Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 int ret;
38
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return ret;
52 }
53
54 /*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122 /*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140 /*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
172 * permanently.
173 */
174 void tracing_off_permanent(void)
175 {
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
191
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 unsigned length;
221
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257 }
258
259 /*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274 }
275
276 /**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
285 */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315 }
316
317 /**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
338
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
343 };
344
345 /*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
360 };
361
362 /*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 local_set(&bpage->commit, 0);
380 }
381
382 /**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
388 size_t ring_buffer_page_len(void *page)
389 {
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
402 }
403
404 /*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407 static inline int test_time_stamp(u64 delta)
408 {
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
434
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
446
447 return ret;
448 }
449
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454 };
455
456 /*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
490
491 struct rb_irq_work irq_work;
492 };
493
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
500
501 struct lock_class_key *reader_lock_key;
502
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
511
512 struct rb_irq_work irq_work;
513 };
514
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
522 };
523
524 /*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
542 *
543 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
544 * as data is added to any of the @buffer's cpu buffers. Otherwise
545 * it will wait for data to be added to a specific cpu buffer.
546 */
547 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
548 {
549 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
550 DEFINE_WAIT(wait);
551 struct rb_irq_work *work;
552 int ret = 0;
553
554 /*
555 * Depending on what the caller is waiting for, either any
556 * data in any cpu buffer, or a specific buffer, put the
557 * caller on the appropriate wait queue.
558 */
559 if (cpu == RING_BUFFER_ALL_CPUS)
560 work = &buffer->irq_work;
561 else {
562 if (!cpumask_test_cpu(cpu, buffer->cpumask))
563 return -ENODEV;
564 cpu_buffer = buffer->buffers[cpu];
565 work = &cpu_buffer->irq_work;
566 }
567
568
569 while (true) {
570 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
571
572 /*
573 * The events can happen in critical sections where
574 * checking a work queue can cause deadlocks.
575 * After adding a task to the queue, this flag is set
576 * only to notify events to try to wake up the queue
577 * using irq_work.
578 *
579 * We don't clear it even if the buffer is no longer
580 * empty. The flag only causes the next event to run
581 * irq_work to do the work queue wake up. The worse
582 * that can happen if we race with !trace_empty() is that
583 * an event will cause an irq_work to try to wake up
584 * an empty queue.
585 *
586 * There's no reason to protect this flag either, as
587 * the work queue and irq_work logic will do the necessary
588 * synchronization for the wake ups. The only thing
589 * that is necessary is that the wake up happens after
590 * a task has been queued. It's OK for spurious wake ups.
591 */
592 work->waiters_pending = true;
593
594 if (signal_pending(current)) {
595 ret = -EINTR;
596 break;
597 }
598
599 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
600 break;
601
602 if (cpu != RING_BUFFER_ALL_CPUS &&
603 !ring_buffer_empty_cpu(buffer, cpu)) {
604 unsigned long flags;
605 bool pagebusy;
606
607 if (!full)
608 break;
609
610 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
611 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
612 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
613
614 if (!pagebusy)
615 break;
616 }
617
618 schedule();
619 }
620
621 finish_wait(&work->waiters, &wait);
622
623 return ret;
624 }
625
626 /**
627 * ring_buffer_poll_wait - poll on buffer input
628 * @buffer: buffer to wait on
629 * @cpu: the cpu buffer to wait on
630 * @filp: the file descriptor
631 * @poll_table: The poll descriptor
632 *
633 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
634 * as data is added to any of the @buffer's cpu buffers. Otherwise
635 * it will wait for data to be added to a specific cpu buffer.
636 *
637 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
638 * zero otherwise.
639 */
640 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
641 struct file *filp, poll_table *poll_table)
642 {
643 struct ring_buffer_per_cpu *cpu_buffer;
644 struct rb_irq_work *work;
645
646 if (cpu == RING_BUFFER_ALL_CPUS)
647 work = &buffer->irq_work;
648 else {
649 if (!cpumask_test_cpu(cpu, buffer->cpumask))
650 return -EINVAL;
651
652 cpu_buffer = buffer->buffers[cpu];
653 work = &cpu_buffer->irq_work;
654 }
655
656 poll_wait(filp, &work->waiters, poll_table);
657 work->waiters_pending = true;
658 /*
659 * There's a tight race between setting the waiters_pending and
660 * checking if the ring buffer is empty. Once the waiters_pending bit
661 * is set, the next event will wake the task up, but we can get stuck
662 * if there's only a single event in.
663 *
664 * FIXME: Ideally, we need a memory barrier on the writer side as well,
665 * but adding a memory barrier to all events will cause too much of a
666 * performance hit in the fast path. We only need a memory barrier when
667 * the buffer goes from empty to having content. But as this race is
668 * extremely small, and it's not a problem if another event comes in, we
669 * will fix it later.
670 */
671 smp_mb();
672
673 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
674 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
675 return POLLIN | POLLRDNORM;
676 return 0;
677 }
678
679 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
680 #define RB_WARN_ON(b, cond) \
681 ({ \
682 int _____ret = unlikely(cond); \
683 if (_____ret) { \
684 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
685 struct ring_buffer_per_cpu *__b = \
686 (void *)b; \
687 atomic_inc(&__b->buffer->record_disabled); \
688 } else \
689 atomic_inc(&b->record_disabled); \
690 WARN_ON(1); \
691 } \
692 _____ret; \
693 })
694
695 /* Up this if you want to test the TIME_EXTENTS and normalization */
696 #define DEBUG_SHIFT 0
697
698 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
699 {
700 /* shift to debug/test normalization and TIME_EXTENTS */
701 return buffer->clock() << DEBUG_SHIFT;
702 }
703
704 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
705 {
706 u64 time;
707
708 preempt_disable_notrace();
709 time = rb_time_stamp(buffer);
710 preempt_enable_no_resched_notrace();
711
712 return time;
713 }
714 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
715
716 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
717 int cpu, u64 *ts)
718 {
719 /* Just stupid testing the normalize function and deltas */
720 *ts >>= DEBUG_SHIFT;
721 }
722 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
723
724 /*
725 * Making the ring buffer lockless makes things tricky.
726 * Although writes only happen on the CPU that they are on,
727 * and they only need to worry about interrupts. Reads can
728 * happen on any CPU.
729 *
730 * The reader page is always off the ring buffer, but when the
731 * reader finishes with a page, it needs to swap its page with
732 * a new one from the buffer. The reader needs to take from
733 * the head (writes go to the tail). But if a writer is in overwrite
734 * mode and wraps, it must push the head page forward.
735 *
736 * Here lies the problem.
737 *
738 * The reader must be careful to replace only the head page, and
739 * not another one. As described at the top of the file in the
740 * ASCII art, the reader sets its old page to point to the next
741 * page after head. It then sets the page after head to point to
742 * the old reader page. But if the writer moves the head page
743 * during this operation, the reader could end up with the tail.
744 *
745 * We use cmpxchg to help prevent this race. We also do something
746 * special with the page before head. We set the LSB to 1.
747 *
748 * When the writer must push the page forward, it will clear the
749 * bit that points to the head page, move the head, and then set
750 * the bit that points to the new head page.
751 *
752 * We also don't want an interrupt coming in and moving the head
753 * page on another writer. Thus we use the second LSB to catch
754 * that too. Thus:
755 *
756 * head->list->prev->next bit 1 bit 0
757 * ------- -------
758 * Normal page 0 0
759 * Points to head page 0 1
760 * New head page 1 0
761 *
762 * Note we can not trust the prev pointer of the head page, because:
763 *
764 * +----+ +-----+ +-----+
765 * | |------>| T |---X--->| N |
766 * | |<------| | | |
767 * +----+ +-----+ +-----+
768 * ^ ^ |
769 * | +-----+ | |
770 * +----------| R |----------+ |
771 * | |<-----------+
772 * +-----+
773 *
774 * Key: ---X--> HEAD flag set in pointer
775 * T Tail page
776 * R Reader page
777 * N Next page
778 *
779 * (see __rb_reserve_next() to see where this happens)
780 *
781 * What the above shows is that the reader just swapped out
782 * the reader page with a page in the buffer, but before it
783 * could make the new header point back to the new page added
784 * it was preempted by a writer. The writer moved forward onto
785 * the new page added by the reader and is about to move forward
786 * again.
787 *
788 * You can see, it is legitimate for the previous pointer of
789 * the head (or any page) not to point back to itself. But only
790 * temporarially.
791 */
792
793 #define RB_PAGE_NORMAL 0UL
794 #define RB_PAGE_HEAD 1UL
795 #define RB_PAGE_UPDATE 2UL
796
797
798 #define RB_FLAG_MASK 3UL
799
800 /* PAGE_MOVED is not part of the mask */
801 #define RB_PAGE_MOVED 4UL
802
803 /*
804 * rb_list_head - remove any bit
805 */
806 static struct list_head *rb_list_head(struct list_head *list)
807 {
808 unsigned long val = (unsigned long)list;
809
810 return (struct list_head *)(val & ~RB_FLAG_MASK);
811 }
812
813 /*
814 * rb_is_head_page - test if the given page is the head page
815 *
816 * Because the reader may move the head_page pointer, we can
817 * not trust what the head page is (it may be pointing to
818 * the reader page). But if the next page is a header page,
819 * its flags will be non zero.
820 */
821 static inline int
822 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
823 struct buffer_page *page, struct list_head *list)
824 {
825 unsigned long val;
826
827 val = (unsigned long)list->next;
828
829 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
830 return RB_PAGE_MOVED;
831
832 return val & RB_FLAG_MASK;
833 }
834
835 /*
836 * rb_is_reader_page
837 *
838 * The unique thing about the reader page, is that, if the
839 * writer is ever on it, the previous pointer never points
840 * back to the reader page.
841 */
842 static int rb_is_reader_page(struct buffer_page *page)
843 {
844 struct list_head *list = page->list.prev;
845
846 return rb_list_head(list->next) != &page->list;
847 }
848
849 /*
850 * rb_set_list_to_head - set a list_head to be pointing to head.
851 */
852 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
853 struct list_head *list)
854 {
855 unsigned long *ptr;
856
857 ptr = (unsigned long *)&list->next;
858 *ptr |= RB_PAGE_HEAD;
859 *ptr &= ~RB_PAGE_UPDATE;
860 }
861
862 /*
863 * rb_head_page_activate - sets up head page
864 */
865 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
866 {
867 struct buffer_page *head;
868
869 head = cpu_buffer->head_page;
870 if (!head)
871 return;
872
873 /*
874 * Set the previous list pointer to have the HEAD flag.
875 */
876 rb_set_list_to_head(cpu_buffer, head->list.prev);
877 }
878
879 static void rb_list_head_clear(struct list_head *list)
880 {
881 unsigned long *ptr = (unsigned long *)&list->next;
882
883 *ptr &= ~RB_FLAG_MASK;
884 }
885
886 /*
887 * rb_head_page_dactivate - clears head page ptr (for free list)
888 */
889 static void
890 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
891 {
892 struct list_head *hd;
893
894 /* Go through the whole list and clear any pointers found. */
895 rb_list_head_clear(cpu_buffer->pages);
896
897 list_for_each(hd, cpu_buffer->pages)
898 rb_list_head_clear(hd);
899 }
900
901 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *head,
903 struct buffer_page *prev,
904 int old_flag, int new_flag)
905 {
906 struct list_head *list;
907 unsigned long val = (unsigned long)&head->list;
908 unsigned long ret;
909
910 list = &prev->list;
911
912 val &= ~RB_FLAG_MASK;
913
914 ret = cmpxchg((unsigned long *)&list->next,
915 val | old_flag, val | new_flag);
916
917 /* check if the reader took the page */
918 if ((ret & ~RB_FLAG_MASK) != val)
919 return RB_PAGE_MOVED;
920
921 return ret & RB_FLAG_MASK;
922 }
923
924 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page *head,
926 struct buffer_page *prev,
927 int old_flag)
928 {
929 return rb_head_page_set(cpu_buffer, head, prev,
930 old_flag, RB_PAGE_UPDATE);
931 }
932
933 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
934 struct buffer_page *head,
935 struct buffer_page *prev,
936 int old_flag)
937 {
938 return rb_head_page_set(cpu_buffer, head, prev,
939 old_flag, RB_PAGE_HEAD);
940 }
941
942 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
943 struct buffer_page *head,
944 struct buffer_page *prev,
945 int old_flag)
946 {
947 return rb_head_page_set(cpu_buffer, head, prev,
948 old_flag, RB_PAGE_NORMAL);
949 }
950
951 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
952 struct buffer_page **bpage)
953 {
954 struct list_head *p = rb_list_head((*bpage)->list.next);
955
956 *bpage = list_entry(p, struct buffer_page, list);
957 }
958
959 static struct buffer_page *
960 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
961 {
962 struct buffer_page *head;
963 struct buffer_page *page;
964 struct list_head *list;
965 int i;
966
967 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
968 return NULL;
969
970 /* sanity check */
971 list = cpu_buffer->pages;
972 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
973 return NULL;
974
975 page = head = cpu_buffer->head_page;
976 /*
977 * It is possible that the writer moves the header behind
978 * where we started, and we miss in one loop.
979 * A second loop should grab the header, but we'll do
980 * three loops just because I'm paranoid.
981 */
982 for (i = 0; i < 3; i++) {
983 do {
984 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
985 cpu_buffer->head_page = page;
986 return page;
987 }
988 rb_inc_page(cpu_buffer, &page);
989 } while (page != head);
990 }
991
992 RB_WARN_ON(cpu_buffer, 1);
993
994 return NULL;
995 }
996
997 static int rb_head_page_replace(struct buffer_page *old,
998 struct buffer_page *new)
999 {
1000 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1001 unsigned long val;
1002 unsigned long ret;
1003
1004 val = *ptr & ~RB_FLAG_MASK;
1005 val |= RB_PAGE_HEAD;
1006
1007 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1008
1009 return ret == val;
1010 }
1011
1012 /*
1013 * rb_tail_page_update - move the tail page forward
1014 *
1015 * Returns 1 if moved tail page, 0 if someone else did.
1016 */
1017 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1018 struct buffer_page *tail_page,
1019 struct buffer_page *next_page)
1020 {
1021 struct buffer_page *old_tail;
1022 unsigned long old_entries;
1023 unsigned long old_write;
1024 int ret = 0;
1025
1026 /*
1027 * The tail page now needs to be moved forward.
1028 *
1029 * We need to reset the tail page, but without messing
1030 * with possible erasing of data brought in by interrupts
1031 * that have moved the tail page and are currently on it.
1032 *
1033 * We add a counter to the write field to denote this.
1034 */
1035 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1036 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1037
1038 /*
1039 * Just make sure we have seen our old_write and synchronize
1040 * with any interrupts that come in.
1041 */
1042 barrier();
1043
1044 /*
1045 * If the tail page is still the same as what we think
1046 * it is, then it is up to us to update the tail
1047 * pointer.
1048 */
1049 if (tail_page == cpu_buffer->tail_page) {
1050 /* Zero the write counter */
1051 unsigned long val = old_write & ~RB_WRITE_MASK;
1052 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1053
1054 /*
1055 * This will only succeed if an interrupt did
1056 * not come in and change it. In which case, we
1057 * do not want to modify it.
1058 *
1059 * We add (void) to let the compiler know that we do not care
1060 * about the return value of these functions. We use the
1061 * cmpxchg to only update if an interrupt did not already
1062 * do it for us. If the cmpxchg fails, we don't care.
1063 */
1064 (void)local_cmpxchg(&next_page->write, old_write, val);
1065 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1066
1067 /*
1068 * No need to worry about races with clearing out the commit.
1069 * it only can increment when a commit takes place. But that
1070 * only happens in the outer most nested commit.
1071 */
1072 local_set(&next_page->page->commit, 0);
1073
1074 old_tail = cmpxchg(&cpu_buffer->tail_page,
1075 tail_page, next_page);
1076
1077 if (old_tail == tail_page)
1078 ret = 1;
1079 }
1080
1081 return ret;
1082 }
1083
1084 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1085 struct buffer_page *bpage)
1086 {
1087 unsigned long val = (unsigned long)bpage;
1088
1089 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1090 return 1;
1091
1092 return 0;
1093 }
1094
1095 /**
1096 * rb_check_list - make sure a pointer to a list has the last bits zero
1097 */
1098 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1099 struct list_head *list)
1100 {
1101 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1102 return 1;
1103 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1104 return 1;
1105 return 0;
1106 }
1107
1108 /**
1109 * rb_check_pages - integrity check of buffer pages
1110 * @cpu_buffer: CPU buffer with pages to test
1111 *
1112 * As a safety measure we check to make sure the data pages have not
1113 * been corrupted.
1114 */
1115 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1116 {
1117 struct list_head *head = cpu_buffer->pages;
1118 struct buffer_page *bpage, *tmp;
1119
1120 /* Reset the head page if it exists */
1121 if (cpu_buffer->head_page)
1122 rb_set_head_page(cpu_buffer);
1123
1124 rb_head_page_deactivate(cpu_buffer);
1125
1126 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1127 return -1;
1128 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1129 return -1;
1130
1131 if (rb_check_list(cpu_buffer, head))
1132 return -1;
1133
1134 list_for_each_entry_safe(bpage, tmp, head, list) {
1135 if (RB_WARN_ON(cpu_buffer,
1136 bpage->list.next->prev != &bpage->list))
1137 return -1;
1138 if (RB_WARN_ON(cpu_buffer,
1139 bpage->list.prev->next != &bpage->list))
1140 return -1;
1141 if (rb_check_list(cpu_buffer, &bpage->list))
1142 return -1;
1143 }
1144
1145 rb_head_page_activate(cpu_buffer);
1146
1147 return 0;
1148 }
1149
1150 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1151 {
1152 int i;
1153 struct buffer_page *bpage, *tmp;
1154
1155 for (i = 0; i < nr_pages; i++) {
1156 struct page *page;
1157 /*
1158 * __GFP_NORETRY flag makes sure that the allocation fails
1159 * gracefully without invoking oom-killer and the system is
1160 * not destabilized.
1161 */
1162 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1163 GFP_KERNEL | __GFP_NORETRY,
1164 cpu_to_node(cpu));
1165 if (!bpage)
1166 goto free_pages;
1167
1168 list_add(&bpage->list, pages);
1169
1170 page = alloc_pages_node(cpu_to_node(cpu),
1171 GFP_KERNEL | __GFP_NORETRY, 0);
1172 if (!page)
1173 goto free_pages;
1174 bpage->page = page_address(page);
1175 rb_init_page(bpage->page);
1176 }
1177
1178 return 0;
1179
1180 free_pages:
1181 list_for_each_entry_safe(bpage, tmp, pages, list) {
1182 list_del_init(&bpage->list);
1183 free_buffer_page(bpage);
1184 }
1185
1186 return -ENOMEM;
1187 }
1188
1189 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1190 unsigned nr_pages)
1191 {
1192 LIST_HEAD(pages);
1193
1194 WARN_ON(!nr_pages);
1195
1196 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1197 return -ENOMEM;
1198
1199 /*
1200 * The ring buffer page list is a circular list that does not
1201 * start and end with a list head. All page list items point to
1202 * other pages.
1203 */
1204 cpu_buffer->pages = pages.next;
1205 list_del(&pages);
1206
1207 cpu_buffer->nr_pages = nr_pages;
1208
1209 rb_check_pages(cpu_buffer);
1210
1211 return 0;
1212 }
1213
1214 static struct ring_buffer_per_cpu *
1215 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1216 {
1217 struct ring_buffer_per_cpu *cpu_buffer;
1218 struct buffer_page *bpage;
1219 struct page *page;
1220 int ret;
1221
1222 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1223 GFP_KERNEL, cpu_to_node(cpu));
1224 if (!cpu_buffer)
1225 return NULL;
1226
1227 cpu_buffer->cpu = cpu;
1228 cpu_buffer->buffer = buffer;
1229 raw_spin_lock_init(&cpu_buffer->reader_lock);
1230 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1231 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1232 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1233 init_completion(&cpu_buffer->update_done);
1234 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1235 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1236
1237 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1238 GFP_KERNEL, cpu_to_node(cpu));
1239 if (!bpage)
1240 goto fail_free_buffer;
1241
1242 rb_check_bpage(cpu_buffer, bpage);
1243
1244 cpu_buffer->reader_page = bpage;
1245 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1246 if (!page)
1247 goto fail_free_reader;
1248 bpage->page = page_address(page);
1249 rb_init_page(bpage->page);
1250
1251 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1252 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1253
1254 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1255 if (ret < 0)
1256 goto fail_free_reader;
1257
1258 cpu_buffer->head_page
1259 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1260 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1261
1262 rb_head_page_activate(cpu_buffer);
1263
1264 return cpu_buffer;
1265
1266 fail_free_reader:
1267 free_buffer_page(cpu_buffer->reader_page);
1268
1269 fail_free_buffer:
1270 kfree(cpu_buffer);
1271 return NULL;
1272 }
1273
1274 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1275 {
1276 struct list_head *head = cpu_buffer->pages;
1277 struct buffer_page *bpage, *tmp;
1278
1279 free_buffer_page(cpu_buffer->reader_page);
1280
1281 rb_head_page_deactivate(cpu_buffer);
1282
1283 if (head) {
1284 list_for_each_entry_safe(bpage, tmp, head, list) {
1285 list_del_init(&bpage->list);
1286 free_buffer_page(bpage);
1287 }
1288 bpage = list_entry(head, struct buffer_page, list);
1289 free_buffer_page(bpage);
1290 }
1291
1292 kfree(cpu_buffer);
1293 }
1294
1295 #ifdef CONFIG_HOTPLUG_CPU
1296 static int rb_cpu_notify(struct notifier_block *self,
1297 unsigned long action, void *hcpu);
1298 #endif
1299
1300 /**
1301 * __ring_buffer_alloc - allocate a new ring_buffer
1302 * @size: the size in bytes per cpu that is needed.
1303 * @flags: attributes to set for the ring buffer.
1304 *
1305 * Currently the only flag that is available is the RB_FL_OVERWRITE
1306 * flag. This flag means that the buffer will overwrite old data
1307 * when the buffer wraps. If this flag is not set, the buffer will
1308 * drop data when the tail hits the head.
1309 */
1310 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1311 struct lock_class_key *key)
1312 {
1313 struct ring_buffer *buffer;
1314 int bsize;
1315 int cpu, nr_pages;
1316
1317 /* keep it in its own cache line */
1318 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1319 GFP_KERNEL);
1320 if (!buffer)
1321 return NULL;
1322
1323 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1324 goto fail_free_buffer;
1325
1326 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1327 buffer->flags = flags;
1328 buffer->clock = trace_clock_local;
1329 buffer->reader_lock_key = key;
1330
1331 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1332 init_waitqueue_head(&buffer->irq_work.waiters);
1333
1334 /* need at least two pages */
1335 if (nr_pages < 2)
1336 nr_pages = 2;
1337
1338 /*
1339 * In case of non-hotplug cpu, if the ring-buffer is allocated
1340 * in early initcall, it will not be notified of secondary cpus.
1341 * In that off case, we need to allocate for all possible cpus.
1342 */
1343 #ifdef CONFIG_HOTPLUG_CPU
1344 cpu_notifier_register_begin();
1345 cpumask_copy(buffer->cpumask, cpu_online_mask);
1346 #else
1347 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1348 #endif
1349 buffer->cpus = nr_cpu_ids;
1350
1351 bsize = sizeof(void *) * nr_cpu_ids;
1352 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1353 GFP_KERNEL);
1354 if (!buffer->buffers)
1355 goto fail_free_cpumask;
1356
1357 for_each_buffer_cpu(buffer, cpu) {
1358 buffer->buffers[cpu] =
1359 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1360 if (!buffer->buffers[cpu])
1361 goto fail_free_buffers;
1362 }
1363
1364 #ifdef CONFIG_HOTPLUG_CPU
1365 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1366 buffer->cpu_notify.priority = 0;
1367 __register_cpu_notifier(&buffer->cpu_notify);
1368 cpu_notifier_register_done();
1369 #endif
1370
1371 mutex_init(&buffer->mutex);
1372
1373 return buffer;
1374
1375 fail_free_buffers:
1376 for_each_buffer_cpu(buffer, cpu) {
1377 if (buffer->buffers[cpu])
1378 rb_free_cpu_buffer(buffer->buffers[cpu]);
1379 }
1380 kfree(buffer->buffers);
1381
1382 fail_free_cpumask:
1383 free_cpumask_var(buffer->cpumask);
1384 #ifdef CONFIG_HOTPLUG_CPU
1385 cpu_notifier_register_done();
1386 #endif
1387
1388 fail_free_buffer:
1389 kfree(buffer);
1390 return NULL;
1391 }
1392 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1393
1394 /**
1395 * ring_buffer_free - free a ring buffer.
1396 * @buffer: the buffer to free.
1397 */
1398 void
1399 ring_buffer_free(struct ring_buffer *buffer)
1400 {
1401 int cpu;
1402
1403 #ifdef CONFIG_HOTPLUG_CPU
1404 cpu_notifier_register_begin();
1405 __unregister_cpu_notifier(&buffer->cpu_notify);
1406 #endif
1407
1408 for_each_buffer_cpu(buffer, cpu)
1409 rb_free_cpu_buffer(buffer->buffers[cpu]);
1410
1411 #ifdef CONFIG_HOTPLUG_CPU
1412 cpu_notifier_register_done();
1413 #endif
1414
1415 kfree(buffer->buffers);
1416 free_cpumask_var(buffer->cpumask);
1417
1418 kfree(buffer);
1419 }
1420 EXPORT_SYMBOL_GPL(ring_buffer_free);
1421
1422 void ring_buffer_set_clock(struct ring_buffer *buffer,
1423 u64 (*clock)(void))
1424 {
1425 buffer->clock = clock;
1426 }
1427
1428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1429
1430 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1431 {
1432 return local_read(&bpage->entries) & RB_WRITE_MASK;
1433 }
1434
1435 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1436 {
1437 return local_read(&bpage->write) & RB_WRITE_MASK;
1438 }
1439
1440 static int
1441 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1442 {
1443 struct list_head *tail_page, *to_remove, *next_page;
1444 struct buffer_page *to_remove_page, *tmp_iter_page;
1445 struct buffer_page *last_page, *first_page;
1446 unsigned int nr_removed;
1447 unsigned long head_bit;
1448 int page_entries;
1449
1450 head_bit = 0;
1451
1452 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1453 atomic_inc(&cpu_buffer->record_disabled);
1454 /*
1455 * We don't race with the readers since we have acquired the reader
1456 * lock. We also don't race with writers after disabling recording.
1457 * This makes it easy to figure out the first and the last page to be
1458 * removed from the list. We unlink all the pages in between including
1459 * the first and last pages. This is done in a busy loop so that we
1460 * lose the least number of traces.
1461 * The pages are freed after we restart recording and unlock readers.
1462 */
1463 tail_page = &cpu_buffer->tail_page->list;
1464
1465 /*
1466 * tail page might be on reader page, we remove the next page
1467 * from the ring buffer
1468 */
1469 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1470 tail_page = rb_list_head(tail_page->next);
1471 to_remove = tail_page;
1472
1473 /* start of pages to remove */
1474 first_page = list_entry(rb_list_head(to_remove->next),
1475 struct buffer_page, list);
1476
1477 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1478 to_remove = rb_list_head(to_remove)->next;
1479 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1480 }
1481
1482 next_page = rb_list_head(to_remove)->next;
1483
1484 /*
1485 * Now we remove all pages between tail_page and next_page.
1486 * Make sure that we have head_bit value preserved for the
1487 * next page
1488 */
1489 tail_page->next = (struct list_head *)((unsigned long)next_page |
1490 head_bit);
1491 next_page = rb_list_head(next_page);
1492 next_page->prev = tail_page;
1493
1494 /* make sure pages points to a valid page in the ring buffer */
1495 cpu_buffer->pages = next_page;
1496
1497 /* update head page */
1498 if (head_bit)
1499 cpu_buffer->head_page = list_entry(next_page,
1500 struct buffer_page, list);
1501
1502 /*
1503 * change read pointer to make sure any read iterators reset
1504 * themselves
1505 */
1506 cpu_buffer->read = 0;
1507
1508 /* pages are removed, resume tracing and then free the pages */
1509 atomic_dec(&cpu_buffer->record_disabled);
1510 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1511
1512 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1513
1514 /* last buffer page to remove */
1515 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1516 list);
1517 tmp_iter_page = first_page;
1518
1519 do {
1520 to_remove_page = tmp_iter_page;
1521 rb_inc_page(cpu_buffer, &tmp_iter_page);
1522
1523 /* update the counters */
1524 page_entries = rb_page_entries(to_remove_page);
1525 if (page_entries) {
1526 /*
1527 * If something was added to this page, it was full
1528 * since it is not the tail page. So we deduct the
1529 * bytes consumed in ring buffer from here.
1530 * Increment overrun to account for the lost events.
1531 */
1532 local_add(page_entries, &cpu_buffer->overrun);
1533 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1534 }
1535
1536 /*
1537 * We have already removed references to this list item, just
1538 * free up the buffer_page and its page
1539 */
1540 free_buffer_page(to_remove_page);
1541 nr_removed--;
1542
1543 } while (to_remove_page != last_page);
1544
1545 RB_WARN_ON(cpu_buffer, nr_removed);
1546
1547 return nr_removed == 0;
1548 }
1549
1550 static int
1551 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1552 {
1553 struct list_head *pages = &cpu_buffer->new_pages;
1554 int retries, success;
1555
1556 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1557 /*
1558 * We are holding the reader lock, so the reader page won't be swapped
1559 * in the ring buffer. Now we are racing with the writer trying to
1560 * move head page and the tail page.
1561 * We are going to adapt the reader page update process where:
1562 * 1. We first splice the start and end of list of new pages between
1563 * the head page and its previous page.
1564 * 2. We cmpxchg the prev_page->next to point from head page to the
1565 * start of new pages list.
1566 * 3. Finally, we update the head->prev to the end of new list.
1567 *
1568 * We will try this process 10 times, to make sure that we don't keep
1569 * spinning.
1570 */
1571 retries = 10;
1572 success = 0;
1573 while (retries--) {
1574 struct list_head *head_page, *prev_page, *r;
1575 struct list_head *last_page, *first_page;
1576 struct list_head *head_page_with_bit;
1577
1578 head_page = &rb_set_head_page(cpu_buffer)->list;
1579 if (!head_page)
1580 break;
1581 prev_page = head_page->prev;
1582
1583 first_page = pages->next;
1584 last_page = pages->prev;
1585
1586 head_page_with_bit = (struct list_head *)
1587 ((unsigned long)head_page | RB_PAGE_HEAD);
1588
1589 last_page->next = head_page_with_bit;
1590 first_page->prev = prev_page;
1591
1592 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1593
1594 if (r == head_page_with_bit) {
1595 /*
1596 * yay, we replaced the page pointer to our new list,
1597 * now, we just have to update to head page's prev
1598 * pointer to point to end of list
1599 */
1600 head_page->prev = last_page;
1601 success = 1;
1602 break;
1603 }
1604 }
1605
1606 if (success)
1607 INIT_LIST_HEAD(pages);
1608 /*
1609 * If we weren't successful in adding in new pages, warn and stop
1610 * tracing
1611 */
1612 RB_WARN_ON(cpu_buffer, !success);
1613 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1614
1615 /* free pages if they weren't inserted */
1616 if (!success) {
1617 struct buffer_page *bpage, *tmp;
1618 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1619 list) {
1620 list_del_init(&bpage->list);
1621 free_buffer_page(bpage);
1622 }
1623 }
1624 return success;
1625 }
1626
1627 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1628 {
1629 int success;
1630
1631 if (cpu_buffer->nr_pages_to_update > 0)
1632 success = rb_insert_pages(cpu_buffer);
1633 else
1634 success = rb_remove_pages(cpu_buffer,
1635 -cpu_buffer->nr_pages_to_update);
1636
1637 if (success)
1638 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1639 }
1640
1641 static void update_pages_handler(struct work_struct *work)
1642 {
1643 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1644 struct ring_buffer_per_cpu, update_pages_work);
1645 rb_update_pages(cpu_buffer);
1646 complete(&cpu_buffer->update_done);
1647 }
1648
1649 /**
1650 * ring_buffer_resize - resize the ring buffer
1651 * @buffer: the buffer to resize.
1652 * @size: the new size.
1653 * @cpu_id: the cpu buffer to resize
1654 *
1655 * Minimum size is 2 * BUF_PAGE_SIZE.
1656 *
1657 * Returns 0 on success and < 0 on failure.
1658 */
1659 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1660 int cpu_id)
1661 {
1662 struct ring_buffer_per_cpu *cpu_buffer;
1663 unsigned nr_pages;
1664 int cpu, err = 0;
1665
1666 /*
1667 * Always succeed at resizing a non-existent buffer:
1668 */
1669 if (!buffer)
1670 return size;
1671
1672 /* Make sure the requested buffer exists */
1673 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1674 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1675 return size;
1676
1677 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1678 size *= BUF_PAGE_SIZE;
1679
1680 /* we need a minimum of two pages */
1681 if (size < BUF_PAGE_SIZE * 2)
1682 size = BUF_PAGE_SIZE * 2;
1683
1684 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1685
1686 /*
1687 * Don't succeed if resizing is disabled, as a reader might be
1688 * manipulating the ring buffer and is expecting a sane state while
1689 * this is true.
1690 */
1691 if (atomic_read(&buffer->resize_disabled))
1692 return -EBUSY;
1693
1694 /* prevent another thread from changing buffer sizes */
1695 mutex_lock(&buffer->mutex);
1696
1697 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1698 /* calculate the pages to update */
1699 for_each_buffer_cpu(buffer, cpu) {
1700 cpu_buffer = buffer->buffers[cpu];
1701
1702 cpu_buffer->nr_pages_to_update = nr_pages -
1703 cpu_buffer->nr_pages;
1704 /*
1705 * nothing more to do for removing pages or no update
1706 */
1707 if (cpu_buffer->nr_pages_to_update <= 0)
1708 continue;
1709 /*
1710 * to add pages, make sure all new pages can be
1711 * allocated without receiving ENOMEM
1712 */
1713 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1714 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1715 &cpu_buffer->new_pages, cpu)) {
1716 /* not enough memory for new pages */
1717 err = -ENOMEM;
1718 goto out_err;
1719 }
1720 }
1721
1722 get_online_cpus();
1723 /*
1724 * Fire off all the required work handlers
1725 * We can't schedule on offline CPUs, but it's not necessary
1726 * since we can change their buffer sizes without any race.
1727 */
1728 for_each_buffer_cpu(buffer, cpu) {
1729 cpu_buffer = buffer->buffers[cpu];
1730 if (!cpu_buffer->nr_pages_to_update)
1731 continue;
1732
1733 /* Can't run something on an offline CPU. */
1734 if (!cpu_online(cpu)) {
1735 rb_update_pages(cpu_buffer);
1736 cpu_buffer->nr_pages_to_update = 0;
1737 } else {
1738 schedule_work_on(cpu,
1739 &cpu_buffer->update_pages_work);
1740 }
1741 }
1742
1743 /* wait for all the updates to complete */
1744 for_each_buffer_cpu(buffer, cpu) {
1745 cpu_buffer = buffer->buffers[cpu];
1746 if (!cpu_buffer->nr_pages_to_update)
1747 continue;
1748
1749 if (cpu_online(cpu))
1750 wait_for_completion(&cpu_buffer->update_done);
1751 cpu_buffer->nr_pages_to_update = 0;
1752 }
1753
1754 put_online_cpus();
1755 } else {
1756 /* Make sure this CPU has been intitialized */
1757 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1758 goto out;
1759
1760 cpu_buffer = buffer->buffers[cpu_id];
1761
1762 if (nr_pages == cpu_buffer->nr_pages)
1763 goto out;
1764
1765 cpu_buffer->nr_pages_to_update = nr_pages -
1766 cpu_buffer->nr_pages;
1767
1768 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1769 if (cpu_buffer->nr_pages_to_update > 0 &&
1770 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1771 &cpu_buffer->new_pages, cpu_id)) {
1772 err = -ENOMEM;
1773 goto out_err;
1774 }
1775
1776 get_online_cpus();
1777
1778 /* Can't run something on an offline CPU. */
1779 if (!cpu_online(cpu_id))
1780 rb_update_pages(cpu_buffer);
1781 else {
1782 schedule_work_on(cpu_id,
1783 &cpu_buffer->update_pages_work);
1784 wait_for_completion(&cpu_buffer->update_done);
1785 }
1786
1787 cpu_buffer->nr_pages_to_update = 0;
1788 put_online_cpus();
1789 }
1790
1791 out:
1792 /*
1793 * The ring buffer resize can happen with the ring buffer
1794 * enabled, so that the update disturbs the tracing as little
1795 * as possible. But if the buffer is disabled, we do not need
1796 * to worry about that, and we can take the time to verify
1797 * that the buffer is not corrupt.
1798 */
1799 if (atomic_read(&buffer->record_disabled)) {
1800 atomic_inc(&buffer->record_disabled);
1801 /*
1802 * Even though the buffer was disabled, we must make sure
1803 * that it is truly disabled before calling rb_check_pages.
1804 * There could have been a race between checking
1805 * record_disable and incrementing it.
1806 */
1807 synchronize_sched();
1808 for_each_buffer_cpu(buffer, cpu) {
1809 cpu_buffer = buffer->buffers[cpu];
1810 rb_check_pages(cpu_buffer);
1811 }
1812 atomic_dec(&buffer->record_disabled);
1813 }
1814
1815 mutex_unlock(&buffer->mutex);
1816 return size;
1817
1818 out_err:
1819 for_each_buffer_cpu(buffer, cpu) {
1820 struct buffer_page *bpage, *tmp;
1821
1822 cpu_buffer = buffer->buffers[cpu];
1823 cpu_buffer->nr_pages_to_update = 0;
1824
1825 if (list_empty(&cpu_buffer->new_pages))
1826 continue;
1827
1828 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1829 list) {
1830 list_del_init(&bpage->list);
1831 free_buffer_page(bpage);
1832 }
1833 }
1834 mutex_unlock(&buffer->mutex);
1835 return err;
1836 }
1837 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1838
1839 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1840 {
1841 mutex_lock(&buffer->mutex);
1842 if (val)
1843 buffer->flags |= RB_FL_OVERWRITE;
1844 else
1845 buffer->flags &= ~RB_FL_OVERWRITE;
1846 mutex_unlock(&buffer->mutex);
1847 }
1848 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1849
1850 static inline void *
1851 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1852 {
1853 return bpage->data + index;
1854 }
1855
1856 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1857 {
1858 return bpage->page->data + index;
1859 }
1860
1861 static inline struct ring_buffer_event *
1862 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1863 {
1864 return __rb_page_index(cpu_buffer->reader_page,
1865 cpu_buffer->reader_page->read);
1866 }
1867
1868 static inline struct ring_buffer_event *
1869 rb_iter_head_event(struct ring_buffer_iter *iter)
1870 {
1871 return __rb_page_index(iter->head_page, iter->head);
1872 }
1873
1874 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1875 {
1876 return local_read(&bpage->page->commit);
1877 }
1878
1879 /* Size is determined by what has been committed */
1880 static inline unsigned rb_page_size(struct buffer_page *bpage)
1881 {
1882 return rb_page_commit(bpage);
1883 }
1884
1885 static inline unsigned
1886 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888 return rb_page_commit(cpu_buffer->commit_page);
1889 }
1890
1891 static inline unsigned
1892 rb_event_index(struct ring_buffer_event *event)
1893 {
1894 unsigned long addr = (unsigned long)event;
1895
1896 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1897 }
1898
1899 static inline int
1900 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1901 struct ring_buffer_event *event)
1902 {
1903 unsigned long addr = (unsigned long)event;
1904 unsigned long index;
1905
1906 index = rb_event_index(event);
1907 addr &= PAGE_MASK;
1908
1909 return cpu_buffer->commit_page->page == (void *)addr &&
1910 rb_commit_index(cpu_buffer) == index;
1911 }
1912
1913 static void
1914 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1915 {
1916 unsigned long max_count;
1917
1918 /*
1919 * We only race with interrupts and NMIs on this CPU.
1920 * If we own the commit event, then we can commit
1921 * all others that interrupted us, since the interruptions
1922 * are in stack format (they finish before they come
1923 * back to us). This allows us to do a simple loop to
1924 * assign the commit to the tail.
1925 */
1926 again:
1927 max_count = cpu_buffer->nr_pages * 100;
1928
1929 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1930 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1931 return;
1932 if (RB_WARN_ON(cpu_buffer,
1933 rb_is_reader_page(cpu_buffer->tail_page)))
1934 return;
1935 local_set(&cpu_buffer->commit_page->page->commit,
1936 rb_page_write(cpu_buffer->commit_page));
1937 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1938 cpu_buffer->write_stamp =
1939 cpu_buffer->commit_page->page->time_stamp;
1940 /* add barrier to keep gcc from optimizing too much */
1941 barrier();
1942 }
1943 while (rb_commit_index(cpu_buffer) !=
1944 rb_page_write(cpu_buffer->commit_page)) {
1945
1946 local_set(&cpu_buffer->commit_page->page->commit,
1947 rb_page_write(cpu_buffer->commit_page));
1948 RB_WARN_ON(cpu_buffer,
1949 local_read(&cpu_buffer->commit_page->page->commit) &
1950 ~RB_WRITE_MASK);
1951 barrier();
1952 }
1953
1954 /* again, keep gcc from optimizing */
1955 barrier();
1956
1957 /*
1958 * If an interrupt came in just after the first while loop
1959 * and pushed the tail page forward, we will be left with
1960 * a dangling commit that will never go forward.
1961 */
1962 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1963 goto again;
1964 }
1965
1966 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1967 {
1968 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1969 cpu_buffer->reader_page->read = 0;
1970 }
1971
1972 static void rb_inc_iter(struct ring_buffer_iter *iter)
1973 {
1974 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1975
1976 /*
1977 * The iterator could be on the reader page (it starts there).
1978 * But the head could have moved, since the reader was
1979 * found. Check for this case and assign the iterator
1980 * to the head page instead of next.
1981 */
1982 if (iter->head_page == cpu_buffer->reader_page)
1983 iter->head_page = rb_set_head_page(cpu_buffer);
1984 else
1985 rb_inc_page(cpu_buffer, &iter->head_page);
1986
1987 iter->read_stamp = iter->head_page->page->time_stamp;
1988 iter->head = 0;
1989 }
1990
1991 /* Slow path, do not inline */
1992 static noinline struct ring_buffer_event *
1993 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1994 {
1995 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1996
1997 /* Not the first event on the page? */
1998 if (rb_event_index(event)) {
1999 event->time_delta = delta & TS_MASK;
2000 event->array[0] = delta >> TS_SHIFT;
2001 } else {
2002 /* nope, just zero it */
2003 event->time_delta = 0;
2004 event->array[0] = 0;
2005 }
2006
2007 return skip_time_extend(event);
2008 }
2009
2010 /**
2011 * rb_update_event - update event type and data
2012 * @event: the event to update
2013 * @type: the type of event
2014 * @length: the size of the event field in the ring buffer
2015 *
2016 * Update the type and data fields of the event. The length
2017 * is the actual size that is written to the ring buffer,
2018 * and with this, we can determine what to place into the
2019 * data field.
2020 */
2021 static void
2022 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2023 struct ring_buffer_event *event, unsigned length,
2024 int add_timestamp, u64 delta)
2025 {
2026 /* Only a commit updates the timestamp */
2027 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2028 delta = 0;
2029
2030 /*
2031 * If we need to add a timestamp, then we
2032 * add it to the start of the resevered space.
2033 */
2034 if (unlikely(add_timestamp)) {
2035 event = rb_add_time_stamp(event, delta);
2036 length -= RB_LEN_TIME_EXTEND;
2037 delta = 0;
2038 }
2039
2040 event->time_delta = delta;
2041 length -= RB_EVNT_HDR_SIZE;
2042 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2043 event->type_len = 0;
2044 event->array[0] = length;
2045 } else
2046 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2047 }
2048
2049 /*
2050 * rb_handle_head_page - writer hit the head page
2051 *
2052 * Returns: +1 to retry page
2053 * 0 to continue
2054 * -1 on error
2055 */
2056 static int
2057 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2058 struct buffer_page *tail_page,
2059 struct buffer_page *next_page)
2060 {
2061 struct buffer_page *new_head;
2062 int entries;
2063 int type;
2064 int ret;
2065
2066 entries = rb_page_entries(next_page);
2067
2068 /*
2069 * The hard part is here. We need to move the head
2070 * forward, and protect against both readers on
2071 * other CPUs and writers coming in via interrupts.
2072 */
2073 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2074 RB_PAGE_HEAD);
2075
2076 /*
2077 * type can be one of four:
2078 * NORMAL - an interrupt already moved it for us
2079 * HEAD - we are the first to get here.
2080 * UPDATE - we are the interrupt interrupting
2081 * a current move.
2082 * MOVED - a reader on another CPU moved the next
2083 * pointer to its reader page. Give up
2084 * and try again.
2085 */
2086
2087 switch (type) {
2088 case RB_PAGE_HEAD:
2089 /*
2090 * We changed the head to UPDATE, thus
2091 * it is our responsibility to update
2092 * the counters.
2093 */
2094 local_add(entries, &cpu_buffer->overrun);
2095 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2096
2097 /*
2098 * The entries will be zeroed out when we move the
2099 * tail page.
2100 */
2101
2102 /* still more to do */
2103 break;
2104
2105 case RB_PAGE_UPDATE:
2106 /*
2107 * This is an interrupt that interrupt the
2108 * previous update. Still more to do.
2109 */
2110 break;
2111 case RB_PAGE_NORMAL:
2112 /*
2113 * An interrupt came in before the update
2114 * and processed this for us.
2115 * Nothing left to do.
2116 */
2117 return 1;
2118 case RB_PAGE_MOVED:
2119 /*
2120 * The reader is on another CPU and just did
2121 * a swap with our next_page.
2122 * Try again.
2123 */
2124 return 1;
2125 default:
2126 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2127 return -1;
2128 }
2129
2130 /*
2131 * Now that we are here, the old head pointer is
2132 * set to UPDATE. This will keep the reader from
2133 * swapping the head page with the reader page.
2134 * The reader (on another CPU) will spin till
2135 * we are finished.
2136 *
2137 * We just need to protect against interrupts
2138 * doing the job. We will set the next pointer
2139 * to HEAD. After that, we set the old pointer
2140 * to NORMAL, but only if it was HEAD before.
2141 * otherwise we are an interrupt, and only
2142 * want the outer most commit to reset it.
2143 */
2144 new_head = next_page;
2145 rb_inc_page(cpu_buffer, &new_head);
2146
2147 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2148 RB_PAGE_NORMAL);
2149
2150 /*
2151 * Valid returns are:
2152 * HEAD - an interrupt came in and already set it.
2153 * NORMAL - One of two things:
2154 * 1) We really set it.
2155 * 2) A bunch of interrupts came in and moved
2156 * the page forward again.
2157 */
2158 switch (ret) {
2159 case RB_PAGE_HEAD:
2160 case RB_PAGE_NORMAL:
2161 /* OK */
2162 break;
2163 default:
2164 RB_WARN_ON(cpu_buffer, 1);
2165 return -1;
2166 }
2167
2168 /*
2169 * It is possible that an interrupt came in,
2170 * set the head up, then more interrupts came in
2171 * and moved it again. When we get back here,
2172 * the page would have been set to NORMAL but we
2173 * just set it back to HEAD.
2174 *
2175 * How do you detect this? Well, if that happened
2176 * the tail page would have moved.
2177 */
2178 if (ret == RB_PAGE_NORMAL) {
2179 /*
2180 * If the tail had moved passed next, then we need
2181 * to reset the pointer.
2182 */
2183 if (cpu_buffer->tail_page != tail_page &&
2184 cpu_buffer->tail_page != next_page)
2185 rb_head_page_set_normal(cpu_buffer, new_head,
2186 next_page,
2187 RB_PAGE_HEAD);
2188 }
2189
2190 /*
2191 * If this was the outer most commit (the one that
2192 * changed the original pointer from HEAD to UPDATE),
2193 * then it is up to us to reset it to NORMAL.
2194 */
2195 if (type == RB_PAGE_HEAD) {
2196 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2197 tail_page,
2198 RB_PAGE_UPDATE);
2199 if (RB_WARN_ON(cpu_buffer,
2200 ret != RB_PAGE_UPDATE))
2201 return -1;
2202 }
2203
2204 return 0;
2205 }
2206
2207 static unsigned rb_calculate_event_length(unsigned length)
2208 {
2209 struct ring_buffer_event event; /* Used only for sizeof array */
2210
2211 /* zero length can cause confusions */
2212 if (!length)
2213 length = 1;
2214
2215 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2216 length += sizeof(event.array[0]);
2217
2218 length += RB_EVNT_HDR_SIZE;
2219 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2220
2221 return length;
2222 }
2223
2224 static inline void
2225 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2226 struct buffer_page *tail_page,
2227 unsigned long tail, unsigned long length)
2228 {
2229 struct ring_buffer_event *event;
2230
2231 /*
2232 * Only the event that crossed the page boundary
2233 * must fill the old tail_page with padding.
2234 */
2235 if (tail >= BUF_PAGE_SIZE) {
2236 /*
2237 * If the page was filled, then we still need
2238 * to update the real_end. Reset it to zero
2239 * and the reader will ignore it.
2240 */
2241 if (tail == BUF_PAGE_SIZE)
2242 tail_page->real_end = 0;
2243
2244 local_sub(length, &tail_page->write);
2245 return;
2246 }
2247
2248 event = __rb_page_index(tail_page, tail);
2249 kmemcheck_annotate_bitfield(event, bitfield);
2250
2251 /* account for padding bytes */
2252 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2253
2254 /*
2255 * Save the original length to the meta data.
2256 * This will be used by the reader to add lost event
2257 * counter.
2258 */
2259 tail_page->real_end = tail;
2260
2261 /*
2262 * If this event is bigger than the minimum size, then
2263 * we need to be careful that we don't subtract the
2264 * write counter enough to allow another writer to slip
2265 * in on this page.
2266 * We put in a discarded commit instead, to make sure
2267 * that this space is not used again.
2268 *
2269 * If we are less than the minimum size, we don't need to
2270 * worry about it.
2271 */
2272 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2273 /* No room for any events */
2274
2275 /* Mark the rest of the page with padding */
2276 rb_event_set_padding(event);
2277
2278 /* Set the write back to the previous setting */
2279 local_sub(length, &tail_page->write);
2280 return;
2281 }
2282
2283 /* Put in a discarded event */
2284 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2285 event->type_len = RINGBUF_TYPE_PADDING;
2286 /* time delta must be non zero */
2287 event->time_delta = 1;
2288
2289 /* Set write to end of buffer */
2290 length = (tail + length) - BUF_PAGE_SIZE;
2291 local_sub(length, &tail_page->write);
2292 }
2293
2294 /*
2295 * This is the slow path, force gcc not to inline it.
2296 */
2297 static noinline struct ring_buffer_event *
2298 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2299 unsigned long length, unsigned long tail,
2300 struct buffer_page *tail_page, u64 ts)
2301 {
2302 struct buffer_page *commit_page = cpu_buffer->commit_page;
2303 struct ring_buffer *buffer = cpu_buffer->buffer;
2304 struct buffer_page *next_page;
2305 int ret;
2306
2307 next_page = tail_page;
2308
2309 rb_inc_page(cpu_buffer, &next_page);
2310
2311 /*
2312 * If for some reason, we had an interrupt storm that made
2313 * it all the way around the buffer, bail, and warn
2314 * about it.
2315 */
2316 if (unlikely(next_page == commit_page)) {
2317 local_inc(&cpu_buffer->commit_overrun);
2318 goto out_reset;
2319 }
2320
2321 /*
2322 * This is where the fun begins!
2323 *
2324 * We are fighting against races between a reader that
2325 * could be on another CPU trying to swap its reader
2326 * page with the buffer head.
2327 *
2328 * We are also fighting against interrupts coming in and
2329 * moving the head or tail on us as well.
2330 *
2331 * If the next page is the head page then we have filled
2332 * the buffer, unless the commit page is still on the
2333 * reader page.
2334 */
2335 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2336
2337 /*
2338 * If the commit is not on the reader page, then
2339 * move the header page.
2340 */
2341 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2342 /*
2343 * If we are not in overwrite mode,
2344 * this is easy, just stop here.
2345 */
2346 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2347 local_inc(&cpu_buffer->dropped_events);
2348 goto out_reset;
2349 }
2350
2351 ret = rb_handle_head_page(cpu_buffer,
2352 tail_page,
2353 next_page);
2354 if (ret < 0)
2355 goto out_reset;
2356 if (ret)
2357 goto out_again;
2358 } else {
2359 /*
2360 * We need to be careful here too. The
2361 * commit page could still be on the reader
2362 * page. We could have a small buffer, and
2363 * have filled up the buffer with events
2364 * from interrupts and such, and wrapped.
2365 *
2366 * Note, if the tail page is also the on the
2367 * reader_page, we let it move out.
2368 */
2369 if (unlikely((cpu_buffer->commit_page !=
2370 cpu_buffer->tail_page) &&
2371 (cpu_buffer->commit_page ==
2372 cpu_buffer->reader_page))) {
2373 local_inc(&cpu_buffer->commit_overrun);
2374 goto out_reset;
2375 }
2376 }
2377 }
2378
2379 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2380 if (ret) {
2381 /*
2382 * Nested commits always have zero deltas, so
2383 * just reread the time stamp
2384 */
2385 ts = rb_time_stamp(buffer);
2386 next_page->page->time_stamp = ts;
2387 }
2388
2389 out_again:
2390
2391 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2392
2393 /* fail and let the caller try again */
2394 return ERR_PTR(-EAGAIN);
2395
2396 out_reset:
2397 /* reset write */
2398 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2399
2400 return NULL;
2401 }
2402
2403 static struct ring_buffer_event *
2404 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2405 unsigned long length, u64 ts,
2406 u64 delta, int add_timestamp)
2407 {
2408 struct buffer_page *tail_page;
2409 struct ring_buffer_event *event;
2410 unsigned long tail, write;
2411
2412 /*
2413 * If the time delta since the last event is too big to
2414 * hold in the time field of the event, then we append a
2415 * TIME EXTEND event ahead of the data event.
2416 */
2417 if (unlikely(add_timestamp))
2418 length += RB_LEN_TIME_EXTEND;
2419
2420 tail_page = cpu_buffer->tail_page;
2421 write = local_add_return(length, &tail_page->write);
2422
2423 /* set write to only the index of the write */
2424 write &= RB_WRITE_MASK;
2425 tail = write - length;
2426
2427 /*
2428 * If this is the first commit on the page, then it has the same
2429 * timestamp as the page itself.
2430 */
2431 if (!tail)
2432 delta = 0;
2433
2434 /* See if we shot pass the end of this buffer page */
2435 if (unlikely(write > BUF_PAGE_SIZE))
2436 return rb_move_tail(cpu_buffer, length, tail,
2437 tail_page, ts);
2438
2439 /* We reserved something on the buffer */
2440
2441 event = __rb_page_index(tail_page, tail);
2442 kmemcheck_annotate_bitfield(event, bitfield);
2443 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2444
2445 local_inc(&tail_page->entries);
2446
2447 /*
2448 * If this is the first commit on the page, then update
2449 * its timestamp.
2450 */
2451 if (!tail)
2452 tail_page->page->time_stamp = ts;
2453
2454 /* account for these added bytes */
2455 local_add(length, &cpu_buffer->entries_bytes);
2456
2457 return event;
2458 }
2459
2460 static inline int
2461 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2462 struct ring_buffer_event *event)
2463 {
2464 unsigned long new_index, old_index;
2465 struct buffer_page *bpage;
2466 unsigned long index;
2467 unsigned long addr;
2468
2469 new_index = rb_event_index(event);
2470 old_index = new_index + rb_event_ts_length(event);
2471 addr = (unsigned long)event;
2472 addr &= PAGE_MASK;
2473
2474 bpage = cpu_buffer->tail_page;
2475
2476 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2477 unsigned long write_mask =
2478 local_read(&bpage->write) & ~RB_WRITE_MASK;
2479 unsigned long event_length = rb_event_length(event);
2480 /*
2481 * This is on the tail page. It is possible that
2482 * a write could come in and move the tail page
2483 * and write to the next page. That is fine
2484 * because we just shorten what is on this page.
2485 */
2486 old_index += write_mask;
2487 new_index += write_mask;
2488 index = local_cmpxchg(&bpage->write, old_index, new_index);
2489 if (index == old_index) {
2490 /* update counters */
2491 local_sub(event_length, &cpu_buffer->entries_bytes);
2492 return 1;
2493 }
2494 }
2495
2496 /* could not discard */
2497 return 0;
2498 }
2499
2500 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2501 {
2502 local_inc(&cpu_buffer->committing);
2503 local_inc(&cpu_buffer->commits);
2504 }
2505
2506 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2507 {
2508 unsigned long commits;
2509
2510 if (RB_WARN_ON(cpu_buffer,
2511 !local_read(&cpu_buffer->committing)))
2512 return;
2513
2514 again:
2515 commits = local_read(&cpu_buffer->commits);
2516 /* synchronize with interrupts */
2517 barrier();
2518 if (local_read(&cpu_buffer->committing) == 1)
2519 rb_set_commit_to_write(cpu_buffer);
2520
2521 local_dec(&cpu_buffer->committing);
2522
2523 /* synchronize with interrupts */
2524 barrier();
2525
2526 /*
2527 * Need to account for interrupts coming in between the
2528 * updating of the commit page and the clearing of the
2529 * committing counter.
2530 */
2531 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2532 !local_read(&cpu_buffer->committing)) {
2533 local_inc(&cpu_buffer->committing);
2534 goto again;
2535 }
2536 }
2537
2538 static struct ring_buffer_event *
2539 rb_reserve_next_event(struct ring_buffer *buffer,
2540 struct ring_buffer_per_cpu *cpu_buffer,
2541 unsigned long length)
2542 {
2543 struct ring_buffer_event *event;
2544 u64 ts, delta;
2545 int nr_loops = 0;
2546 int add_timestamp;
2547 u64 diff;
2548
2549 rb_start_commit(cpu_buffer);
2550
2551 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2552 /*
2553 * Due to the ability to swap a cpu buffer from a buffer
2554 * it is possible it was swapped before we committed.
2555 * (committing stops a swap). We check for it here and
2556 * if it happened, we have to fail the write.
2557 */
2558 barrier();
2559 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2560 local_dec(&cpu_buffer->committing);
2561 local_dec(&cpu_buffer->commits);
2562 return NULL;
2563 }
2564 #endif
2565
2566 length = rb_calculate_event_length(length);
2567 again:
2568 add_timestamp = 0;
2569 delta = 0;
2570
2571 /*
2572 * We allow for interrupts to reenter here and do a trace.
2573 * If one does, it will cause this original code to loop
2574 * back here. Even with heavy interrupts happening, this
2575 * should only happen a few times in a row. If this happens
2576 * 1000 times in a row, there must be either an interrupt
2577 * storm or we have something buggy.
2578 * Bail!
2579 */
2580 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2581 goto out_fail;
2582
2583 ts = rb_time_stamp(cpu_buffer->buffer);
2584 diff = ts - cpu_buffer->write_stamp;
2585
2586 /* make sure this diff is calculated here */
2587 barrier();
2588
2589 /* Did the write stamp get updated already? */
2590 if (likely(ts >= cpu_buffer->write_stamp)) {
2591 delta = diff;
2592 if (unlikely(test_time_stamp(delta))) {
2593 int local_clock_stable = 1;
2594 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2595 local_clock_stable = sched_clock_stable();
2596 #endif
2597 WARN_ONCE(delta > (1ULL << 59),
2598 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2599 (unsigned long long)delta,
2600 (unsigned long long)ts,
2601 (unsigned long long)cpu_buffer->write_stamp,
2602 local_clock_stable ? "" :
2603 "If you just came from a suspend/resume,\n"
2604 "please switch to the trace global clock:\n"
2605 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2606 add_timestamp = 1;
2607 }
2608 }
2609
2610 event = __rb_reserve_next(cpu_buffer, length, ts,
2611 delta, add_timestamp);
2612 if (unlikely(PTR_ERR(event) == -EAGAIN))
2613 goto again;
2614
2615 if (!event)
2616 goto out_fail;
2617
2618 return event;
2619
2620 out_fail:
2621 rb_end_commit(cpu_buffer);
2622 return NULL;
2623 }
2624
2625 #ifdef CONFIG_TRACING
2626
2627 /*
2628 * The lock and unlock are done within a preempt disable section.
2629 * The current_context per_cpu variable can only be modified
2630 * by the current task between lock and unlock. But it can
2631 * be modified more than once via an interrupt. To pass this
2632 * information from the lock to the unlock without having to
2633 * access the 'in_interrupt()' functions again (which do show
2634 * a bit of overhead in something as critical as function tracing,
2635 * we use a bitmask trick.
2636 *
2637 * bit 0 = NMI context
2638 * bit 1 = IRQ context
2639 * bit 2 = SoftIRQ context
2640 * bit 3 = normal context.
2641 *
2642 * This works because this is the order of contexts that can
2643 * preempt other contexts. A SoftIRQ never preempts an IRQ
2644 * context.
2645 *
2646 * When the context is determined, the corresponding bit is
2647 * checked and set (if it was set, then a recursion of that context
2648 * happened).
2649 *
2650 * On unlock, we need to clear this bit. To do so, just subtract
2651 * 1 from the current_context and AND it to itself.
2652 *
2653 * (binary)
2654 * 101 - 1 = 100
2655 * 101 & 100 = 100 (clearing bit zero)
2656 *
2657 * 1010 - 1 = 1001
2658 * 1010 & 1001 = 1000 (clearing bit 1)
2659 *
2660 * The least significant bit can be cleared this way, and it
2661 * just so happens that it is the same bit corresponding to
2662 * the current context.
2663 */
2664 static DEFINE_PER_CPU(unsigned int, current_context);
2665
2666 static __always_inline int trace_recursive_lock(void)
2667 {
2668 unsigned int val = this_cpu_read(current_context);
2669 int bit;
2670
2671 if (in_interrupt()) {
2672 if (in_nmi())
2673 bit = 0;
2674 else if (in_irq())
2675 bit = 1;
2676 else
2677 bit = 2;
2678 } else
2679 bit = 3;
2680
2681 if (unlikely(val & (1 << bit)))
2682 return 1;
2683
2684 val |= (1 << bit);
2685 this_cpu_write(current_context, val);
2686
2687 return 0;
2688 }
2689
2690 static __always_inline void trace_recursive_unlock(void)
2691 {
2692 unsigned int val = this_cpu_read(current_context);
2693
2694 val--;
2695 val &= this_cpu_read(current_context);
2696 this_cpu_write(current_context, val);
2697 }
2698
2699 #else
2700
2701 #define trace_recursive_lock() (0)
2702 #define trace_recursive_unlock() do { } while (0)
2703
2704 #endif
2705
2706 /**
2707 * ring_buffer_lock_reserve - reserve a part of the buffer
2708 * @buffer: the ring buffer to reserve from
2709 * @length: the length of the data to reserve (excluding event header)
2710 *
2711 * Returns a reseverd event on the ring buffer to copy directly to.
2712 * The user of this interface will need to get the body to write into
2713 * and can use the ring_buffer_event_data() interface.
2714 *
2715 * The length is the length of the data needed, not the event length
2716 * which also includes the event header.
2717 *
2718 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2719 * If NULL is returned, then nothing has been allocated or locked.
2720 */
2721 struct ring_buffer_event *
2722 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2723 {
2724 struct ring_buffer_per_cpu *cpu_buffer;
2725 struct ring_buffer_event *event;
2726 int cpu;
2727
2728 if (ring_buffer_flags != RB_BUFFERS_ON)
2729 return NULL;
2730
2731 /* If we are tracing schedule, we don't want to recurse */
2732 preempt_disable_notrace();
2733
2734 if (atomic_read(&buffer->record_disabled))
2735 goto out_nocheck;
2736
2737 if (trace_recursive_lock())
2738 goto out_nocheck;
2739
2740 cpu = raw_smp_processor_id();
2741
2742 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2743 goto out;
2744
2745 cpu_buffer = buffer->buffers[cpu];
2746
2747 if (atomic_read(&cpu_buffer->record_disabled))
2748 goto out;
2749
2750 if (length > BUF_MAX_DATA_SIZE)
2751 goto out;
2752
2753 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2754 if (!event)
2755 goto out;
2756
2757 return event;
2758
2759 out:
2760 trace_recursive_unlock();
2761
2762 out_nocheck:
2763 preempt_enable_notrace();
2764 return NULL;
2765 }
2766 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2767
2768 static void
2769 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2770 struct ring_buffer_event *event)
2771 {
2772 u64 delta;
2773
2774 /*
2775 * The event first in the commit queue updates the
2776 * time stamp.
2777 */
2778 if (rb_event_is_commit(cpu_buffer, event)) {
2779 /*
2780 * A commit event that is first on a page
2781 * updates the write timestamp with the page stamp
2782 */
2783 if (!rb_event_index(event))
2784 cpu_buffer->write_stamp =
2785 cpu_buffer->commit_page->page->time_stamp;
2786 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2787 delta = event->array[0];
2788 delta <<= TS_SHIFT;
2789 delta += event->time_delta;
2790 cpu_buffer->write_stamp += delta;
2791 } else
2792 cpu_buffer->write_stamp += event->time_delta;
2793 }
2794 }
2795
2796 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2797 struct ring_buffer_event *event)
2798 {
2799 local_inc(&cpu_buffer->entries);
2800 rb_update_write_stamp(cpu_buffer, event);
2801 rb_end_commit(cpu_buffer);
2802 }
2803
2804 static __always_inline void
2805 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2806 {
2807 if (buffer->irq_work.waiters_pending) {
2808 buffer->irq_work.waiters_pending = false;
2809 /* irq_work_queue() supplies it's own memory barriers */
2810 irq_work_queue(&buffer->irq_work.work);
2811 }
2812
2813 if (cpu_buffer->irq_work.waiters_pending) {
2814 cpu_buffer->irq_work.waiters_pending = false;
2815 /* irq_work_queue() supplies it's own memory barriers */
2816 irq_work_queue(&cpu_buffer->irq_work.work);
2817 }
2818 }
2819
2820 /**
2821 * ring_buffer_unlock_commit - commit a reserved
2822 * @buffer: The buffer to commit to
2823 * @event: The event pointer to commit.
2824 *
2825 * This commits the data to the ring buffer, and releases any locks held.
2826 *
2827 * Must be paired with ring_buffer_lock_reserve.
2828 */
2829 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2830 struct ring_buffer_event *event)
2831 {
2832 struct ring_buffer_per_cpu *cpu_buffer;
2833 int cpu = raw_smp_processor_id();
2834
2835 cpu_buffer = buffer->buffers[cpu];
2836
2837 rb_commit(cpu_buffer, event);
2838
2839 rb_wakeups(buffer, cpu_buffer);
2840
2841 trace_recursive_unlock();
2842
2843 preempt_enable_notrace();
2844
2845 return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2848
2849 static inline void rb_event_discard(struct ring_buffer_event *event)
2850 {
2851 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2852 event = skip_time_extend(event);
2853
2854 /* array[0] holds the actual length for the discarded event */
2855 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2856 event->type_len = RINGBUF_TYPE_PADDING;
2857 /* time delta must be non zero */
2858 if (!event->time_delta)
2859 event->time_delta = 1;
2860 }
2861
2862 /*
2863 * Decrement the entries to the page that an event is on.
2864 * The event does not even need to exist, only the pointer
2865 * to the page it is on. This may only be called before the commit
2866 * takes place.
2867 */
2868 static inline void
2869 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2870 struct ring_buffer_event *event)
2871 {
2872 unsigned long addr = (unsigned long)event;
2873 struct buffer_page *bpage = cpu_buffer->commit_page;
2874 struct buffer_page *start;
2875
2876 addr &= PAGE_MASK;
2877
2878 /* Do the likely case first */
2879 if (likely(bpage->page == (void *)addr)) {
2880 local_dec(&bpage->entries);
2881 return;
2882 }
2883
2884 /*
2885 * Because the commit page may be on the reader page we
2886 * start with the next page and check the end loop there.
2887 */
2888 rb_inc_page(cpu_buffer, &bpage);
2889 start = bpage;
2890 do {
2891 if (bpage->page == (void *)addr) {
2892 local_dec(&bpage->entries);
2893 return;
2894 }
2895 rb_inc_page(cpu_buffer, &bpage);
2896 } while (bpage != start);
2897
2898 /* commit not part of this buffer?? */
2899 RB_WARN_ON(cpu_buffer, 1);
2900 }
2901
2902 /**
2903 * ring_buffer_commit_discard - discard an event that has not been committed
2904 * @buffer: the ring buffer
2905 * @event: non committed event to discard
2906 *
2907 * Sometimes an event that is in the ring buffer needs to be ignored.
2908 * This function lets the user discard an event in the ring buffer
2909 * and then that event will not be read later.
2910 *
2911 * This function only works if it is called before the the item has been
2912 * committed. It will try to free the event from the ring buffer
2913 * if another event has not been added behind it.
2914 *
2915 * If another event has been added behind it, it will set the event
2916 * up as discarded, and perform the commit.
2917 *
2918 * If this function is called, do not call ring_buffer_unlock_commit on
2919 * the event.
2920 */
2921 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2922 struct ring_buffer_event *event)
2923 {
2924 struct ring_buffer_per_cpu *cpu_buffer;
2925 int cpu;
2926
2927 /* The event is discarded regardless */
2928 rb_event_discard(event);
2929
2930 cpu = smp_processor_id();
2931 cpu_buffer = buffer->buffers[cpu];
2932
2933 /*
2934 * This must only be called if the event has not been
2935 * committed yet. Thus we can assume that preemption
2936 * is still disabled.
2937 */
2938 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2939
2940 rb_decrement_entry(cpu_buffer, event);
2941 if (rb_try_to_discard(cpu_buffer, event))
2942 goto out;
2943
2944 /*
2945 * The commit is still visible by the reader, so we
2946 * must still update the timestamp.
2947 */
2948 rb_update_write_stamp(cpu_buffer, event);
2949 out:
2950 rb_end_commit(cpu_buffer);
2951
2952 trace_recursive_unlock();
2953
2954 preempt_enable_notrace();
2955
2956 }
2957 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2958
2959 /**
2960 * ring_buffer_write - write data to the buffer without reserving
2961 * @buffer: The ring buffer to write to.
2962 * @length: The length of the data being written (excluding the event header)
2963 * @data: The data to write to the buffer.
2964 *
2965 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2966 * one function. If you already have the data to write to the buffer, it
2967 * may be easier to simply call this function.
2968 *
2969 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2970 * and not the length of the event which would hold the header.
2971 */
2972 int ring_buffer_write(struct ring_buffer *buffer,
2973 unsigned long length,
2974 void *data)
2975 {
2976 struct ring_buffer_per_cpu *cpu_buffer;
2977 struct ring_buffer_event *event;
2978 void *body;
2979 int ret = -EBUSY;
2980 int cpu;
2981
2982 if (ring_buffer_flags != RB_BUFFERS_ON)
2983 return -EBUSY;
2984
2985 preempt_disable_notrace();
2986
2987 if (atomic_read(&buffer->record_disabled))
2988 goto out;
2989
2990 cpu = raw_smp_processor_id();
2991
2992 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2993 goto out;
2994
2995 cpu_buffer = buffer->buffers[cpu];
2996
2997 if (atomic_read(&cpu_buffer->record_disabled))
2998 goto out;
2999
3000 if (length > BUF_MAX_DATA_SIZE)
3001 goto out;
3002
3003 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3004 if (!event)
3005 goto out;
3006
3007 body = rb_event_data(event);
3008
3009 memcpy(body, data, length);
3010
3011 rb_commit(cpu_buffer, event);
3012
3013 rb_wakeups(buffer, cpu_buffer);
3014
3015 ret = 0;
3016 out:
3017 preempt_enable_notrace();
3018
3019 return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(ring_buffer_write);
3022
3023 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3024 {
3025 struct buffer_page *reader = cpu_buffer->reader_page;
3026 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3027 struct buffer_page *commit = cpu_buffer->commit_page;
3028
3029 /* In case of error, head will be NULL */
3030 if (unlikely(!head))
3031 return 1;
3032
3033 return reader->read == rb_page_commit(reader) &&
3034 (commit == reader ||
3035 (commit == head &&
3036 head->read == rb_page_commit(commit)));
3037 }
3038
3039 /**
3040 * ring_buffer_record_disable - stop all writes into the buffer
3041 * @buffer: The ring buffer to stop writes to.
3042 *
3043 * This prevents all writes to the buffer. Any attempt to write
3044 * to the buffer after this will fail and return NULL.
3045 *
3046 * The caller should call synchronize_sched() after this.
3047 */
3048 void ring_buffer_record_disable(struct ring_buffer *buffer)
3049 {
3050 atomic_inc(&buffer->record_disabled);
3051 }
3052 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3053
3054 /**
3055 * ring_buffer_record_enable - enable writes to the buffer
3056 * @buffer: The ring buffer to enable writes
3057 *
3058 * Note, multiple disables will need the same number of enables
3059 * to truly enable the writing (much like preempt_disable).
3060 */
3061 void ring_buffer_record_enable(struct ring_buffer *buffer)
3062 {
3063 atomic_dec(&buffer->record_disabled);
3064 }
3065 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3066
3067 /**
3068 * ring_buffer_record_off - stop all writes into the buffer
3069 * @buffer: The ring buffer to stop writes to.
3070 *
3071 * This prevents all writes to the buffer. Any attempt to write
3072 * to the buffer after this will fail and return NULL.
3073 *
3074 * This is different than ring_buffer_record_disable() as
3075 * it works like an on/off switch, where as the disable() version
3076 * must be paired with a enable().
3077 */
3078 void ring_buffer_record_off(struct ring_buffer *buffer)
3079 {
3080 unsigned int rd;
3081 unsigned int new_rd;
3082
3083 do {
3084 rd = atomic_read(&buffer->record_disabled);
3085 new_rd = rd | RB_BUFFER_OFF;
3086 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3087 }
3088 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3089
3090 /**
3091 * ring_buffer_record_on - restart writes into the buffer
3092 * @buffer: The ring buffer to start writes to.
3093 *
3094 * This enables all writes to the buffer that was disabled by
3095 * ring_buffer_record_off().
3096 *
3097 * This is different than ring_buffer_record_enable() as
3098 * it works like an on/off switch, where as the enable() version
3099 * must be paired with a disable().
3100 */
3101 void ring_buffer_record_on(struct ring_buffer *buffer)
3102 {
3103 unsigned int rd;
3104 unsigned int new_rd;
3105
3106 do {
3107 rd = atomic_read(&buffer->record_disabled);
3108 new_rd = rd & ~RB_BUFFER_OFF;
3109 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3110 }
3111 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3112
3113 /**
3114 * ring_buffer_record_is_on - return true if the ring buffer can write
3115 * @buffer: The ring buffer to see if write is enabled
3116 *
3117 * Returns true if the ring buffer is in a state that it accepts writes.
3118 */
3119 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3120 {
3121 return !atomic_read(&buffer->record_disabled);
3122 }
3123
3124 /**
3125 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3126 * @buffer: The ring buffer to stop writes to.
3127 * @cpu: The CPU buffer to stop
3128 *
3129 * This prevents all writes to the buffer. Any attempt to write
3130 * to the buffer after this will fail and return NULL.
3131 *
3132 * The caller should call synchronize_sched() after this.
3133 */
3134 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3135 {
3136 struct ring_buffer_per_cpu *cpu_buffer;
3137
3138 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139 return;
3140
3141 cpu_buffer = buffer->buffers[cpu];
3142 atomic_inc(&cpu_buffer->record_disabled);
3143 }
3144 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3145
3146 /**
3147 * ring_buffer_record_enable_cpu - enable writes to the buffer
3148 * @buffer: The ring buffer to enable writes
3149 * @cpu: The CPU to enable.
3150 *
3151 * Note, multiple disables will need the same number of enables
3152 * to truly enable the writing (much like preempt_disable).
3153 */
3154 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3155 {
3156 struct ring_buffer_per_cpu *cpu_buffer;
3157
3158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159 return;
3160
3161 cpu_buffer = buffer->buffers[cpu];
3162 atomic_dec(&cpu_buffer->record_disabled);
3163 }
3164 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3165
3166 /*
3167 * The total entries in the ring buffer is the running counter
3168 * of entries entered into the ring buffer, minus the sum of
3169 * the entries read from the ring buffer and the number of
3170 * entries that were overwritten.
3171 */
3172 static inline unsigned long
3173 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3174 {
3175 return local_read(&cpu_buffer->entries) -
3176 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3177 }
3178
3179 /**
3180 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3181 * @buffer: The ring buffer
3182 * @cpu: The per CPU buffer to read from.
3183 */
3184 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3185 {
3186 unsigned long flags;
3187 struct ring_buffer_per_cpu *cpu_buffer;
3188 struct buffer_page *bpage;
3189 u64 ret = 0;
3190
3191 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3192 return 0;
3193
3194 cpu_buffer = buffer->buffers[cpu];
3195 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3196 /*
3197 * if the tail is on reader_page, oldest time stamp is on the reader
3198 * page
3199 */
3200 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3201 bpage = cpu_buffer->reader_page;
3202 else
3203 bpage = rb_set_head_page(cpu_buffer);
3204 if (bpage)
3205 ret = bpage->page->time_stamp;
3206 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3207
3208 return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3211
3212 /**
3213 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3214 * @buffer: The ring buffer
3215 * @cpu: The per CPU buffer to read from.
3216 */
3217 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3218 {
3219 struct ring_buffer_per_cpu *cpu_buffer;
3220 unsigned long ret;
3221
3222 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223 return 0;
3224
3225 cpu_buffer = buffer->buffers[cpu];
3226 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3227
3228 return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3231
3232 /**
3233 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to get the entries from.
3236 */
3237 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239 struct ring_buffer_per_cpu *cpu_buffer;
3240
3241 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 return 0;
3243
3244 cpu_buffer = buffer->buffers[cpu];
3245
3246 return rb_num_of_entries(cpu_buffer);
3247 }
3248 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3249
3250 /**
3251 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3252 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3253 * @buffer: The ring buffer
3254 * @cpu: The per CPU buffer to get the number of overruns from
3255 */
3256 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258 struct ring_buffer_per_cpu *cpu_buffer;
3259 unsigned long ret;
3260
3261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262 return 0;
3263
3264 cpu_buffer = buffer->buffers[cpu];
3265 ret = local_read(&cpu_buffer->overrun);
3266
3267 return ret;
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3270
3271 /**
3272 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3273 * commits failing due to the buffer wrapping around while there are uncommitted
3274 * events, such as during an interrupt storm.
3275 * @buffer: The ring buffer
3276 * @cpu: The per CPU buffer to get the number of overruns from
3277 */
3278 unsigned long
3279 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3280 {
3281 struct ring_buffer_per_cpu *cpu_buffer;
3282 unsigned long ret;
3283
3284 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3285 return 0;
3286
3287 cpu_buffer = buffer->buffers[cpu];
3288 ret = local_read(&cpu_buffer->commit_overrun);
3289
3290 return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3293
3294 /**
3295 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3296 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3297 * @buffer: The ring buffer
3298 * @cpu: The per CPU buffer to get the number of overruns from
3299 */
3300 unsigned long
3301 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303 struct ring_buffer_per_cpu *cpu_buffer;
3304 unsigned long ret;
3305
3306 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307 return 0;
3308
3309 cpu_buffer = buffer->buffers[cpu];
3310 ret = local_read(&cpu_buffer->dropped_events);
3311
3312 return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3315
3316 /**
3317 * ring_buffer_read_events_cpu - get the number of events successfully read
3318 * @buffer: The ring buffer
3319 * @cpu: The per CPU buffer to get the number of events read
3320 */
3321 unsigned long
3322 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3323 {
3324 struct ring_buffer_per_cpu *cpu_buffer;
3325
3326 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327 return 0;
3328
3329 cpu_buffer = buffer->buffers[cpu];
3330 return cpu_buffer->read;
3331 }
3332 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3333
3334 /**
3335 * ring_buffer_entries - get the number of entries in a buffer
3336 * @buffer: The ring buffer
3337 *
3338 * Returns the total number of entries in the ring buffer
3339 * (all CPU entries)
3340 */
3341 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3342 {
3343 struct ring_buffer_per_cpu *cpu_buffer;
3344 unsigned long entries = 0;
3345 int cpu;
3346
3347 /* if you care about this being correct, lock the buffer */
3348 for_each_buffer_cpu(buffer, cpu) {
3349 cpu_buffer = buffer->buffers[cpu];
3350 entries += rb_num_of_entries(cpu_buffer);
3351 }
3352
3353 return entries;
3354 }
3355 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3356
3357 /**
3358 * ring_buffer_overruns - get the number of overruns in buffer
3359 * @buffer: The ring buffer
3360 *
3361 * Returns the total number of overruns in the ring buffer
3362 * (all CPU entries)
3363 */
3364 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3365 {
3366 struct ring_buffer_per_cpu *cpu_buffer;
3367 unsigned long overruns = 0;
3368 int cpu;
3369
3370 /* if you care about this being correct, lock the buffer */
3371 for_each_buffer_cpu(buffer, cpu) {
3372 cpu_buffer = buffer->buffers[cpu];
3373 overruns += local_read(&cpu_buffer->overrun);
3374 }
3375
3376 return overruns;
3377 }
3378 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3379
3380 static void rb_iter_reset(struct ring_buffer_iter *iter)
3381 {
3382 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3383
3384 /* Iterator usage is expected to have record disabled */
3385 iter->head_page = cpu_buffer->reader_page;
3386 iter->head = cpu_buffer->reader_page->read;
3387
3388 iter->cache_reader_page = iter->head_page;
3389 iter->cache_read = cpu_buffer->read;
3390
3391 if (iter->head)
3392 iter->read_stamp = cpu_buffer->read_stamp;
3393 else
3394 iter->read_stamp = iter->head_page->page->time_stamp;
3395 }
3396
3397 /**
3398 * ring_buffer_iter_reset - reset an iterator
3399 * @iter: The iterator to reset
3400 *
3401 * Resets the iterator, so that it will start from the beginning
3402 * again.
3403 */
3404 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3405 {
3406 struct ring_buffer_per_cpu *cpu_buffer;
3407 unsigned long flags;
3408
3409 if (!iter)
3410 return;
3411
3412 cpu_buffer = iter->cpu_buffer;
3413
3414 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3415 rb_iter_reset(iter);
3416 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3417 }
3418 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3419
3420 /**
3421 * ring_buffer_iter_empty - check if an iterator has no more to read
3422 * @iter: The iterator to check
3423 */
3424 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3425 {
3426 struct ring_buffer_per_cpu *cpu_buffer;
3427
3428 cpu_buffer = iter->cpu_buffer;
3429
3430 return iter->head_page == cpu_buffer->commit_page &&
3431 iter->head == rb_commit_index(cpu_buffer);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3434
3435 static void
3436 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3437 struct ring_buffer_event *event)
3438 {
3439 u64 delta;
3440
3441 switch (event->type_len) {
3442 case RINGBUF_TYPE_PADDING:
3443 return;
3444
3445 case RINGBUF_TYPE_TIME_EXTEND:
3446 delta = event->array[0];
3447 delta <<= TS_SHIFT;
3448 delta += event->time_delta;
3449 cpu_buffer->read_stamp += delta;
3450 return;
3451
3452 case RINGBUF_TYPE_TIME_STAMP:
3453 /* FIXME: not implemented */
3454 return;
3455
3456 case RINGBUF_TYPE_DATA:
3457 cpu_buffer->read_stamp += event->time_delta;
3458 return;
3459
3460 default:
3461 BUG();
3462 }
3463 return;
3464 }
3465
3466 static void
3467 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3468 struct ring_buffer_event *event)
3469 {
3470 u64 delta;
3471
3472 switch (event->type_len) {
3473 case RINGBUF_TYPE_PADDING:
3474 return;
3475
3476 case RINGBUF_TYPE_TIME_EXTEND:
3477 delta = event->array[0];
3478 delta <<= TS_SHIFT;
3479 delta += event->time_delta;
3480 iter->read_stamp += delta;
3481 return;
3482
3483 case RINGBUF_TYPE_TIME_STAMP:
3484 /* FIXME: not implemented */
3485 return;
3486
3487 case RINGBUF_TYPE_DATA:
3488 iter->read_stamp += event->time_delta;
3489 return;
3490
3491 default:
3492 BUG();
3493 }
3494 return;
3495 }
3496
3497 static struct buffer_page *
3498 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3499 {
3500 struct buffer_page *reader = NULL;
3501 unsigned long overwrite;
3502 unsigned long flags;
3503 int nr_loops = 0;
3504 int ret;
3505
3506 local_irq_save(flags);
3507 arch_spin_lock(&cpu_buffer->lock);
3508
3509 again:
3510 /*
3511 * This should normally only loop twice. But because the
3512 * start of the reader inserts an empty page, it causes
3513 * a case where we will loop three times. There should be no
3514 * reason to loop four times (that I know of).
3515 */
3516 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3517 reader = NULL;
3518 goto out;
3519 }
3520
3521 reader = cpu_buffer->reader_page;
3522
3523 /* If there's more to read, return this page */
3524 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3525 goto out;
3526
3527 /* Never should we have an index greater than the size */
3528 if (RB_WARN_ON(cpu_buffer,
3529 cpu_buffer->reader_page->read > rb_page_size(reader)))
3530 goto out;
3531
3532 /* check if we caught up to the tail */
3533 reader = NULL;
3534 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3535 goto out;
3536
3537 /* Don't bother swapping if the ring buffer is empty */
3538 if (rb_num_of_entries(cpu_buffer) == 0)
3539 goto out;
3540
3541 /*
3542 * Reset the reader page to size zero.
3543 */
3544 local_set(&cpu_buffer->reader_page->write, 0);
3545 local_set(&cpu_buffer->reader_page->entries, 0);
3546 local_set(&cpu_buffer->reader_page->page->commit, 0);
3547 cpu_buffer->reader_page->real_end = 0;
3548
3549 spin:
3550 /*
3551 * Splice the empty reader page into the list around the head.
3552 */
3553 reader = rb_set_head_page(cpu_buffer);
3554 if (!reader)
3555 goto out;
3556 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3557 cpu_buffer->reader_page->list.prev = reader->list.prev;
3558
3559 /*
3560 * cpu_buffer->pages just needs to point to the buffer, it
3561 * has no specific buffer page to point to. Lets move it out
3562 * of our way so we don't accidentally swap it.
3563 */
3564 cpu_buffer->pages = reader->list.prev;
3565
3566 /* The reader page will be pointing to the new head */
3567 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3568
3569 /*
3570 * We want to make sure we read the overruns after we set up our
3571 * pointers to the next object. The writer side does a
3572 * cmpxchg to cross pages which acts as the mb on the writer
3573 * side. Note, the reader will constantly fail the swap
3574 * while the writer is updating the pointers, so this
3575 * guarantees that the overwrite recorded here is the one we
3576 * want to compare with the last_overrun.
3577 */
3578 smp_mb();
3579 overwrite = local_read(&(cpu_buffer->overrun));
3580
3581 /*
3582 * Here's the tricky part.
3583 *
3584 * We need to move the pointer past the header page.
3585 * But we can only do that if a writer is not currently
3586 * moving it. The page before the header page has the
3587 * flag bit '1' set if it is pointing to the page we want.
3588 * but if the writer is in the process of moving it
3589 * than it will be '2' or already moved '0'.
3590 */
3591
3592 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3593
3594 /*
3595 * If we did not convert it, then we must try again.
3596 */
3597 if (!ret)
3598 goto spin;
3599
3600 /*
3601 * Yeah! We succeeded in replacing the page.
3602 *
3603 * Now make the new head point back to the reader page.
3604 */
3605 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3606 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3607
3608 /* Finally update the reader page to the new head */
3609 cpu_buffer->reader_page = reader;
3610 rb_reset_reader_page(cpu_buffer);
3611
3612 if (overwrite != cpu_buffer->last_overrun) {
3613 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3614 cpu_buffer->last_overrun = overwrite;
3615 }
3616
3617 goto again;
3618
3619 out:
3620 arch_spin_unlock(&cpu_buffer->lock);
3621 local_irq_restore(flags);
3622
3623 return reader;
3624 }
3625
3626 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3627 {
3628 struct ring_buffer_event *event;
3629 struct buffer_page *reader;
3630 unsigned length;
3631
3632 reader = rb_get_reader_page(cpu_buffer);
3633
3634 /* This function should not be called when buffer is empty */
3635 if (RB_WARN_ON(cpu_buffer, !reader))
3636 return;
3637
3638 event = rb_reader_event(cpu_buffer);
3639
3640 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3641 cpu_buffer->read++;
3642
3643 rb_update_read_stamp(cpu_buffer, event);
3644
3645 length = rb_event_length(event);
3646 cpu_buffer->reader_page->read += length;
3647 }
3648
3649 static void rb_advance_iter(struct ring_buffer_iter *iter)
3650 {
3651 struct ring_buffer_per_cpu *cpu_buffer;
3652 struct ring_buffer_event *event;
3653 unsigned length;
3654
3655 cpu_buffer = iter->cpu_buffer;
3656
3657 /*
3658 * Check if we are at the end of the buffer.
3659 */
3660 if (iter->head >= rb_page_size(iter->head_page)) {
3661 /* discarded commits can make the page empty */
3662 if (iter->head_page == cpu_buffer->commit_page)
3663 return;
3664 rb_inc_iter(iter);
3665 return;
3666 }
3667
3668 event = rb_iter_head_event(iter);
3669
3670 length = rb_event_length(event);
3671
3672 /*
3673 * This should not be called to advance the header if we are
3674 * at the tail of the buffer.
3675 */
3676 if (RB_WARN_ON(cpu_buffer,
3677 (iter->head_page == cpu_buffer->commit_page) &&
3678 (iter->head + length > rb_commit_index(cpu_buffer))))
3679 return;
3680
3681 rb_update_iter_read_stamp(iter, event);
3682
3683 iter->head += length;
3684
3685 /* check for end of page padding */
3686 if ((iter->head >= rb_page_size(iter->head_page)) &&
3687 (iter->head_page != cpu_buffer->commit_page))
3688 rb_inc_iter(iter);
3689 }
3690
3691 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3692 {
3693 return cpu_buffer->lost_events;
3694 }
3695
3696 static struct ring_buffer_event *
3697 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3698 unsigned long *lost_events)
3699 {
3700 struct ring_buffer_event *event;
3701 struct buffer_page *reader;
3702 int nr_loops = 0;
3703
3704 again:
3705 /*
3706 * We repeat when a time extend is encountered.
3707 * Since the time extend is always attached to a data event,
3708 * we should never loop more than once.
3709 * (We never hit the following condition more than twice).
3710 */
3711 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3712 return NULL;
3713
3714 reader = rb_get_reader_page(cpu_buffer);
3715 if (!reader)
3716 return NULL;
3717
3718 event = rb_reader_event(cpu_buffer);
3719
3720 switch (event->type_len) {
3721 case RINGBUF_TYPE_PADDING:
3722 if (rb_null_event(event))
3723 RB_WARN_ON(cpu_buffer, 1);
3724 /*
3725 * Because the writer could be discarding every
3726 * event it creates (which would probably be bad)
3727 * if we were to go back to "again" then we may never
3728 * catch up, and will trigger the warn on, or lock
3729 * the box. Return the padding, and we will release
3730 * the current locks, and try again.
3731 */
3732 return event;
3733
3734 case RINGBUF_TYPE_TIME_EXTEND:
3735 /* Internal data, OK to advance */
3736 rb_advance_reader(cpu_buffer);
3737 goto again;
3738
3739 case RINGBUF_TYPE_TIME_STAMP:
3740 /* FIXME: not implemented */
3741 rb_advance_reader(cpu_buffer);
3742 goto again;
3743
3744 case RINGBUF_TYPE_DATA:
3745 if (ts) {
3746 *ts = cpu_buffer->read_stamp + event->time_delta;
3747 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3748 cpu_buffer->cpu, ts);
3749 }
3750 if (lost_events)
3751 *lost_events = rb_lost_events(cpu_buffer);
3752 return event;
3753
3754 default:
3755 BUG();
3756 }
3757
3758 return NULL;
3759 }
3760 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3761
3762 static struct ring_buffer_event *
3763 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3764 {
3765 struct ring_buffer *buffer;
3766 struct ring_buffer_per_cpu *cpu_buffer;
3767 struct ring_buffer_event *event;
3768 int nr_loops = 0;
3769
3770 cpu_buffer = iter->cpu_buffer;
3771 buffer = cpu_buffer->buffer;
3772
3773 /*
3774 * Check if someone performed a consuming read to
3775 * the buffer. A consuming read invalidates the iterator
3776 * and we need to reset the iterator in this case.
3777 */
3778 if (unlikely(iter->cache_read != cpu_buffer->read ||
3779 iter->cache_reader_page != cpu_buffer->reader_page))
3780 rb_iter_reset(iter);
3781
3782 again:
3783 if (ring_buffer_iter_empty(iter))
3784 return NULL;
3785
3786 /*
3787 * We repeat when a time extend is encountered or we hit
3788 * the end of the page. Since the time extend is always attached
3789 * to a data event, we should never loop more than three times.
3790 * Once for going to next page, once on time extend, and
3791 * finally once to get the event.
3792 * (We never hit the following condition more than thrice).
3793 */
3794 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3795 return NULL;
3796
3797 if (rb_per_cpu_empty(cpu_buffer))
3798 return NULL;
3799
3800 if (iter->head >= rb_page_size(iter->head_page)) {
3801 rb_inc_iter(iter);
3802 goto again;
3803 }
3804
3805 event = rb_iter_head_event(iter);
3806
3807 switch (event->type_len) {
3808 case RINGBUF_TYPE_PADDING:
3809 if (rb_null_event(event)) {
3810 rb_inc_iter(iter);
3811 goto again;
3812 }
3813 rb_advance_iter(iter);
3814 return event;
3815
3816 case RINGBUF_TYPE_TIME_EXTEND:
3817 /* Internal data, OK to advance */
3818 rb_advance_iter(iter);
3819 goto again;
3820
3821 case RINGBUF_TYPE_TIME_STAMP:
3822 /* FIXME: not implemented */
3823 rb_advance_iter(iter);
3824 goto again;
3825
3826 case RINGBUF_TYPE_DATA:
3827 if (ts) {
3828 *ts = iter->read_stamp + event->time_delta;
3829 ring_buffer_normalize_time_stamp(buffer,
3830 cpu_buffer->cpu, ts);
3831 }
3832 return event;
3833
3834 default:
3835 BUG();
3836 }
3837
3838 return NULL;
3839 }
3840 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3841
3842 static inline int rb_ok_to_lock(void)
3843 {
3844 /*
3845 * If an NMI die dumps out the content of the ring buffer
3846 * do not grab locks. We also permanently disable the ring
3847 * buffer too. A one time deal is all you get from reading
3848 * the ring buffer from an NMI.
3849 */
3850 if (likely(!in_nmi()))
3851 return 1;
3852
3853 tracing_off_permanent();
3854 return 0;
3855 }
3856
3857 /**
3858 * ring_buffer_peek - peek at the next event to be read
3859 * @buffer: The ring buffer to read
3860 * @cpu: The cpu to peak at
3861 * @ts: The timestamp counter of this event.
3862 * @lost_events: a variable to store if events were lost (may be NULL)
3863 *
3864 * This will return the event that will be read next, but does
3865 * not consume the data.
3866 */
3867 struct ring_buffer_event *
3868 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3869 unsigned long *lost_events)
3870 {
3871 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3872 struct ring_buffer_event *event;
3873 unsigned long flags;
3874 int dolock;
3875
3876 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3877 return NULL;
3878
3879 dolock = rb_ok_to_lock();
3880 again:
3881 local_irq_save(flags);
3882 if (dolock)
3883 raw_spin_lock(&cpu_buffer->reader_lock);
3884 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3885 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3886 rb_advance_reader(cpu_buffer);
3887 if (dolock)
3888 raw_spin_unlock(&cpu_buffer->reader_lock);
3889 local_irq_restore(flags);
3890
3891 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3892 goto again;
3893
3894 return event;
3895 }
3896
3897 /**
3898 * ring_buffer_iter_peek - peek at the next event to be read
3899 * @iter: The ring buffer iterator
3900 * @ts: The timestamp counter of this event.
3901 *
3902 * This will return the event that will be read next, but does
3903 * not increment the iterator.
3904 */
3905 struct ring_buffer_event *
3906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3907 {
3908 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3909 struct ring_buffer_event *event;
3910 unsigned long flags;
3911
3912 again:
3913 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3914 event = rb_iter_peek(iter, ts);
3915 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3916
3917 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3918 goto again;
3919
3920 return event;
3921 }
3922
3923 /**
3924 * ring_buffer_consume - return an event and consume it
3925 * @buffer: The ring buffer to get the next event from
3926 * @cpu: the cpu to read the buffer from
3927 * @ts: a variable to store the timestamp (may be NULL)
3928 * @lost_events: a variable to store if events were lost (may be NULL)
3929 *
3930 * Returns the next event in the ring buffer, and that event is consumed.
3931 * Meaning, that sequential reads will keep returning a different event,
3932 * and eventually empty the ring buffer if the producer is slower.
3933 */
3934 struct ring_buffer_event *
3935 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3936 unsigned long *lost_events)
3937 {
3938 struct ring_buffer_per_cpu *cpu_buffer;
3939 struct ring_buffer_event *event = NULL;
3940 unsigned long flags;
3941 int dolock;
3942
3943 dolock = rb_ok_to_lock();
3944
3945 again:
3946 /* might be called in atomic */
3947 preempt_disable();
3948
3949 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3950 goto out;
3951
3952 cpu_buffer = buffer->buffers[cpu];
3953 local_irq_save(flags);
3954 if (dolock)
3955 raw_spin_lock(&cpu_buffer->reader_lock);
3956
3957 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3958 if (event) {
3959 cpu_buffer->lost_events = 0;
3960 rb_advance_reader(cpu_buffer);
3961 }
3962
3963 if (dolock)
3964 raw_spin_unlock(&cpu_buffer->reader_lock);
3965 local_irq_restore(flags);
3966
3967 out:
3968 preempt_enable();
3969
3970 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3971 goto again;
3972
3973 return event;
3974 }
3975 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3976
3977 /**
3978 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3979 * @buffer: The ring buffer to read from
3980 * @cpu: The cpu buffer to iterate over
3981 *
3982 * This performs the initial preparations necessary to iterate
3983 * through the buffer. Memory is allocated, buffer recording
3984 * is disabled, and the iterator pointer is returned to the caller.
3985 *
3986 * Disabling buffer recordng prevents the reading from being
3987 * corrupted. This is not a consuming read, so a producer is not
3988 * expected.
3989 *
3990 * After a sequence of ring_buffer_read_prepare calls, the user is
3991 * expected to make at least one call to ring_buffer_read_prepare_sync.
3992 * Afterwards, ring_buffer_read_start is invoked to get things going
3993 * for real.
3994 *
3995 * This overall must be paired with ring_buffer_read_finish.
3996 */
3997 struct ring_buffer_iter *
3998 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3999 {
4000 struct ring_buffer_per_cpu *cpu_buffer;
4001 struct ring_buffer_iter *iter;
4002
4003 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004 return NULL;
4005
4006 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4007 if (!iter)
4008 return NULL;
4009
4010 cpu_buffer = buffer->buffers[cpu];
4011
4012 iter->cpu_buffer = cpu_buffer;
4013
4014 atomic_inc(&buffer->resize_disabled);
4015 atomic_inc(&cpu_buffer->record_disabled);
4016
4017 return iter;
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4020
4021 /**
4022 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4023 *
4024 * All previously invoked ring_buffer_read_prepare calls to prepare
4025 * iterators will be synchronized. Afterwards, read_buffer_read_start
4026 * calls on those iterators are allowed.
4027 */
4028 void
4029 ring_buffer_read_prepare_sync(void)
4030 {
4031 synchronize_sched();
4032 }
4033 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4034
4035 /**
4036 * ring_buffer_read_start - start a non consuming read of the buffer
4037 * @iter: The iterator returned by ring_buffer_read_prepare
4038 *
4039 * This finalizes the startup of an iteration through the buffer.
4040 * The iterator comes from a call to ring_buffer_read_prepare and
4041 * an intervening ring_buffer_read_prepare_sync must have been
4042 * performed.
4043 *
4044 * Must be paired with ring_buffer_read_finish.
4045 */
4046 void
4047 ring_buffer_read_start(struct ring_buffer_iter *iter)
4048 {
4049 struct ring_buffer_per_cpu *cpu_buffer;
4050 unsigned long flags;
4051
4052 if (!iter)
4053 return;
4054
4055 cpu_buffer = iter->cpu_buffer;
4056
4057 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058 arch_spin_lock(&cpu_buffer->lock);
4059 rb_iter_reset(iter);
4060 arch_spin_unlock(&cpu_buffer->lock);
4061 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4064
4065 /**
4066 * ring_buffer_read_finish - finish reading the iterator of the buffer
4067 * @iter: The iterator retrieved by ring_buffer_start
4068 *
4069 * This re-enables the recording to the buffer, and frees the
4070 * iterator.
4071 */
4072 void
4073 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4074 {
4075 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076 unsigned long flags;
4077
4078 /*
4079 * Ring buffer is disabled from recording, here's a good place
4080 * to check the integrity of the ring buffer.
4081 * Must prevent readers from trying to read, as the check
4082 * clears the HEAD page and readers require it.
4083 */
4084 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085 rb_check_pages(cpu_buffer);
4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087
4088 atomic_dec(&cpu_buffer->record_disabled);
4089 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4090 kfree(iter);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4093
4094 /**
4095 * ring_buffer_read - read the next item in the ring buffer by the iterator
4096 * @iter: The ring buffer iterator
4097 * @ts: The time stamp of the event read.
4098 *
4099 * This reads the next event in the ring buffer and increments the iterator.
4100 */
4101 struct ring_buffer_event *
4102 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4103 {
4104 struct ring_buffer_event *event;
4105 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106 unsigned long flags;
4107
4108 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109 again:
4110 event = rb_iter_peek(iter, ts);
4111 if (!event)
4112 goto out;
4113
4114 if (event->type_len == RINGBUF_TYPE_PADDING)
4115 goto again;
4116
4117 rb_advance_iter(iter);
4118 out:
4119 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120
4121 return event;
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_read);
4124
4125 /**
4126 * ring_buffer_size - return the size of the ring buffer (in bytes)
4127 * @buffer: The ring buffer.
4128 */
4129 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4130 {
4131 /*
4132 * Earlier, this method returned
4133 * BUF_PAGE_SIZE * buffer->nr_pages
4134 * Since the nr_pages field is now removed, we have converted this to
4135 * return the per cpu buffer value.
4136 */
4137 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138 return 0;
4139
4140 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4141 }
4142 EXPORT_SYMBOL_GPL(ring_buffer_size);
4143
4144 static void
4145 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4146 {
4147 rb_head_page_deactivate(cpu_buffer);
4148
4149 cpu_buffer->head_page
4150 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4151 local_set(&cpu_buffer->head_page->write, 0);
4152 local_set(&cpu_buffer->head_page->entries, 0);
4153 local_set(&cpu_buffer->head_page->page->commit, 0);
4154
4155 cpu_buffer->head_page->read = 0;
4156
4157 cpu_buffer->tail_page = cpu_buffer->head_page;
4158 cpu_buffer->commit_page = cpu_buffer->head_page;
4159
4160 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4161 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4162 local_set(&cpu_buffer->reader_page->write, 0);
4163 local_set(&cpu_buffer->reader_page->entries, 0);
4164 local_set(&cpu_buffer->reader_page->page->commit, 0);
4165 cpu_buffer->reader_page->read = 0;
4166
4167 local_set(&cpu_buffer->entries_bytes, 0);
4168 local_set(&cpu_buffer->overrun, 0);
4169 local_set(&cpu_buffer->commit_overrun, 0);
4170 local_set(&cpu_buffer->dropped_events, 0);
4171 local_set(&cpu_buffer->entries, 0);
4172 local_set(&cpu_buffer->committing, 0);
4173 local_set(&cpu_buffer->commits, 0);
4174 cpu_buffer->read = 0;
4175 cpu_buffer->read_bytes = 0;
4176
4177 cpu_buffer->write_stamp = 0;
4178 cpu_buffer->read_stamp = 0;
4179
4180 cpu_buffer->lost_events = 0;
4181 cpu_buffer->last_overrun = 0;
4182
4183 rb_head_page_activate(cpu_buffer);
4184 }
4185
4186 /**
4187 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4188 * @buffer: The ring buffer to reset a per cpu buffer of
4189 * @cpu: The CPU buffer to be reset
4190 */
4191 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4192 {
4193 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4194 unsigned long flags;
4195
4196 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197 return;
4198
4199 atomic_inc(&buffer->resize_disabled);
4200 atomic_inc(&cpu_buffer->record_disabled);
4201
4202 /* Make sure all commits have finished */
4203 synchronize_sched();
4204
4205 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4206
4207 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4208 goto out;
4209
4210 arch_spin_lock(&cpu_buffer->lock);
4211
4212 rb_reset_cpu(cpu_buffer);
4213
4214 arch_spin_unlock(&cpu_buffer->lock);
4215
4216 out:
4217 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4218
4219 atomic_dec(&cpu_buffer->record_disabled);
4220 atomic_dec(&buffer->resize_disabled);
4221 }
4222 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4223
4224 /**
4225 * ring_buffer_reset - reset a ring buffer
4226 * @buffer: The ring buffer to reset all cpu buffers
4227 */
4228 void ring_buffer_reset(struct ring_buffer *buffer)
4229 {
4230 int cpu;
4231
4232 for_each_buffer_cpu(buffer, cpu)
4233 ring_buffer_reset_cpu(buffer, cpu);
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4236
4237 /**
4238 * rind_buffer_empty - is the ring buffer empty?
4239 * @buffer: The ring buffer to test
4240 */
4241 int ring_buffer_empty(struct ring_buffer *buffer)
4242 {
4243 struct ring_buffer_per_cpu *cpu_buffer;
4244 unsigned long flags;
4245 int dolock;
4246 int cpu;
4247 int ret;
4248
4249 dolock = rb_ok_to_lock();
4250
4251 /* yes this is racy, but if you don't like the race, lock the buffer */
4252 for_each_buffer_cpu(buffer, cpu) {
4253 cpu_buffer = buffer->buffers[cpu];
4254 local_irq_save(flags);
4255 if (dolock)
4256 raw_spin_lock(&cpu_buffer->reader_lock);
4257 ret = rb_per_cpu_empty(cpu_buffer);
4258 if (dolock)
4259 raw_spin_unlock(&cpu_buffer->reader_lock);
4260 local_irq_restore(flags);
4261
4262 if (!ret)
4263 return 0;
4264 }
4265
4266 return 1;
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4269
4270 /**
4271 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4272 * @buffer: The ring buffer
4273 * @cpu: The CPU buffer to test
4274 */
4275 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4276 {
4277 struct ring_buffer_per_cpu *cpu_buffer;
4278 unsigned long flags;
4279 int dolock;
4280 int ret;
4281
4282 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4283 return 1;
4284
4285 dolock = rb_ok_to_lock();
4286
4287 cpu_buffer = buffer->buffers[cpu];
4288 local_irq_save(flags);
4289 if (dolock)
4290 raw_spin_lock(&cpu_buffer->reader_lock);
4291 ret = rb_per_cpu_empty(cpu_buffer);
4292 if (dolock)
4293 raw_spin_unlock(&cpu_buffer->reader_lock);
4294 local_irq_restore(flags);
4295
4296 return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4299
4300 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4301 /**
4302 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303 * @buffer_a: One buffer to swap with
4304 * @buffer_b: The other buffer to swap with
4305 *
4306 * This function is useful for tracers that want to take a "snapshot"
4307 * of a CPU buffer and has another back up buffer lying around.
4308 * it is expected that the tracer handles the cpu buffer not being
4309 * used at the moment.
4310 */
4311 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312 struct ring_buffer *buffer_b, int cpu)
4313 {
4314 struct ring_buffer_per_cpu *cpu_buffer_a;
4315 struct ring_buffer_per_cpu *cpu_buffer_b;
4316 int ret = -EINVAL;
4317
4318 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4320 goto out;
4321
4322 cpu_buffer_a = buffer_a->buffers[cpu];
4323 cpu_buffer_b = buffer_b->buffers[cpu];
4324
4325 /* At least make sure the two buffers are somewhat the same */
4326 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4327 goto out;
4328
4329 ret = -EAGAIN;
4330
4331 if (ring_buffer_flags != RB_BUFFERS_ON)
4332 goto out;
4333
4334 if (atomic_read(&buffer_a->record_disabled))
4335 goto out;
4336
4337 if (atomic_read(&buffer_b->record_disabled))
4338 goto out;
4339
4340 if (atomic_read(&cpu_buffer_a->record_disabled))
4341 goto out;
4342
4343 if (atomic_read(&cpu_buffer_b->record_disabled))
4344 goto out;
4345
4346 /*
4347 * We can't do a synchronize_sched here because this
4348 * function can be called in atomic context.
4349 * Normally this will be called from the same CPU as cpu.
4350 * If not it's up to the caller to protect this.
4351 */
4352 atomic_inc(&cpu_buffer_a->record_disabled);
4353 atomic_inc(&cpu_buffer_b->record_disabled);
4354
4355 ret = -EBUSY;
4356 if (local_read(&cpu_buffer_a->committing))
4357 goto out_dec;
4358 if (local_read(&cpu_buffer_b->committing))
4359 goto out_dec;
4360
4361 buffer_a->buffers[cpu] = cpu_buffer_b;
4362 buffer_b->buffers[cpu] = cpu_buffer_a;
4363
4364 cpu_buffer_b->buffer = buffer_a;
4365 cpu_buffer_a->buffer = buffer_b;
4366
4367 ret = 0;
4368
4369 out_dec:
4370 atomic_dec(&cpu_buffer_a->record_disabled);
4371 atomic_dec(&cpu_buffer_b->record_disabled);
4372 out:
4373 return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4376 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4377
4378 /**
4379 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4380 * @buffer: the buffer to allocate for.
4381 * @cpu: the cpu buffer to allocate.
4382 *
4383 * This function is used in conjunction with ring_buffer_read_page.
4384 * When reading a full page from the ring buffer, these functions
4385 * can be used to speed up the process. The calling function should
4386 * allocate a few pages first with this function. Then when it
4387 * needs to get pages from the ring buffer, it passes the result
4388 * of this function into ring_buffer_read_page, which will swap
4389 * the page that was allocated, with the read page of the buffer.
4390 *
4391 * Returns:
4392 * The page allocated, or NULL on error.
4393 */
4394 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4395 {
4396 struct buffer_data_page *bpage;
4397 struct page *page;
4398
4399 page = alloc_pages_node(cpu_to_node(cpu),
4400 GFP_KERNEL | __GFP_NORETRY, 0);
4401 if (!page)
4402 return NULL;
4403
4404 bpage = page_address(page);
4405
4406 rb_init_page(bpage);
4407
4408 return bpage;
4409 }
4410 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4411
4412 /**
4413 * ring_buffer_free_read_page - free an allocated read page
4414 * @buffer: the buffer the page was allocate for
4415 * @data: the page to free
4416 *
4417 * Free a page allocated from ring_buffer_alloc_read_page.
4418 */
4419 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4420 {
4421 free_page((unsigned long)data);
4422 }
4423 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4424
4425 /**
4426 * ring_buffer_read_page - extract a page from the ring buffer
4427 * @buffer: buffer to extract from
4428 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4429 * @len: amount to extract
4430 * @cpu: the cpu of the buffer to extract
4431 * @full: should the extraction only happen when the page is full.
4432 *
4433 * This function will pull out a page from the ring buffer and consume it.
4434 * @data_page must be the address of the variable that was returned
4435 * from ring_buffer_alloc_read_page. This is because the page might be used
4436 * to swap with a page in the ring buffer.
4437 *
4438 * for example:
4439 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4440 * if (!rpage)
4441 * return error;
4442 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4443 * if (ret >= 0)
4444 * process_page(rpage, ret);
4445 *
4446 * When @full is set, the function will not return true unless
4447 * the writer is off the reader page.
4448 *
4449 * Note: it is up to the calling functions to handle sleeps and wakeups.
4450 * The ring buffer can be used anywhere in the kernel and can not
4451 * blindly call wake_up. The layer that uses the ring buffer must be
4452 * responsible for that.
4453 *
4454 * Returns:
4455 * >=0 if data has been transferred, returns the offset of consumed data.
4456 * <0 if no data has been transferred.
4457 */
4458 int ring_buffer_read_page(struct ring_buffer *buffer,
4459 void **data_page, size_t len, int cpu, int full)
4460 {
4461 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4462 struct ring_buffer_event *event;
4463 struct buffer_data_page *bpage;
4464 struct buffer_page *reader;
4465 unsigned long missed_events;
4466 unsigned long flags;
4467 unsigned int commit;
4468 unsigned int read;
4469 u64 save_timestamp;
4470 int ret = -1;
4471
4472 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4473 goto out;
4474
4475 /*
4476 * If len is not big enough to hold the page header, then
4477 * we can not copy anything.
4478 */
4479 if (len <= BUF_PAGE_HDR_SIZE)
4480 goto out;
4481
4482 len -= BUF_PAGE_HDR_SIZE;
4483
4484 if (!data_page)
4485 goto out;
4486
4487 bpage = *data_page;
4488 if (!bpage)
4489 goto out;
4490
4491 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4492
4493 reader = rb_get_reader_page(cpu_buffer);
4494 if (!reader)
4495 goto out_unlock;
4496
4497 event = rb_reader_event(cpu_buffer);
4498
4499 read = reader->read;
4500 commit = rb_page_commit(reader);
4501
4502 /* Check if any events were dropped */
4503 missed_events = cpu_buffer->lost_events;
4504
4505 /*
4506 * If this page has been partially read or
4507 * if len is not big enough to read the rest of the page or
4508 * a writer is still on the page, then
4509 * we must copy the data from the page to the buffer.
4510 * Otherwise, we can simply swap the page with the one passed in.
4511 */
4512 if (read || (len < (commit - read)) ||
4513 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4514 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4515 unsigned int rpos = read;
4516 unsigned int pos = 0;
4517 unsigned int size;
4518
4519 if (full)
4520 goto out_unlock;
4521
4522 if (len > (commit - read))
4523 len = (commit - read);
4524
4525 /* Always keep the time extend and data together */
4526 size = rb_event_ts_length(event);
4527
4528 if (len < size)
4529 goto out_unlock;
4530
4531 /* save the current timestamp, since the user will need it */
4532 save_timestamp = cpu_buffer->read_stamp;
4533
4534 /* Need to copy one event at a time */
4535 do {
4536 /* We need the size of one event, because
4537 * rb_advance_reader only advances by one event,
4538 * whereas rb_event_ts_length may include the size of
4539 * one or two events.
4540 * We have already ensured there's enough space if this
4541 * is a time extend. */
4542 size = rb_event_length(event);
4543 memcpy(bpage->data + pos, rpage->data + rpos, size);
4544
4545 len -= size;
4546
4547 rb_advance_reader(cpu_buffer);
4548 rpos = reader->read;
4549 pos += size;
4550
4551 if (rpos >= commit)
4552 break;
4553
4554 event = rb_reader_event(cpu_buffer);
4555 /* Always keep the time extend and data together */
4556 size = rb_event_ts_length(event);
4557 } while (len >= size);
4558
4559 /* update bpage */
4560 local_set(&bpage->commit, pos);
4561 bpage->time_stamp = save_timestamp;
4562
4563 /* we copied everything to the beginning */
4564 read = 0;
4565 } else {
4566 /* update the entry counter */
4567 cpu_buffer->read += rb_page_entries(reader);
4568 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4569
4570 /* swap the pages */
4571 rb_init_page(bpage);
4572 bpage = reader->page;
4573 reader->page = *data_page;
4574 local_set(&reader->write, 0);
4575 local_set(&reader->entries, 0);
4576 reader->read = 0;
4577 *data_page = bpage;
4578
4579 /*
4580 * Use the real_end for the data size,
4581 * This gives us a chance to store the lost events
4582 * on the page.
4583 */
4584 if (reader->real_end)
4585 local_set(&bpage->commit, reader->real_end);
4586 }
4587 ret = read;
4588
4589 cpu_buffer->lost_events = 0;
4590
4591 commit = local_read(&bpage->commit);
4592 /*
4593 * Set a flag in the commit field if we lost events
4594 */
4595 if (missed_events) {
4596 /* If there is room at the end of the page to save the
4597 * missed events, then record it there.
4598 */
4599 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4600 memcpy(&bpage->data[commit], &missed_events,
4601 sizeof(missed_events));
4602 local_add(RB_MISSED_STORED, &bpage->commit);
4603 commit += sizeof(missed_events);
4604 }
4605 local_add(RB_MISSED_EVENTS, &bpage->commit);
4606 }
4607
4608 /*
4609 * This page may be off to user land. Zero it out here.
4610 */
4611 if (commit < BUF_PAGE_SIZE)
4612 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4613
4614 out_unlock:
4615 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4616
4617 out:
4618 return ret;
4619 }
4620 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4621
4622 #ifdef CONFIG_HOTPLUG_CPU
4623 static int rb_cpu_notify(struct notifier_block *self,
4624 unsigned long action, void *hcpu)
4625 {
4626 struct ring_buffer *buffer =
4627 container_of(self, struct ring_buffer, cpu_notify);
4628 long cpu = (long)hcpu;
4629 int cpu_i, nr_pages_same;
4630 unsigned int nr_pages;
4631
4632 switch (action) {
4633 case CPU_UP_PREPARE:
4634 case CPU_UP_PREPARE_FROZEN:
4635 if (cpumask_test_cpu(cpu, buffer->cpumask))
4636 return NOTIFY_OK;
4637
4638 nr_pages = 0;
4639 nr_pages_same = 1;
4640 /* check if all cpu sizes are same */
4641 for_each_buffer_cpu(buffer, cpu_i) {
4642 /* fill in the size from first enabled cpu */
4643 if (nr_pages == 0)
4644 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4645 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4646 nr_pages_same = 0;
4647 break;
4648 }
4649 }
4650 /* allocate minimum pages, user can later expand it */
4651 if (!nr_pages_same)
4652 nr_pages = 2;
4653 buffer->buffers[cpu] =
4654 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4655 if (!buffer->buffers[cpu]) {
4656 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4657 cpu);
4658 return NOTIFY_OK;
4659 }
4660 smp_wmb();
4661 cpumask_set_cpu(cpu, buffer->cpumask);
4662 break;
4663 case CPU_DOWN_PREPARE:
4664 case CPU_DOWN_PREPARE_FROZEN:
4665 /*
4666 * Do nothing.
4667 * If we were to free the buffer, then the user would
4668 * lose any trace that was in the buffer.
4669 */
4670 break;
4671 default:
4672 break;
4673 }
4674 return NOTIFY_OK;
4675 }
4676 #endif
4677
4678 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4679 /*
4680 * This is a basic integrity check of the ring buffer.
4681 * Late in the boot cycle this test will run when configured in.
4682 * It will kick off a thread per CPU that will go into a loop
4683 * writing to the per cpu ring buffer various sizes of data.
4684 * Some of the data will be large items, some small.
4685 *
4686 * Another thread is created that goes into a spin, sending out
4687 * IPIs to the other CPUs to also write into the ring buffer.
4688 * this is to test the nesting ability of the buffer.
4689 *
4690 * Basic stats are recorded and reported. If something in the
4691 * ring buffer should happen that's not expected, a big warning
4692 * is displayed and all ring buffers are disabled.
4693 */
4694 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4695
4696 struct rb_test_data {
4697 struct ring_buffer *buffer;
4698 unsigned long events;
4699 unsigned long bytes_written;
4700 unsigned long bytes_alloc;
4701 unsigned long bytes_dropped;
4702 unsigned long events_nested;
4703 unsigned long bytes_written_nested;
4704 unsigned long bytes_alloc_nested;
4705 unsigned long bytes_dropped_nested;
4706 int min_size_nested;
4707 int max_size_nested;
4708 int max_size;
4709 int min_size;
4710 int cpu;
4711 int cnt;
4712 };
4713
4714 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4715
4716 /* 1 meg per cpu */
4717 #define RB_TEST_BUFFER_SIZE 1048576
4718
4719 static char rb_string[] __initdata =
4720 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4721 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4722 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4723
4724 static bool rb_test_started __initdata;
4725
4726 struct rb_item {
4727 int size;
4728 char str[];
4729 };
4730
4731 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4732 {
4733 struct ring_buffer_event *event;
4734 struct rb_item *item;
4735 bool started;
4736 int event_len;
4737 int size;
4738 int len;
4739 int cnt;
4740
4741 /* Have nested writes different that what is written */
4742 cnt = data->cnt + (nested ? 27 : 0);
4743
4744 /* Multiply cnt by ~e, to make some unique increment */
4745 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4746
4747 len = size + sizeof(struct rb_item);
4748
4749 started = rb_test_started;
4750 /* read rb_test_started before checking buffer enabled */
4751 smp_rmb();
4752
4753 event = ring_buffer_lock_reserve(data->buffer, len);
4754 if (!event) {
4755 /* Ignore dropped events before test starts. */
4756 if (started) {
4757 if (nested)
4758 data->bytes_dropped += len;
4759 else
4760 data->bytes_dropped_nested += len;
4761 }
4762 return len;
4763 }
4764
4765 event_len = ring_buffer_event_length(event);
4766
4767 if (RB_WARN_ON(data->buffer, event_len < len))
4768 goto out;
4769
4770 item = ring_buffer_event_data(event);
4771 item->size = size;
4772 memcpy(item->str, rb_string, size);
4773
4774 if (nested) {
4775 data->bytes_alloc_nested += event_len;
4776 data->bytes_written_nested += len;
4777 data->events_nested++;
4778 if (!data->min_size_nested || len < data->min_size_nested)
4779 data->min_size_nested = len;
4780 if (len > data->max_size_nested)
4781 data->max_size_nested = len;
4782 } else {
4783 data->bytes_alloc += event_len;
4784 data->bytes_written += len;
4785 data->events++;
4786 if (!data->min_size || len < data->min_size)
4787 data->max_size = len;
4788 if (len > data->max_size)
4789 data->max_size = len;
4790 }
4791
4792 out:
4793 ring_buffer_unlock_commit(data->buffer, event);
4794
4795 return 0;
4796 }
4797
4798 static __init int rb_test(void *arg)
4799 {
4800 struct rb_test_data *data = arg;
4801
4802 while (!kthread_should_stop()) {
4803 rb_write_something(data, false);
4804 data->cnt++;
4805
4806 set_current_state(TASK_INTERRUPTIBLE);
4807 /* Now sleep between a min of 100-300us and a max of 1ms */
4808 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4809 }
4810
4811 return 0;
4812 }
4813
4814 static __init void rb_ipi(void *ignore)
4815 {
4816 struct rb_test_data *data;
4817 int cpu = smp_processor_id();
4818
4819 data = &rb_data[cpu];
4820 rb_write_something(data, true);
4821 }
4822
4823 static __init int rb_hammer_test(void *arg)
4824 {
4825 while (!kthread_should_stop()) {
4826
4827 /* Send an IPI to all cpus to write data! */
4828 smp_call_function(rb_ipi, NULL, 1);
4829 /* No sleep, but for non preempt, let others run */
4830 schedule();
4831 }
4832
4833 return 0;
4834 }
4835
4836 static __init int test_ringbuffer(void)
4837 {
4838 struct task_struct *rb_hammer;
4839 struct ring_buffer *buffer;
4840 int cpu;
4841 int ret = 0;
4842
4843 pr_info("Running ring buffer tests...\n");
4844
4845 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4846 if (WARN_ON(!buffer))
4847 return 0;
4848
4849 /* Disable buffer so that threads can't write to it yet */
4850 ring_buffer_record_off(buffer);
4851
4852 for_each_online_cpu(cpu) {
4853 rb_data[cpu].buffer = buffer;
4854 rb_data[cpu].cpu = cpu;
4855 rb_data[cpu].cnt = cpu;
4856 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4857 "rbtester/%d", cpu);
4858 if (WARN_ON(!rb_threads[cpu])) {
4859 pr_cont("FAILED\n");
4860 ret = -1;
4861 goto out_free;
4862 }
4863
4864 kthread_bind(rb_threads[cpu], cpu);
4865 wake_up_process(rb_threads[cpu]);
4866 }
4867
4868 /* Now create the rb hammer! */
4869 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4870 if (WARN_ON(!rb_hammer)) {
4871 pr_cont("FAILED\n");
4872 ret = -1;
4873 goto out_free;
4874 }
4875
4876 ring_buffer_record_on(buffer);
4877 /*
4878 * Show buffer is enabled before setting rb_test_started.
4879 * Yes there's a small race window where events could be
4880 * dropped and the thread wont catch it. But when a ring
4881 * buffer gets enabled, there will always be some kind of
4882 * delay before other CPUs see it. Thus, we don't care about
4883 * those dropped events. We care about events dropped after
4884 * the threads see that the buffer is active.
4885 */
4886 smp_wmb();
4887 rb_test_started = true;
4888
4889 set_current_state(TASK_INTERRUPTIBLE);
4890 /* Just run for 10 seconds */;
4891 schedule_timeout(10 * HZ);
4892
4893 kthread_stop(rb_hammer);
4894
4895 out_free:
4896 for_each_online_cpu(cpu) {
4897 if (!rb_threads[cpu])
4898 break;
4899 kthread_stop(rb_threads[cpu]);
4900 }
4901 if (ret) {
4902 ring_buffer_free(buffer);
4903 return ret;
4904 }
4905
4906 /* Report! */
4907 pr_info("finished\n");
4908 for_each_online_cpu(cpu) {
4909 struct ring_buffer_event *event;
4910 struct rb_test_data *data = &rb_data[cpu];
4911 struct rb_item *item;
4912 unsigned long total_events;
4913 unsigned long total_dropped;
4914 unsigned long total_written;
4915 unsigned long total_alloc;
4916 unsigned long total_read = 0;
4917 unsigned long total_size = 0;
4918 unsigned long total_len = 0;
4919 unsigned long total_lost = 0;
4920 unsigned long lost;
4921 int big_event_size;
4922 int small_event_size;
4923
4924 ret = -1;
4925
4926 total_events = data->events + data->events_nested;
4927 total_written = data->bytes_written + data->bytes_written_nested;
4928 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4929 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4930
4931 big_event_size = data->max_size + data->max_size_nested;
4932 small_event_size = data->min_size + data->min_size_nested;
4933
4934 pr_info("CPU %d:\n", cpu);
4935 pr_info(" events: %ld\n", total_events);
4936 pr_info(" dropped bytes: %ld\n", total_dropped);
4937 pr_info(" alloced bytes: %ld\n", total_alloc);
4938 pr_info(" written bytes: %ld\n", total_written);
4939 pr_info(" biggest event: %d\n", big_event_size);
4940 pr_info(" smallest event: %d\n", small_event_size);
4941
4942 if (RB_WARN_ON(buffer, total_dropped))
4943 break;
4944
4945 ret = 0;
4946
4947 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4948 total_lost += lost;
4949 item = ring_buffer_event_data(event);
4950 total_len += ring_buffer_event_length(event);
4951 total_size += item->size + sizeof(struct rb_item);
4952 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4953 pr_info("FAILED!\n");
4954 pr_info("buffer had: %.*s\n", item->size, item->str);
4955 pr_info("expected: %.*s\n", item->size, rb_string);
4956 RB_WARN_ON(buffer, 1);
4957 ret = -1;
4958 break;
4959 }
4960 total_read++;
4961 }
4962 if (ret)
4963 break;
4964
4965 ret = -1;
4966
4967 pr_info(" read events: %ld\n", total_read);
4968 pr_info(" lost events: %ld\n", total_lost);
4969 pr_info(" total events: %ld\n", total_lost + total_read);
4970 pr_info(" recorded len bytes: %ld\n", total_len);
4971 pr_info(" recorded size bytes: %ld\n", total_size);
4972 if (total_lost)
4973 pr_info(" With dropped events, record len and size may not match\n"
4974 " alloced and written from above\n");
4975 if (!total_lost) {
4976 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4977 total_size != total_written))
4978 break;
4979 }
4980 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4981 break;
4982
4983 ret = 0;
4984 }
4985 if (!ret)
4986 pr_info("Ring buffer PASSED!\n");
4987
4988 ring_buffer_free(buffer);
4989 return 0;
4990 }
4991
4992 late_initcall(test_ringbuffer);
4993 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.193941 seconds and 5 git commands to generate.