 void ring_buffer_set_clock(struct ring_buffer *buffer,
1382 u64 (*clock)(void))
1383 {
1384 buffer->clock = clock;
1385 }
1386
1387 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1388
1389 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1390 {
1391 return local_read(&bpage->entries) & RB_WRITE_MASK;
1392 }
1393
1394 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395 {
1396 return local_read(&bpage->write) & RB_WRITE_MASK;
1397 }
1398
1399 static int
1400 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1401 {
1402 struct list_head *tail_page, *to_remove, *next_page;
1403 struct buffer_page *to_remove_page, *tmp_iter_page;
1404 struct buffer_page *last_page, *first_page;
1405 unsigned int nr_removed;
1406 unsigned long head_bit;
1407 int page_entries;
1408
1409 head_bit = 0;
1410
1411 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1412 atomic_inc(&cpu_buffer->record_disabled);
1413 /*
1414 * We don't race with the readers since we have acquired the reader
1415 * lock. We also don't race with writers after disabling recording.
1416 * This makes it easy to figure out the first and the last page to be
1417 * removed from the list. We unlink all the pages in between including
1418 * the first and last pages. This is done in a busy loop so that we
1419 * lose the least number of traces.
1420 * The pages are freed after we restart recording and unlock readers.
1421 */
1422 tail_page = &cpu_buffer->tail_page->list;
1423
1424 /*
1425 * tail page might be on reader page, we remove the next page
1426 * from the ring buffer
1427 */
1428 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1429 tail_page = rb_list_head(tail_page->next);
1430 to_remove = tail_page;
1431
1432 /* start of pages to remove */
1433 first_page = list_entry(rb_list_head(to_remove->next),
1434 struct buffer_page, list);
1435
1436 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1437 to_remove = rb_list_head(to_remove)->next;
1438 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1439 }
1440
1441 next_page = rb_list_head(to_remove)->next;
1442
1443 /*
1444 * Now we remove all pages between tail_page and next_page.
1445 * Make sure that we have head_bit value preserved for the
1446 * next page
1447 */
1448 tail_page->next = (struct list_head *)((unsigned long)next_page |
1449 head_bit);
1450 next_page = rb_list_head(next_page);
1451 next_page->prev = tail_page;
1452
1453 /* make sure pages points to a valid page in the ring buffer */
1454 cpu_buffer->pages = next_page;
1455
1456 /* update head page */
1457 if (head_bit)
1458 cpu_buffer->head_page = list_entry(next_page,
1459 struct buffer_page, list);
1460
1461 /*
1462 * change read pointer to make sure any read iterators reset
1463 * themselves
1464 */
1465 cpu_buffer->read = 0;
1466
1467 /* pages are removed, resume tracing and then free the pages */
1468 atomic_dec(&cpu_buffer->record_disabled);
1469 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1470
1471 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1472
1473 /* last buffer page to remove */
1474 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1475 list);
1476 tmp_iter_page = first_page;
1477
1478 do {
1479 to_remove_page = tmp_iter_page;
1480 rb_inc_page(cpu_buffer, &tmp_iter_page);
1481
1482 /* update the counters */
1483 page_entries = rb_page_entries(to_remove_page);
1484 if (page_entries) {
1485 /*
1486 * If something was added to this page, it was full
1487 * since it is not the tail page. So we deduct the
1488 * bytes consumed in ring buffer from here.
1489 * Increment overrun to account for the lost events.
1490 */
1491 local_add(page_entries, &cpu_buffer->overrun);
1492 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1493 }
1494
1495 /*
1496 * We have already removed references to this list item, just
1497 * free up the buffer_page and its page
1498 */
1499 free_buffer_page(to_remove_page);
1500 nr_removed--;
1501
1502 } while (to_remove_page != last_page);
1503
1504 RB_WARN_ON(cpu_buffer, nr_removed);
1505
1506 return nr_removed == 0;
1507 }
1508
1509 static int
1510 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1511 {
1512 struct list_head *pages = &cpu_buffer->new_pages;
1513 int retries, success;
1514
1515 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1516 /*
1517 * We are holding the reader lock, so the reader page won't be swapped
1518 * in the ring buffer. Now we are racing with the writer trying to
1519 * move head page and the tail page.
1520 * We are going to adapt the reader page update process where:
1521 * 1. We first splice the start and end of list of new pages between
1522 * the head page and its previous page.
1523 * 2. We cmpxchg the prev_page->next to point from head page to the
1524 * start of new pages list.
1525 * 3. Finally, we update the head->prev to the end of new list.
1526 *
1527 * We will try this process 10 times, to make sure that we don't keep
1528 * spinning.
1529 */
1530 retries = 10;
1531 success = 0;
1532 while (retries--) {
1533 struct list_head *head_page, *prev_page, *r;
1534 struct list_head *last_page, *first_page;
1535 struct list_head *head_page_with_bit;
1536
1537 head_page = &rb_set_head_page(cpu_buffer)->list;
1538 if (!head_page)
1539 break;
1540 prev_page = head_page->prev;
1541
1542 first_page = pages->next;
1543 last_page = pages->prev;
1544
1545 head_page_with_bit = (struct list_head *)
1546 ((unsigned long)head_page | RB_PAGE_HEAD);
1547
1548 last_page->next = head_page_with_bit;
1549 first_page->prev = prev_page;
1550
1551 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1552
1553 if (r == head_page_with_bit) {
1554 /*
1555 * yay, we replaced the page pointer to our new list,
1556 * now, we just have to update to head page's prev
1557 * pointer to point to end of list
1558 */
1559 head_page->prev = last_page;
1560 success = 1;
1561 break;
1562 }
1563 }
1564
1565 if (success)
1566 INIT_LIST_HEAD(pages);
1567 /*
1568 * If we weren't successful in adding in new pages, warn and stop
1569 * tracing
1570 */
1571 RB_WARN_ON(cpu_buffer, !success);
1572 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1573
1574 /* free pages if they weren't inserted */
1575 if (!success) {
1576 struct buffer_page *bpage, *tmp;
1577 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1578 list) {
1579 list_del_init(&bpage->list);
1580 free_buffer_page(bpage);
1581 }
1582 }
1583 return success;
1584 }
1585
1586 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588 int success;
1589
1590 if (cpu_buffer->nr_pages_to_update > 0)
1591 success = rb_insert_pages(cpu_buffer);
1592 else
1593 success = rb_remove_pages(cpu_buffer,
1594 -cpu_buffer->nr_pages_to_update);
1595
1596 if (success)
1597 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1598 }
1599
1600 static void update_pages_handler(struct work_struct *work)
1601 {
1602 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1603 struct ring_buffer_per_cpu, update_pages_work);
1604 rb_update_pages(cpu_buffer);
1605 complete(&cpu_buffer->update_done);
1606 }
1607
1608 /**
1609 * ring_buffer_resize - resize the ring buffer
1610 * @buffer: the buffer to resize.
1611 * @size: the new size.
1612 * @cpu_id: the cpu buffer to resize
1613 *
1614 * Minimum size is 2 * BUF_PAGE_SIZE.
1615 *
1616 * Returns 0 on success and < 0 on failure.
1617 */
1618 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619 int cpu_id)
1620 {
1621 struct ring_buffer_per_cpu *cpu_buffer;
1622 unsigned nr_pages;
1623 int cpu, err = 0;
1624
1625 /*
1626 * Always succeed at resizing a non-existent buffer:
1627 */
1628 if (!buffer)
1629 return size;
1630
1631 /* Make sure the requested buffer exists */
1632 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634 return size;
1635
1636 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637 size *= BUF_PAGE_SIZE;
1638
1639 /* we need a minimum of two pages */
1640 if (size < BUF_PAGE_SIZE * 2)
1641 size = BUF_PAGE_SIZE * 2;
1642
1643 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1644
1645 /*
1646 * Don't succeed if resizing is disabled, as a reader might be
1647 * manipulating the ring buffer and is expecting a sane state while
1648 * this is true.
1649 */
1650 if (atomic_read(&buffer->resize_disabled))
1651 return -EBUSY;
1652
1653 /* prevent another thread from changing buffer sizes */
1654 mutex_lock(&buffer->mutex);
1655
1656 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657 /* calculate the pages to update */
1658 for_each_buffer_cpu(buffer, cpu) {
1659 cpu_buffer = buffer->buffers[cpu];
1660
1661 cpu_buffer->nr_pages_to_update = nr_pages -
1662 cpu_buffer->nr_pages;
1663 /*
1664 * nothing more to do for removing pages or no update
1665 */
1666 if (cpu_buffer->nr_pages_to_update <= 0)
1667 continue;
1668 /*
1669 * to add pages, make sure all new pages can be
1670 * allocated without receiving ENOMEM
1671 */
1672 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1674 &cpu_buffer->new_pages, cpu)) {
1675 /* not enough memory for new pages */
1676 err = -ENOMEM;
1677 goto out_err;
1678 }
1679 }
1680
1681 get_online_cpus();
1682 /*
1683 * Fire off all the required work handlers
1684 * We can't schedule on offline CPUs, but it's not necessary
1685 * since we can change their buffer sizes without any race.
1686 */
1687 for_each_buffer_cpu(buffer, cpu) {
1688 cpu_buffer = buffer->buffers[cpu];
1689 if (!cpu_buffer->nr_pages_to_update)
1690 continue;
1691
1692 /* Can't run something on an offline CPU. */
1693 if (!cpu_online(cpu)) {
1694 rb_update_pages(cpu_buffer);
1695 cpu_buffer->nr_pages_to_update = 0;
1696 } else {
1697 schedule_work_on(cpu,
1698 &cpu_buffer->update_pages_work);
1699 }
1700 }
1701
1702 /* wait for all the updates to complete */
1703 for_each_buffer_cpu(buffer, cpu) {
1704 cpu_buffer = buffer->buffers[cpu];
1705 if (!cpu_buffer->nr_pages_to_update)
1706 continue;
1707
1708 if (cpu_online(cpu))
1709 wait_for_completion(&cpu_buffer->update_done);
1710 cpu_buffer->nr_pages_to_update = 0;
1711 }
1712
1713 put_online_cpus();
1714 } else {
1715 /* Make sure this CPU has been intitialized */
1716 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1717 goto out;
1718
1719 cpu_buffer = buffer->buffers[cpu_id];
1720
1721 if (nr_pages == cpu_buffer->nr_pages)
1722 goto out;
1723
1724 cpu_buffer->nr_pages_to_update = nr_pages -
1725 cpu_buffer->nr_pages;
1726
1727 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728 if (cpu_buffer->nr_pages_to_update > 0 &&
1729 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1730 &cpu_buffer->new_pages, cpu_id)) {
1731 err = -ENOMEM;
1732 goto out_err;
1733 }
1734
1735 get_online_cpus();
1736
1737 /* Can't run something on an offline CPU. */
1738 if (!cpu_online(cpu_id))
1739 rb_update_pages(cpu_buffer);
1740 else {
1741 schedule_work_on(cpu_id,
1742 &cpu_buffer->update_pages_work);
1743 wait_for_completion(&cpu_buffer->update_done);
1744 }
1745
1746 cpu_buffer->nr_pages_to_update = 0;
1747 put_online_cpus();
1748 }
1749
1750 out:
1751 /*
1752 * The ring buffer resize can happen with the ring buffer
1753 * enabled, so that the update disturbs the tracing as little
1754 * as possible. But if the buffer is disabled, we do not need
1755 * to worry about that, and we can take the time to verify
1756 * that the buffer is not corrupt.
1757 */
1758 if (atomic_read(&buffer->record_disabled)) {
1759 atomic_inc(&buffer->record_disabled);
1760 /*
1761 * Even though the buffer was disabled, we must make sure
1762 * that it is truly disabled before calling rb_check_pages.
1763 * There could have been a race between checking
1764 * record_disable and incrementing it.
1765 */
1766 synchronize_sched();
1767 for_each_buffer_cpu(buffer, cpu) {
1768 cpu_buffer = buffer->buffers[cpu];
1769 rb_check_pages(cpu_buffer);
1770 }
1771 atomic_dec(&buffer->record_disabled);
1772 }
1773
1774 mutex_unlock(&buffer->mutex);
1775 return size;
1776
1777 out_err:
1778 for_each_buffer_cpu(buffer, cpu) {
1779 struct buffer_page *bpage, *tmp;
1780
1781 cpu_buffer = buffer->buffers[cpu];
1782 cpu_buffer->nr_pages_to_update = 0;
1783
1784 if (list_empty(&cpu_buffer->new_pages))
1785 continue;
1786
1787 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1788 list) {
1789 list_del_init(&bpage->list);
1790 free_buffer_page(bpage);
1791 }
1792 }
1793 mutex_unlock(&buffer->mutex);
1794 return err;
1795 }
1796 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1797
1798 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1799 {
1800 mutex_lock(&buffer->mutex);
1801 if (val)
1802 buffer->flags |= RB_FL_OVERWRITE;
1803 else
1804 buffer->flags &= ~RB_FL_OVERWRITE;
1805 mutex_unlock(&buffer->mutex);
1806 }
1807 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1808
1809 static inline void *
1810 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1811 {
1812 return bpage->data + index;
1813 }
1814
1815 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1816 {
1817 return bpage->page->data + index;
1818 }
1819
1820 static inline struct ring_buffer_event *
1821 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1822 {
1823 return __rb_page_index(cpu_buffer->reader_page,
1824 cpu_buffer->reader_page->read);
1825 }
1826
1827 static inline struct ring_buffer_event *
1828 rb_iter_head_event(struct ring_buffer_iter *iter)
1829 {
1830 return __rb_page_index(iter->head_page, iter->head);
1831 }
1832
1833 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1834 {
1835 return local_read(&bpage->page->commit);
1836 }
1837
1838 /* Size is determined by what has been committed */
1839 static inline unsigned rb_page_size(struct buffer_page *bpage)
1840 {
1841 return rb_page_commit(bpage);
1842 }
1843
1844 static inline unsigned
1845 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1846 {
1847 return rb_page_commit(cpu_buffer->commit_page);
1848 }
1849
1850 static inline unsigned
1851 rb_event_index(struct ring_buffer_event *event)
1852 {
1853 unsigned long addr = (unsigned long)event;
1854
1855 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1856 }
1857
1858 static inline int
1859 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1860 struct ring_buffer_event *event)
1861 {
1862 unsigned long addr = (unsigned long)event;
1863 unsigned long index;
1864
1865 index = rb_event_index(event);
1866 addr &= PAGE_MASK;
1867
1868 return cpu_buffer->commit_page->page == (void *)addr &&
1869 rb_commit_index(cpu_buffer) == index;
1870 }
1871
1872 static void
1873 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1874 {
1875 unsigned long max_count;
1876
1877 /*
1878 * We only race with interrupts and NMIs on this CPU.
1879 * If we own the commit event, then we can commit
1880 * all others that interrupted us, since the interruptions
1881 * are in stack format (they finish before they come
1882 * back to us). This allows us to do a simple loop to
1883 * assign the commit to the tail.
1884 */
1885 again:
1886 max_count = cpu_buffer->nr_pages * 100;
1887
1888 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1889 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1890 return;
1891 if (RB_WARN_ON(cpu_buffer,
1892 rb_is_reader_page(cpu_buffer->tail_page)))
1893 return;
1894 local_set(&cpu_buffer->commit_page->page->commit,
1895 rb_page_write(cpu_buffer->commit_page));
1896 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1897 cpu_buffer->write_stamp =
1898 cpu_buffer->commit_page->page->time_stamp;
1899 /* add barrier to keep gcc from optimizing too much */
1900 barrier();
1901 }
1902 while (rb_commit_index(cpu_buffer) !=
1903 rb_page_write(cpu_buffer->commit_page)) {
1904
1905 local_set(&cpu_buffer->commit_page->page->commit,
1906 rb_page_write(cpu_buffer->commit_page));
1907 RB_WARN_ON(cpu_buffer,
1908 local_read(&cpu_buffer->commit_page->page->commit) &
1909 ~RB_WRITE_MASK);
1910 barrier();
1911 }
1912
1913 /* again, keep gcc from optimizing */
1914 barrier();
1915
1916 /*
1917 * If an interrupt came in just after the first while loop
1918 * and pushed the tail page forward, we will be left with
1919 * a dangling commit that will never go forward.
1920 */
1921 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1922 goto again;
1923 }
1924
1925 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1926 {
1927 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1928 cpu_buffer->reader_page->read = 0;
1929 }
1930
1931 static void rb_inc_iter(struct ring_buffer_iter *iter)
1932 {
1933 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1934
1935 /*
1936 * The iterator could be on the reader page (it starts there).
1937 * But the head could have moved, since the reader was
1938 * found. Check for this case and assign the iterator
1939 * to the head page instead of next.
1940 */
1941 if (iter->head_page == cpu_buffer->reader_page)
1942 iter->head_page = rb_set_head_page(cpu_buffer);
1943 else
1944 rb_inc_page(cpu_buffer, &iter->head_page);
1945
1946 iter->read_stamp = iter->head_page->page->time_stamp;
1947 iter->head = 0;
1948 }
1949
1950 /* Slow path, do not inline */
1951 static noinline struct ring_buffer_event *
1952 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1953 {
1954 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1955
1956 /* Not the first event on the page? */
1957 if (rb_event_index(event)) {
1958 event->time_delta = delta & TS_MASK;
1959 event->array[0] = delta >> TS_SHIFT;
1960 } else {
1961 /* nope, just zero it */
1962 event->time_delta = 0;
1963 event->array[0] = 0;
1964 }
1965
1966 return skip_time_extend(event);
1967 }
1968
1969 /**
1970 * rb_update_event - update event type and data
1971 * @event: the even to update
1972 * @type: the type of event
1973 * @length: the size of the event field in the ring buffer
1974 *
1975 * Update the type and data fields of the event. The length
1976 * is the actual size that is written to the ring buffer,
1977 * and with this, we can determine what to place into the
1978 * data field.
1979 */
1980 static void
1981 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1982 struct ring_buffer_event *event, unsigned length,
1983 int add_timestamp, u64 delta)
1984 {
1985 /* Only a commit updates the timestamp */
1986 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1987 delta = 0;
1988
1989 /*
1990 * If we need to add a timestamp, then we
1991 * add it to the start of the resevered space.
1992 */
1993 if (unlikely(add_timestamp)) {
1994 event = rb_add_time_stamp(event, delta);
1995 length -= RB_LEN_TIME_EXTEND;
1996 delta = 0;
1997 }
1998
1999 event->time_delta = delta;
2000 length -= RB_EVNT_HDR_SIZE;
2001 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2002 event->type_len = 0;
2003 event->array[0] = length;
2004 } else
2005 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2006 }
2007
2008 /*
2009 * rb_handle_head_page - writer hit the head page
2010 *
2011 * Returns: +1 to retry page
2012 * 0 to continue
2013 * -1 on error
2014 */
2015 static int
2016 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2017 struct buffer_page *tail_page,
2018 struct buffer_page *next_page)
2019 {
2020 struct buffer_page *new_head;
2021 int entries;
2022 int type;
2023 int ret;
2024
2025 entries = rb_page_entries(next_page);
2026
2027 /*
2028 * The hard part is here. We need to move the head
2029 * forward, and protect against both readers on
2030 * other CPUs and writers coming in via interrupts.
2031 */
2032 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2033 RB_PAGE_HEAD);
2034
2035 /*
2036 * type can be one of four:
2037 * NORMAL - an interrupt already moved it for us
2038 * HEAD - we are the first to get here.
2039 * UPDATE - we are the interrupt interrupting
2040 * a current move.
2041 * MOVED - a reader on another CPU moved the next
2042 * pointer to its reader page. Give up
2043 * and try again.
2044 */
2045
2046 switch (type) {
2047 case RB_PAGE_HEAD:
2048 /*
2049 * We changed the head to UPDATE, thus
2050 * it is our responsibility to update
2051 * the counters.
2052 */
2053 local_add(entries, &cpu_buffer->overrun);
2054 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2055
2056 /*
2057 * The entries will be zeroed out when we move the
2058 * tail page.
2059 */
2060
2061 /* still more to do */
2062 break;
2063
2064 case RB_PAGE_UPDATE:
2065 /*
2066 * This is an interrupt that interrupt the
2067 * previous update. Still more to do.
2068 */
2069 break;
2070 case RB_PAGE_NORMAL:
2071 /*
2072 * An interrupt came in before the update
2073 * and processed this for us.
2074 * Nothing left to do.
2075 */
2076 return 1;
2077 case RB_PAGE_MOVED:
2078 /*
2079 * The reader is on another CPU and just did
2080 * a swap with our next_page.
2081 * Try again.
2082 */
2083 return 1;
2084 default:
2085 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2086 return -1;
2087 }
2088
2089 /*
2090 * Now that we are here, the old head pointer is
2091 * set to UPDATE. This will keep the reader from
2092 * swapping the head page with the reader page.
2093 * The reader (on another CPU) will spin till
2094 * we are finished.
2095 *
2096 * We just need to protect against interrupts
2097 * doing the job. We will set the next pointer
2098 * to HEAD. After that, we set the old pointer
2099 * to NORMAL, but only if it was HEAD before.
2100 * otherwise we are an interrupt, and only
2101 * want the outer most commit to reset it.
2102 */
2103 new_head = next_page;
2104 rb_inc_page(cpu_buffer, &new_head);
2105
2106 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2107 RB_PAGE_NORMAL);
2108
2109 /*
2110 * Valid returns are:
2111 * HEAD - an interrupt came in and already set it.
2112 * NORMAL - One of two things:
2113 * 1) We really set it.
2114 * 2) A bunch of interrupts came in and moved
2115 * the page forward again.
2116 */
2117 switch (ret) {
2118 case RB_PAGE_HEAD:
2119 case RB_PAGE_NORMAL:
2120 /* OK */
2121 break;
2122 default:
2123 RB_WARN_ON(cpu_buffer, 1);
2124 return -1;
2125 }
2126
2127 /*
2128 * It is possible that an interrupt came in,
2129 * set the head up, then more interrupts came in
2130 * and moved it again. When we get back here,
2131 * the page would have been set to NORMAL but we
2132 * just set it back to HEAD.
2133 *
2134 * How do you detect this? Well, if that happened
2135 * the tail page would have moved.
2136 */
2137 if (ret == RB_PAGE_NORMAL) {
2138 /*
2139 * If the tail had moved passed next, then we need
2140 * to reset the pointer.
2141 */
2142 if (cpu_buffer->tail_page != tail_page &&
2143 cpu_buffer->tail_page != next_page)
2144 rb_head_page_set_normal(cpu_buffer, new_head,
2145 next_page,
2146 RB_PAGE_HEAD);
2147 }
2148
2149 /*
2150 * If this was the outer most commit (the one that
2151 * changed the original pointer from HEAD to UPDATE),
2152 * then it is up to us to reset it to NORMAL.
2153 */
2154 if (type == RB_PAGE_HEAD) {
2155 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2156 tail_page,
2157 RB_PAGE_UPDATE);
2158 if (RB_WARN_ON(cpu_buffer,
2159 ret != RB_PAGE_UPDATE))
2160 return -1;
2161 }
2162
2163 return 0;
2164 }
2165
2166 static unsigned rb_calculate_event_length(unsigned length)
2167 {
2168 struct ring_buffer_event event; /* Used only for sizeof array */
2169
2170 /* zero length can cause confusions */
2171 if (!length)
2172 length = 1;
2173
2174 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2175 length += sizeof(event.array[0]);
2176
2177 length += RB_EVNT_HDR_SIZE;
2178 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2179
2180 return length;
2181 }
2182
2183 static inline void
2184 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2185 struct buffer_page *tail_page,
2186 unsigned long tail, unsigned long length)
2187 {
2188 struct ring_buffer_event *event;
2189
2190 /*
2191 * Only the event that crossed the page boundary
2192 * must fill the old tail_page with padding.
2193 */
2194 if (tail >= BUF_PAGE_SIZE) {
2195 /*
2196 * If the page was filled, then we still need
2197 * to update the real_end. Reset it to zero
2198 * and the reader will ignore it.
2199 */
2200 if (tail == BUF_PAGE_SIZE)
2201 tail_page->real_end = 0;
2202
2203 local_sub(length, &tail_page->write);
2204 return;
2205 }
2206
2207 event = __rb_page_index(tail_page, tail);
2208 kmemcheck_annotate_bitfield(event, bitfield);
2209
2210 /* account for padding bytes */
2211 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2212
2213 /*
2214 * Save the original length to the meta data.
2215 * This will be used by the reader to add lost event
2216 * counter.
2217 */
2218 tail_page->real_end = tail;
2219
2220 /*
2221 * If this event is bigger than the minimum size, then
2222 * we need to be careful that we don't subtract the
2223 * write counter enough to allow another writer to slip
2224 * in on this page.
2225 * We put in a discarded commit instead, to make sure
2226 * that this space is not used again.
2227 *
2228 * If we are less than the minimum size, we don't need to
2229 * worry about it.
2230 */
2231 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2232 /* No room for any events */
2233
2234 /* Mark the rest of the page with padding */
2235 rb_event_set_padding(event);
2236
2237 /* Set the write back to the previous setting */
2238 local_sub(length, &tail_page->write);
2239 return;
2240 }
2241
2242 /* Put in a discarded event */
2243 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2244 event->type_len = RINGBUF_TYPE_PADDING;
2245 /* time delta must be non zero */
2246 event->time_delta = 1;
2247
2248 /* Set write to end of buffer */
2249 length = (tail + length) - BUF_PAGE_SIZE;
2250 local_sub(length, &tail_page->write);
2251 }
2252
2253 /*
2254 * This is the slow path, force gcc not to inline it.
2255 */
2256 static noinline struct ring_buffer_event *
2257 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2258 unsigned long length, unsigned long tail,
2259 struct buffer_page *tail_page, u64 ts)
2260 {
2261 struct buffer_page *commit_page = cpu_buffer->commit_page;
2262 struct ring_buffer *buffer = cpu_buffer->buffer;
2263 struct buffer_page *next_page;
2264 int ret;
2265
2266 next_page = tail_page;
2267
2268 rb_inc_page(cpu_buffer, &next_page);
2269
2270 /*
2271 * If for some reason, we had an interrupt storm that made
2272 * it all the way around the buffer, bail, and warn
2273 * about it.
2274 */
2275 if (unlikely(next_page == commit_page)) {
2276 local_inc(&cpu_buffer->commit_overrun);
2277 goto out_reset;
2278 }
2279
2280 /*
2281 * This is where the fun begins!
2282 *
2283 * We are fighting against races between a reader that
2284 * could be on another CPU trying to swap its reader
2285 * page with the buffer head.
2286 *
2287 * We are also fighting against interrupts coming in and
2288 * moving the head or tail on us as well.
2289 *
2290 * If the next page is the head page then we have filled
2291 * the buffer, unless the commit page is still on the
2292 * reader page.
2293 */
2294 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2295
2296 /*
2297 * If the commit is not on the reader page, then
2298 * move the header page.
2299 */
2300 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2301 /*
2302 * If we are not in overwrite mode,
2303 * this is easy, just stop here.
2304 */
2305 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2306 local_inc(&cpu_buffer->dropped_events);
2307 goto out_reset;
2308 }
2309
2310 ret = rb_handle_head_page(cpu_buffer,
2311 tail_page,
2312 next_page);
2313 if (ret < 0)
2314 goto out_reset;
2315 if (ret)
2316 goto out_again;
2317 } else {
2318 /*
2319 * We need to be careful here too. The
2320 * commit page could still be on the reader
2321 * page. We could have a small buffer, and
2322 * have filled up the buffer with events
2323 * from interrupts and such, and wrapped.
2324 *
2325 * Note, if the tail page is also the on the
2326 * reader_page, we let it move out.
2327 */
2328 if (unlikely((cpu_buffer->commit_page !=
2329 cpu_buffer->tail_page) &&
2330 (cpu_buffer->commit_page ==
2331 cpu_buffer->reader_page))) {
2332 local_inc(&cpu_buffer->commit_overrun);
2333 goto out_reset;
2334 }
2335 }
2336 }
2337
2338 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2339 if (ret) {
2340 /*
2341 * Nested commits always have zero deltas, so
2342 * just reread the time stamp
2343 */
2344 ts = rb_time_stamp(buffer);
2345 next_page->page->time_stamp = ts;
2346 }
2347
2348 out_again:
2349
2350 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2351
2352 /* fail and let the caller try again */
2353 return ERR_PTR(-EAGAIN);
2354
2355 out_reset:
2356 /* reset write */
2357 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2358
2359 return NULL;
2360 }
2361
2362 static struct ring_buffer_event *
2363 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2364 unsigned long length, u64 ts,
2365 u64 delta, int add_timestamp)
2366 {
2367 struct buffer_page *tail_page;
2368 struct ring_buffer_event *event;
2369 unsigned long tail, write;
2370
2371 /*
2372 * If the time delta since the last event is too big to
2373 * hold in the time field of the event, then we append a
2374 * TIME EXTEND event ahead of the data event.
2375 */
2376 if (unlikely(add_timestamp))
2377 length += RB_LEN_TIME_EXTEND;
2378
2379 tail_page = cpu_buffer->tail_page;
2380 write = local_add_return(length, &tail_page->write);
2381
2382 /* set write to only the index of the write */
2383 write &= RB_WRITE_MASK;
2384 tail = write - length;
2385
2386 /*
2387 * If this is the first commit on the page, then it has the same
2388 * timestamp as the page itself.
2389 */
2390 if (!tail)
2391 delta = 0;
2392
2393 /* See if we shot pass the end of this buffer page */
2394 if (unlikely(write > BUF_PAGE_SIZE))
2395 return rb_move_tail(cpu_buffer, length, tail,
2396 tail_page, ts);
2397
2398 /* We reserved something on the buffer */
2399
2400 event = __rb_page_index(tail_page, tail);
2401 kmemcheck_annotate_bitfield(event, bitfield);
2402 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2403
2404 local_inc(&tail_page->entries);
2405
2406 /*
2407 * If this is the first commit on the page, then update
2408 * its timestamp.
2409 */
2410 if (!tail)
2411 tail_page->page->time_stamp = ts;
2412
2413 /* account for these added bytes */
2414 local_add(length, &cpu_buffer->entries_bytes);
2415
2416 return event;
2417 }
2418
2419 static inline int
2420 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2421 struct ring_buffer_event *event)
2422 {
2423 unsigned long new_index, old_index;
2424 struct buffer_page *bpage;
2425 unsigned long index;
2426 unsigned long addr;
2427
2428 new_index = rb_event_index(event);
2429 old_index = new_index + rb_event_ts_length(event);
2430 addr = (unsigned long)event;
2431 addr &= PAGE_MASK;
2432
2433 bpage = cpu_buffer->tail_page;
2434
2435 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2436 unsigned long write_mask =
2437 local_read(&bpage->write) & ~RB_WRITE_MASK;
2438 unsigned long event_length = rb_event_length(event);
2439 /*
2440 * This is on the tail page. It is possible that
2441 * a write could come in and move the tail page
2442 * and write to the next page. That is fine
2443 * because we just shorten what is on this page.
2444 */
2445 old_index += write_mask;
2446 new_index += write_mask;
2447 index = local_cmpxchg(&bpage->write, old_index, new_index);
2448 if (index == old_index) {
2449 /* update counters */
2450 local_sub(event_length, &cpu_buffer->entries_bytes);
2451 return 1;
2452 }
2453 }
2454
2455 /* could not discard */
2456 return 0;
2457 }
2458
2459 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2460 {
2461 local_inc(&cpu_buffer->committing);
2462 local_inc(&cpu_buffer->commits);
2463 }
2464
2465 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2466 {
2467 unsigned long commits;
2468
2469 if (RB_WARN_ON(cpu_buffer,
2470 !local_read(&cpu_buffer->committing)))
2471 return;
2472
2473 again:
2474 commits = local_read(&cpu_buffer->commits);
2475 /* synchronize with interrupts */
2476 barrier();
2477 if (local_read(&cpu_buffer->committing) == 1)
2478 rb_set_commit_to_write(cpu_buffer);
2479
2480 local_dec(&cpu_buffer->committing);
2481
2482 /* synchronize with interrupts */
2483 barrier();
2484
2485 /*
2486 * Need to account for interrupts coming in between the
2487 * updating of the commit page and the clearing of the
2488 * committing counter.
2489 */
2490 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2491 !local_read(&cpu_buffer->committing)) {
2492 local_inc(&cpu_buffer->committing);
2493 goto again;
2494 }
2495 }
2496
2497 static struct ring_buffer_event *
2498 rb_reserve_next_event(struct ring_buffer *buffer,
2499 struct ring_buffer_per_cpu *cpu_buffer,
2500 unsigned long length)
2501 {
2502 struct ring_buffer_event *event;
2503 u64 ts, delta;
2504 int nr_loops = 0;
2505 int add_timestamp;
2506 u64 diff;
2507
2508 rb_start_commit(cpu_buffer);
2509
2510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2511 /*
2512 * Due to the ability to swap a cpu buffer from a buffer
2513 * it is possible it was swapped before we committed.
2514 * (committing stops a swap). We check for it here and
2515 * if it happened, we have to fail the write.
2516 */
2517 barrier();
2518 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2519 local_dec(&cpu_buffer->committing);
2520 local_dec(&cpu_buffer->commits);
2521 return NULL;
2522 }
2523 #endif
2524
2525 length = rb_calculate_event_length(length);
2526 again:
2527 add_timestamp = 0;
2528 delta = 0;
2529
2530 /*
2531 * We allow for interrupts to reenter here and do a trace.
2532 * If one does, it will cause this original code to loop
2533 * back here. Even with heavy interrupts happening, this
2534 * should only happen a few times in a row. If this happens
2535 * 1000 times in a row, there must be either an interrupt
2536 * storm or we have something buggy.
2537 * Bail!
2538 */
2539 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2540 goto out_fail;
2541
2542 ts = rb_time_stamp(cpu_buffer->buffer);
2543 diff = ts - cpu_buffer->write_stamp;
2544
2545 /* make sure this diff is calculated here */
2546 barrier();
2547
2548 /* Did the write stamp get updated already? */
2549 if (likely(ts >= cpu_buffer->write_stamp)) {
2550 delta = diff;
2551 if (unlikely(test_time_stamp(delta))) {
2552 int local_clock_stable = 1;
2553 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2554 local_clock_stable = sched_clock_stable();
2555 #endif
2556 WARN_ONCE(delta > (1ULL << 59),
2557 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2558 (unsigned long long)delta,
2559 (unsigned long long)ts,
2560 (unsigned long long)cpu_buffer->write_stamp,
2561 local_clock_stable ? "" :
2562 "If you just came from a suspend/resume,\n"
2563 "please switch to the trace global clock:\n"
2564 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2565 add_timestamp = 1;
2566 }
2567 }
2568
2569 event = __rb_reserve_next(cpu_buffer, length, ts,
2570 delta, add_timestamp);
2571 if (unlikely(PTR_ERR(event) == -EAGAIN))
2572 goto again;
2573
2574 if (!event)
2575 goto out_fail;
2576
2577 return event;
2578
2579 out_fail:
2580 rb_end_commit(cpu_buffer);
2581 return NULL;
2582 }
2583
2584 #ifdef CONFIG_TRACING
2585
2586 /*
2587 * The lock and unlock are done within a preempt disable section.
2588 * The current_context per_cpu variable can only be modified
2589 * by the current task between lock and unlock. But it can
2590 * be modified more than once via an interrupt. To pass this
2591 * information from the lock to the unlock without having to
2592 * access the 'in_interrupt()' functions again (which do show
2593 * a bit of overhead in something as critical as function tracing,
2594 * we use a bitmask trick.
2595 *
2596 * bit 0 = NMI context
2597 * bit 1 = IRQ context
2598 * bit 2 = SoftIRQ context
2599 * bit 3 = normal context.
2600 *
2601 * This works because this is the order of contexts that can
2602 * preempt other contexts. A SoftIRQ never preempts an IRQ
2603 * context.
2604 *
2605 * When the context is determined, the corresponding bit is
2606 * checked and set (if it was set, then a recursion of that context
2607 * happened).
2608 *
2609 * On unlock, we need to clear this bit. To do so, just subtract
2610 * 1 from the current_context and AND it to itself.
2611 *
2612 * (binary)
2613 * 101 - 1 = 100
2614 * 101 & 100 = 100 (clearing bit zero)
2615 *
2616 * 1010 - 1 = 1001
2617 * 1010 & 1001 = 1000 (clearing bit 1)
2618 *
2619 * The least significant bit can be cleared this way, and it
2620 * just so happens that it is the same bit corresponding to
2621 * the current context.
2622 */
2623 static DEFINE_PER_CPU(unsigned int, current_context);
2624
2625 static __always_inline int trace_recursive_lock(void)
2626 {
2627 unsigned int val = this_cpu_read(current_context);
2628 int bit;
2629
2630 if (in_interrupt()) {
2631 if (in_nmi())
2632 bit = 0;
2633 else if (in_irq())
2634 bit = 1;
2635 else
2636 bit = 2;
2637 } else
2638 bit = 3;
2639
2640 if (unlikely(val & (1 << bit)))
2641 return 1;
2642
2643 val |= (1 << bit);
2644 this_cpu_write(current_context, val);
2645
2646 return 0;
2647 }
2648
2649 static __always_inline void trace_recursive_unlock(void)
2650 {
2651 unsigned int val = this_cpu_read(current_context);
2652
2653 val--;
2654 val &= this_cpu_read(current_context);
2655 this_cpu_write(current_context, val);
2656 }
2657
2658 #else
2659
2660 #define trace_recursive_lock() (0)
2661 #define trace_recursive_unlock() do { } while (0)
2662
2663 #endif
2664
2665 /**
2666 * ring_buffer_lock_reserve - reserve a part of the buffer
2667 * @buffer: the ring buffer to reserve from
2668 * @length: the length of the data to reserve (excluding event header)
2669 *
2670 * Returns a reseverd event on the ring buffer to copy directly to.
2671 * The user of this interface will need to get the body to write into
2672 * and can use the ring_buffer_event_data() interface.
2673 *
2674 * The length is the length of the data needed, not the event length
2675 * which also includes the event header.
2676 *
2677 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2678 * If NULL is returned, then nothing has been allocated or locked.
2679 */
2680 struct ring_buffer_event *
2681 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2682 {
2683 struct ring_buffer_per_cpu *cpu_buffer;
2684 struct ring_buffer_event *event;
2685 int cpu;
2686
2687 if (ring_buffer_flags != RB_BUFFERS_ON)
2688 return NULL;
2689
2690 /* If we are tracing schedule, we don't want to recurse */
2691 preempt_disable_notrace();
2692
2693 if (atomic_read(&buffer->record_disabled))
2694 goto out_nocheck;
2695
2696 if (trace_recursive_lock())
2697 goto out_nocheck;
2698
2699 cpu = raw_smp_processor_id();
2700
2701 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2702 goto out;
2703
2704 cpu_buffer = buffer->buffers[cpu];
2705
2706 if (atomic_read(&cpu_buffer->record_disabled))
2707 goto out;
2708
2709 if (length > BUF_MAX_DATA_SIZE)
2710 goto out;
2711
2712 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2713 if (!event)
2714 goto out;
2715
2716 return event;
2717
2718 out:
2719 trace_recursive_unlock();
2720
2721 out_nocheck:
2722 preempt_enable_notrace();
2723 return NULL;
2724 }
2725 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2726
2727 static void
2728 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2729 struct ring_buffer_event *event)
2730 {
2731 u64 delta;
2732
2733 /*
2734 * The event first in the commit queue updates the
2735 * time stamp.
2736 */
2737 if (rb_event_is_commit(cpu_buffer, event)) {
2738 /*
2739 * A commit event that is first on a page
2740 * updates the write timestamp with the page stamp
2741 */
2742 if (!rb_event_index(event))
2743 cpu_buffer->write_stamp =
2744 cpu_buffer->commit_page->page->time_stamp;
2745 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2746 delta = event->array[0];
2747 delta <<= TS_SHIFT;
2748 delta += event->time_delta;
2749 cpu_buffer->write_stamp += delta;
2750 } else
2751 cpu_buffer->write_stamp += event->time_delta;
2752 }
2753 }
2754
2755 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2756 struct ring_buffer_event *event)
2757 {
2758 local_inc(&cpu_buffer->entries);
2759 rb_update_write_stamp(cpu_buffer, event);
2760 rb_end_commit(cpu_buffer);
2761 }
2762
2763 static __always_inline void
2764 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2765 {
2766 if (buffer->irq_work.waiters_pending) {
2767 buffer->irq_work.waiters_pending = false;
2768 /* irq_work_queue() supplies it's own memory barriers */
2769 irq_work_queue(&buffer->irq_work.work);
2770 }
2771
2772 if (cpu_buffer->irq_work.waiters_pending) {
2773 cpu_buffer->irq_work.waiters_pending = false;
2774 /* irq_work_queue() supplies it's own memory barriers */
2775 irq_work_queue(&cpu_buffer->irq_work.work);
2776 }
2777 }
2778
2779 /**
2780 * ring_buffer_unlock_commit - commit a reserved
2781 * @buffer: The buffer to commit to
2782 * @event: The event pointer to commit.
2783 *
2784 * This commits the data to the ring buffer, and releases any locks held.
2785 *
2786 * Must be paired with ring_buffer_lock_reserve.
2787 */
2788 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2789 struct ring_buffer_event *event)
2790 {
2791 struct ring_buffer_per_cpu *cpu_buffer;
2792 int cpu = raw_smp_processor_id();
2793
2794 cpu_buffer = buffer->buffers[cpu];
2795
2796 rb_commit(cpu_buffer, event);
2797
2798 rb_wakeups(buffer, cpu_buffer);
2799
2800 trace_recursive_unlock();
2801
2802 preempt_enable_notrace();
2803
2804 return 0;
2805 }
2806 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2807
2808 static inline void rb_event_discard(struct ring_buffer_event *event)
2809 {
2810 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2811 event = skip_time_extend(event);
2812
2813 /* array[0] holds the actual length for the discarded event */
2814 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2815 event->type_len = RINGBUF_TYPE_PADDING;
2816 /* time delta must be non zero */
2817 if (!event->time_delta)
2818 event->time_delta = 1;
2819 }
2820
2821 /*
2822 * Decrement the entries to the page that an event is on.
2823 * The event does not even need to exist, only the pointer
2824 * to the page it is on. This may only be called before the commit
2825 * takes place.
2826 */
2827 static inline void
2828 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2829 struct ring_buffer_event *event)
2830 {
2831 unsigned long addr = (unsigned long)event;
2832 struct buffer_page *bpage = cpu_buffer->commit_page;
2833 struct buffer_page *start;
2834
2835 addr &= PAGE_MASK;
2836
2837 /* Do the likely case first */
2838 if (likely(bpage->page == (void *)addr)) {
2839 local_dec(&bpage->entries);
2840 return;
2841 }
2842
2843 /*
2844 * Because the commit page may be on the reader page we
2845 * start with the next page and check the end loop there.
2846 */
2847 rb_inc_page(cpu_buffer, &bpage);
2848 start = bpage;
2849 do {
2850 if (bpage->page == (void *)addr) {
2851 local_dec(&bpage->entries);
2852 return;
2853 }
2854 rb_inc_page(cpu_buffer, &bpage);
2855 } while (bpage != start);
2856
2857 /* commit not part of this buffer?? */
2858 RB_WARN_ON(cpu_buffer, 1);
2859 }
2860
2861 /**
2862 * ring_buffer_commit_discard - discard an event that has not been committed
2863 * @buffer: the ring buffer
2864 * @event: non committed event to discard
2865 *
2866 * Sometimes an event that is in the ring buffer needs to be ignored.
2867 * This function lets the user discard an event in the ring buffer
2868 * and then that event will not be read later.
2869 *
2870 * This function only works if it is called before the the item has been
2871 * committed. It will try to free the event from the ring buffer
2872 * if another event has not been added behind it.
2873 *
2874 * If another event has been added behind it, it will set the event
2875 * up as discarded, and perform the commit.
2876 *
2877 * If this function is called, do not call ring_buffer_unlock_commit on
2878 * the event.
2879 */
2880 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2881 struct ring_buffer_event *event)
2882 {
2883 struct ring_buffer_per_cpu *cpu_buffer;
2884 int cpu;
2885
2886 /* The event is discarded regardless */
2887 rb_event_discard(event);
2888
2889 cpu = smp_processor_id();
2890 cpu_buffer = buffer->buffers[cpu];
2891
2892 /*
2893 * This must only be called if the event has not been
2894 * committed yet. Thus we can assume that preemption
2895 * is still disabled.
2896 */
2897 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2898
2899 rb_decrement_entry(cpu_buffer, event);
2900 if (rb_try_to_discard(cpu_buffer, event))
2901 goto out;
2902
2903 /*
2904 * The commit is still visible by the reader, so we
2905 * must still update the timestamp.
2906 */
2907 rb_update_write_stamp(cpu_buffer, event);
2908 out:
2909 rb_end_commit(cpu_buffer);
2910
2911 trace_recursive_unlock();
2912
2913 preempt_enable_notrace();
2914
2915 }
2916 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2917
2918 /**
2919 * ring_buffer_write - write data to the buffer without reserving
2920 * @buffer: The ring buffer to write to.
2921 * @length: The length of the data being written (excluding the event header)
2922 * @data: The data to write to the buffer.
2923 *
2924 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2925 * one function. If you already have the data to write to the buffer, it
2926 * may be easier to simply call this function.
2927 *
2928 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2929 * and not the length of the event which would hold the header.
2930 */
2931 int ring_buffer_write(struct ring_buffer *buffer,
2932 unsigned long length,
2933 void *data)
2934 {
2935 struct ring_buffer_per_cpu *cpu_buffer;
2936 struct ring_buffer_event *event;
2937 void *body;
2938 int ret = -EBUSY;
2939 int cpu;
2940
2941 if (ring_buffer_flags != RB_BUFFERS_ON)
2942 return -EBUSY;
2943
2944 preempt_disable_notrace();
2945
2946 if (atomic_read(&buffer->record_disabled))
2947 goto out;
2948
2949 cpu = raw_smp_processor_id();
2950
2951 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2952 goto out;
2953
2954 cpu_buffer = buffer->buffers[cpu];
2955
2956 if (atomic_read(&cpu_buffer->record_disabled))
2957 goto out;
2958
2959 if (length > BUF_MAX_DATA_SIZE)
2960 goto out;
2961
2962 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2963 if (!event)
2964 goto out;
2965
2966 body = rb_event_data(event);
2967
2968 memcpy(body, data, length);
2969
2970 rb_commit(cpu_buffer, event);
2971
2972 rb_wakeups(buffer, cpu_buffer);
2973
2974 ret = 0;
2975 out:
2976 preempt_enable_notrace();
2977
2978 return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(ring_buffer_write);
2981
2982 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2983 {
2984 struct buffer_page *reader = cpu_buffer->reader_page;
2985 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2986 struct buffer_page *commit = cpu_buffer->commit_page;
2987
2988 /* In case of error, head will be NULL */
2989 if (unlikely(!head))
2990 return 1;
2991
2992 return reader->read == rb_page_commit(reader) &&
2993 (commit == reader ||
2994 (commit == head &&
2995 head->read == rb_page_commit(commit)));
2996 }
2997
2998 /**
2999 * ring_buffer_record_disable - stop all writes into the buffer
3000 * @buffer: The ring buffer to stop writes to.
3001 *
3002 * This prevents all writes to the buffer. Any attempt to write
3003 * to the buffer after this will fail and return NULL.
3004 *
3005 * The caller should call synchronize_sched() after this.
3006 */
3007 void ring_buffer_record_disable(struct ring_buffer *buffer)
3008 {
3009 atomic_inc(&buffer->record_disabled);
3010 }
3011 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3012
3013 /**
3014 * ring_buffer_record_enable - enable writes to the buffer
3015 * @buffer: The ring buffer to enable writes
3016 *
3017 * Note, multiple disables will need the same number of enables
3018 * to truly enable the writing (much like preempt_disable).
3019 */
3020 void ring_buffer_record_enable(struct ring_buffer *buffer)
3021 {
3022 atomic_dec(&buffer->record_disabled);
3023 }
3024 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3025
3026 /**
3027 * ring_buffer_record_off - stop all writes into the buffer
3028 * @buffer: The ring buffer to stop writes to.
3029 *
3030 * This prevents all writes to the buffer. Any attempt to write
3031 * to the buffer after this will fail and return NULL.
3032 *
3033 * This is different than ring_buffer_record_disable() as
3034 * it works like an on/off switch, where as the disable() version
3035 * must be paired with a enable().
3036 */
3037 void ring_buffer_record_off(struct ring_buffer *buffer)
3038 {
3039 unsigned int rd;
3040 unsigned int new_rd;
3041
3042 do {
3043 rd = atomic_read(&buffer->record_disabled);
3044 new_rd = rd | RB_BUFFER_OFF;
3045 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3046 }
3047 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3048
3049 /**
3050 * ring_buffer_record_on - restart writes into the buffer
3051 * @buffer: The ring buffer to start writes to.
3052 *
3053 * This enables all writes to the buffer that was disabled by
3054 * ring_buffer_record_off().
3055 *
3056 * This is different than ring_buffer_record_enable() as
3057 * it works like an on/off switch, where as the enable() version
3058 * must be paired with a disable().
3059 */
3060 void ring_buffer_record_on(struct ring_buffer *buffer)
3061 {
3062 unsigned int rd;
3063 unsigned int new_rd;
3064
3065 do {
3066 rd = atomic_read(&buffer->record_disabled);
3067 new_rd = rd & ~RB_BUFFER_OFF;
3068 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069 }
3070 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3071
3072 /**
3073 * ring_buffer_record_is_on - return true if the ring buffer can write
3074 * @buffer: The ring buffer to see if write is enabled
3075 *
3076 * Returns true if the ring buffer is in a state that it accepts writes.
3077 */
3078 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3079 {
3080 return !atomic_read(&buffer->record_disabled);
3081 }
3082
3083 /**
3084 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3085 * @buffer: The ring buffer to stop writes to.
3086 * @cpu: The CPU buffer to stop
3087 *
3088 * This prevents all writes to the buffer. Any attempt to write
3089 * to the buffer after this will fail and return NULL.
3090 *
3091 * The caller should call synchronize_sched() after this.
3092 */
3093 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3094 {
3095 struct ring_buffer_per_cpu *cpu_buffer;
3096
3097 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3098 return;
3099
3100 cpu_buffer = buffer->buffers[cpu];
3101 atomic_inc(&cpu_buffer->record_disabled);
3102 }
3103 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3104
3105 /**
3106 * ring_buffer_record_enable_cpu - enable writes to the buffer
3107 * @buffer: The ring buffer to enable writes
3108 * @cpu: The CPU to enable.
3109 *
3110 * Note, multiple disables will need the same number of enables
3111 * to truly enable the writing (much like preempt_disable).
3112 */
3113 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3114 {
3115 struct ring_buffer_per_cpu *cpu_buffer;
3116
3117 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3118 return;
3119
3120 cpu_buffer = buffer->buffers[cpu];
3121 atomic_dec(&cpu_buffer->record_disabled);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3124
3125 /*
3126 * The total entries in the ring buffer is the running counter
3127 * of entries entered into the ring buffer, minus the sum of
3128 * the entries read from the ring buffer and the number of
3129 * entries that were overwritten.
3130 */
3131 static inline unsigned long
3132 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3133 {
3134 return local_read(&cpu_buffer->entries) -
3135 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3136 }
3137
3138 /**
3139 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3140 * @buffer: The ring buffer
3141 * @cpu: The per CPU buffer to read from.
3142 */
3143 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3144 {
3145 unsigned long flags;
3146 struct ring_buffer_per_cpu *cpu_buffer;
3147 struct buffer_page *bpage;
3148 u64 ret = 0;
3149
3150 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3151 return 0;
3152
3153 cpu_buffer = buffer->buffers[cpu];
3154 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3155 /*
3156 * if the tail is on reader_page, oldest time stamp is on the reader
3157 * page
3158 */
3159 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3160 bpage = cpu_buffer->reader_page;
3161 else
3162 bpage = rb_set_head_page(cpu_buffer);
3163 if (bpage)
3164 ret = bpage->page->time_stamp;
3165 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3166
3167 return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3170
3171 /**
3172 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3173 * @buffer: The ring buffer
3174 * @cpu: The per CPU buffer to read from.
3175 */
3176 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3177 {
3178 struct ring_buffer_per_cpu *cpu_buffer;
3179 unsigned long ret;
3180
3181 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3182 return 0;
3183
3184 cpu_buffer = buffer->buffers[cpu];
3185 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3186
3187 return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3190
3191 /**
3192 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3193 * @buffer: The ring buffer
3194 * @cpu: The per CPU buffer to get the entries from.
3195 */
3196 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3197 {
3198 struct ring_buffer_per_cpu *cpu_buffer;
3199
3200 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3201 return 0;
3202
3203 cpu_buffer = buffer->buffers[cpu];
3204
3205 return rb_num_of_entries(cpu_buffer);
3206 }
3207 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3208
3209 /**
3210 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3211 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3212 * @buffer: The ring buffer
3213 * @cpu: The per CPU buffer to get the number of overruns from
3214 */
3215 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3216 {
3217 struct ring_buffer_per_cpu *cpu_buffer;
3218 unsigned long ret;
3219
3220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3221 return 0;
3222
3223 cpu_buffer = buffer->buffers[cpu];
3224 ret = local_read(&cpu_buffer->overrun);
3225
3226 return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3229
3230 /**
3231 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3232 * commits failing due to the buffer wrapping around while there are uncommitted
3233 * events, such as during an interrupt storm.
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to get the number of overruns from
3236 */
3237 unsigned long
3238 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239 {
3240 struct ring_buffer_per_cpu *cpu_buffer;
3241 unsigned long ret;
3242
3243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244 return 0;
3245
3246 cpu_buffer = buffer->buffers[cpu];
3247 ret = local_read(&cpu_buffer->commit_overrun);
3248
3249 return ret;
3250 }
3251 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3252
3253 /**
3254 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3255 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to get the number of overruns from
3258 */
3259 unsigned long
3260 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3261 {
3262 struct ring_buffer_per_cpu *cpu_buffer;
3263 unsigned long ret;
3264
3265 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266 return 0;
3267
3268 cpu_buffer = buffer->buffers[cpu];
3269 ret = local_read(&cpu_buffer->dropped_events);
3270
3271 return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3274
3275 /**
3276 * ring_buffer_read_events_cpu - get the number of events successfully read
3277 * @buffer: The ring buffer
3278 * @cpu: The per CPU buffer to get the number of events read
3279 */
3280 unsigned long
3281 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3282 {
3283 struct ring_buffer_per_cpu *cpu_buffer;
3284
3285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286 return 0;
3287
3288 cpu_buffer = buffer->buffers[cpu];
3289 return cpu_buffer->read;
3290 }
3291 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3292
3293 /**
3294 * ring_buffer_entries - get the number of entries in a buffer
3295 * @buffer: The ring buffer
3296 *
3297 * Returns the total number of entries in the ring buffer
3298 * (all CPU entries)
3299 */
3300 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3301 {
3302 struct ring_buffer_per_cpu *cpu_buffer;
3303 unsigned long entries = 0;
3304 int cpu;
3305
3306 /* if you care about this being correct, lock the buffer */
3307 for_each_buffer_cpu(buffer, cpu) {
3308 cpu_buffer = buffer->buffers[cpu];
3309 entries += rb_num_of_entries(cpu_buffer);
3310 }
3311
3312 return entries;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3315
3316 /**
3317 * ring_buffer_overruns - get the number of overruns in buffer
3318 * @buffer: The ring buffer
3319 *
3320 * Returns the total number of overruns in the ring buffer
3321 * (all CPU entries)
3322 */
3323 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3324 {
3325 struct ring_buffer_per_cpu *cpu_buffer;
3326 unsigned long overruns = 0;
3327 int cpu;
3328
3329 /* if you care about this being correct, lock the buffer */
3330 for_each_buffer_cpu(buffer, cpu) {
3331 cpu_buffer = buffer->buffers[cpu];
3332 overruns += local_read(&cpu_buffer->overrun);
3333 }
3334
3335 return overruns;
3336 }
3337 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3338
3339 static void rb_iter_reset(struct ring_buffer_iter *iter)
3340 {
3341 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3342
3343 /* Iterator usage is expected to have record disabled */
3344 if (list_empty(&cpu_buffer->reader_page->list)) {
3345 iter->head_page = rb_set_head_page(cpu_buffer);
3346 if (unlikely(!iter->head_page))
3347 return;
3348 iter->head = iter->head_page->read;
3349 } else {
3350 iter->head_page = cpu_buffer->reader_page;
3351 iter->head = cpu_buffer->reader_page->read;
3352 }
3353 if (iter->head)
3354 iter->read_stamp = cpu_buffer->read_stamp;
3355 else
3356 iter->read_stamp = iter->head_page->page->time_stamp;
3357 iter->cache_reader_page = cpu_buffer->reader_page;
3358 iter->cache_read = cpu_buffer->read;
3359 }
3360
3361 /**
3362 * ring_buffer_iter_reset - reset an iterator
3363 * @iter: The iterator to reset
3364 *
3365 * Resets the iterator, so that it will start from the beginning
3366 * again.
3367 */
3368 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3369 {
3370 struct ring_buffer_per_cpu *cpu_buffer;
3371 unsigned long flags;
3372
3373 if (!iter)
3374 return;
3375
3376 cpu_buffer = iter->cpu_buffer;
3377
3378 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3379 rb_iter_reset(iter);
3380 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3381 }
3382 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3383
3384 /**
3385 * ring_buffer_iter_empty - check if an iterator has no more to read
3386 * @iter: The iterator to check
3387 */
3388 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3389 {
3390 struct ring_buffer_per_cpu *cpu_buffer;
3391
3392 cpu_buffer = iter->cpu_buffer;
3393
3394 return iter->head_page == cpu_buffer->commit_page &&
3395 iter->head == rb_commit_index(cpu_buffer);
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3398
3399 static void
3400 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3401 struct ring_buffer_event *event)
3402 {
3403 u64 delta;
3404
3405 switch (event->type_len) {
3406 case RINGBUF_TYPE_PADDING:
3407 return;
3408
3409 case RINGBUF_TYPE_TIME_EXTEND:
3410 delta = event->array[0];
3411 delta <<= TS_SHIFT;
3412 delta += event->time_delta;
3413 cpu_buffer->read_stamp += delta;
3414 return;
3415
3416 case RINGBUF_TYPE_TIME_STAMP:
3417 /* FIXME: not implemented */
3418 return;
3419
3420 case RINGBUF_TYPE_DATA:
3421 cpu_buffer->read_stamp += event->time_delta;
3422 return;
3423
3424 default:
3425 BUG();
3426 }
3427 return;
3428 }
3429
3430 static void
3431 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3432 struct ring_buffer_event *event)
3433 {
3434 u64 delta;
3435
3436 switch (event->type_len) {
3437 case RINGBUF_TYPE_PADDING:
3438 return;
3439
3440 case RINGBUF_TYPE_TIME_EXTEND:
3441 delta = event->array[0];
3442 delta <<= TS_SHIFT;
3443 delta += event->time_delta;
3444 iter->read_stamp += delta;
3445 return;
3446
3447 case RINGBUF_TYPE_TIME_STAMP:
3448 /* FIXME: not implemented */
3449 return;
3450
3451 case RINGBUF_TYPE_DATA:
3452 iter->read_stamp += event->time_delta;
3453 return;
3454
3455 default:
3456 BUG();
3457 }
3458 return;
3459 }
3460
3461 static struct buffer_page *
3462 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3463 {
3464 struct buffer_page *reader = NULL;
3465 unsigned long overwrite;
3466 unsigned long flags;
3467 int nr_loops = 0;
3468 int ret;
3469
3470 local_irq_save(flags);
3471 arch_spin_lock(&cpu_buffer->lock);
3472
3473 again:
3474 /*
3475 * This should normally only loop twice. But because the
3476 * start of the reader inserts an empty page, it causes
3477 * a case where we will loop three times. There should be no
3478 * reason to loop four times (that I know of).
3479 */
3480 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3481 reader = NULL;
3482 goto out;
3483 }
3484
3485 reader = cpu_buffer->reader_page;
3486
3487 /* If there's more to read, return this page */
3488 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3489 goto out;
3490
3491 /* Never should we have an index greater than the size */
3492 if (RB_WARN_ON(cpu_buffer,
3493 cpu_buffer->reader_page->read > rb_page_size(reader)))
3494 goto out;
3495
3496 /* check if we caught up to the tail */
3497 reader = NULL;
3498 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3499 goto out;
3500
3501 /* Don't bother swapping if the ring buffer is empty */
3502 if (rb_num_of_entries(cpu_buffer) == 0)
3503 goto out;
3504
3505 /*
3506 * Reset the reader page to size zero.
3507 */
3508 local_set(&cpu_buffer->reader_page->write, 0);
3509 local_set(&cpu_buffer->reader_page->entries, 0);
3510 local_set(&cpu_buffer->reader_page->page->commit, 0);
3511 cpu_buffer->reader_page->real_end = 0;
3512
3513 spin:
3514 /*
3515 * Splice the empty reader page into the list around the head.
3516 */
3517 reader = rb_set_head_page(cpu_buffer);
3518 if (!reader)
3519 goto out;
3520 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3521 cpu_buffer->reader_page->list.prev = reader->list.prev;
3522
3523 /*
3524 * cpu_buffer->pages just needs to point to the buffer, it
3525 * has no specific buffer page to point to. Lets move it out
3526 * of our way so we don't accidentally swap it.
3527 */
3528 cpu_buffer->pages = reader->list.prev;
3529
3530 /* The reader page will be pointing to the new head */
3531 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3532
3533 /*
3534 * We want to make sure we read the overruns after we set up our
3535 * pointers to the next object. The writer side does a
3536 * cmpxchg to cross pages which acts as the mb on the writer
3537 * side. Note, the reader will constantly fail the swap
3538 * while the writer is updating the pointers, so this
3539 * guarantees that the overwrite recorded here is the one we
3540 * want to compare with the last_overrun.
3541 */
3542 smp_mb();
3543 overwrite = local_read(&(cpu_buffer->overrun));
3544
3545 /*
3546 * Here's the tricky part.
3547 *
3548 * We need to move the pointer past the header page.
3549 * But we can only do that if a writer is not currently
3550 * moving it. The page before the header page has the
3551 * flag bit '1' set if it is pointing to the page we want.
3552 * but if the writer is in the process of moving it
3553 * than it will be '2' or already moved '0'.
3554 */
3555
3556 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3557
3558 /*
3559 * If we did not convert it, then we must try again.
3560 */
3561 if (!ret)
3562 goto spin;
3563
3564 /*
3565 * Yeah! We succeeded in replacing the page.
3566 *
3567 * Now make the new head point back to the reader page.
3568 */
3569 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3570 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3571
3572 /* Finally update the reader page to the new head */
3573 cpu_buffer->reader_page = reader;
3574 rb_reset_reader_page(cpu_buffer);
3575
3576 if (overwrite != cpu_buffer->last_overrun) {
3577 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3578 cpu_buffer->last_overrun = overwrite;
3579 }
3580
3581 goto again;
3582
3583 out:
3584 arch_spin_unlock(&cpu_buffer->lock);
3585 local_irq_restore(flags);
3586
3587 return reader;
3588 }
3589
3590 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3591 {
3592 struct ring_buffer_event *event;
3593 struct buffer_page *reader;
3594 unsigned length;
3595
3596 reader = rb_get_reader_page(cpu_buffer);
3597
3598 /* This function should not be called when buffer is empty */
3599 if (RB_WARN_ON(cpu_buffer, !reader))
3600 return;
3601
3602 event = rb_reader_event(cpu_buffer);
3603
3604 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3605 cpu_buffer->read++;
3606
3607 rb_update_read_stamp(cpu_buffer, event);
3608
3609 length = rb_event_length(event);
3610 cpu_buffer->reader_page->read += length;
3611 }
3612
3613 static void rb_advance_iter(struct ring_buffer_iter *iter)
3614 {
3615 struct ring_buffer_per_cpu *cpu_buffer;
3616 struct ring_buffer_event *event;
3617 unsigned length;
3618
3619 cpu_buffer = iter->cpu_buffer;
3620
3621 /*
3622 * Check if we are at the end of the buffer.
3623 */
3624 if (iter->head >= rb_page_size(iter->head_page)) {
3625 /* discarded commits can make the page empty */
3626 if (iter->head_page == cpu_buffer->commit_page)
3627 return;
3628 rb_inc_iter(iter);
3629 return;
3630 }
3631
3632 event = rb_iter_head_event(iter);
3633
3634 length = rb_event_length(event);
3635
3636 /*
3637 * This should not be called to advance the header if we are
3638 * at the tail of the buffer.
3639 */
3640 if (RB_WARN_ON(cpu_buffer,
3641 (iter->head_page == cpu_buffer->commit_page) &&
3642 (iter->head + length > rb_commit_index(cpu_buffer))))
3643 return;
3644
3645 rb_update_iter_read_stamp(iter, event);
3646
3647 iter->head += length;
3648
3649 /* check for end of page padding */
3650 if ((iter->head >= rb_page_size(iter->head_page)) &&
3651 (iter->head_page != cpu_buffer->commit_page))
3652 rb_inc_iter(iter);
3653 }
3654
3655 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3656 {
3657 return cpu_buffer->lost_events;
3658 }
3659
3660 static struct ring_buffer_event *
3661 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3662 unsigned long *lost_events)
3663 {
3664 struct ring_buffer_event *event;
3665 struct buffer_page *reader;
3666 int nr_loops = 0;
3667
3668 again:
3669 /*
3670 * We repeat when a time extend is encountered.
3671 * Since the time extend is always attached to a data event,
3672 * we should never loop more than once.
3673 * (We never hit the following condition more than twice).
3674 */
3675 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3676 return NULL;
3677
3678 reader = rb_get_reader_page(cpu_buffer);
3679 if (!reader)
3680 return NULL;
3681
3682 event = rb_reader_event(cpu_buffer);
3683
3684 switch (event->type_len) {
3685 case RINGBUF_TYPE_PADDING:
3686 if (rb_null_event(event))
3687 RB_WARN_ON(cpu_buffer, 1);
3688 /*
3689 * Because the writer could be discarding every
3690 * event it creates (which would probably be bad)
3691 * if we were to go back to "again" then we may never
3692 * catch up, and will trigger the warn on, or lock
3693 * the box. Return the padding, and we will release
3694 * the current locks, and try again.
3695 */
3696 return event;
3697
3698 case RINGBUF_TYPE_TIME_EXTEND:
3699 /* Internal data, OK to advance */
3700 rb_advance_reader(cpu_buffer);
3701 goto again;
3702
3703 case RINGBUF_TYPE_TIME_STAMP:
3704 /* FIXME: not implemented */
3705 rb_advance_reader(cpu_buffer);
3706 goto again;
3707
3708 case RINGBUF_TYPE_DATA:
3709 if (ts) {
3710 *ts = cpu_buffer->read_stamp + event->time_delta;
3711 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3712 cpu_buffer->cpu, ts);
3713 }
3714 if (lost_events)
3715 *lost_events = rb_lost_events(cpu_buffer);
3716 return event;
3717
3718 default:
3719 BUG();
3720 }
3721
3722 return NULL;
3723 }
3724 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3725
3726 static struct ring_buffer_event *
3727 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3728 {
3729 struct ring_buffer *buffer;
3730 struct ring_buffer_per_cpu *cpu_buffer;
3731 struct ring_buffer_event *event;
3732 int nr_loops = 0;
3733
3734 cpu_buffer = iter->cpu_buffer;
3735 buffer = cpu_buffer->buffer;
3736
3737 /*
3738 * Check if someone performed a consuming read to
3739 * the buffer. A consuming read invalidates the iterator
3740 * and we need to reset the iterator in this case.
3741 */
3742 if (unlikely(iter->cache_read != cpu_buffer->read ||
3743 iter->cache_reader_page != cpu_buffer->reader_page))
3744 rb_iter_reset(iter);
3745
3746 again:
3747 if (ring_buffer_iter_empty(iter))
3748 return NULL;
3749
3750 /*
3751 * We repeat when a time extend is encountered.
3752 * Since the time extend is always attached to a data event,
3753 * we should never loop more than once.
3754 * (We never hit the following condition more than twice).
3755 */
3756 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3757 return NULL;
3758
3759 if (rb_per_cpu_empty(cpu_buffer))
3760 return NULL;
3761
3762 if (iter->head >= rb_page_size(iter->head_page)) {
3763 rb_inc_iter(iter);
3764 goto again;
3765 }
3766
3767 event = rb_iter_head_event(iter);
3768
3769 switch (event->type_len) {
3770 case RINGBUF_TYPE_PADDING:
3771 if (rb_null_event(event)) {
3772 rb_inc_iter(iter);
3773 goto again;
3774 }
3775 rb_advance_iter(iter);
3776 return event;
3777
3778 case RINGBUF_TYPE_TIME_EXTEND:
3779 /* Internal data, OK to advance */
3780 rb_advance_iter(iter);
3781 goto again;
3782
3783 case RINGBUF_TYPE_TIME_STAMP:
3784 /* FIXME: not implemented */
3785 rb_advance_iter(iter);
3786 goto again;
3787
3788 case RINGBUF_TYPE_DATA:
3789 if (ts) {
3790 *ts = iter->read_stamp + event->time_delta;
3791 ring_buffer_normalize_time_stamp(buffer,
3792 cpu_buffer->cpu, ts);
3793 }
3794 return event;
3795
3796 default:
3797 BUG();
3798 }
3799
3800 return NULL;
3801 }
3802 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3803
3804 static inline int rb_ok_to_lock(void)
3805 {
3806 /*
3807 * If an NMI die dumps out the content of the ring buffer
3808 * do not grab locks. We also permanently disable the ring
3809 * buffer too. A one time deal is all you get from reading
3810 * the ring buffer from an NMI.
3811 */
3812 if (likely(!in_nmi()))
3813 return 1;
3814
3815 tracing_off_permanent();
3816 return 0;
3817 }
3818
3819 /**
3820 * ring_buffer_peek - peek at the next event to be read
3821 * @buffer: The ring buffer to read
3822 * @cpu: The cpu to peak at
3823 * @ts: The timestamp counter of this event.
3824 * @lost_events: a variable to store if events were lost (may be NULL)
3825 *
3826 * This will return the event that will be read next, but does
3827 * not consume the data.
3828 */
3829 struct ring_buffer_event *
3830 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3831 unsigned long *lost_events)
3832 {
3833 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3834 struct ring_buffer_event *event;
3835 unsigned long flags;
3836 int dolock;
3837
3838 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3839 return NULL;
3840
3841 dolock = rb_ok_to_lock();
3842 again:
3843 local_irq_save(flags);
3844 if (dolock)
3845 raw_spin_lock(&cpu_buffer->reader_lock);
3846 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3847 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3848 rb_advance_reader(cpu_buffer);
3849 if (dolock)
3850 raw_spin_unlock(&cpu_buffer->reader_lock);
3851 local_irq_restore(flags);
3852
3853 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3854 goto again;
3855
3856 return event;
3857 }
3858
3859 /**
3860 * ring_buffer_iter_peek - peek at the next event to be read
3861 * @iter: The ring buffer iterator
3862 * @ts: The timestamp counter of this event.
3863 *
3864 * This will return the event that will be read next, but does
3865 * not increment the iterator.
3866 */
3867 struct ring_buffer_event *
3868 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3869 {
3870 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3871 struct ring_buffer_event *event;
3872 unsigned long flags;
3873
3874 again:
3875 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3876 event = rb_iter_peek(iter, ts);
3877 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3878
3879 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3880 goto again;
3881
3882 return event;
3883 }
3884
3885 /**
3886 * ring_buffer_consume - return an event and consume it
3887 * @buffer: The ring buffer to get the next event from
3888 * @cpu: the cpu to read the buffer from
3889 * @ts: a variable to store the timestamp (may be NULL)
3890 * @lost_events: a variable to store if events were lost (may be NULL)
3891 *
3892 * Returns the next event in the ring buffer, and that event is consumed.
3893 * Meaning, that sequential reads will keep returning a different event,
3894 * and eventually empty the ring buffer if the producer is slower.
3895 */
3896 struct ring_buffer_event *
3897 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3898 unsigned long *lost_events)
3899 {
3900 struct ring_buffer_per_cpu *cpu_buffer;
3901 struct ring_buffer_event *event = NULL;
3902 unsigned long flags;
3903 int dolock;
3904
3905 dolock = rb_ok_to_lock();
3906
3907 again:
3908 /* might be called in atomic */
3909 preempt_disable();
3910
3911 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3912 goto out;
3913
3914 cpu_buffer = buffer->buffers[cpu];
3915 local_irq_save(flags);
3916 if (dolock)
3917 raw_spin_lock(&cpu_buffer->reader_lock);
3918
3919 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3920 if (event) {
3921 cpu_buffer->lost_events = 0;
3922 rb_advance_reader(cpu_buffer);
3923 }
3924
3925 if (dolock)
3926 raw_spin_unlock(&cpu_buffer->reader_lock);
3927 local_irq_restore(flags);
3928
3929 out:
3930 preempt_enable();
3931
3932 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3933 goto again;
3934
3935 return event;
3936 }
3937 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3938
3939 /**
3940 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3941 * @buffer: The ring buffer to read from
3942 * @cpu: The cpu buffer to iterate over
3943 *
3944 * This performs the initial preparations necessary to iterate
3945 * through the buffer. Memory is allocated, buffer recording
3946 * is disabled, and the iterator pointer is returned to the caller.
3947 *
3948 * Disabling buffer recordng prevents the reading from being
3949 * corrupted. This is not a consuming read, so a producer is not
3950 * expected.
3951 *
3952 * After a sequence of ring_buffer_read_prepare calls, the user is
3953 * expected to make at least one call to ring_buffer_read_prepare_sync.
3954 * Afterwards, ring_buffer_read_start is invoked to get things going
3955 * for real.
3956 *
3957 * This overall must be paired with ring_buffer_read_finish.
3958 */
3959 struct ring_buffer_iter *
3960 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3961 {
3962 struct ring_buffer_per_cpu *cpu_buffer;
3963 struct ring_buffer_iter *iter;
3964
3965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3966 return NULL;
3967
3968 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3969 if (!iter)
3970 return NULL;
3971
3972 cpu_buffer = buffer->buffers[cpu];
3973
3974 iter->cpu_buffer = cpu_buffer;
3975
3976 atomic_inc(&buffer->resize_disabled);
3977 atomic_inc(&cpu_buffer->record_disabled);
3978
3979 return iter;
3980 }
3981 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3982
3983 /**
3984 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3985 *
3986 * All previously invoked ring_buffer_read_prepare calls to prepare
3987 * iterators will be synchronized. Afterwards, read_buffer_read_start
3988 * calls on those iterators are allowed.
3989 */
3990 void
3991 ring_buffer_read_prepare_sync(void)
3992 {
3993 synchronize_sched();
3994 }
3995 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3996
3997 /**
3998 * ring_buffer_read_start - start a non consuming read of the buffer
3999 * @iter: The iterator returned by ring_buffer_read_prepare
4000 *
4001 * This finalizes the startup of an iteration through the buffer.
4002 * The iterator comes from a call to ring_buffer_read_prepare and
4003 * an intervening ring_buffer_read_prepare_sync must have been
4004 * performed.
4005 *
4006 * Must be paired with ring_buffer_read_finish.
4007 */
4008 void
4009 ring_buffer_read_start(struct ring_buffer_iter *iter)
4010 {
4011 struct ring_buffer_per_cpu *cpu_buffer;
4012 unsigned long flags;
4013
4014 if (!iter)
4015 return;
4016
4017 cpu_buffer = iter->cpu_buffer;
4018
4019 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4020 arch_spin_lock(&cpu_buffer->lock);
4021 rb_iter_reset(iter);
4022 arch_spin_unlock(&cpu_buffer->lock);
4023 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4024 }
4025 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4026
4027 /**
4028 * ring_buffer_read_finish - finish reading the iterator of the buffer
4029 * @iter: The iterator retrieved by ring_buffer_start
4030 *
4031 * This re-enables the recording to the buffer, and frees the
4032 * iterator.
4033 */
4034 void
4035 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4036 {
4037 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4038 unsigned long flags;
4039
4040 /*
4041 * Ring buffer is disabled from recording, here's a good place
4042 * to check the integrity of the ring buffer.
4043 * Must prevent readers from trying to read, as the check
4044 * clears the HEAD page and readers require it.
4045 */
4046 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4047 rb_check_pages(cpu_buffer);
4048 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4049
4050 atomic_dec(&cpu_buffer->record_disabled);
4051 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4052 kfree(iter);
4053 }
4054 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4055
4056 /**
4057 * ring_buffer_read - read the next item in the ring buffer by the iterator
4058 * @iter: The ring buffer iterator
4059 * @ts: The time stamp of the event read.
4060 *
4061 * This reads the next event in the ring buffer and increments the iterator.
4062 */
4063 struct ring_buffer_event *
4064 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4065 {
4066 struct ring_buffer_event *event;
4067 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4068 unsigned long flags;
4069
4070 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4071 again:
4072 event = rb_iter_peek(iter, ts);
4073 if (!event)
4074 goto out;
4075
4076 if (event->type_len == RINGBUF_TYPE_PADDING)
4077 goto again;
4078
4079 rb_advance_iter(iter);
4080 out:
4081 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4082
4083 return event;
4084 }
4085 EXPORT_SYMBOL_GPL(ring_buffer_read);
4086
4087 /**
4088 * ring_buffer_size - return the size of the ring buffer (in bytes)
4089 * @buffer: The ring buffer.
4090 */
4091 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4092 {
4093 /*
4094 * Earlier, this method returned
4095 * BUF_PAGE_SIZE * buffer->nr_pages
4096 * Since the nr_pages field is now removed, we have converted this to
4097 * return the per cpu buffer value.
4098 */
4099 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4100 return 0;
4101
4102 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4103 }
4104 EXPORT_SYMBOL_GPL(ring_buffer_size);
4105
4106 static void
4107 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4108 {
4109 rb_head_page_deactivate(cpu_buffer);
4110
4111 cpu_buffer->head_page
4112 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4113 local_set(&cpu_buffer->head_page->write, 0);
4114 local_set(&cpu_buffer->head_page->entries, 0);
4115 local_set(&cpu_buffer->head_page->page->commit, 0);
4116
4117 cpu_buffer->head_page->read = 0;
4118
4119 cpu_buffer->tail_page = cpu_buffer->head_page;
4120 cpu_buffer->commit_page = cpu_buffer->head_page;
4121
4122 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4123 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4124 local_set(&cpu_buffer->reader_page->write, 0);
4125 local_set(&cpu_buffer->reader_page->entries, 0);
4126 local_set(&cpu_buffer->reader_page->page->commit, 0);
4127 cpu_buffer->reader_page->read = 0;
4128
4129 local_set(&cpu_buffer->entries_bytes, 0);
4130 local_set(&cpu_buffer->overrun, 0);
4131 local_set(&cpu_buffer->commit_overrun, 0);
4132 local_set(&cpu_buffer->dropped_events, 0);
4133 local_set(&cpu_buffer->entries, 0);
4134 local_set(&cpu_buffer->committing, 0);
4135 local_set(&cpu_buffer->commits, 0);
4136 cpu_buffer->read = 0;
4137 cpu_buffer->read_bytes = 0;
4138
4139 cpu_buffer->write_stamp = 0;
4140 cpu_buffer->read_stamp = 0;
4141
4142 cpu_buffer->lost_events = 0;
4143 cpu_buffer->last_overrun = 0;
4144
4145 rb_head_page_activate(cpu_buffer);
4146 }
4147
4148 /**
4149 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4150 * @buffer: The ring buffer to reset a per cpu buffer of
4151 * @cpu: The CPU buffer to be reset
4152 */
4153 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4154 {
4155 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4156 unsigned long flags;
4157
4158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4159 return;
4160
4161 atomic_inc(&buffer->resize_disabled);
4162 atomic_inc(&cpu_buffer->record_disabled);
4163
4164 /* Make sure all commits have finished */
4165 synchronize_sched();
4166
4167 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4168
4169 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4170 goto out;
4171
4172 arch_spin_lock(&cpu_buffer->lock);
4173
4174 rb_reset_cpu(cpu_buffer);
4175
4176 arch_spin_unlock(&cpu_buffer->lock);
4177
4178 out:
4179 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4180
4181 atomic_dec(&cpu_buffer->record_disabled);
4182 atomic_dec(&buffer->resize_disabled);
4183 }
4184 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4185
4186 /**
4187 * ring_buffer_reset - reset a ring buffer
4188 * @buffer: The ring buffer to reset all cpu buffers
4189 */
4190 void ring_buffer_reset(struct ring_buffer *buffer)
4191 {
4192 int cpu;
4193
4194 for_each_buffer_cpu(buffer, cpu)
4195 ring_buffer_reset_cpu(buffer, cpu);
4196 }
4197 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4198
4199 /**
4200 * rind_buffer_empty - is the ring buffer empty?
4201 * @buffer: The ring buffer to test
4202 */
4203 int ring_buffer_empty(struct ring_buffer *buffer)
4204 {
4205 struct ring_buffer_per_cpu *cpu_buffer;
4206 unsigned long flags;
4207 int dolock;
4208 int cpu;
4209 int ret;
4210
4211 dolock = rb_ok_to_lock();
4212
4213 /* yes this is racy, but if you don't like the race, lock the buffer */
4214 for_each_buffer_cpu(buffer, cpu) {
4215 cpu_buffer = buffer->buffers[cpu];
4216 local_irq_save(flags);
4217 if (dolock)
4218 raw_spin_lock(&cpu_buffer->reader_lock);
4219 ret = rb_per_cpu_empty(cpu_buffer);
4220 if (dolock)
4221 raw_spin_unlock(&cpu_buffer->reader_lock);
4222 local_irq_restore(flags);
4223
4224 if (!ret)
4225 return 0;
4226 }
4227
4228 return 1;
4229 }
4230 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4231
4232 /**
4233 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4234 * @buffer: The ring buffer
4235 * @cpu: The CPU buffer to test
4236 */
4237 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4238 {
4239 struct ring_buffer_per_cpu *cpu_buffer;
4240 unsigned long flags;
4241 int dolock;
4242 int ret;
4243
4244 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4245 return 1;
4246
4247 dolock = rb_ok_to_lock();
4248
4249 cpu_buffer = buffer->buffers[cpu];
4250 local_irq_save(flags);
4251 if (dolock)
4252 raw_spin_lock(&cpu_buffer->reader_lock);
4253 ret = rb_per_cpu_empty(cpu_buffer);
4254 if (dolock)
4255 raw_spin_unlock(&cpu_buffer->reader_lock);
4256 local_irq_restore(flags);
4257
4258 return ret;
4259 }
4260 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4261
4262 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4263 /**
4264 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4265 * @buffer_a: One buffer to swap with
4266 * @buffer_b: The other buffer to swap with
4267 *
4268 * This function is useful for tracers that want to take a "snapshot"
4269 * of a CPU buffer and has another back up buffer lying around.
4270 * it is expected that the tracer handles the cpu buffer not being
4271 * used at the moment.
4272 */
4273 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4274 struct ring_buffer *buffer_b, int cpu)
4275 {
4276 struct ring_buffer_per_cpu *cpu_buffer_a;
4277 struct ring_buffer_per_cpu *cpu_buffer_b;
4278 int ret = -EINVAL;
4279
4280 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4281 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4282 goto out;
4283
4284 cpu_buffer_a = buffer_a->buffers[cpu];
4285 cpu_buffer_b = buffer_b->buffers[cpu];
4286
4287 /* At least make sure the two buffers are somewhat the same */
4288 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4289 goto out;
4290
4291 ret = -EAGAIN;
4292
4293 if (ring_buffer_flags != RB_BUFFERS_ON)
4294 goto out;
4295
4296 if (atomic_read(&buffer_a->record_disabled))
4297 goto out;
4298
4299 if (atomic_read(&buffer_b->record_disabled))
4300 goto out;
4301
4302 if (atomic_read(&cpu_buffer_a->record_disabled))
4303 goto out;
4304
4305 if (atomic_read(&cpu_buffer_b->record_disabled))
4306 goto out;
4307
4308 /*
4309 * We can't do a synchronize_sched here because this
4310 * function can be called in atomic context.
4311 * Normally this will be called from the same CPU as cpu.
4312 * If not it's up to the caller to protect this.
4313 */
4314 atomic_inc(&cpu_buffer_a->record_disabled);
4315 atomic_inc(&cpu_buffer_b->record_disabled);
4316
4317 ret = -EBUSY;
4318 if (local_read(&cpu_buffer_a->committing))
4319 goto out_dec;
4320 if (local_read(&cpu_buffer_b->committing))
4321 goto out_dec;
4322
4323 buffer_a->buffers[cpu] = cpu_buffer_b;
4324 buffer_b->buffers[cpu] = cpu_buffer_a;
4325
4326 cpu_buffer_b->buffer = buffer_a;
4327 cpu_buffer_a->buffer = buffer_b;
4328
4329 ret = 0;
4330
4331 out_dec:
4332 atomic_dec(&cpu_buffer_a->record_disabled);
4333 atomic_dec(&cpu_buffer_b->record_disabled);
4334 out:
4335 return ret;
4336 }
4337 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4338 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4339
4340 /**
4341 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4342 * @buffer: the buffer to allocate for.
4343 * @cpu: the cpu buffer to allocate.
4344 *
4345 * This function is used in conjunction with ring_buffer_read_page.
4346 * When reading a full page from the ring buffer, these functions
4347 * can be used to speed up the process. The calling function should
4348 * allocate a few pages first with this function. Then when it
4349 * needs to get pages from the ring buffer, it passes the result
4350 * of this function into ring_buffer_read_page, which will swap
4351 * the page that was allocated, with the read page of the buffer.
4352 *
4353 * Returns:
4354 * The page allocated, or NULL on error.
4355 */
4356 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4357 {
4358 struct buffer_data_page *bpage;
4359 struct page *page;
4360
4361 page = alloc_pages_node(cpu_to_node(cpu),
4362 GFP_KERNEL | __GFP_NORETRY, 0);
4363 if (!page)
4364 return NULL;
4365
4366 bpage = page_address(page);
4367
4368 rb_init_page(bpage);
4369
4370 return bpage;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4373
4374 /**
4375 * ring_buffer_free_read_page - free an allocated read page
4376 * @buffer: the buffer the page was allocate for
4377 * @data: the page to free
4378 *
4379 * Free a page allocated from ring_buffer_alloc_read_page.
4380 */
4381 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4382 {
4383 free_page((unsigned long)data);
4384 }
4385 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4386
4387 /**
4388 * ring_buffer_read_page - extract a page from the ring buffer
4389 * @buffer: buffer to extract from
4390 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4391 * @len: amount to extract
4392 * @cpu: the cpu of the buffer to extract
4393 * @full: should the extraction only happen when the page is full.
4394 *
4395 * This function will pull out a page from the ring buffer and consume it.
4396 * @data_page must be the address of the variable that was returned
4397 * from ring_buffer_alloc_read_page. This is because the page might be used
4398 * to swap with a page in the ring buffer.
4399 *
4400 * for example:
4401 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4402 * if (!rpage)
4403 * return error;
4404 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4405 * if (ret >= 0)
4406 * process_page(rpage, ret);
4407 *
4408 * When @full is set, the function will not return true unless
4409 * the writer is off the reader page.
4410 *
4411 * Note: it is up to the calling functions to handle sleeps and wakeups.
4412 * The ring buffer can be used anywhere in the kernel and can not
4413 * blindly call wake_up. The layer that uses the ring buffer must be
4414 * responsible for that.
4415 *
4416 * Returns:
4417 * >=0 if data has been transferred, returns the offset of consumed data.
4418 * <0 if no data has been transferred.
4419 */
4420 int ring_buffer_read_page(struct ring_buffer *buffer,
4421 void **data_page, size_t len, int cpu, int full)
4422 {
4423 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4424 struct ring_buffer_event *event;
4425 struct buffer_data_page *bpage;
4426 struct buffer_page *reader;
4427 unsigned long missed_events;
4428 unsigned long flags;
4429 unsigned int commit;
4430 unsigned int read;
4431 u64 save_timestamp;
4432 int ret = -1;
4433
4434 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4435 goto out;
4436
4437 /*
4438 * If len is not big enough to hold the page header, then
4439 * we can not copy anything.
4440 */
4441 if (len <= BUF_PAGE_HDR_SIZE)
4442 goto out;
4443
4444 len -= BUF_PAGE_HDR_SIZE;
4445
4446 if (!data_page)
4447 goto out;
4448
4449 bpage = *data_page;
4450 if (!bpage)
4451 goto out;
4452
4453 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4454
4455 reader = rb_get_reader_page(cpu_buffer);
4456 if (!reader)
4457 goto out_unlock;
4458
4459 event = rb_reader_event(cpu_buffer);
4460
4461 read = reader->read;
4462 commit = rb_page_commit(reader);
4463
4464 /* Check if any events were dropped */
4465 missed_events = cpu_buffer->lost_events;
4466
4467 /*
4468 * If this page has been partially read or
4469 * if len is not big enough to read the rest of the page or
4470 * a writer is still on the page, then
4471 * we must copy the data from the page to the buffer.
4472 * Otherwise, we can simply swap the page with the one passed in.
4473 */
4474 if (read || (len < (commit - read)) ||
4475 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4476 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4477 unsigned int rpos = read;
4478 unsigned int pos = 0;
4479 unsigned int size;
4480
4481 if (full)
4482 goto out_unlock;
4483
4484 if (len > (commit - read))
4485 len = (commit - read);
4486
4487 /* Always keep the time extend and data together */
4488 size = rb_event_ts_length(event);
4489
4490 if (len < size)
4491 goto out_unlock;
4492
4493 /* save the current timestamp, since the user will need it */
4494 save_timestamp = cpu_buffer->read_stamp;
4495
4496 /* Need to copy one event at a time */
4497 do {
4498 /* We need the size of one event, because
4499 * rb_advance_reader only advances by one event,
4500 * whereas rb_event_ts_length may include the size of
4501 * one or two events.
4502 * We have already ensured there's enough space if this
4503 * is a time extend. */
4504 size = rb_event_length(event);
4505 memcpy(bpage->data + pos, rpage->data + rpos, size);
4506
4507 len -= size;
4508
4509 rb_advance_reader(cpu_buffer);
4510 rpos = reader->read;
4511 pos += size;
4512
4513 if (rpos >= commit)
4514 break;
4515
4516 event = rb_reader_event(cpu_buffer);
4517 /* Always keep the time extend and data together */
4518 size = rb_event_ts_length(event);
4519 } while (len >= size);
4520
4521 /* update bpage */
4522 local_set(&bpage->commit, pos);
4523 bpage->time_stamp = save_timestamp;
4524
4525 /* we copied everything to the beginning */
4526 read = 0;
4527 } else {
4528 /* update the entry counter */
4529 cpu_buffer->read += rb_page_entries(reader);
4530 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4531
4532 /* swap the pages */
4533 rb_init_page(bpage);
4534 bpage = reader->page;
4535 reader->page = *data_page;
4536 local_set(&reader->write, 0);
4537 local_set(&reader->entries, 0);
4538 reader->read = 0;
4539 *data_page = bpage;
4540
4541 /*
4542 * Use the real_end for the data size,
4543 * This gives us a chance to store the lost events
4544 * on the page.
4545 */
4546 if (reader->real_end)
4547 local_set(&bpage->commit, reader->real_end);
4548 }
4549 ret = read;
4550
4551 cpu_buffer->lost_events = 0;
4552
4553 commit = local_read(&bpage->commit);
4554 /*
4555 * Set a flag in the commit field if we lost events
4556 */
4557 if (missed_events) {
4558 /* If there is room at the end of the page to save the
4559 * missed events, then record it there.
4560 */
4561 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4562 memcpy(&bpage->data[commit], &missed_events,
4563 sizeof(missed_events));
4564 local_add(RB_MISSED_STORED, &bpage->commit);
4565 commit += sizeof(missed_events);
4566 }
4567 local_add(RB_MISSED_EVENTS, &bpage->commit);
4568 }
4569
4570 /*
4571 * This page may be off to user land. Zero it out here.
4572 */
4573 if (commit < BUF_PAGE_SIZE)
4574 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4575
4576 out_unlock:
4577 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4578
4579 out:
4580 return ret;
4581 }
4582 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4583
4584 #ifdef CONFIG_HOTPLUG_CPU
4585 static int rb_cpu_notify(struct notifier_block *self,
4586 unsigned long action, void *hcpu)
4587 {
4588 struct ring_buffer *buffer =
4589 container_of(self, struct ring_buffer, cpu_notify);
4590 long cpu = (long)hcpu;
4591 int cpu_i, nr_pages_same;
4592 unsigned int nr_pages;
4593
4594 switch (action) {
4595 case CPU_UP_PREPARE:
4596 case CPU_UP_PREPARE_FROZEN:
4597 if (cpumask_test_cpu(cpu, buffer->cpumask))
4598 return NOTIFY_OK;
4599
4600 nr_pages = 0;
4601 nr_pages_same = 1;
4602 /* check if all cpu sizes are same */
4603 for_each_buffer_cpu(buffer, cpu_i) {
4604 /* fill in the size from first enabled cpu */
4605 if (nr_pages == 0)
4606 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4607 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4608 nr_pages_same = 0;
4609 break;
4610 }
4611 }
4612 /* allocate minimum pages, user can later expand it */
4613 if (!nr_pages_same)
4614 nr_pages = 2;
4615 buffer->buffers[cpu] =
4616 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4617 if (!buffer->buffers[cpu]) {
4618 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4619 cpu);
4620 return NOTIFY_OK;
4621 }
4622 smp_wmb();
4623 cpumask_set_cpu(cpu, buffer->cpumask);
4624 break;
4625 case CPU_DOWN_PREPARE:
4626 case CPU_DOWN_PREPARE_FROZEN:
4627 /*
4628 * Do nothing.
4629 * If we were to free the buffer, then the user would
4630 * lose any trace that was in the buffer.
4631 */
4632 break;
4633 default:
4634 break;
4635 }
4636 return NOTIFY_OK;
4637 }
4638 #endif
4639
4640 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4641 /*
4642 * This is a basic integrity check of the ring buffer.
4643 * Late in the boot cycle this test will run when configured in.
4644 * It will kick off a thread per CPU that will go into a loop
4645 * writing to the per cpu ring buffer various sizes of data.
4646 * Some of the data will be large items, some small.
4647 *
4648 * Another thread is created that goes into a spin, sending out
4649 * IPIs to the other CPUs to also write into the ring buffer.
4650 * this is to test the nesting ability of the buffer.
4651 *
4652 * Basic stats are recorded and reported. If something in the
4653 * ring buffer should happen that's not expected, a big warning
4654 * is displayed and all ring buffers are disabled.
4655 */
4656 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4657
4658 struct rb_test_data {
4659 struct ring_buffer *buffer;
4660 unsigned long events;
4661 unsigned long bytes_written;
4662 unsigned long bytes_alloc;
4663 unsigned long bytes_dropped;
4664 unsigned long events_nested;
4665 unsigned long bytes_written_nested;
4666 unsigned long bytes_alloc_nested;
4667 unsigned long bytes_dropped_nested;
4668 int min_size_nested;
4669 int max_size_nested;
4670 int max_size;
4671 int min_size;
4672 int cpu;
4673 int cnt;
4674 };
4675
4676 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4677
4678 /* 1 meg per cpu */
4679 #define RB_TEST_BUFFER_SIZE 1048576
4680
4681 static char rb_string[] __initdata =
4682 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4683 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4684 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4685
4686 static bool rb_test_started __initdata;
4687
4688 struct rb_item {
4689 int size;
4690 char str[];
4691 };
4692
4693 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4694 {
4695 struct ring_buffer_event *event;
4696 struct rb_item *item;
4697 bool started;
4698 int event_len;
4699 int size;
4700 int len;
4701 int cnt;
4702
4703 /* Have nested writes different that what is written */
4704 cnt = data->cnt + (nested ? 27 : 0);
4705
4706 /* Multiply cnt by ~e, to make some unique increment */
4707 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4708
4709 len = size + sizeof(struct rb_item);
4710
4711 started = rb_test_started;
4712 /* read rb_test_started before checking buffer enabled */
4713 smp_rmb();
4714
4715 event = ring_buffer_lock_reserve(data->buffer, len);
4716 if (!event) {
4717 /* Ignore dropped events before test starts. */
4718 if (started) {
4719 if (nested)
4720 data->bytes_dropped += len;
4721 else
4722 data->bytes_dropped_nested += len;
4723 }
4724 return len;
4725 }
4726
4727 event_len = ring_buffer_event_length(event);
4728
4729 if (RB_WARN_ON(data->buffer, event_len < len))
4730 goto out;
4731
4732 item = ring_buffer_event_data(event);
4733 item->size = size;
4734 memcpy(item->str, rb_string, size);
4735
4736 if (nested) {
4737 data->bytes_alloc_nested += event_len;
4738 data->bytes_written_nested += len;
4739 data->events_nested++;
4740 if (!data->min_size_nested || len < data->min_size_nested)
4741 data->min_size_nested = len;
4742 if (len > data->max_size_nested)
4743 data->max_size_nested = len;
4744 } else {
4745 data->bytes_alloc += event_len;
4746 data->bytes_written += len;
4747 data->events++;
4748 if (!data->min_size || len < data->min_size)
4749 data->max_size = len;
4750 if (len > data->max_size)
4751 data->max_size = len;
4752 }
4753
4754 out:
4755 ring_buffer_unlock_commit(data->buffer, event);
4756
4757 return 0;
4758 }
4759
4760 static __init int rb_test(void *arg)
4761 {
4762 struct rb_test_data *data = arg;
4763
4764 while (!kthread_should_stop()) {
4765 rb_write_something(data, false);
4766 data->cnt++;
4767
4768 set_current_state(TASK_INTERRUPTIBLE);
4769 /* Now sleep between a min of 100-300us and a max of 1ms */
4770 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4771 }
4772
4773 return 0;
4774 }
4775
4776 static __init void rb_ipi(void *ignore)
4777 {
4778 struct rb_test_data *data;
4779 int cpu = smp_processor_id();
4780
4781 data = &rb_data[cpu];
4782 rb_write_something(data, true);
4783 }
4784
4785 static __init int rb_hammer_test(void *arg)
4786 {
4787 while (!kthread_should_stop()) {
4788
4789 /* Send an IPI to all cpus to write data! */
4790 smp_call_function(rb_ipi, NULL, 1);
4791 /* No sleep, but for non preempt, let others run */
4792 schedule();
4793 }
4794
4795 return 0;
4796 }
4797
4798 static __init int test_ringbuffer(void)
4799 {
4800 struct task_struct *rb_hammer;
4801 struct ring_buffer *buffer;
4802 int cpu;
4803 int ret = 0;
4804
4805 pr_info("Running ring buffer tests...\n");
4806
4807 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4808 if (WARN_ON(!buffer))
4809 return 0;
4810
4811 /* Disable buffer so that threads can't write to it yet */
4812 ring_buffer_record_off(buffer);
4813
4814 for_each_online_cpu(cpu) {
4815 rb_data[cpu].buffer = buffer;
4816 rb_data[cpu].cpu = cpu;
4817 rb_data[cpu].cnt = cpu;
4818 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4819 "rbtester/%d", cpu);
4820 if (WARN_ON(!rb_threads[cpu])) {
4821 pr_cont("FAILED\n");
4822 ret = -1;
4823 goto out_free;
4824 }
4825
4826 kthread_bind(rb_threads[cpu], cpu);
4827 wake_up_process(rb_threads[cpu]);
4828 }
4829
4830 /* Now create the rb hammer! */
4831 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4832 if (WARN_ON(!rb_hammer)) {
4833 pr_cont("FAILED\n");
4834 ret = -1;
4835 goto out_free;
4836 }
4837
4838 ring_buffer_record_on(buffer);
4839 /*
4840 * Show buffer is enabled before setting rb_test_started.
4841 * Yes there's a small race window where events could be
4842 * dropped and the thread wont catch it. But when a ring
4843 * buffer gets enabled, there will always be some kind of
4844 * delay before other CPUs see it. Thus, we don't care about
4845 * those dropped events. We care about events dropped after
4846 * the threads see that the buffer is active.
4847 */
4848 smp_wmb();
4849 rb_test_started = true;
4850
4851 set_current_state(TASK_INTERRUPTIBLE);
4852 /* Just run for 10 seconds */;
4853 schedule_timeout(10 * HZ);
4854
4855 kthread_stop(rb_hammer);
4856
4857 out_free:
4858 for_each_online_cpu(cpu) {
4859 if (!rb_threads[cpu])
4860 break;
4861 kthread_stop(rb_threads[cpu]);
4862 }
4863 if (ret) {
4864 ring_buffer_free(buffer);
4865 return ret;
4866 }
4867
4868 /* Report! */
4869 pr_info("finished\n");
4870 for_each_online_cpu(cpu) {
4871 struct ring_buffer_event *event;
4872 struct rb_test_data *data = &rb_data[cpu];
4873 struct rb_item *item;
4874 unsigned long total_events;
4875 unsigned long total_dropped;
4876 unsigned long total_written;
4877 unsigned long total_alloc;
4878 unsigned long total_read = 0;
4879 unsigned long total_size = 0;
4880 unsigned long total_len = 0;
4881 unsigned long total_lost = 0;
4882 unsigned long lost;
4883 int big_event_size;
4884 int small_event_size;
4885
4886 ret = -1;
4887
4888 total_events = data->events + data->events_nested;
4889 total_written = data->bytes_written + data->bytes_written_nested;
4890 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4891 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4892
4893 big_event_size = data->max_size + data->max_size_nested;
4894 small_event_size = data->min_size + data->min_size_nested;
4895
4896 pr_info("CPU %d:\n", cpu);
4897 pr_info(" events: %ld\n", total_events);
4898 pr_info(" dropped bytes: %ld\n", total_dropped);
4899 pr_info(" alloced bytes: %ld\n", total_alloc);
4900 pr_info(" written bytes: %ld\n", total_written);
4901 pr_info(" biggest event: %d\n", big_event_size);
4902 pr_info(" smallest event: %d\n", small_event_size);
4903
4904 if (RB_WARN_ON(buffer, total_dropped))
4905 break;
4906
4907 ret = 0;
4908
4909 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4910 total_lost += lost;
4911 item = ring_buffer_event_data(event);
4912 total_len += ring_buffer_event_length(event);
4913 total_size += item->size + sizeof(struct rb_item);
4914 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4915 pr_info("FAILED!\n");
4916 pr_info("buffer had: %.*s\n", item->size, item->str);
4917 pr_info("expected: %.*s\n", item->size, rb_string);
4918 RB_WARN_ON(buffer, 1);
4919 ret = -1;
4920 break;
4921 }
4922 total_read++;
4923 }
4924 if (ret)
4925 break;
4926
4927 ret = -1;
4928
4929 pr_info(" read events: %ld\n", total_read);
4930 pr_info(" lost events: %ld\n", total_lost);
4931 pr_info(" total events: %ld\n", total_lost + total_read);
4932 pr_info(" recorded len bytes: %ld\n", total_len);
4933 pr_info(" recorded size bytes: %ld\n", total_size);
4934 if (total_lost)
4935 pr_info(" With dropped events, record len and size may not match\n"
4936 " alloced and written from above\n");
4937 if (!total_lost) {
4938 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4939 total_size != total_written))
4940 break;
4941 }
4942 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4943 break;
4944
4945 ret = 0;
4946 }
4947 if (!ret)
4948 pr_info("Ring buffer PASSED!\n");
4949
4950 ring_buffer_free(buffer);
4951 return 0;
4952 }
4953
4954 late_initcall(test_ringbuffer);
4955 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.301078 seconds and 5 git commands to generate.