drm/i915: Stop tracking last calculated Sink CRC.
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31 * The ring buffer header is special. We must manually up keep it.
32 */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35 trace_seq_puts(s, "# compressed entry header\n");
36 trace_seq_puts(s, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s, "\tarray : 32 bits\n");
39 trace_seq_putc(s, '\n');
40 trace_seq_printf(s, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING);
42 trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND);
44 trace_seq_printf(s, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47 return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
55 *
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
59 *
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
63 *
64 * Here's some silly ASCII art.
65 *
66 * +------+
67 * |reader| RING BUFFER
68 * |page |
69 * +------+ +---+ +---+ +---+
70 * | |-->| |-->| |
71 * +---+ +---+ +---+
72 * ^ |
73 * | |
74 * +---------------+
75 *
76 *
77 * +------+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
81 * | |-->| |-->| |
82 * +---+ +---+ +---+
83 * ^ |
84 * | |
85 * +---------------+
86 *
87 *
88 * +------+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
92 * ^ | |-->| |-->| |
93 * | +---+ +---+ +---+
94 * | |
95 * | |
96 * +------------------------------+
97 *
98 *
99 * +------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
103 * ^ | | | |-->| |
104 * | New +---+ +---+ +---+
105 * | Reader------^ |
106 * | page |
107 * +------------------------------+
108 *
109 *
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
113 *
114 * We will be using cmpxchg soon to make all this lockless.
115 *
116 */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
134 #endif
135
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142 RB_LEN_TIME_EXTEND = 8,
143 RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156 /* padding has a NULL time_delta */
157 event->type_len = RINGBUF_TYPE_PADDING;
158 event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164 unsigned length;
165
166 if (event->type_len)
167 length = event->type_len * RB_ALIGNMENT;
168 else
169 length = event->array[0];
170 return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
176 * time extend.
177 */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181 switch (event->type_len) {
182 case RINGBUF_TYPE_PADDING:
183 if (rb_null_event(event))
184 /* undefined */
185 return -1;
186 return event->array[0] + RB_EVNT_HDR_SIZE;
187
188 case RINGBUF_TYPE_TIME_EXTEND:
189 return RB_LEN_TIME_EXTEND;
190
191 case RINGBUF_TYPE_TIME_STAMP:
192 return RB_LEN_TIME_STAMP;
193
194 case RINGBUF_TYPE_DATA:
195 return rb_event_data_length(event);
196 default:
197 BUG();
198 }
199 /* not hit */
200 return 0;
201 }
202
203 /*
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
206 */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210 unsigned len = 0;
211
212 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213 /* time extends include the data event after it */
214 len = RB_LEN_TIME_EXTEND;
215 event = skip_time_extend(event);
216 }
217 return len + rb_event_length(event);
218 }
219
220 /**
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
223 *
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
229 */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235 event = skip_time_extend(event);
236
237 length = rb_event_length(event);
238 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239 return length;
240 length -= RB_EVNT_HDR_SIZE;
241 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242 length -= sizeof(event->array[0]);
243 return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252 event = skip_time_extend(event);
253 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254 /* If length is in len field, then array[0] has the data */
255 if (event->type_len)
256 return (void *)&event->array[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event->array[1];
259 }
260
261 /**
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
264 */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267 return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT 27
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
282
283 struct buffer_data_page {
284 u64 time_stamp; /* page time stamp */
285 local_t commit; /* write committed index */
286 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
287 };
288
289 /*
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
295 * lockless.
296 */
297 struct buffer_page {
298 struct list_head list; /* list of buffer pages */
299 local_t write; /* index for next write */
300 unsigned read; /* index for next read */
301 local_t entries; /* entries on this page */
302 unsigned long real_end; /* real end of data */
303 struct buffer_data_page *page; /* Actual data page */
304 };
305
306 /*
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
311 *
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
315 *
316 * The counter is 20 bits, and the state data is 12.
317 */
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
320
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323 local_set(&bpage->commit, 0);
324 }
325
326 /**
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
329 *
330 * Returns the amount of data on the page, including buffer page header.
331 */
332 size_t ring_buffer_page_len(void *page)
333 {
334 return local_read(&((struct buffer_data_page *)page)->commit)
335 + BUF_PAGE_HDR_SIZE;
336 }
337
338 /*
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340 * this issue out.
341 */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344 free_page((unsigned long)bpage->page);
345 kfree(bpage);
346 }
347
348 /*
349 * We need to fit the time_stamp delta into 27 bits.
350 */
351 static inline int test_time_stamp(u64 delta)
352 {
353 if (delta & TS_DELTA_TEST)
354 return 1;
355 return 0;
356 }
357
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365 struct buffer_data_page field;
366
367 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field.time_stamp),
370 (unsigned int)is_signed_type(u64));
371
372 trace_seq_printf(s, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field), commit),
375 (unsigned int)sizeof(field.commit),
376 (unsigned int)is_signed_type(long));
377
378 trace_seq_printf(s, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 1,
382 (unsigned int)is_signed_type(long));
383
384 trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE,
388 (unsigned int)is_signed_type(char));
389
390 return !trace_seq_has_overflowed(s);
391 }
392
393 struct rb_irq_work {
394 struct irq_work work;
395 wait_queue_head_t waiters;
396 wait_queue_head_t full_waiters;
397 bool waiters_pending;
398 bool full_waiters_pending;
399 bool wakeup_full;
400 };
401
402 /*
403 * Structure to hold event state and handle nested events.
404 */
405 struct rb_event_info {
406 u64 ts;
407 u64 delta;
408 unsigned long length;
409 struct buffer_page *tail_page;
410 int add_timestamp;
411 };
412
413 /*
414 * Used for which event context the event is in.
415 * NMI = 0
416 * IRQ = 1
417 * SOFTIRQ = 2
418 * NORMAL = 3
419 *
420 * See trace_recursive_lock() comment below for more details.
421 */
422 enum {
423 RB_CTX_NMI,
424 RB_CTX_IRQ,
425 RB_CTX_SOFTIRQ,
426 RB_CTX_NORMAL,
427 RB_CTX_MAX
428 };
429
430 /*
431 * head_page == tail_page && head == tail then buffer is empty.
432 */
433 struct ring_buffer_per_cpu {
434 int cpu;
435 atomic_t record_disabled;
436 struct ring_buffer *buffer;
437 raw_spinlock_t reader_lock; /* serialize readers */
438 arch_spinlock_t lock;
439 struct lock_class_key lock_key;
440 unsigned int nr_pages;
441 unsigned int current_context;
442 struct list_head *pages;
443 struct buffer_page *head_page; /* read from head */
444 struct buffer_page *tail_page; /* write to tail */
445 struct buffer_page *commit_page; /* committed pages */
446 struct buffer_page *reader_page;
447 unsigned long lost_events;
448 unsigned long last_overrun;
449 local_t entries_bytes;
450 local_t entries;
451 local_t overrun;
452 local_t commit_overrun;
453 local_t dropped_events;
454 local_t committing;
455 local_t commits;
456 unsigned long read;
457 unsigned long read_bytes;
458 u64 write_stamp;
459 u64 read_stamp;
460 /* ring buffer pages to update, > 0 to add, < 0 to remove */
461 int nr_pages_to_update;
462 struct list_head new_pages; /* new pages to add */
463 struct work_struct update_pages_work;
464 struct completion update_done;
465
466 struct rb_irq_work irq_work;
467 };
468
469 struct ring_buffer {
470 unsigned flags;
471 int cpus;
472 atomic_t record_disabled;
473 atomic_t resize_disabled;
474 cpumask_var_t cpumask;
475
476 struct lock_class_key *reader_lock_key;
477
478 struct mutex mutex;
479
480 struct ring_buffer_per_cpu **buffers;
481
482 #ifdef CONFIG_HOTPLUG_CPU
483 struct notifier_block cpu_notify;
484 #endif
485 u64 (*clock)(void);
486
487 struct rb_irq_work irq_work;
488 };
489
490 struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
496 u64 read_stamp;
497 };
498
499 /*
500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501 *
502 * Schedules a delayed work to wake up any task that is blocked on the
503 * ring buffer waiters queue.
504 */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509 wake_up_all(&rbwork->waiters);
510 if (rbwork->wakeup_full) {
511 rbwork->wakeup_full = false;
512 wake_up_all(&rbwork->full_waiters);
513 }
514 }
515
516 /**
517 * ring_buffer_wait - wait for input to the ring buffer
518 * @buffer: buffer to wait on
519 * @cpu: the cpu buffer to wait on
520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521 *
522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523 * as data is added to any of the @buffer's cpu buffers. Otherwise
524 * it will wait for data to be added to a specific cpu buffer.
525 */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529 DEFINE_WAIT(wait);
530 struct rb_irq_work *work;
531 int ret = 0;
532
533 /*
534 * Depending on what the caller is waiting for, either any
535 * data in any cpu buffer, or a specific buffer, put the
536 * caller on the appropriate wait queue.
537 */
538 if (cpu == RING_BUFFER_ALL_CPUS) {
539 work = &buffer->irq_work;
540 /* Full only makes sense on per cpu reads */
541 full = false;
542 } else {
543 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544 return -ENODEV;
545 cpu_buffer = buffer->buffers[cpu];
546 work = &cpu_buffer->irq_work;
547 }
548
549
550 while (true) {
551 if (full)
552 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553 else
554 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556 /*
557 * The events can happen in critical sections where
558 * checking a work queue can cause deadlocks.
559 * After adding a task to the queue, this flag is set
560 * only to notify events to try to wake up the queue
561 * using irq_work.
562 *
563 * We don't clear it even if the buffer is no longer
564 * empty. The flag only causes the next event to run
565 * irq_work to do the work queue wake up. The worse
566 * that can happen if we race with !trace_empty() is that
567 * an event will cause an irq_work to try to wake up
568 * an empty queue.
569 *
570 * There's no reason to protect this flag either, as
571 * the work queue and irq_work logic will do the necessary
572 * synchronization for the wake ups. The only thing
573 * that is necessary is that the wake up happens after
574 * a task has been queued. It's OK for spurious wake ups.
575 */
576 if (full)
577 work->full_waiters_pending = true;
578 else
579 work->waiters_pending = true;
580
581 if (signal_pending(current)) {
582 ret = -EINTR;
583 break;
584 }
585
586 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587 break;
588
589 if (cpu != RING_BUFFER_ALL_CPUS &&
590 !ring_buffer_empty_cpu(buffer, cpu)) {
591 unsigned long flags;
592 bool pagebusy;
593
594 if (!full)
595 break;
596
597 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601 if (!pagebusy)
602 break;
603 }
604
605 schedule();
606 }
607
608 if (full)
609 finish_wait(&work->full_waiters, &wait);
610 else
611 finish_wait(&work->waiters, &wait);
612
613 return ret;
614 }
615
616 /**
617 * ring_buffer_poll_wait - poll on buffer input
618 * @buffer: buffer to wait on
619 * @cpu: the cpu buffer to wait on
620 * @filp: the file descriptor
621 * @poll_table: The poll descriptor
622 *
623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624 * as data is added to any of the @buffer's cpu buffers. Otherwise
625 * it will wait for data to be added to a specific cpu buffer.
626 *
627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628 * zero otherwise.
629 */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631 struct file *filp, poll_table *poll_table)
632 {
633 struct ring_buffer_per_cpu *cpu_buffer;
634 struct rb_irq_work *work;
635
636 if (cpu == RING_BUFFER_ALL_CPUS)
637 work = &buffer->irq_work;
638 else {
639 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640 return -EINVAL;
641
642 cpu_buffer = buffer->buffers[cpu];
643 work = &cpu_buffer->irq_work;
644 }
645
646 poll_wait(filp, &work->waiters, poll_table);
647 work->waiters_pending = true;
648 /*
649 * There's a tight race between setting the waiters_pending and
650 * checking if the ring buffer is empty. Once the waiters_pending bit
651 * is set, the next event will wake the task up, but we can get stuck
652 * if there's only a single event in.
653 *
654 * FIXME: Ideally, we need a memory barrier on the writer side as well,
655 * but adding a memory barrier to all events will cause too much of a
656 * performance hit in the fast path. We only need a memory barrier when
657 * the buffer goes from empty to having content. But as this race is
658 * extremely small, and it's not a problem if another event comes in, we
659 * will fix it later.
660 */
661 smp_mb();
662
663 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665 return POLLIN | POLLRDNORM;
666 return 0;
667 }
668
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond) \
671 ({ \
672 int _____ret = unlikely(cond); \
673 if (_____ret) { \
674 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675 struct ring_buffer_per_cpu *__b = \
676 (void *)b; \
677 atomic_inc(&__b->buffer->record_disabled); \
678 } else \
679 atomic_inc(&b->record_disabled); \
680 WARN_ON(1); \
681 } \
682 _____ret; \
683 })
684
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690 /* shift to debug/test normalization and TIME_EXTENTS */
691 return buffer->clock() << DEBUG_SHIFT;
692 }
693
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696 u64 time;
697
698 preempt_disable_notrace();
699 time = rb_time_stamp(buffer);
700 preempt_enable_no_resched_notrace();
701
702 return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707 int cpu, u64 *ts)
708 {
709 /* Just stupid testing the normalize function and deltas */
710 *ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714 /*
715 * Making the ring buffer lockless makes things tricky.
716 * Although writes only happen on the CPU that they are on,
717 * and they only need to worry about interrupts. Reads can
718 * happen on any CPU.
719 *
720 * The reader page is always off the ring buffer, but when the
721 * reader finishes with a page, it needs to swap its page with
722 * a new one from the buffer. The reader needs to take from
723 * the head (writes go to the tail). But if a writer is in overwrite
724 * mode and wraps, it must push the head page forward.
725 *
726 * Here lies the problem.
727 *
728 * The reader must be careful to replace only the head page, and
729 * not another one. As described at the top of the file in the
730 * ASCII art, the reader sets its old page to point to the next
731 * page after head. It then sets the page after head to point to
732 * the old reader page. But if the writer moves the head page
733 * during this operation, the reader could end up with the tail.
734 *
735 * We use cmpxchg to help prevent this race. We also do something
736 * special with the page before head. We set the LSB to 1.
737 *
738 * When the writer must push the page forward, it will clear the
739 * bit that points to the head page, move the head, and then set
740 * the bit that points to the new head page.
741 *
742 * We also don't want an interrupt coming in and moving the head
743 * page on another writer. Thus we use the second LSB to catch
744 * that too. Thus:
745 *
746 * head->list->prev->next bit 1 bit 0
747 * ------- -------
748 * Normal page 0 0
749 * Points to head page 0 1
750 * New head page 1 0
751 *
752 * Note we can not trust the prev pointer of the head page, because:
753 *
754 * +----+ +-----+ +-----+
755 * | |------>| T |---X--->| N |
756 * | |<------| | | |
757 * +----+ +-----+ +-----+
758 * ^ ^ |
759 * | +-----+ | |
760 * +----------| R |----------+ |
761 * | |<-----------+
762 * +-----+
763 *
764 * Key: ---X--> HEAD flag set in pointer
765 * T Tail page
766 * R Reader page
767 * N Next page
768 *
769 * (see __rb_reserve_next() to see where this happens)
770 *
771 * What the above shows is that the reader just swapped out
772 * the reader page with a page in the buffer, but before it
773 * could make the new header point back to the new page added
774 * it was preempted by a writer. The writer moved forward onto
775 * the new page added by the reader and is about to move forward
776 * again.
777 *
778 * You can see, it is legitimate for the previous pointer of
779 * the head (or any page) not to point back to itself. But only
780 * temporarially.
781 */
782
783 #define RB_PAGE_NORMAL 0UL
784 #define RB_PAGE_HEAD 1UL
785 #define RB_PAGE_UPDATE 2UL
786
787
788 #define RB_FLAG_MASK 3UL
789
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED 4UL
792
793 /*
794 * rb_list_head - remove any bit
795 */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798 unsigned long val = (unsigned long)list;
799
800 return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802
803 /*
804 * rb_is_head_page - test if the given page is the head page
805 *
806 * Because the reader may move the head_page pointer, we can
807 * not trust what the head page is (it may be pointing to
808 * the reader page). But if the next page is a header page,
809 * its flags will be non zero.
810 */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813 struct buffer_page *page, struct list_head *list)
814 {
815 unsigned long val;
816
817 val = (unsigned long)list->next;
818
819 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820 return RB_PAGE_MOVED;
821
822 return val & RB_FLAG_MASK;
823 }
824
825 /*
826 * rb_is_reader_page
827 *
828 * The unique thing about the reader page, is that, if the
829 * writer is ever on it, the previous pointer never points
830 * back to the reader page.
831 */
832 static int rb_is_reader_page(struct buffer_page *page)
833 {
834 struct list_head *list = page->list.prev;
835
836 return rb_list_head(list->next) != &page->list;
837 }
838
839 /*
840 * rb_set_list_to_head - set a list_head to be pointing to head.
841 */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843 struct list_head *list)
844 {
845 unsigned long *ptr;
846
847 ptr = (unsigned long *)&list->next;
848 *ptr |= RB_PAGE_HEAD;
849 *ptr &= ~RB_PAGE_UPDATE;
850 }
851
852 /*
853 * rb_head_page_activate - sets up head page
854 */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857 struct buffer_page *head;
858
859 head = cpu_buffer->head_page;
860 if (!head)
861 return;
862
863 /*
864 * Set the previous list pointer to have the HEAD flag.
865 */
866 rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868
869 static void rb_list_head_clear(struct list_head *list)
870 {
871 unsigned long *ptr = (unsigned long *)&list->next;
872
873 *ptr &= ~RB_FLAG_MASK;
874 }
875
876 /*
877 * rb_head_page_dactivate - clears head page ptr (for free list)
878 */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882 struct list_head *hd;
883
884 /* Go through the whole list and clear any pointers found. */
885 rb_list_head_clear(cpu_buffer->pages);
886
887 list_for_each(hd, cpu_buffer->pages)
888 rb_list_head_clear(hd);
889 }
890
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892 struct buffer_page *head,
893 struct buffer_page *prev,
894 int old_flag, int new_flag)
895 {
896 struct list_head *list;
897 unsigned long val = (unsigned long)&head->list;
898 unsigned long ret;
899
900 list = &prev->list;
901
902 val &= ~RB_FLAG_MASK;
903
904 ret = cmpxchg((unsigned long *)&list->next,
905 val | old_flag, val | new_flag);
906
907 /* check if the reader took the page */
908 if ((ret & ~RB_FLAG_MASK) != val)
909 return RB_PAGE_MOVED;
910
911 return ret & RB_FLAG_MASK;
912 }
913
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page *head,
916 struct buffer_page *prev,
917 int old_flag)
918 {
919 return rb_head_page_set(cpu_buffer, head, prev,
920 old_flag, RB_PAGE_UPDATE);
921 }
922
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924 struct buffer_page *head,
925 struct buffer_page *prev,
926 int old_flag)
927 {
928 return rb_head_page_set(cpu_buffer, head, prev,
929 old_flag, RB_PAGE_HEAD);
930 }
931
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933 struct buffer_page *head,
934 struct buffer_page *prev,
935 int old_flag)
936 {
937 return rb_head_page_set(cpu_buffer, head, prev,
938 old_flag, RB_PAGE_NORMAL);
939 }
940
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942 struct buffer_page **bpage)
943 {
944 struct list_head *p = rb_list_head((*bpage)->list.next);
945
946 *bpage = list_entry(p, struct buffer_page, list);
947 }
948
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952 struct buffer_page *head;
953 struct buffer_page *page;
954 struct list_head *list;
955 int i;
956
957 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958 return NULL;
959
960 /* sanity check */
961 list = cpu_buffer->pages;
962 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963 return NULL;
964
965 page = head = cpu_buffer->head_page;
966 /*
967 * It is possible that the writer moves the header behind
968 * where we started, and we miss in one loop.
969 * A second loop should grab the header, but we'll do
970 * three loops just because I'm paranoid.
971 */
972 for (i = 0; i < 3; i++) {
973 do {
974 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975 cpu_buffer->head_page = page;
976 return page;
977 }
978 rb_inc_page(cpu_buffer, &page);
979 } while (page != head);
980 }
981
982 RB_WARN_ON(cpu_buffer, 1);
983
984 return NULL;
985 }
986
987 static int rb_head_page_replace(struct buffer_page *old,
988 struct buffer_page *new)
989 {
990 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991 unsigned long val;
992 unsigned long ret;
993
994 val = *ptr & ~RB_FLAG_MASK;
995 val |= RB_PAGE_HEAD;
996
997 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999 return ret == val;
1000 }
1001
1002 /*
1003 * rb_tail_page_update - move the tail page forward
1004 *
1005 * Returns 1 if moved tail page, 0 if someone else did.
1006 */
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008 struct buffer_page *tail_page,
1009 struct buffer_page *next_page)
1010 {
1011 struct buffer_page *old_tail;
1012 unsigned long old_entries;
1013 unsigned long old_write;
1014 int ret = 0;
1015
1016 /*
1017 * The tail page now needs to be moved forward.
1018 *
1019 * We need to reset the tail page, but without messing
1020 * with possible erasing of data brought in by interrupts
1021 * that have moved the tail page and are currently on it.
1022 *
1023 * We add a counter to the write field to denote this.
1024 */
1025 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028 /*
1029 * Just make sure we have seen our old_write and synchronize
1030 * with any interrupts that come in.
1031 */
1032 barrier();
1033
1034 /*
1035 * If the tail page is still the same as what we think
1036 * it is, then it is up to us to update the tail
1037 * pointer.
1038 */
1039 if (tail_page == cpu_buffer->tail_page) {
1040 /* Zero the write counter */
1041 unsigned long val = old_write & ~RB_WRITE_MASK;
1042 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044 /*
1045 * This will only succeed if an interrupt did
1046 * not come in and change it. In which case, we
1047 * do not want to modify it.
1048 *
1049 * We add (void) to let the compiler know that we do not care
1050 * about the return value of these functions. We use the
1051 * cmpxchg to only update if an interrupt did not already
1052 * do it for us. If the cmpxchg fails, we don't care.
1053 */
1054 (void)local_cmpxchg(&next_page->write, old_write, val);
1055 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056
1057 /*
1058 * No need to worry about races with clearing out the commit.
1059 * it only can increment when a commit takes place. But that
1060 * only happens in the outer most nested commit.
1061 */
1062 local_set(&next_page->page->commit, 0);
1063
1064 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065 tail_page, next_page);
1066
1067 if (old_tail == tail_page)
1068 ret = 1;
1069 }
1070
1071 return ret;
1072 }
1073
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075 struct buffer_page *bpage)
1076 {
1077 unsigned long val = (unsigned long)bpage;
1078
1079 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080 return 1;
1081
1082 return 0;
1083 }
1084
1085 /**
1086 * rb_check_list - make sure a pointer to a list has the last bits zero
1087 */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089 struct list_head *list)
1090 {
1091 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092 return 1;
1093 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094 return 1;
1095 return 0;
1096 }
1097
1098 /**
1099 * rb_check_pages - integrity check of buffer pages
1100 * @cpu_buffer: CPU buffer with pages to test
1101 *
1102 * As a safety measure we check to make sure the data pages have not
1103 * been corrupted.
1104 */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107 struct list_head *head = cpu_buffer->pages;
1108 struct buffer_page *bpage, *tmp;
1109
1110 /* Reset the head page if it exists */
1111 if (cpu_buffer->head_page)
1112 rb_set_head_page(cpu_buffer);
1113
1114 rb_head_page_deactivate(cpu_buffer);
1115
1116 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119 return -1;
1120
1121 if (rb_check_list(cpu_buffer, head))
1122 return -1;
1123
1124 list_for_each_entry_safe(bpage, tmp, head, list) {
1125 if (RB_WARN_ON(cpu_buffer,
1126 bpage->list.next->prev != &bpage->list))
1127 return -1;
1128 if (RB_WARN_ON(cpu_buffer,
1129 bpage->list.prev->next != &bpage->list))
1130 return -1;
1131 if (rb_check_list(cpu_buffer, &bpage->list))
1132 return -1;
1133 }
1134
1135 rb_head_page_activate(cpu_buffer);
1136
1137 return 0;
1138 }
1139
1140 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1141 {
1142 int i;
1143 struct buffer_page *bpage, *tmp;
1144
1145 for (i = 0; i < nr_pages; i++) {
1146 struct page *page;
1147 /*
1148 * __GFP_NORETRY flag makes sure that the allocation fails
1149 * gracefully without invoking oom-killer and the system is
1150 * not destabilized.
1151 */
1152 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1153 GFP_KERNEL | __GFP_NORETRY,
1154 cpu_to_node(cpu));
1155 if (!bpage)
1156 goto free_pages;
1157
1158 list_add(&bpage->list, pages);
1159
1160 page = alloc_pages_node(cpu_to_node(cpu),
1161 GFP_KERNEL | __GFP_NORETRY, 0);
1162 if (!page)
1163 goto free_pages;
1164 bpage->page = page_address(page);
1165 rb_init_page(bpage->page);
1166 }
1167
1168 return 0;
1169
1170 free_pages:
1171 list_for_each_entry_safe(bpage, tmp, pages, list) {
1172 list_del_init(&bpage->list);
1173 free_buffer_page(bpage);
1174 }
1175
1176 return -ENOMEM;
1177 }
1178
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180 unsigned nr_pages)
1181 {
1182 LIST_HEAD(pages);
1183
1184 WARN_ON(!nr_pages);
1185
1186 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187 return -ENOMEM;
1188
1189 /*
1190 * The ring buffer page list is a circular list that does not
1191 * start and end with a list head. All page list items point to
1192 * other pages.
1193 */
1194 cpu_buffer->pages = pages.next;
1195 list_del(&pages);
1196
1197 cpu_buffer->nr_pages = nr_pages;
1198
1199 rb_check_pages(cpu_buffer);
1200
1201 return 0;
1202 }
1203
1204 static struct ring_buffer_per_cpu *
1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1206 {
1207 struct ring_buffer_per_cpu *cpu_buffer;
1208 struct buffer_page *bpage;
1209 struct page *page;
1210 int ret;
1211
1212 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213 GFP_KERNEL, cpu_to_node(cpu));
1214 if (!cpu_buffer)
1215 return NULL;
1216
1217 cpu_buffer->cpu = cpu;
1218 cpu_buffer->buffer = buffer;
1219 raw_spin_lock_init(&cpu_buffer->reader_lock);
1220 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1221 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1222 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1223 init_completion(&cpu_buffer->update_done);
1224 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1225 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1226 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1227
1228 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229 GFP_KERNEL, cpu_to_node(cpu));
1230 if (!bpage)
1231 goto fail_free_buffer;
1232
1233 rb_check_bpage(cpu_buffer, bpage);
1234
1235 cpu_buffer->reader_page = bpage;
1236 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237 if (!page)
1238 goto fail_free_reader;
1239 bpage->page = page_address(page);
1240 rb_init_page(bpage->page);
1241
1242 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1243 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1244
1245 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1246 if (ret < 0)
1247 goto fail_free_reader;
1248
1249 cpu_buffer->head_page
1250 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1251 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1252
1253 rb_head_page_activate(cpu_buffer);
1254
1255 return cpu_buffer;
1256
1257 fail_free_reader:
1258 free_buffer_page(cpu_buffer->reader_page);
1259
1260 fail_free_buffer:
1261 kfree(cpu_buffer);
1262 return NULL;
1263 }
1264
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266 {
1267 struct list_head *head = cpu_buffer->pages;
1268 struct buffer_page *bpage, *tmp;
1269
1270 free_buffer_page(cpu_buffer->reader_page);
1271
1272 rb_head_page_deactivate(cpu_buffer);
1273
1274 if (head) {
1275 list_for_each_entry_safe(bpage, tmp, head, list) {
1276 list_del_init(&bpage->list);
1277 free_buffer_page(bpage);
1278 }
1279 bpage = list_entry(head, struct buffer_page, list);
1280 free_buffer_page(bpage);
1281 }
1282
1283 kfree(cpu_buffer);
1284 }
1285
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block *self,
1288 unsigned long action, void *hcpu);
1289 #endif
1290
1291 /**
1292 * __ring_buffer_alloc - allocate a new ring_buffer
1293 * @size: the size in bytes per cpu that is needed.
1294 * @flags: attributes to set for the ring buffer.
1295 *
1296 * Currently the only flag that is available is the RB_FL_OVERWRITE
1297 * flag. This flag means that the buffer will overwrite old data
1298 * when the buffer wraps. If this flag is not set, the buffer will
1299 * drop data when the tail hits the head.
1300 */
1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302 struct lock_class_key *key)
1303 {
1304 struct ring_buffer *buffer;
1305 int bsize;
1306 int cpu, nr_pages;
1307
1308 /* keep it in its own cache line */
1309 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1310 GFP_KERNEL);
1311 if (!buffer)
1312 return NULL;
1313
1314 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1315 goto fail_free_buffer;
1316
1317 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1318 buffer->flags = flags;
1319 buffer->clock = trace_clock_local;
1320 buffer->reader_lock_key = key;
1321
1322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1323 init_waitqueue_head(&buffer->irq_work.waiters);
1324
1325 /* need at least two pages */
1326 if (nr_pages < 2)
1327 nr_pages = 2;
1328
1329 /*
1330 * In case of non-hotplug cpu, if the ring-buffer is allocated
1331 * in early initcall, it will not be notified of secondary cpus.
1332 * In that off case, we need to allocate for all possible cpus.
1333 */
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 cpu_notifier_register_begin();
1336 cpumask_copy(buffer->cpumask, cpu_online_mask);
1337 #else
1338 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1339 #endif
1340 buffer->cpus = nr_cpu_ids;
1341
1342 bsize = sizeof(void *) * nr_cpu_ids;
1343 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1344 GFP_KERNEL);
1345 if (!buffer->buffers)
1346 goto fail_free_cpumask;
1347
1348 for_each_buffer_cpu(buffer, cpu) {
1349 buffer->buffers[cpu] =
1350 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1351 if (!buffer->buffers[cpu])
1352 goto fail_free_buffers;
1353 }
1354
1355 #ifdef CONFIG_HOTPLUG_CPU
1356 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1357 buffer->cpu_notify.priority = 0;
1358 __register_cpu_notifier(&buffer->cpu_notify);
1359 cpu_notifier_register_done();
1360 #endif
1361
1362 mutex_init(&buffer->mutex);
1363
1364 return buffer;
1365
1366 fail_free_buffers:
1367 for_each_buffer_cpu(buffer, cpu) {
1368 if (buffer->buffers[cpu])
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1370 }
1371 kfree(buffer->buffers);
1372
1373 fail_free_cpumask:
1374 free_cpumask_var(buffer->cpumask);
1375 #ifdef CONFIG_HOTPLUG_CPU
1376 cpu_notifier_register_done();
1377 #endif
1378
1379 fail_free_buffer:
1380 kfree(buffer);
1381 return NULL;
1382 }
1383 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1384
1385 /**
1386 * ring_buffer_free - free a ring buffer.
1387 * @buffer: the buffer to free.
1388 */
1389 void
1390 ring_buffer_free(struct ring_buffer *buffer)
1391 {
1392 int cpu;
1393
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 cpu_notifier_register_begin();
1396 __unregister_cpu_notifier(&buffer->cpu_notify);
1397 #endif
1398
1399 for_each_buffer_cpu(buffer, cpu)
1400 rb_free_cpu_buffer(buffer->buffers[cpu]);
1401
1402 #ifdef CONFIG_HOTPLUG_CPU
1403 cpu_notifier_register_done();
1404 #endif
1405
1406 kfree(buffer->buffers);
1407 free_cpumask_var(buffer->cpumask);
1408
1409 kfree(buffer);
1410 }
1411 EXPORT_SYMBOL_GPL(ring_buffer_free);
1412
1413 void ring_buffer_set_clock(struct ring_buffer *buffer,
1414 u64 (*clock)(void))
1415 {
1416 buffer->clock = clock;
1417 }
1418
1419 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1420
1421 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1422 {
1423 return local_read(&bpage->entries) & RB_WRITE_MASK;
1424 }
1425
1426 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1427 {
1428 return local_read(&bpage->write) & RB_WRITE_MASK;
1429 }
1430
1431 static int
1432 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1433 {
1434 struct list_head *tail_page, *to_remove, *next_page;
1435 struct buffer_page *to_remove_page, *tmp_iter_page;
1436 struct buffer_page *last_page, *first_page;
1437 unsigned int nr_removed;
1438 unsigned long head_bit;
1439 int page_entries;
1440
1441 head_bit = 0;
1442
1443 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1444 atomic_inc(&cpu_buffer->record_disabled);
1445 /*
1446 * We don't race with the readers since we have acquired the reader
1447 * lock. We also don't race with writers after disabling recording.
1448 * This makes it easy to figure out the first and the last page to be
1449 * removed from the list. We unlink all the pages in between including
1450 * the first and last pages. This is done in a busy loop so that we
1451 * lose the least number of traces.
1452 * The pages are freed after we restart recording and unlock readers.
1453 */
1454 tail_page = &cpu_buffer->tail_page->list;
1455
1456 /*
1457 * tail page might be on reader page, we remove the next page
1458 * from the ring buffer
1459 */
1460 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1461 tail_page = rb_list_head(tail_page->next);
1462 to_remove = tail_page;
1463
1464 /* start of pages to remove */
1465 first_page = list_entry(rb_list_head(to_remove->next),
1466 struct buffer_page, list);
1467
1468 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1469 to_remove = rb_list_head(to_remove)->next;
1470 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1471 }
1472
1473 next_page = rb_list_head(to_remove)->next;
1474
1475 /*
1476 * Now we remove all pages between tail_page and next_page.
1477 * Make sure that we have head_bit value preserved for the
1478 * next page
1479 */
1480 tail_page->next = (struct list_head *)((unsigned long)next_page |
1481 head_bit);
1482 next_page = rb_list_head(next_page);
1483 next_page->prev = tail_page;
1484
1485 /* make sure pages points to a valid page in the ring buffer */
1486 cpu_buffer->pages = next_page;
1487
1488 /* update head page */
1489 if (head_bit)
1490 cpu_buffer->head_page = list_entry(next_page,
1491 struct buffer_page, list);
1492
1493 /*
1494 * change read pointer to make sure any read iterators reset
1495 * themselves
1496 */
1497 cpu_buffer->read = 0;
1498
1499 /* pages are removed, resume tracing and then free the pages */
1500 atomic_dec(&cpu_buffer->record_disabled);
1501 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1502
1503 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1504
1505 /* last buffer page to remove */
1506 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1507 list);
1508 tmp_iter_page = first_page;
1509
1510 do {
1511 to_remove_page = tmp_iter_page;
1512 rb_inc_page(cpu_buffer, &tmp_iter_page);
1513
1514 /* update the counters */
1515 page_entries = rb_page_entries(to_remove_page);
1516 if (page_entries) {
1517 /*
1518 * If something was added to this page, it was full
1519 * since it is not the tail page. So we deduct the
1520 * bytes consumed in ring buffer from here.
1521 * Increment overrun to account for the lost events.
1522 */
1523 local_add(page_entries, &cpu_buffer->overrun);
1524 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1525 }
1526
1527 /*
1528 * We have already removed references to this list item, just
1529 * free up the buffer_page and its page
1530 */
1531 free_buffer_page(to_remove_page);
1532 nr_removed--;
1533
1534 } while (to_remove_page != last_page);
1535
1536 RB_WARN_ON(cpu_buffer, nr_removed);
1537
1538 return nr_removed == 0;
1539 }
1540
1541 static int
1542 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1543 {
1544 struct list_head *pages = &cpu_buffer->new_pages;
1545 int retries, success;
1546
1547 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1548 /*
1549 * We are holding the reader lock, so the reader page won't be swapped
1550 * in the ring buffer. Now we are racing with the writer trying to
1551 * move head page and the tail page.
1552 * We are going to adapt the reader page update process where:
1553 * 1. We first splice the start and end of list of new pages between
1554 * the head page and its previous page.
1555 * 2. We cmpxchg the prev_page->next to point from head page to the
1556 * start of new pages list.
1557 * 3. Finally, we update the head->prev to the end of new list.
1558 *
1559 * We will try this process 10 times, to make sure that we don't keep
1560 * spinning.
1561 */
1562 retries = 10;
1563 success = 0;
1564 while (retries--) {
1565 struct list_head *head_page, *prev_page, *r;
1566 struct list_head *last_page, *first_page;
1567 struct list_head *head_page_with_bit;
1568
1569 head_page = &rb_set_head_page(cpu_buffer)->list;
1570 if (!head_page)
1571 break;
1572 prev_page = head_page->prev;
1573
1574 first_page = pages->next;
1575 last_page = pages->prev;
1576
1577 head_page_with_bit = (struct list_head *)
1578 ((unsigned long)head_page | RB_PAGE_HEAD);
1579
1580 last_page->next = head_page_with_bit;
1581 first_page->prev = prev_page;
1582
1583 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1584
1585 if (r == head_page_with_bit) {
1586 /*
1587 * yay, we replaced the page pointer to our new list,
1588 * now, we just have to update to head page's prev
1589 * pointer to point to end of list
1590 */
1591 head_page->prev = last_page;
1592 success = 1;
1593 break;
1594 }
1595 }
1596
1597 if (success)
1598 INIT_LIST_HEAD(pages);
1599 /*
1600 * If we weren't successful in adding in new pages, warn and stop
1601 * tracing
1602 */
1603 RB_WARN_ON(cpu_buffer, !success);
1604 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1605
1606 /* free pages if they weren't inserted */
1607 if (!success) {
1608 struct buffer_page *bpage, *tmp;
1609 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1610 list) {
1611 list_del_init(&bpage->list);
1612 free_buffer_page(bpage);
1613 }
1614 }
1615 return success;
1616 }
1617
1618 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1619 {
1620 int success;
1621
1622 if (cpu_buffer->nr_pages_to_update > 0)
1623 success = rb_insert_pages(cpu_buffer);
1624 else
1625 success = rb_remove_pages(cpu_buffer,
1626 -cpu_buffer->nr_pages_to_update);
1627
1628 if (success)
1629 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1630 }
1631
1632 static void update_pages_handler(struct work_struct *work)
1633 {
1634 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1635 struct ring_buffer_per_cpu, update_pages_work);
1636 rb_update_pages(cpu_buffer);
1637 complete(&cpu_buffer->update_done);
1638 }
1639
1640 /**
1641 * ring_buffer_resize - resize the ring buffer
1642 * @buffer: the buffer to resize.
1643 * @size: the new size.
1644 * @cpu_id: the cpu buffer to resize
1645 *
1646 * Minimum size is 2 * BUF_PAGE_SIZE.
1647 *
1648 * Returns 0 on success and < 0 on failure.
1649 */
1650 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1651 int cpu_id)
1652 {
1653 struct ring_buffer_per_cpu *cpu_buffer;
1654 unsigned nr_pages;
1655 int cpu, err = 0;
1656
1657 /*
1658 * Always succeed at resizing a non-existent buffer:
1659 */
1660 if (!buffer)
1661 return size;
1662
1663 /* Make sure the requested buffer exists */
1664 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1665 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1666 return size;
1667
1668 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1669 size *= BUF_PAGE_SIZE;
1670
1671 /* we need a minimum of two pages */
1672 if (size < BUF_PAGE_SIZE * 2)
1673 size = BUF_PAGE_SIZE * 2;
1674
1675 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1676
1677 /*
1678 * Don't succeed if resizing is disabled, as a reader might be
1679 * manipulating the ring buffer and is expecting a sane state while
1680 * this is true.
1681 */
1682 if (atomic_read(&buffer->resize_disabled))
1683 return -EBUSY;
1684
1685 /* prevent another thread from changing buffer sizes */
1686 mutex_lock(&buffer->mutex);
1687
1688 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1689 /* calculate the pages to update */
1690 for_each_buffer_cpu(buffer, cpu) {
1691 cpu_buffer = buffer->buffers[cpu];
1692
1693 cpu_buffer->nr_pages_to_update = nr_pages -
1694 cpu_buffer->nr_pages;
1695 /*
1696 * nothing more to do for removing pages or no update
1697 */
1698 if (cpu_buffer->nr_pages_to_update <= 0)
1699 continue;
1700 /*
1701 * to add pages, make sure all new pages can be
1702 * allocated without receiving ENOMEM
1703 */
1704 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1705 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1706 &cpu_buffer->new_pages, cpu)) {
1707 /* not enough memory for new pages */
1708 err = -ENOMEM;
1709 goto out_err;
1710 }
1711 }
1712
1713 get_online_cpus();
1714 /*
1715 * Fire off all the required work handlers
1716 * We can't schedule on offline CPUs, but it's not necessary
1717 * since we can change their buffer sizes without any race.
1718 */
1719 for_each_buffer_cpu(buffer, cpu) {
1720 cpu_buffer = buffer->buffers[cpu];
1721 if (!cpu_buffer->nr_pages_to_update)
1722 continue;
1723
1724 /* Can't run something on an offline CPU. */
1725 if (!cpu_online(cpu)) {
1726 rb_update_pages(cpu_buffer);
1727 cpu_buffer->nr_pages_to_update = 0;
1728 } else {
1729 schedule_work_on(cpu,
1730 &cpu_buffer->update_pages_work);
1731 }
1732 }
1733
1734 /* wait for all the updates to complete */
1735 for_each_buffer_cpu(buffer, cpu) {
1736 cpu_buffer = buffer->buffers[cpu];
1737 if (!cpu_buffer->nr_pages_to_update)
1738 continue;
1739
1740 if (cpu_online(cpu))
1741 wait_for_completion(&cpu_buffer->update_done);
1742 cpu_buffer->nr_pages_to_update = 0;
1743 }
1744
1745 put_online_cpus();
1746 } else {
1747 /* Make sure this CPU has been intitialized */
1748 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1749 goto out;
1750
1751 cpu_buffer = buffer->buffers[cpu_id];
1752
1753 if (nr_pages == cpu_buffer->nr_pages)
1754 goto out;
1755
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
1758
1759 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1760 if (cpu_buffer->nr_pages_to_update > 0 &&
1761 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1762 &cpu_buffer->new_pages, cpu_id)) {
1763 err = -ENOMEM;
1764 goto out_err;
1765 }
1766
1767 get_online_cpus();
1768
1769 /* Can't run something on an offline CPU. */
1770 if (!cpu_online(cpu_id))
1771 rb_update_pages(cpu_buffer);
1772 else {
1773 schedule_work_on(cpu_id,
1774 &cpu_buffer->update_pages_work);
1775 wait_for_completion(&cpu_buffer->update_done);
1776 }
1777
1778 cpu_buffer->nr_pages_to_update = 0;
1779 put_online_cpus();
1780 }
1781
1782 out:
1783 /*
1784 * The ring buffer resize can happen with the ring buffer
1785 * enabled, so that the update disturbs the tracing as little
1786 * as possible. But if the buffer is disabled, we do not need
1787 * to worry about that, and we can take the time to verify
1788 * that the buffer is not corrupt.
1789 */
1790 if (atomic_read(&buffer->record_disabled)) {
1791 atomic_inc(&buffer->record_disabled);
1792 /*
1793 * Even though the buffer was disabled, we must make sure
1794 * that it is truly disabled before calling rb_check_pages.
1795 * There could have been a race between checking
1796 * record_disable and incrementing it.
1797 */
1798 synchronize_sched();
1799 for_each_buffer_cpu(buffer, cpu) {
1800 cpu_buffer = buffer->buffers[cpu];
1801 rb_check_pages(cpu_buffer);
1802 }
1803 atomic_dec(&buffer->record_disabled);
1804 }
1805
1806 mutex_unlock(&buffer->mutex);
1807 return size;
1808
1809 out_err:
1810 for_each_buffer_cpu(buffer, cpu) {
1811 struct buffer_page *bpage, *tmp;
1812
1813 cpu_buffer = buffer->buffers[cpu];
1814 cpu_buffer->nr_pages_to_update = 0;
1815
1816 if (list_empty(&cpu_buffer->new_pages))
1817 continue;
1818
1819 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1820 list) {
1821 list_del_init(&bpage->list);
1822 free_buffer_page(bpage);
1823 }
1824 }
1825 mutex_unlock(&buffer->mutex);
1826 return err;
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1829
1830 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1831 {
1832 mutex_lock(&buffer->mutex);
1833 if (val)
1834 buffer->flags |= RB_FL_OVERWRITE;
1835 else
1836 buffer->flags &= ~RB_FL_OVERWRITE;
1837 mutex_unlock(&buffer->mutex);
1838 }
1839 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1840
1841 static inline void *
1842 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1843 {
1844 return bpage->data + index;
1845 }
1846
1847 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1848 {
1849 return bpage->page->data + index;
1850 }
1851
1852 static inline struct ring_buffer_event *
1853 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1854 {
1855 return __rb_page_index(cpu_buffer->reader_page,
1856 cpu_buffer->reader_page->read);
1857 }
1858
1859 static inline struct ring_buffer_event *
1860 rb_iter_head_event(struct ring_buffer_iter *iter)
1861 {
1862 return __rb_page_index(iter->head_page, iter->head);
1863 }
1864
1865 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1866 {
1867 return local_read(&bpage->page->commit);
1868 }
1869
1870 /* Size is determined by what has been committed */
1871 static inline unsigned rb_page_size(struct buffer_page *bpage)
1872 {
1873 return rb_page_commit(bpage);
1874 }
1875
1876 static inline unsigned
1877 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1878 {
1879 return rb_page_commit(cpu_buffer->commit_page);
1880 }
1881
1882 static inline unsigned
1883 rb_event_index(struct ring_buffer_event *event)
1884 {
1885 unsigned long addr = (unsigned long)event;
1886
1887 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1888 }
1889
1890 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1891 {
1892 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1893 cpu_buffer->reader_page->read = 0;
1894 }
1895
1896 static void rb_inc_iter(struct ring_buffer_iter *iter)
1897 {
1898 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1899
1900 /*
1901 * The iterator could be on the reader page (it starts there).
1902 * But the head could have moved, since the reader was
1903 * found. Check for this case and assign the iterator
1904 * to the head page instead of next.
1905 */
1906 if (iter->head_page == cpu_buffer->reader_page)
1907 iter->head_page = rb_set_head_page(cpu_buffer);
1908 else
1909 rb_inc_page(cpu_buffer, &iter->head_page);
1910
1911 iter->read_stamp = iter->head_page->page->time_stamp;
1912 iter->head = 0;
1913 }
1914
1915 /*
1916 * rb_handle_head_page - writer hit the head page
1917 *
1918 * Returns: +1 to retry page
1919 * 0 to continue
1920 * -1 on error
1921 */
1922 static int
1923 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1924 struct buffer_page *tail_page,
1925 struct buffer_page *next_page)
1926 {
1927 struct buffer_page *new_head;
1928 int entries;
1929 int type;
1930 int ret;
1931
1932 entries = rb_page_entries(next_page);
1933
1934 /*
1935 * The hard part is here. We need to move the head
1936 * forward, and protect against both readers on
1937 * other CPUs and writers coming in via interrupts.
1938 */
1939 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1940 RB_PAGE_HEAD);
1941
1942 /*
1943 * type can be one of four:
1944 * NORMAL - an interrupt already moved it for us
1945 * HEAD - we are the first to get here.
1946 * UPDATE - we are the interrupt interrupting
1947 * a current move.
1948 * MOVED - a reader on another CPU moved the next
1949 * pointer to its reader page. Give up
1950 * and try again.
1951 */
1952
1953 switch (type) {
1954 case RB_PAGE_HEAD:
1955 /*
1956 * We changed the head to UPDATE, thus
1957 * it is our responsibility to update
1958 * the counters.
1959 */
1960 local_add(entries, &cpu_buffer->overrun);
1961 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1962
1963 /*
1964 * The entries will be zeroed out when we move the
1965 * tail page.
1966 */
1967
1968 /* still more to do */
1969 break;
1970
1971 case RB_PAGE_UPDATE:
1972 /*
1973 * This is an interrupt that interrupt the
1974 * previous update. Still more to do.
1975 */
1976 break;
1977 case RB_PAGE_NORMAL:
1978 /*
1979 * An interrupt came in before the update
1980 * and processed this for us.
1981 * Nothing left to do.
1982 */
1983 return 1;
1984 case RB_PAGE_MOVED:
1985 /*
1986 * The reader is on another CPU and just did
1987 * a swap with our next_page.
1988 * Try again.
1989 */
1990 return 1;
1991 default:
1992 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1993 return -1;
1994 }
1995
1996 /*
1997 * Now that we are here, the old head pointer is
1998 * set to UPDATE. This will keep the reader from
1999 * swapping the head page with the reader page.
2000 * The reader (on another CPU) will spin till
2001 * we are finished.
2002 *
2003 * We just need to protect against interrupts
2004 * doing the job. We will set the next pointer
2005 * to HEAD. After that, we set the old pointer
2006 * to NORMAL, but only if it was HEAD before.
2007 * otherwise we are an interrupt, and only
2008 * want the outer most commit to reset it.
2009 */
2010 new_head = next_page;
2011 rb_inc_page(cpu_buffer, &new_head);
2012
2013 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2014 RB_PAGE_NORMAL);
2015
2016 /*
2017 * Valid returns are:
2018 * HEAD - an interrupt came in and already set it.
2019 * NORMAL - One of two things:
2020 * 1) We really set it.
2021 * 2) A bunch of interrupts came in and moved
2022 * the page forward again.
2023 */
2024 switch (ret) {
2025 case RB_PAGE_HEAD:
2026 case RB_PAGE_NORMAL:
2027 /* OK */
2028 break;
2029 default:
2030 RB_WARN_ON(cpu_buffer, 1);
2031 return -1;
2032 }
2033
2034 /*
2035 * It is possible that an interrupt came in,
2036 * set the head up, then more interrupts came in
2037 * and moved it again. When we get back here,
2038 * the page would have been set to NORMAL but we
2039 * just set it back to HEAD.
2040 *
2041 * How do you detect this? Well, if that happened
2042 * the tail page would have moved.
2043 */
2044 if (ret == RB_PAGE_NORMAL) {
2045 /*
2046 * If the tail had moved passed next, then we need
2047 * to reset the pointer.
2048 */
2049 if (cpu_buffer->tail_page != tail_page &&
2050 cpu_buffer->tail_page != next_page)
2051 rb_head_page_set_normal(cpu_buffer, new_head,
2052 next_page,
2053 RB_PAGE_HEAD);
2054 }
2055
2056 /*
2057 * If this was the outer most commit (the one that
2058 * changed the original pointer from HEAD to UPDATE),
2059 * then it is up to us to reset it to NORMAL.
2060 */
2061 if (type == RB_PAGE_HEAD) {
2062 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2063 tail_page,
2064 RB_PAGE_UPDATE);
2065 if (RB_WARN_ON(cpu_buffer,
2066 ret != RB_PAGE_UPDATE))
2067 return -1;
2068 }
2069
2070 return 0;
2071 }
2072
2073 static inline void
2074 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2075 unsigned long tail, struct rb_event_info *info)
2076 {
2077 struct buffer_page *tail_page = info->tail_page;
2078 struct ring_buffer_event *event;
2079 unsigned long length = info->length;
2080
2081 /*
2082 * Only the event that crossed the page boundary
2083 * must fill the old tail_page with padding.
2084 */
2085 if (tail >= BUF_PAGE_SIZE) {
2086 /*
2087 * If the page was filled, then we still need
2088 * to update the real_end. Reset it to zero
2089 * and the reader will ignore it.
2090 */
2091 if (tail == BUF_PAGE_SIZE)
2092 tail_page->real_end = 0;
2093
2094 local_sub(length, &tail_page->write);
2095 return;
2096 }
2097
2098 event = __rb_page_index(tail_page, tail);
2099 kmemcheck_annotate_bitfield(event, bitfield);
2100
2101 /* account for padding bytes */
2102 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2103
2104 /*
2105 * Save the original length to the meta data.
2106 * This will be used by the reader to add lost event
2107 * counter.
2108 */
2109 tail_page->real_end = tail;
2110
2111 /*
2112 * If this event is bigger than the minimum size, then
2113 * we need to be careful that we don't subtract the
2114 * write counter enough to allow another writer to slip
2115 * in on this page.
2116 * We put in a discarded commit instead, to make sure
2117 * that this space is not used again.
2118 *
2119 * If we are less than the minimum size, we don't need to
2120 * worry about it.
2121 */
2122 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2123 /* No room for any events */
2124
2125 /* Mark the rest of the page with padding */
2126 rb_event_set_padding(event);
2127
2128 /* Set the write back to the previous setting */
2129 local_sub(length, &tail_page->write);
2130 return;
2131 }
2132
2133 /* Put in a discarded event */
2134 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2135 event->type_len = RINGBUF_TYPE_PADDING;
2136 /* time delta must be non zero */
2137 event->time_delta = 1;
2138
2139 /* Set write to end of buffer */
2140 length = (tail + length) - BUF_PAGE_SIZE;
2141 local_sub(length, &tail_page->write);
2142 }
2143
2144 /*
2145 * This is the slow path, force gcc not to inline it.
2146 */
2147 static noinline struct ring_buffer_event *
2148 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2149 unsigned long tail, struct rb_event_info *info)
2150 {
2151 struct buffer_page *tail_page = info->tail_page;
2152 struct buffer_page *commit_page = cpu_buffer->commit_page;
2153 struct ring_buffer *buffer = cpu_buffer->buffer;
2154 struct buffer_page *next_page;
2155 int ret;
2156 u64 ts;
2157
2158 next_page = tail_page;
2159
2160 rb_inc_page(cpu_buffer, &next_page);
2161
2162 /*
2163 * If for some reason, we had an interrupt storm that made
2164 * it all the way around the buffer, bail, and warn
2165 * about it.
2166 */
2167 if (unlikely(next_page == commit_page)) {
2168 local_inc(&cpu_buffer->commit_overrun);
2169 goto out_reset;
2170 }
2171
2172 /*
2173 * This is where the fun begins!
2174 *
2175 * We are fighting against races between a reader that
2176 * could be on another CPU trying to swap its reader
2177 * page with the buffer head.
2178 *
2179 * We are also fighting against interrupts coming in and
2180 * moving the head or tail on us as well.
2181 *
2182 * If the next page is the head page then we have filled
2183 * the buffer, unless the commit page is still on the
2184 * reader page.
2185 */
2186 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2187
2188 /*
2189 * If the commit is not on the reader page, then
2190 * move the header page.
2191 */
2192 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2193 /*
2194 * If we are not in overwrite mode,
2195 * this is easy, just stop here.
2196 */
2197 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2198 local_inc(&cpu_buffer->dropped_events);
2199 goto out_reset;
2200 }
2201
2202 ret = rb_handle_head_page(cpu_buffer,
2203 tail_page,
2204 next_page);
2205 if (ret < 0)
2206 goto out_reset;
2207 if (ret)
2208 goto out_again;
2209 } else {
2210 /*
2211 * We need to be careful here too. The
2212 * commit page could still be on the reader
2213 * page. We could have a small buffer, and
2214 * have filled up the buffer with events
2215 * from interrupts and such, and wrapped.
2216 *
2217 * Note, if the tail page is also the on the
2218 * reader_page, we let it move out.
2219 */
2220 if (unlikely((cpu_buffer->commit_page !=
2221 cpu_buffer->tail_page) &&
2222 (cpu_buffer->commit_page ==
2223 cpu_buffer->reader_page))) {
2224 local_inc(&cpu_buffer->commit_overrun);
2225 goto out_reset;
2226 }
2227 }
2228 }
2229
2230 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2231 if (ret) {
2232 /*
2233 * Nested commits always have zero deltas, so
2234 * just reread the time stamp
2235 */
2236 ts = rb_time_stamp(buffer);
2237 next_page->page->time_stamp = ts;
2238 }
2239
2240 out_again:
2241
2242 rb_reset_tail(cpu_buffer, tail, info);
2243
2244 /* fail and let the caller try again */
2245 return ERR_PTR(-EAGAIN);
2246
2247 out_reset:
2248 /* reset write */
2249 rb_reset_tail(cpu_buffer, tail, info);
2250
2251 return NULL;
2252 }
2253
2254 /* Slow path, do not inline */
2255 static noinline struct ring_buffer_event *
2256 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2257 {
2258 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2259
2260 /* Not the first event on the page? */
2261 if (rb_event_index(event)) {
2262 event->time_delta = delta & TS_MASK;
2263 event->array[0] = delta >> TS_SHIFT;
2264 } else {
2265 /* nope, just zero it */
2266 event->time_delta = 0;
2267 event->array[0] = 0;
2268 }
2269
2270 return skip_time_extend(event);
2271 }
2272
2273 static inline int rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2274 struct ring_buffer_event *event);
2275
2276 /**
2277 * rb_update_event - update event type and data
2278 * @event: the event to update
2279 * @type: the type of event
2280 * @length: the size of the event field in the ring buffer
2281 *
2282 * Update the type and data fields of the event. The length
2283 * is the actual size that is written to the ring buffer,
2284 * and with this, we can determine what to place into the
2285 * data field.
2286 */
2287 static void
2288 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2289 struct ring_buffer_event *event,
2290 struct rb_event_info *info)
2291 {
2292 unsigned length = info->length;
2293 u64 delta = info->delta;
2294
2295 /* Only a commit updates the timestamp */
2296 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2297 delta = 0;
2298
2299 /*
2300 * If we need to add a timestamp, then we
2301 * add it to the start of the resevered space.
2302 */
2303 if (unlikely(info->add_timestamp)) {
2304 event = rb_add_time_stamp(event, delta);
2305 length -= RB_LEN_TIME_EXTEND;
2306 delta = 0;
2307 }
2308
2309 event->time_delta = delta;
2310 length -= RB_EVNT_HDR_SIZE;
2311 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2312 event->type_len = 0;
2313 event->array[0] = length;
2314 } else
2315 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2316 }
2317
2318 static unsigned rb_calculate_event_length(unsigned length)
2319 {
2320 struct ring_buffer_event event; /* Used only for sizeof array */
2321
2322 /* zero length can cause confusions */
2323 if (!length)
2324 length++;
2325
2326 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2327 length += sizeof(event.array[0]);
2328
2329 length += RB_EVNT_HDR_SIZE;
2330 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2331
2332 /*
2333 * In case the time delta is larger than the 27 bits for it
2334 * in the header, we need to add a timestamp. If another
2335 * event comes in when trying to discard this one to increase
2336 * the length, then the timestamp will be added in the allocated
2337 * space of this event. If length is bigger than the size needed
2338 * for the TIME_EXTEND, then padding has to be used. The events
2339 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2340 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2341 * As length is a multiple of 4, we only need to worry if it
2342 * is 12 (RB_LEN_TIME_EXTEND + 4).
2343 */
2344 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2345 length += RB_ALIGNMENT;
2346
2347 return length;
2348 }
2349
2350 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2351 static inline bool sched_clock_stable(void)
2352 {
2353 return true;
2354 }
2355 #endif
2356
2357 static inline int
2358 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2359 struct ring_buffer_event *event)
2360 {
2361 unsigned long new_index, old_index;
2362 struct buffer_page *bpage;
2363 unsigned long index;
2364 unsigned long addr;
2365
2366 new_index = rb_event_index(event);
2367 old_index = new_index + rb_event_ts_length(event);
2368 addr = (unsigned long)event;
2369 addr &= PAGE_MASK;
2370
2371 bpage = cpu_buffer->tail_page;
2372
2373 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2374 unsigned long write_mask =
2375 local_read(&bpage->write) & ~RB_WRITE_MASK;
2376 unsigned long event_length = rb_event_length(event);
2377 /*
2378 * This is on the tail page. It is possible that
2379 * a write could come in and move the tail page
2380 * and write to the next page. That is fine
2381 * because we just shorten what is on this page.
2382 */
2383 old_index += write_mask;
2384 new_index += write_mask;
2385 index = local_cmpxchg(&bpage->write, old_index, new_index);
2386 if (index == old_index) {
2387 /* update counters */
2388 local_sub(event_length, &cpu_buffer->entries_bytes);
2389 return 1;
2390 }
2391 }
2392
2393 /* could not discard */
2394 return 0;
2395 }
2396
2397 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2398 {
2399 local_inc(&cpu_buffer->committing);
2400 local_inc(&cpu_buffer->commits);
2401 }
2402
2403 static void
2404 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2405 {
2406 unsigned long max_count;
2407
2408 /*
2409 * We only race with interrupts and NMIs on this CPU.
2410 * If we own the commit event, then we can commit
2411 * all others that interrupted us, since the interruptions
2412 * are in stack format (they finish before they come
2413 * back to us). This allows us to do a simple loop to
2414 * assign the commit to the tail.
2415 */
2416 again:
2417 max_count = cpu_buffer->nr_pages * 100;
2418
2419 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2420 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2421 return;
2422 if (RB_WARN_ON(cpu_buffer,
2423 rb_is_reader_page(cpu_buffer->tail_page)))
2424 return;
2425 local_set(&cpu_buffer->commit_page->page->commit,
2426 rb_page_write(cpu_buffer->commit_page));
2427 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2428 cpu_buffer->write_stamp =
2429 cpu_buffer->commit_page->page->time_stamp;
2430 /* add barrier to keep gcc from optimizing too much */
2431 barrier();
2432 }
2433 while (rb_commit_index(cpu_buffer) !=
2434 rb_page_write(cpu_buffer->commit_page)) {
2435
2436 local_set(&cpu_buffer->commit_page->page->commit,
2437 rb_page_write(cpu_buffer->commit_page));
2438 RB_WARN_ON(cpu_buffer,
2439 local_read(&cpu_buffer->commit_page->page->commit) &
2440 ~RB_WRITE_MASK);
2441 barrier();
2442 }
2443
2444 /* again, keep gcc from optimizing */
2445 barrier();
2446
2447 /*
2448 * If an interrupt came in just after the first while loop
2449 * and pushed the tail page forward, we will be left with
2450 * a dangling commit that will never go forward.
2451 */
2452 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2453 goto again;
2454 }
2455
2456 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2457 {
2458 unsigned long commits;
2459
2460 if (RB_WARN_ON(cpu_buffer,
2461 !local_read(&cpu_buffer->committing)))
2462 return;
2463
2464 again:
2465 commits = local_read(&cpu_buffer->commits);
2466 /* synchronize with interrupts */
2467 barrier();
2468 if (local_read(&cpu_buffer->committing) == 1)
2469 rb_set_commit_to_write(cpu_buffer);
2470
2471 local_dec(&cpu_buffer->committing);
2472
2473 /* synchronize with interrupts */
2474 barrier();
2475
2476 /*
2477 * Need to account for interrupts coming in between the
2478 * updating of the commit page and the clearing of the
2479 * committing counter.
2480 */
2481 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2482 !local_read(&cpu_buffer->committing)) {
2483 local_inc(&cpu_buffer->committing);
2484 goto again;
2485 }
2486 }
2487
2488 static inline void rb_event_discard(struct ring_buffer_event *event)
2489 {
2490 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2491 event = skip_time_extend(event);
2492
2493 /* array[0] holds the actual length for the discarded event */
2494 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2495 event->type_len = RINGBUF_TYPE_PADDING;
2496 /* time delta must be non zero */
2497 if (!event->time_delta)
2498 event->time_delta = 1;
2499 }
2500
2501 static inline int
2502 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503 struct ring_buffer_event *event)
2504 {
2505 unsigned long addr = (unsigned long)event;
2506 unsigned long index;
2507
2508 index = rb_event_index(event);
2509 addr &= PAGE_MASK;
2510
2511 return cpu_buffer->commit_page->page == (void *)addr &&
2512 rb_commit_index(cpu_buffer) == index;
2513 }
2514
2515 static void
2516 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2517 struct ring_buffer_event *event)
2518 {
2519 u64 delta;
2520
2521 /*
2522 * The event first in the commit queue updates the
2523 * time stamp.
2524 */
2525 if (rb_event_is_commit(cpu_buffer, event)) {
2526 /*
2527 * A commit event that is first on a page
2528 * updates the write timestamp with the page stamp
2529 */
2530 if (!rb_event_index(event))
2531 cpu_buffer->write_stamp =
2532 cpu_buffer->commit_page->page->time_stamp;
2533 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2534 delta = event->array[0];
2535 delta <<= TS_SHIFT;
2536 delta += event->time_delta;
2537 cpu_buffer->write_stamp += delta;
2538 } else
2539 cpu_buffer->write_stamp += event->time_delta;
2540 }
2541 }
2542
2543 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2544 struct ring_buffer_event *event)
2545 {
2546 local_inc(&cpu_buffer->entries);
2547 rb_update_write_stamp(cpu_buffer, event);
2548 rb_end_commit(cpu_buffer);
2549 }
2550
2551 static __always_inline void
2552 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2553 {
2554 bool pagebusy;
2555
2556 if (buffer->irq_work.waiters_pending) {
2557 buffer->irq_work.waiters_pending = false;
2558 /* irq_work_queue() supplies it's own memory barriers */
2559 irq_work_queue(&buffer->irq_work.work);
2560 }
2561
2562 if (cpu_buffer->irq_work.waiters_pending) {
2563 cpu_buffer->irq_work.waiters_pending = false;
2564 /* irq_work_queue() supplies it's own memory barriers */
2565 irq_work_queue(&cpu_buffer->irq_work.work);
2566 }
2567
2568 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2569
2570 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2571 cpu_buffer->irq_work.wakeup_full = true;
2572 cpu_buffer->irq_work.full_waiters_pending = false;
2573 /* irq_work_queue() supplies it's own memory barriers */
2574 irq_work_queue(&cpu_buffer->irq_work.work);
2575 }
2576 }
2577
2578 /*
2579 * The lock and unlock are done within a preempt disable section.
2580 * The current_context per_cpu variable can only be modified
2581 * by the current task between lock and unlock. But it can
2582 * be modified more than once via an interrupt. To pass this
2583 * information from the lock to the unlock without having to
2584 * access the 'in_interrupt()' functions again (which do show
2585 * a bit of overhead in something as critical as function tracing,
2586 * we use a bitmask trick.
2587 *
2588 * bit 0 = NMI context
2589 * bit 1 = IRQ context
2590 * bit 2 = SoftIRQ context
2591 * bit 3 = normal context.
2592 *
2593 * This works because this is the order of contexts that can
2594 * preempt other contexts. A SoftIRQ never preempts an IRQ
2595 * context.
2596 *
2597 * When the context is determined, the corresponding bit is
2598 * checked and set (if it was set, then a recursion of that context
2599 * happened).
2600 *
2601 * On unlock, we need to clear this bit. To do so, just subtract
2602 * 1 from the current_context and AND it to itself.
2603 *
2604 * (binary)
2605 * 101 - 1 = 100
2606 * 101 & 100 = 100 (clearing bit zero)
2607 *
2608 * 1010 - 1 = 1001
2609 * 1010 & 1001 = 1000 (clearing bit 1)
2610 *
2611 * The least significant bit can be cleared this way, and it
2612 * just so happens that it is the same bit corresponding to
2613 * the current context.
2614 */
2615
2616 static __always_inline int
2617 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2618 {
2619 unsigned int val = cpu_buffer->current_context;
2620 int bit;
2621
2622 if (in_interrupt()) {
2623 if (in_nmi())
2624 bit = RB_CTX_NMI;
2625 else if (in_irq())
2626 bit = RB_CTX_IRQ;
2627 else
2628 bit = RB_CTX_SOFTIRQ;
2629 } else
2630 bit = RB_CTX_NORMAL;
2631
2632 if (unlikely(val & (1 << bit)))
2633 return 1;
2634
2635 val |= (1 << bit);
2636 cpu_buffer->current_context = val;
2637
2638 return 0;
2639 }
2640
2641 static __always_inline void
2642 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2643 {
2644 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2645 }
2646
2647 /**
2648 * ring_buffer_unlock_commit - commit a reserved
2649 * @buffer: The buffer to commit to
2650 * @event: The event pointer to commit.
2651 *
2652 * This commits the data to the ring buffer, and releases any locks held.
2653 *
2654 * Must be paired with ring_buffer_lock_reserve.
2655 */
2656 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2657 struct ring_buffer_event *event)
2658 {
2659 struct ring_buffer_per_cpu *cpu_buffer;
2660 int cpu = raw_smp_processor_id();
2661
2662 cpu_buffer = buffer->buffers[cpu];
2663
2664 rb_commit(cpu_buffer, event);
2665
2666 rb_wakeups(buffer, cpu_buffer);
2667
2668 trace_recursive_unlock(cpu_buffer);
2669
2670 preempt_enable_notrace();
2671
2672 return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2675
2676 static noinline void
2677 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2678 struct rb_event_info *info)
2679 {
2680 WARN_ONCE(info->delta > (1ULL << 59),
2681 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2682 (unsigned long long)info->delta,
2683 (unsigned long long)info->ts,
2684 (unsigned long long)cpu_buffer->write_stamp,
2685 sched_clock_stable() ? "" :
2686 "If you just came from a suspend/resume,\n"
2687 "please switch to the trace global clock:\n"
2688 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2689 info->add_timestamp = 1;
2690 }
2691
2692 static struct ring_buffer_event *
2693 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2694 struct rb_event_info *info)
2695 {
2696 struct ring_buffer_event *event;
2697 struct buffer_page *tail_page;
2698 unsigned long tail, write;
2699
2700 /*
2701 * If the time delta since the last event is too big to
2702 * hold in the time field of the event, then we append a
2703 * TIME EXTEND event ahead of the data event.
2704 */
2705 if (unlikely(info->add_timestamp))
2706 info->length += RB_LEN_TIME_EXTEND;
2707
2708 tail_page = info->tail_page = cpu_buffer->tail_page;
2709 write = local_add_return(info->length, &tail_page->write);
2710
2711 /* set write to only the index of the write */
2712 write &= RB_WRITE_MASK;
2713 tail = write - info->length;
2714
2715 /*
2716 * If this is the first commit on the page, then it has the same
2717 * timestamp as the page itself.
2718 */
2719 if (!tail)
2720 info->delta = 0;
2721
2722 /* See if we shot pass the end of this buffer page */
2723 if (unlikely(write > BUF_PAGE_SIZE))
2724 return rb_move_tail(cpu_buffer, tail, info);
2725
2726 /* We reserved something on the buffer */
2727
2728 event = __rb_page_index(tail_page, tail);
2729 kmemcheck_annotate_bitfield(event, bitfield);
2730 rb_update_event(cpu_buffer, event, info);
2731
2732 local_inc(&tail_page->entries);
2733
2734 /*
2735 * If this is the first commit on the page, then update
2736 * its timestamp.
2737 */
2738 if (!tail)
2739 tail_page->page->time_stamp = info->ts;
2740
2741 /* account for these added bytes */
2742 local_add(info->length, &cpu_buffer->entries_bytes);
2743
2744 return event;
2745 }
2746
2747 static struct ring_buffer_event *
2748 rb_reserve_next_event(struct ring_buffer *buffer,
2749 struct ring_buffer_per_cpu *cpu_buffer,
2750 unsigned long length)
2751 {
2752 struct ring_buffer_event *event;
2753 struct rb_event_info info;
2754 int nr_loops = 0;
2755 u64 diff;
2756
2757 rb_start_commit(cpu_buffer);
2758
2759 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2760 /*
2761 * Due to the ability to swap a cpu buffer from a buffer
2762 * it is possible it was swapped before we committed.
2763 * (committing stops a swap). We check for it here and
2764 * if it happened, we have to fail the write.
2765 */
2766 barrier();
2767 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2768 local_dec(&cpu_buffer->committing);
2769 local_dec(&cpu_buffer->commits);
2770 return NULL;
2771 }
2772 #endif
2773
2774 info.length = rb_calculate_event_length(length);
2775 again:
2776 info.add_timestamp = 0;
2777 info.delta = 0;
2778
2779 /*
2780 * We allow for interrupts to reenter here and do a trace.
2781 * If one does, it will cause this original code to loop
2782 * back here. Even with heavy interrupts happening, this
2783 * should only happen a few times in a row. If this happens
2784 * 1000 times in a row, there must be either an interrupt
2785 * storm or we have something buggy.
2786 * Bail!
2787 */
2788 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2789 goto out_fail;
2790
2791 info.ts = rb_time_stamp(cpu_buffer->buffer);
2792 diff = info.ts - cpu_buffer->write_stamp;
2793
2794 /* make sure this diff is calculated here */
2795 barrier();
2796
2797 /* Did the write stamp get updated already? */
2798 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2799 info.delta = diff;
2800 if (unlikely(test_time_stamp(info.delta)))
2801 rb_handle_timestamp(cpu_buffer, &info);
2802 }
2803
2804 event = __rb_reserve_next(cpu_buffer, &info);
2805
2806 if (unlikely(PTR_ERR(event) == -EAGAIN))
2807 goto again;
2808
2809 if (!event)
2810 goto out_fail;
2811
2812 return event;
2813
2814 out_fail:
2815 rb_end_commit(cpu_buffer);
2816 return NULL;
2817 }
2818
2819 /**
2820 * ring_buffer_lock_reserve - reserve a part of the buffer
2821 * @buffer: the ring buffer to reserve from
2822 * @length: the length of the data to reserve (excluding event header)
2823 *
2824 * Returns a reseverd event on the ring buffer to copy directly to.
2825 * The user of this interface will need to get the body to write into
2826 * and can use the ring_buffer_event_data() interface.
2827 *
2828 * The length is the length of the data needed, not the event length
2829 * which also includes the event header.
2830 *
2831 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2832 * If NULL is returned, then nothing has been allocated or locked.
2833 */
2834 struct ring_buffer_event *
2835 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2836 {
2837 struct ring_buffer_per_cpu *cpu_buffer;
2838 struct ring_buffer_event *event;
2839 int cpu;
2840
2841 /* If we are tracing schedule, we don't want to recurse */
2842 preempt_disable_notrace();
2843
2844 if (unlikely(atomic_read(&buffer->record_disabled)))
2845 goto out;
2846
2847 cpu = raw_smp_processor_id();
2848
2849 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2850 goto out;
2851
2852 cpu_buffer = buffer->buffers[cpu];
2853
2854 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2855 goto out;
2856
2857 if (unlikely(length > BUF_MAX_DATA_SIZE))
2858 goto out;
2859
2860 if (unlikely(trace_recursive_lock(cpu_buffer)))
2861 goto out;
2862
2863 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2864 if (!event)
2865 goto out_unlock;
2866
2867 return event;
2868
2869 out_unlock:
2870 trace_recursive_unlock(cpu_buffer);
2871 out:
2872 preempt_enable_notrace();
2873 return NULL;
2874 }
2875 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2876
2877 /*
2878 * Decrement the entries to the page that an event is on.
2879 * The event does not even need to exist, only the pointer
2880 * to the page it is on. This may only be called before the commit
2881 * takes place.
2882 */
2883 static inline void
2884 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2885 struct ring_buffer_event *event)
2886 {
2887 unsigned long addr = (unsigned long)event;
2888 struct buffer_page *bpage = cpu_buffer->commit_page;
2889 struct buffer_page *start;
2890
2891 addr &= PAGE_MASK;
2892
2893 /* Do the likely case first */
2894 if (likely(bpage->page == (void *)addr)) {
2895 local_dec(&bpage->entries);
2896 return;
2897 }
2898
2899 /*
2900 * Because the commit page may be on the reader page we
2901 * start with the next page and check the end loop there.
2902 */
2903 rb_inc_page(cpu_buffer, &bpage);
2904 start = bpage;
2905 do {
2906 if (bpage->page == (void *)addr) {
2907 local_dec(&bpage->entries);
2908 return;
2909 }
2910 rb_inc_page(cpu_buffer, &bpage);
2911 } while (bpage != start);
2912
2913 /* commit not part of this buffer?? */
2914 RB_WARN_ON(cpu_buffer, 1);
2915 }
2916
2917 /**
2918 * ring_buffer_commit_discard - discard an event that has not been committed
2919 * @buffer: the ring buffer
2920 * @event: non committed event to discard
2921 *
2922 * Sometimes an event that is in the ring buffer needs to be ignored.
2923 * This function lets the user discard an event in the ring buffer
2924 * and then that event will not be read later.
2925 *
2926 * This function only works if it is called before the the item has been
2927 * committed. It will try to free the event from the ring buffer
2928 * if another event has not been added behind it.
2929 *
2930 * If another event has been added behind it, it will set the event
2931 * up as discarded, and perform the commit.
2932 *
2933 * If this function is called, do not call ring_buffer_unlock_commit on
2934 * the event.
2935 */
2936 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2937 struct ring_buffer_event *event)
2938 {
2939 struct ring_buffer_per_cpu *cpu_buffer;
2940 int cpu;
2941
2942 /* The event is discarded regardless */
2943 rb_event_discard(event);
2944
2945 cpu = smp_processor_id();
2946 cpu_buffer = buffer->buffers[cpu];
2947
2948 /*
2949 * This must only be called if the event has not been
2950 * committed yet. Thus we can assume that preemption
2951 * is still disabled.
2952 */
2953 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2954
2955 rb_decrement_entry(cpu_buffer, event);
2956 if (rb_try_to_discard(cpu_buffer, event))
2957 goto out;
2958
2959 /*
2960 * The commit is still visible by the reader, so we
2961 * must still update the timestamp.
2962 */
2963 rb_update_write_stamp(cpu_buffer, event);
2964 out:
2965 rb_end_commit(cpu_buffer);
2966
2967 trace_recursive_unlock(cpu_buffer);
2968
2969 preempt_enable_notrace();
2970
2971 }
2972 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2973
2974 /**
2975 * ring_buffer_write - write data to the buffer without reserving
2976 * @buffer: The ring buffer to write to.
2977 * @length: The length of the data being written (excluding the event header)
2978 * @data: The data to write to the buffer.
2979 *
2980 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2981 * one function. If you already have the data to write to the buffer, it
2982 * may be easier to simply call this function.
2983 *
2984 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2985 * and not the length of the event which would hold the header.
2986 */
2987 int ring_buffer_write(struct ring_buffer *buffer,
2988 unsigned long length,
2989 void *data)
2990 {
2991 struct ring_buffer_per_cpu *cpu_buffer;
2992 struct ring_buffer_event *event;
2993 void *body;
2994 int ret = -EBUSY;
2995 int cpu;
2996
2997 preempt_disable_notrace();
2998
2999 if (atomic_read(&buffer->record_disabled))
3000 goto out;
3001
3002 cpu = raw_smp_processor_id();
3003
3004 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3005 goto out;
3006
3007 cpu_buffer = buffer->buffers[cpu];
3008
3009 if (atomic_read(&cpu_buffer->record_disabled))
3010 goto out;
3011
3012 if (length > BUF_MAX_DATA_SIZE)
3013 goto out;
3014
3015 if (unlikely(trace_recursive_lock(cpu_buffer)))
3016 goto out;
3017
3018 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3019 if (!event)
3020 goto out_unlock;
3021
3022 body = rb_event_data(event);
3023
3024 memcpy(body, data, length);
3025
3026 rb_commit(cpu_buffer, event);
3027
3028 rb_wakeups(buffer, cpu_buffer);
3029
3030 ret = 0;
3031
3032 out_unlock:
3033 trace_recursive_unlock(cpu_buffer);
3034
3035 out:
3036 preempt_enable_notrace();
3037
3038 return ret;
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_write);
3041
3042 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3043 {
3044 struct buffer_page *reader = cpu_buffer->reader_page;
3045 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3046 struct buffer_page *commit = cpu_buffer->commit_page;
3047
3048 /* In case of error, head will be NULL */
3049 if (unlikely(!head))
3050 return 1;
3051
3052 return reader->read == rb_page_commit(reader) &&
3053 (commit == reader ||
3054 (commit == head &&
3055 head->read == rb_page_commit(commit)));
3056 }
3057
3058 /**
3059 * ring_buffer_record_disable - stop all writes into the buffer
3060 * @buffer: The ring buffer to stop writes to.
3061 *
3062 * This prevents all writes to the buffer. Any attempt to write
3063 * to the buffer after this will fail and return NULL.
3064 *
3065 * The caller should call synchronize_sched() after this.
3066 */
3067 void ring_buffer_record_disable(struct ring_buffer *buffer)
3068 {
3069 atomic_inc(&buffer->record_disabled);
3070 }
3071 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3072
3073 /**
3074 * ring_buffer_record_enable - enable writes to the buffer
3075 * @buffer: The ring buffer to enable writes
3076 *
3077 * Note, multiple disables will need the same number of enables
3078 * to truly enable the writing (much like preempt_disable).
3079 */
3080 void ring_buffer_record_enable(struct ring_buffer *buffer)
3081 {
3082 atomic_dec(&buffer->record_disabled);
3083 }
3084 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3085
3086 /**
3087 * ring_buffer_record_off - stop all writes into the buffer
3088 * @buffer: The ring buffer to stop writes to.
3089 *
3090 * This prevents all writes to the buffer. Any attempt to write
3091 * to the buffer after this will fail and return NULL.
3092 *
3093 * This is different than ring_buffer_record_disable() as
3094 * it works like an on/off switch, where as the disable() version
3095 * must be paired with a enable().
3096 */
3097 void ring_buffer_record_off(struct ring_buffer *buffer)
3098 {
3099 unsigned int rd;
3100 unsigned int new_rd;
3101
3102 do {
3103 rd = atomic_read(&buffer->record_disabled);
3104 new_rd = rd | RB_BUFFER_OFF;
3105 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3106 }
3107 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3108
3109 /**
3110 * ring_buffer_record_on - restart writes into the buffer
3111 * @buffer: The ring buffer to start writes to.
3112 *
3113 * This enables all writes to the buffer that was disabled by
3114 * ring_buffer_record_off().
3115 *
3116 * This is different than ring_buffer_record_enable() as
3117 * it works like an on/off switch, where as the enable() version
3118 * must be paired with a disable().
3119 */
3120 void ring_buffer_record_on(struct ring_buffer *buffer)
3121 {
3122 unsigned int rd;
3123 unsigned int new_rd;
3124
3125 do {
3126 rd = atomic_read(&buffer->record_disabled);
3127 new_rd = rd & ~RB_BUFFER_OFF;
3128 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3129 }
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3131
3132 /**
3133 * ring_buffer_record_is_on - return true if the ring buffer can write
3134 * @buffer: The ring buffer to see if write is enabled
3135 *
3136 * Returns true if the ring buffer is in a state that it accepts writes.
3137 */
3138 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3139 {
3140 return !atomic_read(&buffer->record_disabled);
3141 }
3142
3143 /**
3144 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3145 * @buffer: The ring buffer to stop writes to.
3146 * @cpu: The CPU buffer to stop
3147 *
3148 * This prevents all writes to the buffer. Any attempt to write
3149 * to the buffer after this will fail and return NULL.
3150 *
3151 * The caller should call synchronize_sched() after this.
3152 */
3153 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3154 {
3155 struct ring_buffer_per_cpu *cpu_buffer;
3156
3157 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158 return;
3159
3160 cpu_buffer = buffer->buffers[cpu];
3161 atomic_inc(&cpu_buffer->record_disabled);
3162 }
3163 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3164
3165 /**
3166 * ring_buffer_record_enable_cpu - enable writes to the buffer
3167 * @buffer: The ring buffer to enable writes
3168 * @cpu: The CPU to enable.
3169 *
3170 * Note, multiple disables will need the same number of enables
3171 * to truly enable the writing (much like preempt_disable).
3172 */
3173 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3174 {
3175 struct ring_buffer_per_cpu *cpu_buffer;
3176
3177 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3178 return;
3179
3180 cpu_buffer = buffer->buffers[cpu];
3181 atomic_dec(&cpu_buffer->record_disabled);
3182 }
3183 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3184
3185 /*
3186 * The total entries in the ring buffer is the running counter
3187 * of entries entered into the ring buffer, minus the sum of
3188 * the entries read from the ring buffer and the number of
3189 * entries that were overwritten.
3190 */
3191 static inline unsigned long
3192 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3193 {
3194 return local_read(&cpu_buffer->entries) -
3195 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3196 }
3197
3198 /**
3199 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3200 * @buffer: The ring buffer
3201 * @cpu: The per CPU buffer to read from.
3202 */
3203 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3204 {
3205 unsigned long flags;
3206 struct ring_buffer_per_cpu *cpu_buffer;
3207 struct buffer_page *bpage;
3208 u64 ret = 0;
3209
3210 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3211 return 0;
3212
3213 cpu_buffer = buffer->buffers[cpu];
3214 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3215 /*
3216 * if the tail is on reader_page, oldest time stamp is on the reader
3217 * page
3218 */
3219 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3220 bpage = cpu_buffer->reader_page;
3221 else
3222 bpage = rb_set_head_page(cpu_buffer);
3223 if (bpage)
3224 ret = bpage->page->time_stamp;
3225 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3226
3227 return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3230
3231 /**
3232 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3233 * @buffer: The ring buffer
3234 * @cpu: The per CPU buffer to read from.
3235 */
3236 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3237 {
3238 struct ring_buffer_per_cpu *cpu_buffer;
3239 unsigned long ret;
3240
3241 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 return 0;
3243
3244 cpu_buffer = buffer->buffers[cpu];
3245 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3246
3247 return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3250
3251 /**
3252 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3253 * @buffer: The ring buffer
3254 * @cpu: The per CPU buffer to get the entries from.
3255 */
3256 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258 struct ring_buffer_per_cpu *cpu_buffer;
3259
3260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261 return 0;
3262
3263 cpu_buffer = buffer->buffers[cpu];
3264
3265 return rb_num_of_entries(cpu_buffer);
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3268
3269 /**
3270 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3271 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3274 */
3275 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3276 {
3277 struct ring_buffer_per_cpu *cpu_buffer;
3278 unsigned long ret;
3279
3280 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281 return 0;
3282
3283 cpu_buffer = buffer->buffers[cpu];
3284 ret = local_read(&cpu_buffer->overrun);
3285
3286 return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3289
3290 /**
3291 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3292 * commits failing due to the buffer wrapping around while there are uncommitted
3293 * events, such as during an interrupt storm.
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of overruns from
3296 */
3297 unsigned long
3298 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300 struct ring_buffer_per_cpu *cpu_buffer;
3301 unsigned long ret;
3302
3303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304 return 0;
3305
3306 cpu_buffer = buffer->buffers[cpu];
3307 ret = local_read(&cpu_buffer->commit_overrun);
3308
3309 return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3312
3313 /**
3314 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3315 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3316 * @buffer: The ring buffer
3317 * @cpu: The per CPU buffer to get the number of overruns from
3318 */
3319 unsigned long
3320 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3321 {
3322 struct ring_buffer_per_cpu *cpu_buffer;
3323 unsigned long ret;
3324
3325 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3326 return 0;
3327
3328 cpu_buffer = buffer->buffers[cpu];
3329 ret = local_read(&cpu_buffer->dropped_events);
3330
3331 return ret;
3332 }
3333 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3334
3335 /**
3336 * ring_buffer_read_events_cpu - get the number of events successfully read
3337 * @buffer: The ring buffer
3338 * @cpu: The per CPU buffer to get the number of events read
3339 */
3340 unsigned long
3341 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3342 {
3343 struct ring_buffer_per_cpu *cpu_buffer;
3344
3345 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3346 return 0;
3347
3348 cpu_buffer = buffer->buffers[cpu];
3349 return cpu_buffer->read;
3350 }
3351 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3352
3353 /**
3354 * ring_buffer_entries - get the number of entries in a buffer
3355 * @buffer: The ring buffer
3356 *
3357 * Returns the total number of entries in the ring buffer
3358 * (all CPU entries)
3359 */
3360 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3361 {
3362 struct ring_buffer_per_cpu *cpu_buffer;
3363 unsigned long entries = 0;
3364 int cpu;
3365
3366 /* if you care about this being correct, lock the buffer */
3367 for_each_buffer_cpu(buffer, cpu) {
3368 cpu_buffer = buffer->buffers[cpu];
3369 entries += rb_num_of_entries(cpu_buffer);
3370 }
3371
3372 return entries;
3373 }
3374 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3375
3376 /**
3377 * ring_buffer_overruns - get the number of overruns in buffer
3378 * @buffer: The ring buffer
3379 *
3380 * Returns the total number of overruns in the ring buffer
3381 * (all CPU entries)
3382 */
3383 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3384 {
3385 struct ring_buffer_per_cpu *cpu_buffer;
3386 unsigned long overruns = 0;
3387 int cpu;
3388
3389 /* if you care about this being correct, lock the buffer */
3390 for_each_buffer_cpu(buffer, cpu) {
3391 cpu_buffer = buffer->buffers[cpu];
3392 overruns += local_read(&cpu_buffer->overrun);
3393 }
3394
3395 return overruns;
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3398
3399 static void rb_iter_reset(struct ring_buffer_iter *iter)
3400 {
3401 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3402
3403 /* Iterator usage is expected to have record disabled */
3404 iter->head_page = cpu_buffer->reader_page;
3405 iter->head = cpu_buffer->reader_page->read;
3406
3407 iter->cache_reader_page = iter->head_page;
3408 iter->cache_read = cpu_buffer->read;
3409
3410 if (iter->head)
3411 iter->read_stamp = cpu_buffer->read_stamp;
3412 else
3413 iter->read_stamp = iter->head_page->page->time_stamp;
3414 }
3415
3416 /**
3417 * ring_buffer_iter_reset - reset an iterator
3418 * @iter: The iterator to reset
3419 *
3420 * Resets the iterator, so that it will start from the beginning
3421 * again.
3422 */
3423 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3424 {
3425 struct ring_buffer_per_cpu *cpu_buffer;
3426 unsigned long flags;
3427
3428 if (!iter)
3429 return;
3430
3431 cpu_buffer = iter->cpu_buffer;
3432
3433 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3434 rb_iter_reset(iter);
3435 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3436 }
3437 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3438
3439 /**
3440 * ring_buffer_iter_empty - check if an iterator has no more to read
3441 * @iter: The iterator to check
3442 */
3443 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3444 {
3445 struct ring_buffer_per_cpu *cpu_buffer;
3446
3447 cpu_buffer = iter->cpu_buffer;
3448
3449 return iter->head_page == cpu_buffer->commit_page &&
3450 iter->head == rb_commit_index(cpu_buffer);
3451 }
3452 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3453
3454 static void
3455 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3456 struct ring_buffer_event *event)
3457 {
3458 u64 delta;
3459
3460 switch (event->type_len) {
3461 case RINGBUF_TYPE_PADDING:
3462 return;
3463
3464 case RINGBUF_TYPE_TIME_EXTEND:
3465 delta = event->array[0];
3466 delta <<= TS_SHIFT;
3467 delta += event->time_delta;
3468 cpu_buffer->read_stamp += delta;
3469 return;
3470
3471 case RINGBUF_TYPE_TIME_STAMP:
3472 /* FIXME: not implemented */
3473 return;
3474
3475 case RINGBUF_TYPE_DATA:
3476 cpu_buffer->read_stamp += event->time_delta;
3477 return;
3478
3479 default:
3480 BUG();
3481 }
3482 return;
3483 }
3484
3485 static void
3486 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3487 struct ring_buffer_event *event)
3488 {
3489 u64 delta;
3490
3491 switch (event->type_len) {
3492 case RINGBUF_TYPE_PADDING:
3493 return;
3494
3495 case RINGBUF_TYPE_TIME_EXTEND:
3496 delta = event->array[0];
3497 delta <<= TS_SHIFT;
3498 delta += event->time_delta;
3499 iter->read_stamp += delta;
3500 return;
3501
3502 case RINGBUF_TYPE_TIME_STAMP:
3503 /* FIXME: not implemented */
3504 return;
3505
3506 case RINGBUF_TYPE_DATA:
3507 iter->read_stamp += event->time_delta;
3508 return;
3509
3510 default:
3511 BUG();
3512 }
3513 return;
3514 }
3515
3516 static struct buffer_page *
3517 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3518 {
3519 struct buffer_page *reader = NULL;
3520 unsigned long overwrite;
3521 unsigned long flags;
3522 int nr_loops = 0;
3523 int ret;
3524
3525 local_irq_save(flags);
3526 arch_spin_lock(&cpu_buffer->lock);
3527
3528 again:
3529 /*
3530 * This should normally only loop twice. But because the
3531 * start of the reader inserts an empty page, it causes
3532 * a case where we will loop three times. There should be no
3533 * reason to loop four times (that I know of).
3534 */
3535 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3536 reader = NULL;
3537 goto out;
3538 }
3539
3540 reader = cpu_buffer->reader_page;
3541
3542 /* If there's more to read, return this page */
3543 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3544 goto out;
3545
3546 /* Never should we have an index greater than the size */
3547 if (RB_WARN_ON(cpu_buffer,
3548 cpu_buffer->reader_page->read > rb_page_size(reader)))
3549 goto out;
3550
3551 /* check if we caught up to the tail */
3552 reader = NULL;
3553 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3554 goto out;
3555
3556 /* Don't bother swapping if the ring buffer is empty */
3557 if (rb_num_of_entries(cpu_buffer) == 0)
3558 goto out;
3559
3560 /*
3561 * Reset the reader page to size zero.
3562 */
3563 local_set(&cpu_buffer->reader_page->write, 0);
3564 local_set(&cpu_buffer->reader_page->entries, 0);
3565 local_set(&cpu_buffer->reader_page->page->commit, 0);
3566 cpu_buffer->reader_page->real_end = 0;
3567
3568 spin:
3569 /*
3570 * Splice the empty reader page into the list around the head.
3571 */
3572 reader = rb_set_head_page(cpu_buffer);
3573 if (!reader)
3574 goto out;
3575 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3576 cpu_buffer->reader_page->list.prev = reader->list.prev;
3577
3578 /*
3579 * cpu_buffer->pages just needs to point to the buffer, it
3580 * has no specific buffer page to point to. Lets move it out
3581 * of our way so we don't accidentally swap it.
3582 */
3583 cpu_buffer->pages = reader->list.prev;
3584
3585 /* The reader page will be pointing to the new head */
3586 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3587
3588 /*
3589 * We want to make sure we read the overruns after we set up our
3590 * pointers to the next object. The writer side does a
3591 * cmpxchg to cross pages which acts as the mb on the writer
3592 * side. Note, the reader will constantly fail the swap
3593 * while the writer is updating the pointers, so this
3594 * guarantees that the overwrite recorded here is the one we
3595 * want to compare with the last_overrun.
3596 */
3597 smp_mb();
3598 overwrite = local_read(&(cpu_buffer->overrun));
3599
3600 /*
3601 * Here's the tricky part.
3602 *
3603 * We need to move the pointer past the header page.
3604 * But we can only do that if a writer is not currently
3605 * moving it. The page before the header page has the
3606 * flag bit '1' set if it is pointing to the page we want.
3607 * but if the writer is in the process of moving it
3608 * than it will be '2' or already moved '0'.
3609 */
3610
3611 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3612
3613 /*
3614 * If we did not convert it, then we must try again.
3615 */
3616 if (!ret)
3617 goto spin;
3618
3619 /*
3620 * Yeah! We succeeded in replacing the page.
3621 *
3622 * Now make the new head point back to the reader page.
3623 */
3624 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3625 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3626
3627 /* Finally update the reader page to the new head */
3628 cpu_buffer->reader_page = reader;
3629 rb_reset_reader_page(cpu_buffer);
3630
3631 if (overwrite != cpu_buffer->last_overrun) {
3632 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3633 cpu_buffer->last_overrun = overwrite;
3634 }
3635
3636 goto again;
3637
3638 out:
3639 arch_spin_unlock(&cpu_buffer->lock);
3640 local_irq_restore(flags);
3641
3642 return reader;
3643 }
3644
3645 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3646 {
3647 struct ring_buffer_event *event;
3648 struct buffer_page *reader;
3649 unsigned length;
3650
3651 reader = rb_get_reader_page(cpu_buffer);
3652
3653 /* This function should not be called when buffer is empty */
3654 if (RB_WARN_ON(cpu_buffer, !reader))
3655 return;
3656
3657 event = rb_reader_event(cpu_buffer);
3658
3659 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3660 cpu_buffer->read++;
3661
3662 rb_update_read_stamp(cpu_buffer, event);
3663
3664 length = rb_event_length(event);
3665 cpu_buffer->reader_page->read += length;
3666 }
3667
3668 static void rb_advance_iter(struct ring_buffer_iter *iter)
3669 {
3670 struct ring_buffer_per_cpu *cpu_buffer;
3671 struct ring_buffer_event *event;
3672 unsigned length;
3673
3674 cpu_buffer = iter->cpu_buffer;
3675
3676 /*
3677 * Check if we are at the end of the buffer.
3678 */
3679 if (iter->head >= rb_page_size(iter->head_page)) {
3680 /* discarded commits can make the page empty */
3681 if (iter->head_page == cpu_buffer->commit_page)
3682 return;
3683 rb_inc_iter(iter);
3684 return;
3685 }
3686
3687 event = rb_iter_head_event(iter);
3688
3689 length = rb_event_length(event);
3690
3691 /*
3692 * This should not be called to advance the header if we are
3693 * at the tail of the buffer.
3694 */
3695 if (RB_WARN_ON(cpu_buffer,
3696 (iter->head_page == cpu_buffer->commit_page) &&
3697 (iter->head + length > rb_commit_index(cpu_buffer))))
3698 return;
3699
3700 rb_update_iter_read_stamp(iter, event);
3701
3702 iter->head += length;
3703
3704 /* check for end of page padding */
3705 if ((iter->head >= rb_page_size(iter->head_page)) &&
3706 (iter->head_page != cpu_buffer->commit_page))
3707 rb_inc_iter(iter);
3708 }
3709
3710 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3711 {
3712 return cpu_buffer->lost_events;
3713 }
3714
3715 static struct ring_buffer_event *
3716 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3717 unsigned long *lost_events)
3718 {
3719 struct ring_buffer_event *event;
3720 struct buffer_page *reader;
3721 int nr_loops = 0;
3722
3723 again:
3724 /*
3725 * We repeat when a time extend is encountered.
3726 * Since the time extend is always attached to a data event,
3727 * we should never loop more than once.
3728 * (We never hit the following condition more than twice).
3729 */
3730 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3731 return NULL;
3732
3733 reader = rb_get_reader_page(cpu_buffer);
3734 if (!reader)
3735 return NULL;
3736
3737 event = rb_reader_event(cpu_buffer);
3738
3739 switch (event->type_len) {
3740 case RINGBUF_TYPE_PADDING:
3741 if (rb_null_event(event))
3742 RB_WARN_ON(cpu_buffer, 1);
3743 /*
3744 * Because the writer could be discarding every
3745 * event it creates (which would probably be bad)
3746 * if we were to go back to "again" then we may never
3747 * catch up, and will trigger the warn on, or lock
3748 * the box. Return the padding, and we will release
3749 * the current locks, and try again.
3750 */
3751 return event;
3752
3753 case RINGBUF_TYPE_TIME_EXTEND:
3754 /* Internal data, OK to advance */
3755 rb_advance_reader(cpu_buffer);
3756 goto again;
3757
3758 case RINGBUF_TYPE_TIME_STAMP:
3759 /* FIXME: not implemented */
3760 rb_advance_reader(cpu_buffer);
3761 goto again;
3762
3763 case RINGBUF_TYPE_DATA:
3764 if (ts) {
3765 *ts = cpu_buffer->read_stamp + event->time_delta;
3766 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3767 cpu_buffer->cpu, ts);
3768 }
3769 if (lost_events)
3770 *lost_events = rb_lost_events(cpu_buffer);
3771 return event;
3772
3773 default:
3774 BUG();
3775 }
3776
3777 return NULL;
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3780
3781 static struct ring_buffer_event *
3782 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3783 {
3784 struct ring_buffer *buffer;
3785 struct ring_buffer_per_cpu *cpu_buffer;
3786 struct ring_buffer_event *event;
3787 int nr_loops = 0;
3788
3789 cpu_buffer = iter->cpu_buffer;
3790 buffer = cpu_buffer->buffer;
3791
3792 /*
3793 * Check if someone performed a consuming read to
3794 * the buffer. A consuming read invalidates the iterator
3795 * and we need to reset the iterator in this case.
3796 */
3797 if (unlikely(iter->cache_read != cpu_buffer->read ||
3798 iter->cache_reader_page != cpu_buffer->reader_page))
3799 rb_iter_reset(iter);
3800
3801 again:
3802 if (ring_buffer_iter_empty(iter))
3803 return NULL;
3804
3805 /*
3806 * We repeat when a time extend is encountered or we hit
3807 * the end of the page. Since the time extend is always attached
3808 * to a data event, we should never loop more than three times.
3809 * Once for going to next page, once on time extend, and
3810 * finally once to get the event.
3811 * (We never hit the following condition more than thrice).
3812 */
3813 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3814 return NULL;
3815
3816 if (rb_per_cpu_empty(cpu_buffer))
3817 return NULL;
3818
3819 if (iter->head >= rb_page_size(iter->head_page)) {
3820 rb_inc_iter(iter);
3821 goto again;
3822 }
3823
3824 event = rb_iter_head_event(iter);
3825
3826 switch (event->type_len) {
3827 case RINGBUF_TYPE_PADDING:
3828 if (rb_null_event(event)) {
3829 rb_inc_iter(iter);
3830 goto again;
3831 }
3832 rb_advance_iter(iter);
3833 return event;
3834
3835 case RINGBUF_TYPE_TIME_EXTEND:
3836 /* Internal data, OK to advance */
3837 rb_advance_iter(iter);
3838 goto again;
3839
3840 case RINGBUF_TYPE_TIME_STAMP:
3841 /* FIXME: not implemented */
3842 rb_advance_iter(iter);
3843 goto again;
3844
3845 case RINGBUF_TYPE_DATA:
3846 if (ts) {
3847 *ts = iter->read_stamp + event->time_delta;
3848 ring_buffer_normalize_time_stamp(buffer,
3849 cpu_buffer->cpu, ts);
3850 }
3851 return event;
3852
3853 default:
3854 BUG();
3855 }
3856
3857 return NULL;
3858 }
3859 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3860
3861 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3862 {
3863 if (likely(!in_nmi())) {
3864 raw_spin_lock(&cpu_buffer->reader_lock);
3865 return true;
3866 }
3867
3868 /*
3869 * If an NMI die dumps out the content of the ring buffer
3870 * trylock must be used to prevent a deadlock if the NMI
3871 * preempted a task that holds the ring buffer locks. If
3872 * we get the lock then all is fine, if not, then continue
3873 * to do the read, but this can corrupt the ring buffer,
3874 * so it must be permanently disabled from future writes.
3875 * Reading from NMI is a oneshot deal.
3876 */
3877 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3878 return true;
3879
3880 /* Continue without locking, but disable the ring buffer */
3881 atomic_inc(&cpu_buffer->record_disabled);
3882 return false;
3883 }
3884
3885 static inline void
3886 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3887 {
3888 if (likely(locked))
3889 raw_spin_unlock(&cpu_buffer->reader_lock);
3890 return;
3891 }
3892
3893 /**
3894 * ring_buffer_peek - peek at the next event to be read
3895 * @buffer: The ring buffer to read
3896 * @cpu: The cpu to peak at
3897 * @ts: The timestamp counter of this event.
3898 * @lost_events: a variable to store if events were lost (may be NULL)
3899 *
3900 * This will return the event that will be read next, but does
3901 * not consume the data.
3902 */
3903 struct ring_buffer_event *
3904 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3905 unsigned long *lost_events)
3906 {
3907 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3908 struct ring_buffer_event *event;
3909 unsigned long flags;
3910 bool dolock;
3911
3912 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3913 return NULL;
3914
3915 again:
3916 local_irq_save(flags);
3917 dolock = rb_reader_lock(cpu_buffer);
3918 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3919 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3920 rb_advance_reader(cpu_buffer);
3921 rb_reader_unlock(cpu_buffer, dolock);
3922 local_irq_restore(flags);
3923
3924 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3925 goto again;
3926
3927 return event;
3928 }
3929
3930 /**
3931 * ring_buffer_iter_peek - peek at the next event to be read
3932 * @iter: The ring buffer iterator
3933 * @ts: The timestamp counter of this event.
3934 *
3935 * This will return the event that will be read next, but does
3936 * not increment the iterator.
3937 */
3938 struct ring_buffer_event *
3939 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3940 {
3941 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3942 struct ring_buffer_event *event;
3943 unsigned long flags;
3944
3945 again:
3946 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3947 event = rb_iter_peek(iter, ts);
3948 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3949
3950 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3951 goto again;
3952
3953 return event;
3954 }
3955
3956 /**
3957 * ring_buffer_consume - return an event and consume it
3958 * @buffer: The ring buffer to get the next event from
3959 * @cpu: the cpu to read the buffer from
3960 * @ts: a variable to store the timestamp (may be NULL)
3961 * @lost_events: a variable to store if events were lost (may be NULL)
3962 *
3963 * Returns the next event in the ring buffer, and that event is consumed.
3964 * Meaning, that sequential reads will keep returning a different event,
3965 * and eventually empty the ring buffer if the producer is slower.
3966 */
3967 struct ring_buffer_event *
3968 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3969 unsigned long *lost_events)
3970 {
3971 struct ring_buffer_per_cpu *cpu_buffer;
3972 struct ring_buffer_event *event = NULL;
3973 unsigned long flags;
3974 bool dolock;
3975
3976 again:
3977 /* might be called in atomic */
3978 preempt_disable();
3979
3980 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3981 goto out;
3982
3983 cpu_buffer = buffer->buffers[cpu];
3984 local_irq_save(flags);
3985 dolock = rb_reader_lock(cpu_buffer);
3986
3987 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3988 if (event) {
3989 cpu_buffer->lost_events = 0;
3990 rb_advance_reader(cpu_buffer);
3991 }
3992
3993 rb_reader_unlock(cpu_buffer, dolock);
3994 local_irq_restore(flags);
3995
3996 out:
3997 preempt_enable();
3998
3999 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4000 goto again;
4001
4002 return event;
4003 }
4004 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4005
4006 /**
4007 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4008 * @buffer: The ring buffer to read from
4009 * @cpu: The cpu buffer to iterate over
4010 *
4011 * This performs the initial preparations necessary to iterate
4012 * through the buffer. Memory is allocated, buffer recording
4013 * is disabled, and the iterator pointer is returned to the caller.
4014 *
4015 * Disabling buffer recordng prevents the reading from being
4016 * corrupted. This is not a consuming read, so a producer is not
4017 * expected.
4018 *
4019 * After a sequence of ring_buffer_read_prepare calls, the user is
4020 * expected to make at least one call to ring_buffer_read_prepare_sync.
4021 * Afterwards, ring_buffer_read_start is invoked to get things going
4022 * for real.
4023 *
4024 * This overall must be paired with ring_buffer_read_finish.
4025 */
4026 struct ring_buffer_iter *
4027 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4028 {
4029 struct ring_buffer_per_cpu *cpu_buffer;
4030 struct ring_buffer_iter *iter;
4031
4032 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4033 return NULL;
4034
4035 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4036 if (!iter)
4037 return NULL;
4038
4039 cpu_buffer = buffer->buffers[cpu];
4040
4041 iter->cpu_buffer = cpu_buffer;
4042
4043 atomic_inc(&buffer->resize_disabled);
4044 atomic_inc(&cpu_buffer->record_disabled);
4045
4046 return iter;
4047 }
4048 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4049
4050 /**
4051 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4052 *
4053 * All previously invoked ring_buffer_read_prepare calls to prepare
4054 * iterators will be synchronized. Afterwards, read_buffer_read_start
4055 * calls on those iterators are allowed.
4056 */
4057 void
4058 ring_buffer_read_prepare_sync(void)
4059 {
4060 synchronize_sched();
4061 }
4062 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4063
4064 /**
4065 * ring_buffer_read_start - start a non consuming read of the buffer
4066 * @iter: The iterator returned by ring_buffer_read_prepare
4067 *
4068 * This finalizes the startup of an iteration through the buffer.
4069 * The iterator comes from a call to ring_buffer_read_prepare and
4070 * an intervening ring_buffer_read_prepare_sync must have been
4071 * performed.
4072 *
4073 * Must be paired with ring_buffer_read_finish.
4074 */
4075 void
4076 ring_buffer_read_start(struct ring_buffer_iter *iter)
4077 {
4078 struct ring_buffer_per_cpu *cpu_buffer;
4079 unsigned long flags;
4080
4081 if (!iter)
4082 return;
4083
4084 cpu_buffer = iter->cpu_buffer;
4085
4086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4087 arch_spin_lock(&cpu_buffer->lock);
4088 rb_iter_reset(iter);
4089 arch_spin_unlock(&cpu_buffer->lock);
4090 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4093
4094 /**
4095 * ring_buffer_read_finish - finish reading the iterator of the buffer
4096 * @iter: The iterator retrieved by ring_buffer_start
4097 *
4098 * This re-enables the recording to the buffer, and frees the
4099 * iterator.
4100 */
4101 void
4102 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4103 {
4104 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4105 unsigned long flags;
4106
4107 /*
4108 * Ring buffer is disabled from recording, here's a good place
4109 * to check the integrity of the ring buffer.
4110 * Must prevent readers from trying to read, as the check
4111 * clears the HEAD page and readers require it.
4112 */
4113 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4114 rb_check_pages(cpu_buffer);
4115 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4116
4117 atomic_dec(&cpu_buffer->record_disabled);
4118 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4119 kfree(iter);
4120 }
4121 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4122
4123 /**
4124 * ring_buffer_read - read the next item in the ring buffer by the iterator
4125 * @iter: The ring buffer iterator
4126 * @ts: The time stamp of the event read.
4127 *
4128 * This reads the next event in the ring buffer and increments the iterator.
4129 */
4130 struct ring_buffer_event *
4131 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4132 {
4133 struct ring_buffer_event *event;
4134 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4135 unsigned long flags;
4136
4137 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4138 again:
4139 event = rb_iter_peek(iter, ts);
4140 if (!event)
4141 goto out;
4142
4143 if (event->type_len == RINGBUF_TYPE_PADDING)
4144 goto again;
4145
4146 rb_advance_iter(iter);
4147 out:
4148 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4149
4150 return event;
4151 }
4152 EXPORT_SYMBOL_GPL(ring_buffer_read);
4153
4154 /**
4155 * ring_buffer_size - return the size of the ring buffer (in bytes)
4156 * @buffer: The ring buffer.
4157 */
4158 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4159 {
4160 /*
4161 * Earlier, this method returned
4162 * BUF_PAGE_SIZE * buffer->nr_pages
4163 * Since the nr_pages field is now removed, we have converted this to
4164 * return the per cpu buffer value.
4165 */
4166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167 return 0;
4168
4169 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4170 }
4171 EXPORT_SYMBOL_GPL(ring_buffer_size);
4172
4173 static void
4174 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4175 {
4176 rb_head_page_deactivate(cpu_buffer);
4177
4178 cpu_buffer->head_page
4179 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4180 local_set(&cpu_buffer->head_page->write, 0);
4181 local_set(&cpu_buffer->head_page->entries, 0);
4182 local_set(&cpu_buffer->head_page->page->commit, 0);
4183
4184 cpu_buffer->head_page->read = 0;
4185
4186 cpu_buffer->tail_page = cpu_buffer->head_page;
4187 cpu_buffer->commit_page = cpu_buffer->head_page;
4188
4189 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4190 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4191 local_set(&cpu_buffer->reader_page->write, 0);
4192 local_set(&cpu_buffer->reader_page->entries, 0);
4193 local_set(&cpu_buffer->reader_page->page->commit, 0);
4194 cpu_buffer->reader_page->read = 0;
4195
4196 local_set(&cpu_buffer->entries_bytes, 0);
4197 local_set(&cpu_buffer->overrun, 0);
4198 local_set(&cpu_buffer->commit_overrun, 0);
4199 local_set(&cpu_buffer->dropped_events, 0);
4200 local_set(&cpu_buffer->entries, 0);
4201 local_set(&cpu_buffer->committing, 0);
4202 local_set(&cpu_buffer->commits, 0);
4203 cpu_buffer->read = 0;
4204 cpu_buffer->read_bytes = 0;
4205
4206 cpu_buffer->write_stamp = 0;
4207 cpu_buffer->read_stamp = 0;
4208
4209 cpu_buffer->lost_events = 0;
4210 cpu_buffer->last_overrun = 0;
4211
4212 rb_head_page_activate(cpu_buffer);
4213 }
4214
4215 /**
4216 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4217 * @buffer: The ring buffer to reset a per cpu buffer of
4218 * @cpu: The CPU buffer to be reset
4219 */
4220 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4221 {
4222 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4223 unsigned long flags;
4224
4225 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4226 return;
4227
4228 atomic_inc(&buffer->resize_disabled);
4229 atomic_inc(&cpu_buffer->record_disabled);
4230
4231 /* Make sure all commits have finished */
4232 synchronize_sched();
4233
4234 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4235
4236 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4237 goto out;
4238
4239 arch_spin_lock(&cpu_buffer->lock);
4240
4241 rb_reset_cpu(cpu_buffer);
4242
4243 arch_spin_unlock(&cpu_buffer->lock);
4244
4245 out:
4246 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4247
4248 atomic_dec(&cpu_buffer->record_disabled);
4249 atomic_dec(&buffer->resize_disabled);
4250 }
4251 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4252
4253 /**
4254 * ring_buffer_reset - reset a ring buffer
4255 * @buffer: The ring buffer to reset all cpu buffers
4256 */
4257 void ring_buffer_reset(struct ring_buffer *buffer)
4258 {
4259 int cpu;
4260
4261 for_each_buffer_cpu(buffer, cpu)
4262 ring_buffer_reset_cpu(buffer, cpu);
4263 }
4264 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4265
4266 /**
4267 * rind_buffer_empty - is the ring buffer empty?
4268 * @buffer: The ring buffer to test
4269 */
4270 int ring_buffer_empty(struct ring_buffer *buffer)
4271 {
4272 struct ring_buffer_per_cpu *cpu_buffer;
4273 unsigned long flags;
4274 bool dolock;
4275 int cpu;
4276 int ret;
4277
4278 /* yes this is racy, but if you don't like the race, lock the buffer */
4279 for_each_buffer_cpu(buffer, cpu) {
4280 cpu_buffer = buffer->buffers[cpu];
4281 local_irq_save(flags);
4282 dolock = rb_reader_lock(cpu_buffer);
4283 ret = rb_per_cpu_empty(cpu_buffer);
4284 rb_reader_unlock(cpu_buffer, dolock);
4285 local_irq_restore(flags);
4286
4287 if (!ret)
4288 return 0;
4289 }
4290
4291 return 1;
4292 }
4293 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4294
4295 /**
4296 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4297 * @buffer: The ring buffer
4298 * @cpu: The CPU buffer to test
4299 */
4300 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4301 {
4302 struct ring_buffer_per_cpu *cpu_buffer;
4303 unsigned long flags;
4304 bool dolock;
4305 int ret;
4306
4307 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4308 return 1;
4309
4310 cpu_buffer = buffer->buffers[cpu];
4311 local_irq_save(flags);
4312 dolock = rb_reader_lock(cpu_buffer);
4313 ret = rb_per_cpu_empty(cpu_buffer);
4314 rb_reader_unlock(cpu_buffer, dolock);
4315 local_irq_restore(flags);
4316
4317 return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4320
4321 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4322 /**
4323 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4324 * @buffer_a: One buffer to swap with
4325 * @buffer_b: The other buffer to swap with
4326 *
4327 * This function is useful for tracers that want to take a "snapshot"
4328 * of a CPU buffer and has another back up buffer lying around.
4329 * it is expected that the tracer handles the cpu buffer not being
4330 * used at the moment.
4331 */
4332 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4333 struct ring_buffer *buffer_b, int cpu)
4334 {
4335 struct ring_buffer_per_cpu *cpu_buffer_a;
4336 struct ring_buffer_per_cpu *cpu_buffer_b;
4337 int ret = -EINVAL;
4338
4339 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4340 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4341 goto out;
4342
4343 cpu_buffer_a = buffer_a->buffers[cpu];
4344 cpu_buffer_b = buffer_b->buffers[cpu];
4345
4346 /* At least make sure the two buffers are somewhat the same */
4347 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4348 goto out;
4349
4350 ret = -EAGAIN;
4351
4352 if (atomic_read(&buffer_a->record_disabled))
4353 goto out;
4354
4355 if (atomic_read(&buffer_b->record_disabled))
4356 goto out;
4357
4358 if (atomic_read(&cpu_buffer_a->record_disabled))
4359 goto out;
4360
4361 if (atomic_read(&cpu_buffer_b->record_disabled))
4362 goto out;
4363
4364 /*
4365 * We can't do a synchronize_sched here because this
4366 * function can be called in atomic context.
4367 * Normally this will be called from the same CPU as cpu.
4368 * If not it's up to the caller to protect this.
4369 */
4370 atomic_inc(&cpu_buffer_a->record_disabled);
4371 atomic_inc(&cpu_buffer_b->record_disabled);
4372
4373 ret = -EBUSY;
4374 if (local_read(&cpu_buffer_a->committing))
4375 goto out_dec;
4376 if (local_read(&cpu_buffer_b->committing))
4377 goto out_dec;
4378
4379 buffer_a->buffers[cpu] = cpu_buffer_b;
4380 buffer_b->buffers[cpu] = cpu_buffer_a;
4381
4382 cpu_buffer_b->buffer = buffer_a;
4383 cpu_buffer_a->buffer = buffer_b;
4384
4385 ret = 0;
4386
4387 out_dec:
4388 atomic_dec(&cpu_buffer_a->record_disabled);
4389 atomic_dec(&cpu_buffer_b->record_disabled);
4390 out:
4391 return ret;
4392 }
4393 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4394 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4395
4396 /**
4397 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4398 * @buffer: the buffer to allocate for.
4399 * @cpu: the cpu buffer to allocate.
4400 *
4401 * This function is used in conjunction with ring_buffer_read_page.
4402 * When reading a full page from the ring buffer, these functions
4403 * can be used to speed up the process. The calling function should
4404 * allocate a few pages first with this function. Then when it
4405 * needs to get pages from the ring buffer, it passes the result
4406 * of this function into ring_buffer_read_page, which will swap
4407 * the page that was allocated, with the read page of the buffer.
4408 *
4409 * Returns:
4410 * The page allocated, or NULL on error.
4411 */
4412 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4413 {
4414 struct buffer_data_page *bpage;
4415 struct page *page;
4416
4417 page = alloc_pages_node(cpu_to_node(cpu),
4418 GFP_KERNEL | __GFP_NORETRY, 0);
4419 if (!page)
4420 return NULL;
4421
4422 bpage = page_address(page);
4423
4424 rb_init_page(bpage);
4425
4426 return bpage;
4427 }
4428 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4429
4430 /**
4431 * ring_buffer_free_read_page - free an allocated read page
4432 * @buffer: the buffer the page was allocate for
4433 * @data: the page to free
4434 *
4435 * Free a page allocated from ring_buffer_alloc_read_page.
4436 */
4437 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4438 {
4439 free_page((unsigned long)data);
4440 }
4441 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4442
4443 /**
4444 * ring_buffer_read_page - extract a page from the ring buffer
4445 * @buffer: buffer to extract from
4446 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4447 * @len: amount to extract
4448 * @cpu: the cpu of the buffer to extract
4449 * @full: should the extraction only happen when the page is full.
4450 *
4451 * This function will pull out a page from the ring buffer and consume it.
4452 * @data_page must be the address of the variable that was returned
4453 * from ring_buffer_alloc_read_page. This is because the page might be used
4454 * to swap with a page in the ring buffer.
4455 *
4456 * for example:
4457 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4458 * if (!rpage)
4459 * return error;
4460 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4461 * if (ret >= 0)
4462 * process_page(rpage, ret);
4463 *
4464 * When @full is set, the function will not return true unless
4465 * the writer is off the reader page.
4466 *
4467 * Note: it is up to the calling functions to handle sleeps and wakeups.
4468 * The ring buffer can be used anywhere in the kernel and can not
4469 * blindly call wake_up. The layer that uses the ring buffer must be
4470 * responsible for that.
4471 *
4472 * Returns:
4473 * >=0 if data has been transferred, returns the offset of consumed data.
4474 * <0 if no data has been transferred.
4475 */
4476 int ring_buffer_read_page(struct ring_buffer *buffer,
4477 void **data_page, size_t len, int cpu, int full)
4478 {
4479 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4480 struct ring_buffer_event *event;
4481 struct buffer_data_page *bpage;
4482 struct buffer_page *reader;
4483 unsigned long missed_events;
4484 unsigned long flags;
4485 unsigned int commit;
4486 unsigned int read;
4487 u64 save_timestamp;
4488 int ret = -1;
4489
4490 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4491 goto out;
4492
4493 /*
4494 * If len is not big enough to hold the page header, then
4495 * we can not copy anything.
4496 */
4497 if (len <= BUF_PAGE_HDR_SIZE)
4498 goto out;
4499
4500 len -= BUF_PAGE_HDR_SIZE;
4501
4502 if (!data_page)
4503 goto out;
4504
4505 bpage = *data_page;
4506 if (!bpage)
4507 goto out;
4508
4509 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4510
4511 reader = rb_get_reader_page(cpu_buffer);
4512 if (!reader)
4513 goto out_unlock;
4514
4515 event = rb_reader_event(cpu_buffer);
4516
4517 read = reader->read;
4518 commit = rb_page_commit(reader);
4519
4520 /* Check if any events were dropped */
4521 missed_events = cpu_buffer->lost_events;
4522
4523 /*
4524 * If this page has been partially read or
4525 * if len is not big enough to read the rest of the page or
4526 * a writer is still on the page, then
4527 * we must copy the data from the page to the buffer.
4528 * Otherwise, we can simply swap the page with the one passed in.
4529 */
4530 if (read || (len < (commit - read)) ||
4531 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4532 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4533 unsigned int rpos = read;
4534 unsigned int pos = 0;
4535 unsigned int size;
4536
4537 if (full)
4538 goto out_unlock;
4539
4540 if (len > (commit - read))
4541 len = (commit - read);
4542
4543 /* Always keep the time extend and data together */
4544 size = rb_event_ts_length(event);
4545
4546 if (len < size)
4547 goto out_unlock;
4548
4549 /* save the current timestamp, since the user will need it */
4550 save_timestamp = cpu_buffer->read_stamp;
4551
4552 /* Need to copy one event at a time */
4553 do {
4554 /* We need the size of one event, because
4555 * rb_advance_reader only advances by one event,
4556 * whereas rb_event_ts_length may include the size of
4557 * one or two events.
4558 * We have already ensured there's enough space if this
4559 * is a time extend. */
4560 size = rb_event_length(event);
4561 memcpy(bpage->data + pos, rpage->data + rpos, size);
4562
4563 len -= size;
4564
4565 rb_advance_reader(cpu_buffer);
4566 rpos = reader->read;
4567 pos += size;
4568
4569 if (rpos >= commit)
4570 break;
4571
4572 event = rb_reader_event(cpu_buffer);
4573 /* Always keep the time extend and data together */
4574 size = rb_event_ts_length(event);
4575 } while (len >= size);
4576
4577 /* update bpage */
4578 local_set(&bpage->commit, pos);
4579 bpage->time_stamp = save_timestamp;
4580
4581 /* we copied everything to the beginning */
4582 read = 0;
4583 } else {
4584 /* update the entry counter */
4585 cpu_buffer->read += rb_page_entries(reader);
4586 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4587
4588 /* swap the pages */
4589 rb_init_page(bpage);
4590 bpage = reader->page;
4591 reader->page = *data_page;
4592 local_set(&reader->write, 0);
4593 local_set(&reader->entries, 0);
4594 reader->read = 0;
4595 *data_page = bpage;
4596
4597 /*
4598 * Use the real_end for the data size,
4599 * This gives us a chance to store the lost events
4600 * on the page.
4601 */
4602 if (reader->real_end)
4603 local_set(&bpage->commit, reader->real_end);
4604 }
4605 ret = read;
4606
4607 cpu_buffer->lost_events = 0;
4608
4609 commit = local_read(&bpage->commit);
4610 /*
4611 * Set a flag in the commit field if we lost events
4612 */
4613 if (missed_events) {
4614 /* If there is room at the end of the page to save the
4615 * missed events, then record it there.
4616 */
4617 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4618 memcpy(&bpage->data[commit], &missed_events,
4619 sizeof(missed_events));
4620 local_add(RB_MISSED_STORED, &bpage->commit);
4621 commit += sizeof(missed_events);
4622 }
4623 local_add(RB_MISSED_EVENTS, &bpage->commit);
4624 }
4625
4626 /*
4627 * This page may be off to user land. Zero it out here.
4628 */
4629 if (commit < BUF_PAGE_SIZE)
4630 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4631
4632 out_unlock:
4633 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4634
4635 out:
4636 return ret;
4637 }
4638 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4639
4640 #ifdef CONFIG_HOTPLUG_CPU
4641 static int rb_cpu_notify(struct notifier_block *self,
4642 unsigned long action, void *hcpu)
4643 {
4644 struct ring_buffer *buffer =
4645 container_of(self, struct ring_buffer, cpu_notify);
4646 long cpu = (long)hcpu;
4647 int cpu_i, nr_pages_same;
4648 unsigned int nr_pages;
4649
4650 switch (action) {
4651 case CPU_UP_PREPARE:
4652 case CPU_UP_PREPARE_FROZEN:
4653 if (cpumask_test_cpu(cpu, buffer->cpumask))
4654 return NOTIFY_OK;
4655
4656 nr_pages = 0;
4657 nr_pages_same = 1;
4658 /* check if all cpu sizes are same */
4659 for_each_buffer_cpu(buffer, cpu_i) {
4660 /* fill in the size from first enabled cpu */
4661 if (nr_pages == 0)
4662 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4663 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4664 nr_pages_same = 0;
4665 break;
4666 }
4667 }
4668 /* allocate minimum pages, user can later expand it */
4669 if (!nr_pages_same)
4670 nr_pages = 2;
4671 buffer->buffers[cpu] =
4672 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4673 if (!buffer->buffers[cpu]) {
4674 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4675 cpu);
4676 return NOTIFY_OK;
4677 }
4678 smp_wmb();
4679 cpumask_set_cpu(cpu, buffer->cpumask);
4680 break;
4681 case CPU_DOWN_PREPARE:
4682 case CPU_DOWN_PREPARE_FROZEN:
4683 /*
4684 * Do nothing.
4685 * If we were to free the buffer, then the user would
4686 * lose any trace that was in the buffer.
4687 */
4688 break;
4689 default:
4690 break;
4691 }
4692 return NOTIFY_OK;
4693 }
4694 #endif
4695
4696 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4697 /*
4698 * This is a basic integrity check of the ring buffer.
4699 * Late in the boot cycle this test will run when configured in.
4700 * It will kick off a thread per CPU that will go into a loop
4701 * writing to the per cpu ring buffer various sizes of data.
4702 * Some of the data will be large items, some small.
4703 *
4704 * Another thread is created that goes into a spin, sending out
4705 * IPIs to the other CPUs to also write into the ring buffer.
4706 * this is to test the nesting ability of the buffer.
4707 *
4708 * Basic stats are recorded and reported. If something in the
4709 * ring buffer should happen that's not expected, a big warning
4710 * is displayed and all ring buffers are disabled.
4711 */
4712 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4713
4714 struct rb_test_data {
4715 struct ring_buffer *buffer;
4716 unsigned long events;
4717 unsigned long bytes_written;
4718 unsigned long bytes_alloc;
4719 unsigned long bytes_dropped;
4720 unsigned long events_nested;
4721 unsigned long bytes_written_nested;
4722 unsigned long bytes_alloc_nested;
4723 unsigned long bytes_dropped_nested;
4724 int min_size_nested;
4725 int max_size_nested;
4726 int max_size;
4727 int min_size;
4728 int cpu;
4729 int cnt;
4730 };
4731
4732 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4733
4734 /* 1 meg per cpu */
4735 #define RB_TEST_BUFFER_SIZE 1048576
4736
4737 static char rb_string[] __initdata =
4738 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4739 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4740 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4741
4742 static bool rb_test_started __initdata;
4743
4744 struct rb_item {
4745 int size;
4746 char str[];
4747 };
4748
4749 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4750 {
4751 struct ring_buffer_event *event;
4752 struct rb_item *item;
4753 bool started;
4754 int event_len;
4755 int size;
4756 int len;
4757 int cnt;
4758
4759 /* Have nested writes different that what is written */
4760 cnt = data->cnt + (nested ? 27 : 0);
4761
4762 /* Multiply cnt by ~e, to make some unique increment */
4763 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4764
4765 len = size + sizeof(struct rb_item);
4766
4767 started = rb_test_started;
4768 /* read rb_test_started before checking buffer enabled */
4769 smp_rmb();
4770
4771 event = ring_buffer_lock_reserve(data->buffer, len);
4772 if (!event) {
4773 /* Ignore dropped events before test starts. */
4774 if (started) {
4775 if (nested)
4776 data->bytes_dropped += len;
4777 else
4778 data->bytes_dropped_nested += len;
4779 }
4780 return len;
4781 }
4782
4783 event_len = ring_buffer_event_length(event);
4784
4785 if (RB_WARN_ON(data->buffer, event_len < len))
4786 goto out;
4787
4788 item = ring_buffer_event_data(event);
4789 item->size = size;
4790 memcpy(item->str, rb_string, size);
4791
4792 if (nested) {
4793 data->bytes_alloc_nested += event_len;
4794 data->bytes_written_nested += len;
4795 data->events_nested++;
4796 if (!data->min_size_nested || len < data->min_size_nested)
4797 data->min_size_nested = len;
4798 if (len > data->max_size_nested)
4799 data->max_size_nested = len;
4800 } else {
4801 data->bytes_alloc += event_len;
4802 data->bytes_written += len;
4803 data->events++;
4804 if (!data->min_size || len < data->min_size)
4805 data->max_size = len;
4806 if (len > data->max_size)
4807 data->max_size = len;
4808 }
4809
4810 out:
4811 ring_buffer_unlock_commit(data->buffer, event);
4812
4813 return 0;
4814 }
4815
4816 static __init int rb_test(void *arg)
4817 {
4818 struct rb_test_data *data = arg;
4819
4820 while (!kthread_should_stop()) {
4821 rb_write_something(data, false);
4822 data->cnt++;
4823
4824 set_current_state(TASK_INTERRUPTIBLE);
4825 /* Now sleep between a min of 100-300us and a max of 1ms */
4826 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4827 }
4828
4829 return 0;
4830 }
4831
4832 static __init void rb_ipi(void *ignore)
4833 {
4834 struct rb_test_data *data;
4835 int cpu = smp_processor_id();
4836
4837 data = &rb_data[cpu];
4838 rb_write_something(data, true);
4839 }
4840
4841 static __init int rb_hammer_test(void *arg)
4842 {
4843 while (!kthread_should_stop()) {
4844
4845 /* Send an IPI to all cpus to write data! */
4846 smp_call_function(rb_ipi, NULL, 1);
4847 /* No sleep, but for non preempt, let others run */
4848 schedule();
4849 }
4850
4851 return 0;
4852 }
4853
4854 static __init int test_ringbuffer(void)
4855 {
4856 struct task_struct *rb_hammer;
4857 struct ring_buffer *buffer;
4858 int cpu;
4859 int ret = 0;
4860
4861 pr_info("Running ring buffer tests...\n");
4862
4863 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4864 if (WARN_ON(!buffer))
4865 return 0;
4866
4867 /* Disable buffer so that threads can't write to it yet */
4868 ring_buffer_record_off(buffer);
4869
4870 for_each_online_cpu(cpu) {
4871 rb_data[cpu].buffer = buffer;
4872 rb_data[cpu].cpu = cpu;
4873 rb_data[cpu].cnt = cpu;
4874 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4875 "rbtester/%d", cpu);
4876 if (WARN_ON(!rb_threads[cpu])) {
4877 pr_cont("FAILED\n");
4878 ret = -1;
4879 goto out_free;
4880 }
4881
4882 kthread_bind(rb_threads[cpu], cpu);
4883 wake_up_process(rb_threads[cpu]);
4884 }
4885
4886 /* Now create the rb hammer! */
4887 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4888 if (WARN_ON(!rb_hammer)) {
4889 pr_cont("FAILED\n");
4890 ret = -1;
4891 goto out_free;
4892 }
4893
4894 ring_buffer_record_on(buffer);
4895 /*
4896 * Show buffer is enabled before setting rb_test_started.
4897 * Yes there's a small race window where events could be
4898 * dropped and the thread wont catch it. But when a ring
4899 * buffer gets enabled, there will always be some kind of
4900 * delay before other CPUs see it. Thus, we don't care about
4901 * those dropped events. We care about events dropped after
4902 * the threads see that the buffer is active.
4903 */
4904 smp_wmb();
4905 rb_test_started = true;
4906
4907 set_current_state(TASK_INTERRUPTIBLE);
4908 /* Just run for 10 seconds */;
4909 schedule_timeout(10 * HZ);
4910
4911 kthread_stop(rb_hammer);
4912
4913 out_free:
4914 for_each_online_cpu(cpu) {
4915 if (!rb_threads[cpu])
4916 break;
4917 kthread_stop(rb_threads[cpu]);
4918 }
4919 if (ret) {
4920 ring_buffer_free(buffer);
4921 return ret;
4922 }
4923
4924 /* Report! */
4925 pr_info("finished\n");
4926 for_each_online_cpu(cpu) {
4927 struct ring_buffer_event *event;
4928 struct rb_test_data *data = &rb_data[cpu];
4929 struct rb_item *item;
4930 unsigned long total_events;
4931 unsigned long total_dropped;
4932 unsigned long total_written;
4933 unsigned long total_alloc;
4934 unsigned long total_read = 0;
4935 unsigned long total_size = 0;
4936 unsigned long total_len = 0;
4937 unsigned long total_lost = 0;
4938 unsigned long lost;
4939 int big_event_size;
4940 int small_event_size;
4941
4942 ret = -1;
4943
4944 total_events = data->events + data->events_nested;
4945 total_written = data->bytes_written + data->bytes_written_nested;
4946 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4947 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4948
4949 big_event_size = data->max_size + data->max_size_nested;
4950 small_event_size = data->min_size + data->min_size_nested;
4951
4952 pr_info("CPU %d:\n", cpu);
4953 pr_info(" events: %ld\n", total_events);
4954 pr_info(" dropped bytes: %ld\n", total_dropped);
4955 pr_info(" alloced bytes: %ld\n", total_alloc);
4956 pr_info(" written bytes: %ld\n", total_written);
4957 pr_info(" biggest event: %d\n", big_event_size);
4958 pr_info(" smallest event: %d\n", small_event_size);
4959
4960 if (RB_WARN_ON(buffer, total_dropped))
4961 break;
4962
4963 ret = 0;
4964
4965 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4966 total_lost += lost;
4967 item = ring_buffer_event_data(event);
4968 total_len += ring_buffer_event_length(event);
4969 total_size += item->size + sizeof(struct rb_item);
4970 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4971 pr_info("FAILED!\n");
4972 pr_info("buffer had: %.*s\n", item->size, item->str);
4973 pr_info("expected: %.*s\n", item->size, rb_string);
4974 RB_WARN_ON(buffer, 1);
4975 ret = -1;
4976 break;
4977 }
4978 total_read++;
4979 }
4980 if (ret)
4981 break;
4982
4983 ret = -1;
4984
4985 pr_info(" read events: %ld\n", total_read);
4986 pr_info(" lost events: %ld\n", total_lost);
4987 pr_info(" total events: %ld\n", total_lost + total_read);
4988 pr_info(" recorded len bytes: %ld\n", total_len);
4989 pr_info(" recorded size bytes: %ld\n", total_size);
4990 if (total_lost)
4991 pr_info(" With dropped events, record len and size may not match\n"
4992 " alloced and written from above\n");
4993 if (!total_lost) {
4994 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4995 total_size != total_written))
4996 break;
4997 }
4998 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4999 break;
5000
5001 ret = 0;
5002 }
5003 if (!ret)
5004 pr_info("Ring buffer PASSED!\n");
5005
5006 ring_buffer_free(buffer);
5007 return 0;
5008 }
5009
5010 late_initcall(test_ringbuffer);
5011 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
This page took 0.167411 seconds and 5 git commands to generate.