Merge branch 'for-chris' of git://git.jan-o-sch.net/btrfs-unstable into for-linus
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 /*
27 * The ring buffer header is special. We must manually up keep it.
28 */
29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31 int ret;
32
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44
45 return ret;
46 }
47
48 /*
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
53 *
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
57 *
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
61 *
62 * Here's some silly ASCII art.
63 *
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
73 *
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
95 *
96 *
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
106 *
107 *
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
111 *
112 * We will be using cmpxchg soon to make all this lockless.
113 *
114 */
115
116 /*
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
122 *
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
125 *
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
129 *
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
132 */
133
134 /*
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
137 *
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
143 */
144
145 enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
148 };
149
150 enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156
157 /* Used for individual buffers (after the counter) */
158 #define RB_BUFFER_OFF (1 << 20)
159
160 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161
162 /**
163 * tracing_off_permanent - permanently disable ring buffers
164 *
165 * This function, once called, will disable all ring buffers
166 * permanently.
167 */
168 void tracing_off_permanent(void)
169 {
170 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
171 }
172
173 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
174 #define RB_ALIGNMENT 4U
175 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
176 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
177
178 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
179 # define RB_FORCE_8BYTE_ALIGNMENT 0
180 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
181 #else
182 # define RB_FORCE_8BYTE_ALIGNMENT 1
183 # define RB_ARCH_ALIGNMENT 8U
184 #endif
185
186 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
187 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
188
189 enum {
190 RB_LEN_TIME_EXTEND = 8,
191 RB_LEN_TIME_STAMP = 16,
192 };
193
194 #define skip_time_extend(event) \
195 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
196
197 static inline int rb_null_event(struct ring_buffer_event *event)
198 {
199 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
200 }
201
202 static void rb_event_set_padding(struct ring_buffer_event *event)
203 {
204 /* padding has a NULL time_delta */
205 event->type_len = RINGBUF_TYPE_PADDING;
206 event->time_delta = 0;
207 }
208
209 static unsigned
210 rb_event_data_length(struct ring_buffer_event *event)
211 {
212 unsigned length;
213
214 if (event->type_len)
215 length = event->type_len * RB_ALIGNMENT;
216 else
217 length = event->array[0];
218 return length + RB_EVNT_HDR_SIZE;
219 }
220
221 /*
222 * Return the length of the given event. Will return
223 * the length of the time extend if the event is a
224 * time extend.
225 */
226 static inline unsigned
227 rb_event_length(struct ring_buffer_event *event)
228 {
229 switch (event->type_len) {
230 case RINGBUF_TYPE_PADDING:
231 if (rb_null_event(event))
232 /* undefined */
233 return -1;
234 return event->array[0] + RB_EVNT_HDR_SIZE;
235
236 case RINGBUF_TYPE_TIME_EXTEND:
237 return RB_LEN_TIME_EXTEND;
238
239 case RINGBUF_TYPE_TIME_STAMP:
240 return RB_LEN_TIME_STAMP;
241
242 case RINGBUF_TYPE_DATA:
243 return rb_event_data_length(event);
244 default:
245 BUG();
246 }
247 /* not hit */
248 return 0;
249 }
250
251 /*
252 * Return total length of time extend and data,
253 * or just the event length for all other events.
254 */
255 static inline unsigned
256 rb_event_ts_length(struct ring_buffer_event *event)
257 {
258 unsigned len = 0;
259
260 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
261 /* time extends include the data event after it */
262 len = RB_LEN_TIME_EXTEND;
263 event = skip_time_extend(event);
264 }
265 return len + rb_event_length(event);
266 }
267
268 /**
269 * ring_buffer_event_length - return the length of the event
270 * @event: the event to get the length of
271 *
272 * Returns the size of the data load of a data event.
273 * If the event is something other than a data event, it
274 * returns the size of the event itself. With the exception
275 * of a TIME EXTEND, where it still returns the size of the
276 * data load of the data event after it.
277 */
278 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279 {
280 unsigned length;
281
282 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
283 event = skip_time_extend(event);
284
285 length = rb_event_length(event);
286 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
287 return length;
288 length -= RB_EVNT_HDR_SIZE;
289 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
290 length -= sizeof(event->array[0]);
291 return length;
292 }
293 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
294
295 /* inline for ring buffer fast paths */
296 static void *
297 rb_event_data(struct ring_buffer_event *event)
298 {
299 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
300 event = skip_time_extend(event);
301 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
302 /* If length is in len field, then array[0] has the data */
303 if (event->type_len)
304 return (void *)&event->array[0];
305 /* Otherwise length is in array[0] and array[1] has the data */
306 return (void *)&event->array[1];
307 }
308
309 /**
310 * ring_buffer_event_data - return the data of the event
311 * @event: the event to get the data from
312 */
313 void *ring_buffer_event_data(struct ring_buffer_event *event)
314 {
315 return rb_event_data(event);
316 }
317 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
318
319 #define for_each_buffer_cpu(buffer, cpu) \
320 for_each_cpu(cpu, buffer->cpumask)
321
322 #define TS_SHIFT 27
323 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
324 #define TS_DELTA_TEST (~TS_MASK)
325
326 /* Flag when events were overwritten */
327 #define RB_MISSED_EVENTS (1 << 31)
328 /* Missed count stored at end */
329 #define RB_MISSED_STORED (1 << 30)
330
331 struct buffer_data_page {
332 u64 time_stamp; /* page time stamp */
333 local_t commit; /* write committed index */
334 unsigned char data[]; /* data of buffer page */
335 };
336
337 /*
338 * Note, the buffer_page list must be first. The buffer pages
339 * are allocated in cache lines, which means that each buffer
340 * page will be at the beginning of a cache line, and thus
341 * the least significant bits will be zero. We use this to
342 * add flags in the list struct pointers, to make the ring buffer
343 * lockless.
344 */
345 struct buffer_page {
346 struct list_head list; /* list of buffer pages */
347 local_t write; /* index for next write */
348 unsigned read; /* index for next read */
349 local_t entries; /* entries on this page */
350 unsigned long real_end; /* real end of data */
351 struct buffer_data_page *page; /* Actual data page */
352 };
353
354 /*
355 * The buffer page counters, write and entries, must be reset
356 * atomically when crossing page boundaries. To synchronize this
357 * update, two counters are inserted into the number. One is
358 * the actual counter for the write position or count on the page.
359 *
360 * The other is a counter of updaters. Before an update happens
361 * the update partition of the counter is incremented. This will
362 * allow the updater to update the counter atomically.
363 *
364 * The counter is 20 bits, and the state data is 12.
365 */
366 #define RB_WRITE_MASK 0xfffff
367 #define RB_WRITE_INTCNT (1 << 20)
368
369 static void rb_init_page(struct buffer_data_page *bpage)
370 {
371 local_set(&bpage->commit, 0);
372 }
373
374 /**
375 * ring_buffer_page_len - the size of data on the page.
376 * @page: The page to read
377 *
378 * Returns the amount of data on the page, including buffer page header.
379 */
380 size_t ring_buffer_page_len(void *page)
381 {
382 return local_read(&((struct buffer_data_page *)page)->commit)
383 + BUF_PAGE_HDR_SIZE;
384 }
385
386 /*
387 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
388 * this issue out.
389 */
390 static void free_buffer_page(struct buffer_page *bpage)
391 {
392 free_page((unsigned long)bpage->page);
393 kfree(bpage);
394 }
395
396 /*
397 * We need to fit the time_stamp delta into 27 bits.
398 */
399 static inline int test_time_stamp(u64 delta)
400 {
401 if (delta & TS_DELTA_TEST)
402 return 1;
403 return 0;
404 }
405
406 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
407
408 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
409 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
410
411 int ring_buffer_print_page_header(struct trace_seq *s)
412 {
413 struct buffer_data_page field;
414 int ret;
415
416 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
417 "offset:0;\tsize:%u;\tsigned:%u;\n",
418 (unsigned int)sizeof(field.time_stamp),
419 (unsigned int)is_signed_type(u64));
420
421 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
422 "offset:%u;\tsize:%u;\tsigned:%u;\n",
423 (unsigned int)offsetof(typeof(field), commit),
424 (unsigned int)sizeof(field.commit),
425 (unsigned int)is_signed_type(long));
426
427 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
428 "offset:%u;\tsize:%u;\tsigned:%u;\n",
429 (unsigned int)offsetof(typeof(field), commit),
430 1,
431 (unsigned int)is_signed_type(long));
432
433 ret = trace_seq_printf(s, "\tfield: char data;\t"
434 "offset:%u;\tsize:%u;\tsigned:%u;\n",
435 (unsigned int)offsetof(typeof(field), data),
436 (unsigned int)BUF_PAGE_SIZE,
437 (unsigned int)is_signed_type(char));
438
439 return ret;
440 }
441
442 /*
443 * head_page == tail_page && head == tail then buffer is empty.
444 */
445 struct ring_buffer_per_cpu {
446 int cpu;
447 atomic_t record_disabled;
448 struct ring_buffer *buffer;
449 raw_spinlock_t reader_lock; /* serialize readers */
450 arch_spinlock_t lock;
451 struct lock_class_key lock_key;
452 struct list_head *pages;
453 struct buffer_page *head_page; /* read from head */
454 struct buffer_page *tail_page; /* write to tail */
455 struct buffer_page *commit_page; /* committed pages */
456 struct buffer_page *reader_page;
457 unsigned long lost_events;
458 unsigned long last_overrun;
459 local_t entries_bytes;
460 local_t commit_overrun;
461 local_t overrun;
462 local_t entries;
463 local_t committing;
464 local_t commits;
465 unsigned long read;
466 unsigned long read_bytes;
467 u64 write_stamp;
468 u64 read_stamp;
469 };
470
471 struct ring_buffer {
472 unsigned pages;
473 unsigned flags;
474 int cpus;
475 atomic_t record_disabled;
476 cpumask_var_t cpumask;
477
478 struct lock_class_key *reader_lock_key;
479
480 struct mutex mutex;
481
482 struct ring_buffer_per_cpu **buffers;
483
484 #ifdef CONFIG_HOTPLUG_CPU
485 struct notifier_block cpu_notify;
486 #endif
487 u64 (*clock)(void);
488 };
489
490 struct ring_buffer_iter {
491 struct ring_buffer_per_cpu *cpu_buffer;
492 unsigned long head;
493 struct buffer_page *head_page;
494 struct buffer_page *cache_reader_page;
495 unsigned long cache_read;
496 u64 read_stamp;
497 };
498
499 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
500 #define RB_WARN_ON(b, cond) \
501 ({ \
502 int _____ret = unlikely(cond); \
503 if (_____ret) { \
504 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
505 struct ring_buffer_per_cpu *__b = \
506 (void *)b; \
507 atomic_inc(&__b->buffer->record_disabled); \
508 } else \
509 atomic_inc(&b->record_disabled); \
510 WARN_ON(1); \
511 } \
512 _____ret; \
513 })
514
515 /* Up this if you want to test the TIME_EXTENTS and normalization */
516 #define DEBUG_SHIFT 0
517
518 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
519 {
520 /* shift to debug/test normalization and TIME_EXTENTS */
521 return buffer->clock() << DEBUG_SHIFT;
522 }
523
524 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
525 {
526 u64 time;
527
528 preempt_disable_notrace();
529 time = rb_time_stamp(buffer);
530 preempt_enable_no_resched_notrace();
531
532 return time;
533 }
534 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
535
536 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
537 int cpu, u64 *ts)
538 {
539 /* Just stupid testing the normalize function and deltas */
540 *ts >>= DEBUG_SHIFT;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
543
544 /*
545 * Making the ring buffer lockless makes things tricky.
546 * Although writes only happen on the CPU that they are on,
547 * and they only need to worry about interrupts. Reads can
548 * happen on any CPU.
549 *
550 * The reader page is always off the ring buffer, but when the
551 * reader finishes with a page, it needs to swap its page with
552 * a new one from the buffer. The reader needs to take from
553 * the head (writes go to the tail). But if a writer is in overwrite
554 * mode and wraps, it must push the head page forward.
555 *
556 * Here lies the problem.
557 *
558 * The reader must be careful to replace only the head page, and
559 * not another one. As described at the top of the file in the
560 * ASCII art, the reader sets its old page to point to the next
561 * page after head. It then sets the page after head to point to
562 * the old reader page. But if the writer moves the head page
563 * during this operation, the reader could end up with the tail.
564 *
565 * We use cmpxchg to help prevent this race. We also do something
566 * special with the page before head. We set the LSB to 1.
567 *
568 * When the writer must push the page forward, it will clear the
569 * bit that points to the head page, move the head, and then set
570 * the bit that points to the new head page.
571 *
572 * We also don't want an interrupt coming in and moving the head
573 * page on another writer. Thus we use the second LSB to catch
574 * that too. Thus:
575 *
576 * head->list->prev->next bit 1 bit 0
577 * ------- -------
578 * Normal page 0 0
579 * Points to head page 0 1
580 * New head page 1 0
581 *
582 * Note we can not trust the prev pointer of the head page, because:
583 *
584 * +----+ +-----+ +-----+
585 * | |------>| T |---X--->| N |
586 * | |<------| | | |
587 * +----+ +-----+ +-----+
588 * ^ ^ |
589 * | +-----+ | |
590 * +----------| R |----------+ |
591 * | |<-----------+
592 * +-----+
593 *
594 * Key: ---X--> HEAD flag set in pointer
595 * T Tail page
596 * R Reader page
597 * N Next page
598 *
599 * (see __rb_reserve_next() to see where this happens)
600 *
601 * What the above shows is that the reader just swapped out
602 * the reader page with a page in the buffer, but before it
603 * could make the new header point back to the new page added
604 * it was preempted by a writer. The writer moved forward onto
605 * the new page added by the reader and is about to move forward
606 * again.
607 *
608 * You can see, it is legitimate for the previous pointer of
609 * the head (or any page) not to point back to itself. But only
610 * temporarially.
611 */
612
613 #define RB_PAGE_NORMAL 0UL
614 #define RB_PAGE_HEAD 1UL
615 #define RB_PAGE_UPDATE 2UL
616
617
618 #define RB_FLAG_MASK 3UL
619
620 /* PAGE_MOVED is not part of the mask */
621 #define RB_PAGE_MOVED 4UL
622
623 /*
624 * rb_list_head - remove any bit
625 */
626 static struct list_head *rb_list_head(struct list_head *list)
627 {
628 unsigned long val = (unsigned long)list;
629
630 return (struct list_head *)(val & ~RB_FLAG_MASK);
631 }
632
633 /*
634 * rb_is_head_page - test if the given page is the head page
635 *
636 * Because the reader may move the head_page pointer, we can
637 * not trust what the head page is (it may be pointing to
638 * the reader page). But if the next page is a header page,
639 * its flags will be non zero.
640 */
641 static inline int
642 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
643 struct buffer_page *page, struct list_head *list)
644 {
645 unsigned long val;
646
647 val = (unsigned long)list->next;
648
649 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
650 return RB_PAGE_MOVED;
651
652 return val & RB_FLAG_MASK;
653 }
654
655 /*
656 * rb_is_reader_page
657 *
658 * The unique thing about the reader page, is that, if the
659 * writer is ever on it, the previous pointer never points
660 * back to the reader page.
661 */
662 static int rb_is_reader_page(struct buffer_page *page)
663 {
664 struct list_head *list = page->list.prev;
665
666 return rb_list_head(list->next) != &page->list;
667 }
668
669 /*
670 * rb_set_list_to_head - set a list_head to be pointing to head.
671 */
672 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
673 struct list_head *list)
674 {
675 unsigned long *ptr;
676
677 ptr = (unsigned long *)&list->next;
678 *ptr |= RB_PAGE_HEAD;
679 *ptr &= ~RB_PAGE_UPDATE;
680 }
681
682 /*
683 * rb_head_page_activate - sets up head page
684 */
685 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
686 {
687 struct buffer_page *head;
688
689 head = cpu_buffer->head_page;
690 if (!head)
691 return;
692
693 /*
694 * Set the previous list pointer to have the HEAD flag.
695 */
696 rb_set_list_to_head(cpu_buffer, head->list.prev);
697 }
698
699 static void rb_list_head_clear(struct list_head *list)
700 {
701 unsigned long *ptr = (unsigned long *)&list->next;
702
703 *ptr &= ~RB_FLAG_MASK;
704 }
705
706 /*
707 * rb_head_page_dactivate - clears head page ptr (for free list)
708 */
709 static void
710 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
711 {
712 struct list_head *hd;
713
714 /* Go through the whole list and clear any pointers found. */
715 rb_list_head_clear(cpu_buffer->pages);
716
717 list_for_each(hd, cpu_buffer->pages)
718 rb_list_head_clear(hd);
719 }
720
721 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
722 struct buffer_page *head,
723 struct buffer_page *prev,
724 int old_flag, int new_flag)
725 {
726 struct list_head *list;
727 unsigned long val = (unsigned long)&head->list;
728 unsigned long ret;
729
730 list = &prev->list;
731
732 val &= ~RB_FLAG_MASK;
733
734 ret = cmpxchg((unsigned long *)&list->next,
735 val | old_flag, val | new_flag);
736
737 /* check if the reader took the page */
738 if ((ret & ~RB_FLAG_MASK) != val)
739 return RB_PAGE_MOVED;
740
741 return ret & RB_FLAG_MASK;
742 }
743
744 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
745 struct buffer_page *head,
746 struct buffer_page *prev,
747 int old_flag)
748 {
749 return rb_head_page_set(cpu_buffer, head, prev,
750 old_flag, RB_PAGE_UPDATE);
751 }
752
753 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
754 struct buffer_page *head,
755 struct buffer_page *prev,
756 int old_flag)
757 {
758 return rb_head_page_set(cpu_buffer, head, prev,
759 old_flag, RB_PAGE_HEAD);
760 }
761
762 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
763 struct buffer_page *head,
764 struct buffer_page *prev,
765 int old_flag)
766 {
767 return rb_head_page_set(cpu_buffer, head, prev,
768 old_flag, RB_PAGE_NORMAL);
769 }
770
771 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
772 struct buffer_page **bpage)
773 {
774 struct list_head *p = rb_list_head((*bpage)->list.next);
775
776 *bpage = list_entry(p, struct buffer_page, list);
777 }
778
779 static struct buffer_page *
780 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
781 {
782 struct buffer_page *head;
783 struct buffer_page *page;
784 struct list_head *list;
785 int i;
786
787 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
788 return NULL;
789
790 /* sanity check */
791 list = cpu_buffer->pages;
792 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
793 return NULL;
794
795 page = head = cpu_buffer->head_page;
796 /*
797 * It is possible that the writer moves the header behind
798 * where we started, and we miss in one loop.
799 * A second loop should grab the header, but we'll do
800 * three loops just because I'm paranoid.
801 */
802 for (i = 0; i < 3; i++) {
803 do {
804 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
805 cpu_buffer->head_page = page;
806 return page;
807 }
808 rb_inc_page(cpu_buffer, &page);
809 } while (page != head);
810 }
811
812 RB_WARN_ON(cpu_buffer, 1);
813
814 return NULL;
815 }
816
817 static int rb_head_page_replace(struct buffer_page *old,
818 struct buffer_page *new)
819 {
820 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
821 unsigned long val;
822 unsigned long ret;
823
824 val = *ptr & ~RB_FLAG_MASK;
825 val |= RB_PAGE_HEAD;
826
827 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
828
829 return ret == val;
830 }
831
832 /*
833 * rb_tail_page_update - move the tail page forward
834 *
835 * Returns 1 if moved tail page, 0 if someone else did.
836 */
837 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
838 struct buffer_page *tail_page,
839 struct buffer_page *next_page)
840 {
841 struct buffer_page *old_tail;
842 unsigned long old_entries;
843 unsigned long old_write;
844 int ret = 0;
845
846 /*
847 * The tail page now needs to be moved forward.
848 *
849 * We need to reset the tail page, but without messing
850 * with possible erasing of data brought in by interrupts
851 * that have moved the tail page and are currently on it.
852 *
853 * We add a counter to the write field to denote this.
854 */
855 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
856 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
857
858 /*
859 * Just make sure we have seen our old_write and synchronize
860 * with any interrupts that come in.
861 */
862 barrier();
863
864 /*
865 * If the tail page is still the same as what we think
866 * it is, then it is up to us to update the tail
867 * pointer.
868 */
869 if (tail_page == cpu_buffer->tail_page) {
870 /* Zero the write counter */
871 unsigned long val = old_write & ~RB_WRITE_MASK;
872 unsigned long eval = old_entries & ~RB_WRITE_MASK;
873
874 /*
875 * This will only succeed if an interrupt did
876 * not come in and change it. In which case, we
877 * do not want to modify it.
878 *
879 * We add (void) to let the compiler know that we do not care
880 * about the return value of these functions. We use the
881 * cmpxchg to only update if an interrupt did not already
882 * do it for us. If the cmpxchg fails, we don't care.
883 */
884 (void)local_cmpxchg(&next_page->write, old_write, val);
885 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
886
887 /*
888 * No need to worry about races with clearing out the commit.
889 * it only can increment when a commit takes place. But that
890 * only happens in the outer most nested commit.
891 */
892 local_set(&next_page->page->commit, 0);
893
894 old_tail = cmpxchg(&cpu_buffer->tail_page,
895 tail_page, next_page);
896
897 if (old_tail == tail_page)
898 ret = 1;
899 }
900
901 return ret;
902 }
903
904 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
905 struct buffer_page *bpage)
906 {
907 unsigned long val = (unsigned long)bpage;
908
909 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
910 return 1;
911
912 return 0;
913 }
914
915 /**
916 * rb_check_list - make sure a pointer to a list has the last bits zero
917 */
918 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
919 struct list_head *list)
920 {
921 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
922 return 1;
923 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
924 return 1;
925 return 0;
926 }
927
928 /**
929 * check_pages - integrity check of buffer pages
930 * @cpu_buffer: CPU buffer with pages to test
931 *
932 * As a safety measure we check to make sure the data pages have not
933 * been corrupted.
934 */
935 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
936 {
937 struct list_head *head = cpu_buffer->pages;
938 struct buffer_page *bpage, *tmp;
939
940 rb_head_page_deactivate(cpu_buffer);
941
942 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
943 return -1;
944 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
945 return -1;
946
947 if (rb_check_list(cpu_buffer, head))
948 return -1;
949
950 list_for_each_entry_safe(bpage, tmp, head, list) {
951 if (RB_WARN_ON(cpu_buffer,
952 bpage->list.next->prev != &bpage->list))
953 return -1;
954 if (RB_WARN_ON(cpu_buffer,
955 bpage->list.prev->next != &bpage->list))
956 return -1;
957 if (rb_check_list(cpu_buffer, &bpage->list))
958 return -1;
959 }
960
961 rb_head_page_activate(cpu_buffer);
962
963 return 0;
964 }
965
966 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
967 unsigned nr_pages)
968 {
969 struct buffer_page *bpage, *tmp;
970 LIST_HEAD(pages);
971 unsigned i;
972
973 WARN_ON(!nr_pages);
974
975 for (i = 0; i < nr_pages; i++) {
976 struct page *page;
977 /*
978 * __GFP_NORETRY flag makes sure that the allocation fails
979 * gracefully without invoking oom-killer and the system is
980 * not destabilized.
981 */
982 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
983 GFP_KERNEL | __GFP_NORETRY,
984 cpu_to_node(cpu_buffer->cpu));
985 if (!bpage)
986 goto free_pages;
987
988 rb_check_bpage(cpu_buffer, bpage);
989
990 list_add(&bpage->list, &pages);
991
992 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
993 GFP_KERNEL | __GFP_NORETRY, 0);
994 if (!page)
995 goto free_pages;
996 bpage->page = page_address(page);
997 rb_init_page(bpage->page);
998 }
999
1000 /*
1001 * The ring buffer page list is a circular list that does not
1002 * start and end with a list head. All page list items point to
1003 * other pages.
1004 */
1005 cpu_buffer->pages = pages.next;
1006 list_del(&pages);
1007
1008 rb_check_pages(cpu_buffer);
1009
1010 return 0;
1011
1012 free_pages:
1013 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1014 list_del_init(&bpage->list);
1015 free_buffer_page(bpage);
1016 }
1017 return -ENOMEM;
1018 }
1019
1020 static struct ring_buffer_per_cpu *
1021 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1022 {
1023 struct ring_buffer_per_cpu *cpu_buffer;
1024 struct buffer_page *bpage;
1025 struct page *page;
1026 int ret;
1027
1028 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1029 GFP_KERNEL, cpu_to_node(cpu));
1030 if (!cpu_buffer)
1031 return NULL;
1032
1033 cpu_buffer->cpu = cpu;
1034 cpu_buffer->buffer = buffer;
1035 raw_spin_lock_init(&cpu_buffer->reader_lock);
1036 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1037 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1038
1039 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1040 GFP_KERNEL, cpu_to_node(cpu));
1041 if (!bpage)
1042 goto fail_free_buffer;
1043
1044 rb_check_bpage(cpu_buffer, bpage);
1045
1046 cpu_buffer->reader_page = bpage;
1047 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1048 if (!page)
1049 goto fail_free_reader;
1050 bpage->page = page_address(page);
1051 rb_init_page(bpage->page);
1052
1053 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1054
1055 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1056 if (ret < 0)
1057 goto fail_free_reader;
1058
1059 cpu_buffer->head_page
1060 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1061 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1062
1063 rb_head_page_activate(cpu_buffer);
1064
1065 return cpu_buffer;
1066
1067 fail_free_reader:
1068 free_buffer_page(cpu_buffer->reader_page);
1069
1070 fail_free_buffer:
1071 kfree(cpu_buffer);
1072 return NULL;
1073 }
1074
1075 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 struct list_head *head = cpu_buffer->pages;
1078 struct buffer_page *bpage, *tmp;
1079
1080 free_buffer_page(cpu_buffer->reader_page);
1081
1082 rb_head_page_deactivate(cpu_buffer);
1083
1084 if (head) {
1085 list_for_each_entry_safe(bpage, tmp, head, list) {
1086 list_del_init(&bpage->list);
1087 free_buffer_page(bpage);
1088 }
1089 bpage = list_entry(head, struct buffer_page, list);
1090 free_buffer_page(bpage);
1091 }
1092
1093 kfree(cpu_buffer);
1094 }
1095
1096 #ifdef CONFIG_HOTPLUG_CPU
1097 static int rb_cpu_notify(struct notifier_block *self,
1098 unsigned long action, void *hcpu);
1099 #endif
1100
1101 /**
1102 * ring_buffer_alloc - allocate a new ring_buffer
1103 * @size: the size in bytes per cpu that is needed.
1104 * @flags: attributes to set for the ring buffer.
1105 *
1106 * Currently the only flag that is available is the RB_FL_OVERWRITE
1107 * flag. This flag means that the buffer will overwrite old data
1108 * when the buffer wraps. If this flag is not set, the buffer will
1109 * drop data when the tail hits the head.
1110 */
1111 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1112 struct lock_class_key *key)
1113 {
1114 struct ring_buffer *buffer;
1115 int bsize;
1116 int cpu;
1117
1118 /* keep it in its own cache line */
1119 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1120 GFP_KERNEL);
1121 if (!buffer)
1122 return NULL;
1123
1124 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1125 goto fail_free_buffer;
1126
1127 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1128 buffer->flags = flags;
1129 buffer->clock = trace_clock_local;
1130 buffer->reader_lock_key = key;
1131
1132 /* need at least two pages */
1133 if (buffer->pages < 2)
1134 buffer->pages = 2;
1135
1136 /*
1137 * In case of non-hotplug cpu, if the ring-buffer is allocated
1138 * in early initcall, it will not be notified of secondary cpus.
1139 * In that off case, we need to allocate for all possible cpus.
1140 */
1141 #ifdef CONFIG_HOTPLUG_CPU
1142 get_online_cpus();
1143 cpumask_copy(buffer->cpumask, cpu_online_mask);
1144 #else
1145 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1146 #endif
1147 buffer->cpus = nr_cpu_ids;
1148
1149 bsize = sizeof(void *) * nr_cpu_ids;
1150 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1151 GFP_KERNEL);
1152 if (!buffer->buffers)
1153 goto fail_free_cpumask;
1154
1155 for_each_buffer_cpu(buffer, cpu) {
1156 buffer->buffers[cpu] =
1157 rb_allocate_cpu_buffer(buffer, cpu);
1158 if (!buffer->buffers[cpu])
1159 goto fail_free_buffers;
1160 }
1161
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1164 buffer->cpu_notify.priority = 0;
1165 register_cpu_notifier(&buffer->cpu_notify);
1166 #endif
1167
1168 put_online_cpus();
1169 mutex_init(&buffer->mutex);
1170
1171 return buffer;
1172
1173 fail_free_buffers:
1174 for_each_buffer_cpu(buffer, cpu) {
1175 if (buffer->buffers[cpu])
1176 rb_free_cpu_buffer(buffer->buffers[cpu]);
1177 }
1178 kfree(buffer->buffers);
1179
1180 fail_free_cpumask:
1181 free_cpumask_var(buffer->cpumask);
1182 put_online_cpus();
1183
1184 fail_free_buffer:
1185 kfree(buffer);
1186 return NULL;
1187 }
1188 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1189
1190 /**
1191 * ring_buffer_free - free a ring buffer.
1192 * @buffer: the buffer to free.
1193 */
1194 void
1195 ring_buffer_free(struct ring_buffer *buffer)
1196 {
1197 int cpu;
1198
1199 get_online_cpus();
1200
1201 #ifdef CONFIG_HOTPLUG_CPU
1202 unregister_cpu_notifier(&buffer->cpu_notify);
1203 #endif
1204
1205 for_each_buffer_cpu(buffer, cpu)
1206 rb_free_cpu_buffer(buffer->buffers[cpu]);
1207
1208 put_online_cpus();
1209
1210 kfree(buffer->buffers);
1211 free_cpumask_var(buffer->cpumask);
1212
1213 kfree(buffer);
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_free);
1216
1217 void ring_buffer_set_clock(struct ring_buffer *buffer,
1218 u64 (*clock)(void))
1219 {
1220 buffer->clock = clock;
1221 }
1222
1223 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1224
1225 static void
1226 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1227 {
1228 struct buffer_page *bpage;
1229 struct list_head *p;
1230 unsigned i;
1231
1232 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1233 rb_head_page_deactivate(cpu_buffer);
1234
1235 for (i = 0; i < nr_pages; i++) {
1236 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1237 goto out;
1238 p = cpu_buffer->pages->next;
1239 bpage = list_entry(p, struct buffer_page, list);
1240 list_del_init(&bpage->list);
1241 free_buffer_page(bpage);
1242 }
1243 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1244 goto out;
1245
1246 rb_reset_cpu(cpu_buffer);
1247 rb_check_pages(cpu_buffer);
1248
1249 out:
1250 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1251 }
1252
1253 static void
1254 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1255 struct list_head *pages, unsigned nr_pages)
1256 {
1257 struct buffer_page *bpage;
1258 struct list_head *p;
1259 unsigned i;
1260
1261 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1262 rb_head_page_deactivate(cpu_buffer);
1263
1264 for (i = 0; i < nr_pages; i++) {
1265 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1266 goto out;
1267 p = pages->next;
1268 bpage = list_entry(p, struct buffer_page, list);
1269 list_del_init(&bpage->list);
1270 list_add_tail(&bpage->list, cpu_buffer->pages);
1271 }
1272 rb_reset_cpu(cpu_buffer);
1273 rb_check_pages(cpu_buffer);
1274
1275 out:
1276 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1277 }
1278
1279 /**
1280 * ring_buffer_resize - resize the ring buffer
1281 * @buffer: the buffer to resize.
1282 * @size: the new size.
1283 *
1284 * Minimum size is 2 * BUF_PAGE_SIZE.
1285 *
1286 * Returns -1 on failure.
1287 */
1288 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1289 {
1290 struct ring_buffer_per_cpu *cpu_buffer;
1291 unsigned nr_pages, rm_pages, new_pages;
1292 struct buffer_page *bpage, *tmp;
1293 unsigned long buffer_size;
1294 LIST_HEAD(pages);
1295 int i, cpu;
1296
1297 /*
1298 * Always succeed at resizing a non-existent buffer:
1299 */
1300 if (!buffer)
1301 return size;
1302
1303 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1304 size *= BUF_PAGE_SIZE;
1305 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1306
1307 /* we need a minimum of two pages */
1308 if (size < BUF_PAGE_SIZE * 2)
1309 size = BUF_PAGE_SIZE * 2;
1310
1311 if (size == buffer_size)
1312 return size;
1313
1314 atomic_inc(&buffer->record_disabled);
1315
1316 /* Make sure all writers are done with this buffer. */
1317 synchronize_sched();
1318
1319 mutex_lock(&buffer->mutex);
1320 get_online_cpus();
1321
1322 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1323
1324 if (size < buffer_size) {
1325
1326 /* easy case, just free pages */
1327 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1328 goto out_fail;
1329
1330 rm_pages = buffer->pages - nr_pages;
1331
1332 for_each_buffer_cpu(buffer, cpu) {
1333 cpu_buffer = buffer->buffers[cpu];
1334 rb_remove_pages(cpu_buffer, rm_pages);
1335 }
1336 goto out;
1337 }
1338
1339 /*
1340 * This is a bit more difficult. We only want to add pages
1341 * when we can allocate enough for all CPUs. We do this
1342 * by allocating all the pages and storing them on a local
1343 * link list. If we succeed in our allocation, then we
1344 * add these pages to the cpu_buffers. Otherwise we just free
1345 * them all and return -ENOMEM;
1346 */
1347 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1348 goto out_fail;
1349
1350 new_pages = nr_pages - buffer->pages;
1351
1352 for_each_buffer_cpu(buffer, cpu) {
1353 for (i = 0; i < new_pages; i++) {
1354 struct page *page;
1355 /*
1356 * __GFP_NORETRY flag makes sure that the allocation
1357 * fails gracefully without invoking oom-killer and
1358 * the system is not destabilized.
1359 */
1360 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1361 cache_line_size()),
1362 GFP_KERNEL | __GFP_NORETRY,
1363 cpu_to_node(cpu));
1364 if (!bpage)
1365 goto free_pages;
1366 list_add(&bpage->list, &pages);
1367 page = alloc_pages_node(cpu_to_node(cpu),
1368 GFP_KERNEL | __GFP_NORETRY, 0);
1369 if (!page)
1370 goto free_pages;
1371 bpage->page = page_address(page);
1372 rb_init_page(bpage->page);
1373 }
1374 }
1375
1376 for_each_buffer_cpu(buffer, cpu) {
1377 cpu_buffer = buffer->buffers[cpu];
1378 rb_insert_pages(cpu_buffer, &pages, new_pages);
1379 }
1380
1381 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1382 goto out_fail;
1383
1384 out:
1385 buffer->pages = nr_pages;
1386 put_online_cpus();
1387 mutex_unlock(&buffer->mutex);
1388
1389 atomic_dec(&buffer->record_disabled);
1390
1391 return size;
1392
1393 free_pages:
1394 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1395 list_del_init(&bpage->list);
1396 free_buffer_page(bpage);
1397 }
1398 put_online_cpus();
1399 mutex_unlock(&buffer->mutex);
1400 atomic_dec(&buffer->record_disabled);
1401 return -ENOMEM;
1402
1403 /*
1404 * Something went totally wrong, and we are too paranoid
1405 * to even clean up the mess.
1406 */
1407 out_fail:
1408 put_online_cpus();
1409 mutex_unlock(&buffer->mutex);
1410 atomic_dec(&buffer->record_disabled);
1411 return -1;
1412 }
1413 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1414
1415 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1416 {
1417 mutex_lock(&buffer->mutex);
1418 if (val)
1419 buffer->flags |= RB_FL_OVERWRITE;
1420 else
1421 buffer->flags &= ~RB_FL_OVERWRITE;
1422 mutex_unlock(&buffer->mutex);
1423 }
1424 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1425
1426 static inline void *
1427 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1428 {
1429 return bpage->data + index;
1430 }
1431
1432 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1433 {
1434 return bpage->page->data + index;
1435 }
1436
1437 static inline struct ring_buffer_event *
1438 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1439 {
1440 return __rb_page_index(cpu_buffer->reader_page,
1441 cpu_buffer->reader_page->read);
1442 }
1443
1444 static inline struct ring_buffer_event *
1445 rb_iter_head_event(struct ring_buffer_iter *iter)
1446 {
1447 return __rb_page_index(iter->head_page, iter->head);
1448 }
1449
1450 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1451 {
1452 return local_read(&bpage->write) & RB_WRITE_MASK;
1453 }
1454
1455 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1456 {
1457 return local_read(&bpage->page->commit);
1458 }
1459
1460 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1461 {
1462 return local_read(&bpage->entries) & RB_WRITE_MASK;
1463 }
1464
1465 /* Size is determined by what has been committed */
1466 static inline unsigned rb_page_size(struct buffer_page *bpage)
1467 {
1468 return rb_page_commit(bpage);
1469 }
1470
1471 static inline unsigned
1472 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1473 {
1474 return rb_page_commit(cpu_buffer->commit_page);
1475 }
1476
1477 static inline unsigned
1478 rb_event_index(struct ring_buffer_event *event)
1479 {
1480 unsigned long addr = (unsigned long)event;
1481
1482 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1483 }
1484
1485 static inline int
1486 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1487 struct ring_buffer_event *event)
1488 {
1489 unsigned long addr = (unsigned long)event;
1490 unsigned long index;
1491
1492 index = rb_event_index(event);
1493 addr &= PAGE_MASK;
1494
1495 return cpu_buffer->commit_page->page == (void *)addr &&
1496 rb_commit_index(cpu_buffer) == index;
1497 }
1498
1499 static void
1500 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1501 {
1502 unsigned long max_count;
1503
1504 /*
1505 * We only race with interrupts and NMIs on this CPU.
1506 * If we own the commit event, then we can commit
1507 * all others that interrupted us, since the interruptions
1508 * are in stack format (they finish before they come
1509 * back to us). This allows us to do a simple loop to
1510 * assign the commit to the tail.
1511 */
1512 again:
1513 max_count = cpu_buffer->buffer->pages * 100;
1514
1515 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1516 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1517 return;
1518 if (RB_WARN_ON(cpu_buffer,
1519 rb_is_reader_page(cpu_buffer->tail_page)))
1520 return;
1521 local_set(&cpu_buffer->commit_page->page->commit,
1522 rb_page_write(cpu_buffer->commit_page));
1523 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1524 cpu_buffer->write_stamp =
1525 cpu_buffer->commit_page->page->time_stamp;
1526 /* add barrier to keep gcc from optimizing too much */
1527 barrier();
1528 }
1529 while (rb_commit_index(cpu_buffer) !=
1530 rb_page_write(cpu_buffer->commit_page)) {
1531
1532 local_set(&cpu_buffer->commit_page->page->commit,
1533 rb_page_write(cpu_buffer->commit_page));
1534 RB_WARN_ON(cpu_buffer,
1535 local_read(&cpu_buffer->commit_page->page->commit) &
1536 ~RB_WRITE_MASK);
1537 barrier();
1538 }
1539
1540 /* again, keep gcc from optimizing */
1541 barrier();
1542
1543 /*
1544 * If an interrupt came in just after the first while loop
1545 * and pushed the tail page forward, we will be left with
1546 * a dangling commit that will never go forward.
1547 */
1548 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1549 goto again;
1550 }
1551
1552 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1553 {
1554 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1555 cpu_buffer->reader_page->read = 0;
1556 }
1557
1558 static void rb_inc_iter(struct ring_buffer_iter *iter)
1559 {
1560 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1561
1562 /*
1563 * The iterator could be on the reader page (it starts there).
1564 * But the head could have moved, since the reader was
1565 * found. Check for this case and assign the iterator
1566 * to the head page instead of next.
1567 */
1568 if (iter->head_page == cpu_buffer->reader_page)
1569 iter->head_page = rb_set_head_page(cpu_buffer);
1570 else
1571 rb_inc_page(cpu_buffer, &iter->head_page);
1572
1573 iter->read_stamp = iter->head_page->page->time_stamp;
1574 iter->head = 0;
1575 }
1576
1577 /* Slow path, do not inline */
1578 static noinline struct ring_buffer_event *
1579 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1580 {
1581 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1582
1583 /* Not the first event on the page? */
1584 if (rb_event_index(event)) {
1585 event->time_delta = delta & TS_MASK;
1586 event->array[0] = delta >> TS_SHIFT;
1587 } else {
1588 /* nope, just zero it */
1589 event->time_delta = 0;
1590 event->array[0] = 0;
1591 }
1592
1593 return skip_time_extend(event);
1594 }
1595
1596 /**
1597 * ring_buffer_update_event - update event type and data
1598 * @event: the even to update
1599 * @type: the type of event
1600 * @length: the size of the event field in the ring buffer
1601 *
1602 * Update the type and data fields of the event. The length
1603 * is the actual size that is written to the ring buffer,
1604 * and with this, we can determine what to place into the
1605 * data field.
1606 */
1607 static void
1608 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1609 struct ring_buffer_event *event, unsigned length,
1610 int add_timestamp, u64 delta)
1611 {
1612 /* Only a commit updates the timestamp */
1613 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1614 delta = 0;
1615
1616 /*
1617 * If we need to add a timestamp, then we
1618 * add it to the start of the resevered space.
1619 */
1620 if (unlikely(add_timestamp)) {
1621 event = rb_add_time_stamp(event, delta);
1622 length -= RB_LEN_TIME_EXTEND;
1623 delta = 0;
1624 }
1625
1626 event->time_delta = delta;
1627 length -= RB_EVNT_HDR_SIZE;
1628 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1629 event->type_len = 0;
1630 event->array[0] = length;
1631 } else
1632 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1633 }
1634
1635 /*
1636 * rb_handle_head_page - writer hit the head page
1637 *
1638 * Returns: +1 to retry page
1639 * 0 to continue
1640 * -1 on error
1641 */
1642 static int
1643 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1644 struct buffer_page *tail_page,
1645 struct buffer_page *next_page)
1646 {
1647 struct buffer_page *new_head;
1648 int entries;
1649 int type;
1650 int ret;
1651
1652 entries = rb_page_entries(next_page);
1653
1654 /*
1655 * The hard part is here. We need to move the head
1656 * forward, and protect against both readers on
1657 * other CPUs and writers coming in via interrupts.
1658 */
1659 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1660 RB_PAGE_HEAD);
1661
1662 /*
1663 * type can be one of four:
1664 * NORMAL - an interrupt already moved it for us
1665 * HEAD - we are the first to get here.
1666 * UPDATE - we are the interrupt interrupting
1667 * a current move.
1668 * MOVED - a reader on another CPU moved the next
1669 * pointer to its reader page. Give up
1670 * and try again.
1671 */
1672
1673 switch (type) {
1674 case RB_PAGE_HEAD:
1675 /*
1676 * We changed the head to UPDATE, thus
1677 * it is our responsibility to update
1678 * the counters.
1679 */
1680 local_add(entries, &cpu_buffer->overrun);
1681 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1682
1683 /*
1684 * The entries will be zeroed out when we move the
1685 * tail page.
1686 */
1687
1688 /* still more to do */
1689 break;
1690
1691 case RB_PAGE_UPDATE:
1692 /*
1693 * This is an interrupt that interrupt the
1694 * previous update. Still more to do.
1695 */
1696 break;
1697 case RB_PAGE_NORMAL:
1698 /*
1699 * An interrupt came in before the update
1700 * and processed this for us.
1701 * Nothing left to do.
1702 */
1703 return 1;
1704 case RB_PAGE_MOVED:
1705 /*
1706 * The reader is on another CPU and just did
1707 * a swap with our next_page.
1708 * Try again.
1709 */
1710 return 1;
1711 default:
1712 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1713 return -1;
1714 }
1715
1716 /*
1717 * Now that we are here, the old head pointer is
1718 * set to UPDATE. This will keep the reader from
1719 * swapping the head page with the reader page.
1720 * The reader (on another CPU) will spin till
1721 * we are finished.
1722 *
1723 * We just need to protect against interrupts
1724 * doing the job. We will set the next pointer
1725 * to HEAD. After that, we set the old pointer
1726 * to NORMAL, but only if it was HEAD before.
1727 * otherwise we are an interrupt, and only
1728 * want the outer most commit to reset it.
1729 */
1730 new_head = next_page;
1731 rb_inc_page(cpu_buffer, &new_head);
1732
1733 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1734 RB_PAGE_NORMAL);
1735
1736 /*
1737 * Valid returns are:
1738 * HEAD - an interrupt came in and already set it.
1739 * NORMAL - One of two things:
1740 * 1) We really set it.
1741 * 2) A bunch of interrupts came in and moved
1742 * the page forward again.
1743 */
1744 switch (ret) {
1745 case RB_PAGE_HEAD:
1746 case RB_PAGE_NORMAL:
1747 /* OK */
1748 break;
1749 default:
1750 RB_WARN_ON(cpu_buffer, 1);
1751 return -1;
1752 }
1753
1754 /*
1755 * It is possible that an interrupt came in,
1756 * set the head up, then more interrupts came in
1757 * and moved it again. When we get back here,
1758 * the page would have been set to NORMAL but we
1759 * just set it back to HEAD.
1760 *
1761 * How do you detect this? Well, if that happened
1762 * the tail page would have moved.
1763 */
1764 if (ret == RB_PAGE_NORMAL) {
1765 /*
1766 * If the tail had moved passed next, then we need
1767 * to reset the pointer.
1768 */
1769 if (cpu_buffer->tail_page != tail_page &&
1770 cpu_buffer->tail_page != next_page)
1771 rb_head_page_set_normal(cpu_buffer, new_head,
1772 next_page,
1773 RB_PAGE_HEAD);
1774 }
1775
1776 /*
1777 * If this was the outer most commit (the one that
1778 * changed the original pointer from HEAD to UPDATE),
1779 * then it is up to us to reset it to NORMAL.
1780 */
1781 if (type == RB_PAGE_HEAD) {
1782 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1783 tail_page,
1784 RB_PAGE_UPDATE);
1785 if (RB_WARN_ON(cpu_buffer,
1786 ret != RB_PAGE_UPDATE))
1787 return -1;
1788 }
1789
1790 return 0;
1791 }
1792
1793 static unsigned rb_calculate_event_length(unsigned length)
1794 {
1795 struct ring_buffer_event event; /* Used only for sizeof array */
1796
1797 /* zero length can cause confusions */
1798 if (!length)
1799 length = 1;
1800
1801 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1802 length += sizeof(event.array[0]);
1803
1804 length += RB_EVNT_HDR_SIZE;
1805 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1806
1807 return length;
1808 }
1809
1810 static inline void
1811 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1812 struct buffer_page *tail_page,
1813 unsigned long tail, unsigned long length)
1814 {
1815 struct ring_buffer_event *event;
1816
1817 /*
1818 * Only the event that crossed the page boundary
1819 * must fill the old tail_page with padding.
1820 */
1821 if (tail >= BUF_PAGE_SIZE) {
1822 /*
1823 * If the page was filled, then we still need
1824 * to update the real_end. Reset it to zero
1825 * and the reader will ignore it.
1826 */
1827 if (tail == BUF_PAGE_SIZE)
1828 tail_page->real_end = 0;
1829
1830 local_sub(length, &tail_page->write);
1831 return;
1832 }
1833
1834 event = __rb_page_index(tail_page, tail);
1835 kmemcheck_annotate_bitfield(event, bitfield);
1836
1837 /* account for padding bytes */
1838 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
1839
1840 /*
1841 * Save the original length to the meta data.
1842 * This will be used by the reader to add lost event
1843 * counter.
1844 */
1845 tail_page->real_end = tail;
1846
1847 /*
1848 * If this event is bigger than the minimum size, then
1849 * we need to be careful that we don't subtract the
1850 * write counter enough to allow another writer to slip
1851 * in on this page.
1852 * We put in a discarded commit instead, to make sure
1853 * that this space is not used again.
1854 *
1855 * If we are less than the minimum size, we don't need to
1856 * worry about it.
1857 */
1858 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1859 /* No room for any events */
1860
1861 /* Mark the rest of the page with padding */
1862 rb_event_set_padding(event);
1863
1864 /* Set the write back to the previous setting */
1865 local_sub(length, &tail_page->write);
1866 return;
1867 }
1868
1869 /* Put in a discarded event */
1870 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1871 event->type_len = RINGBUF_TYPE_PADDING;
1872 /* time delta must be non zero */
1873 event->time_delta = 1;
1874
1875 /* Set write to end of buffer */
1876 length = (tail + length) - BUF_PAGE_SIZE;
1877 local_sub(length, &tail_page->write);
1878 }
1879
1880 /*
1881 * This is the slow path, force gcc not to inline it.
1882 */
1883 static noinline struct ring_buffer_event *
1884 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1885 unsigned long length, unsigned long tail,
1886 struct buffer_page *tail_page, u64 ts)
1887 {
1888 struct buffer_page *commit_page = cpu_buffer->commit_page;
1889 struct ring_buffer *buffer = cpu_buffer->buffer;
1890 struct buffer_page *next_page;
1891 int ret;
1892
1893 next_page = tail_page;
1894
1895 rb_inc_page(cpu_buffer, &next_page);
1896
1897 /*
1898 * If for some reason, we had an interrupt storm that made
1899 * it all the way around the buffer, bail, and warn
1900 * about it.
1901 */
1902 if (unlikely(next_page == commit_page)) {
1903 local_inc(&cpu_buffer->commit_overrun);
1904 goto out_reset;
1905 }
1906
1907 /*
1908 * This is where the fun begins!
1909 *
1910 * We are fighting against races between a reader that
1911 * could be on another CPU trying to swap its reader
1912 * page with the buffer head.
1913 *
1914 * We are also fighting against interrupts coming in and
1915 * moving the head or tail on us as well.
1916 *
1917 * If the next page is the head page then we have filled
1918 * the buffer, unless the commit page is still on the
1919 * reader page.
1920 */
1921 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1922
1923 /*
1924 * If the commit is not on the reader page, then
1925 * move the header page.
1926 */
1927 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1928 /*
1929 * If we are not in overwrite mode,
1930 * this is easy, just stop here.
1931 */
1932 if (!(buffer->flags & RB_FL_OVERWRITE))
1933 goto out_reset;
1934
1935 ret = rb_handle_head_page(cpu_buffer,
1936 tail_page,
1937 next_page);
1938 if (ret < 0)
1939 goto out_reset;
1940 if (ret)
1941 goto out_again;
1942 } else {
1943 /*
1944 * We need to be careful here too. The
1945 * commit page could still be on the reader
1946 * page. We could have a small buffer, and
1947 * have filled up the buffer with events
1948 * from interrupts and such, and wrapped.
1949 *
1950 * Note, if the tail page is also the on the
1951 * reader_page, we let it move out.
1952 */
1953 if (unlikely((cpu_buffer->commit_page !=
1954 cpu_buffer->tail_page) &&
1955 (cpu_buffer->commit_page ==
1956 cpu_buffer->reader_page))) {
1957 local_inc(&cpu_buffer->commit_overrun);
1958 goto out_reset;
1959 }
1960 }
1961 }
1962
1963 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1964 if (ret) {
1965 /*
1966 * Nested commits always have zero deltas, so
1967 * just reread the time stamp
1968 */
1969 ts = rb_time_stamp(buffer);
1970 next_page->page->time_stamp = ts;
1971 }
1972
1973 out_again:
1974
1975 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1976
1977 /* fail and let the caller try again */
1978 return ERR_PTR(-EAGAIN);
1979
1980 out_reset:
1981 /* reset write */
1982 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1983
1984 return NULL;
1985 }
1986
1987 static struct ring_buffer_event *
1988 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1989 unsigned long length, u64 ts,
1990 u64 delta, int add_timestamp)
1991 {
1992 struct buffer_page *tail_page;
1993 struct ring_buffer_event *event;
1994 unsigned long tail, write;
1995
1996 /*
1997 * If the time delta since the last event is too big to
1998 * hold in the time field of the event, then we append a
1999 * TIME EXTEND event ahead of the data event.
2000 */
2001 if (unlikely(add_timestamp))
2002 length += RB_LEN_TIME_EXTEND;
2003
2004 tail_page = cpu_buffer->tail_page;
2005 write = local_add_return(length, &tail_page->write);
2006
2007 /* set write to only the index of the write */
2008 write &= RB_WRITE_MASK;
2009 tail = write - length;
2010
2011 /* See if we shot pass the end of this buffer page */
2012 if (unlikely(write > BUF_PAGE_SIZE))
2013 return rb_move_tail(cpu_buffer, length, tail,
2014 tail_page, ts);
2015
2016 /* We reserved something on the buffer */
2017
2018 event = __rb_page_index(tail_page, tail);
2019 kmemcheck_annotate_bitfield(event, bitfield);
2020 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2021
2022 local_inc(&tail_page->entries);
2023
2024 /*
2025 * If this is the first commit on the page, then update
2026 * its timestamp.
2027 */
2028 if (!tail)
2029 tail_page->page->time_stamp = ts;
2030
2031 /* account for these added bytes */
2032 local_add(length, &cpu_buffer->entries_bytes);
2033
2034 return event;
2035 }
2036
2037 static inline int
2038 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2039 struct ring_buffer_event *event)
2040 {
2041 unsigned long new_index, old_index;
2042 struct buffer_page *bpage;
2043 unsigned long index;
2044 unsigned long addr;
2045
2046 new_index = rb_event_index(event);
2047 old_index = new_index + rb_event_ts_length(event);
2048 addr = (unsigned long)event;
2049 addr &= PAGE_MASK;
2050
2051 bpage = cpu_buffer->tail_page;
2052
2053 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2054 unsigned long write_mask =
2055 local_read(&bpage->write) & ~RB_WRITE_MASK;
2056 unsigned long event_length = rb_event_length(event);
2057 /*
2058 * This is on the tail page. It is possible that
2059 * a write could come in and move the tail page
2060 * and write to the next page. That is fine
2061 * because we just shorten what is on this page.
2062 */
2063 old_index += write_mask;
2064 new_index += write_mask;
2065 index = local_cmpxchg(&bpage->write, old_index, new_index);
2066 if (index == old_index) {
2067 /* update counters */
2068 local_sub(event_length, &cpu_buffer->entries_bytes);
2069 return 1;
2070 }
2071 }
2072
2073 /* could not discard */
2074 return 0;
2075 }
2076
2077 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2078 {
2079 local_inc(&cpu_buffer->committing);
2080 local_inc(&cpu_buffer->commits);
2081 }
2082
2083 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2084 {
2085 unsigned long commits;
2086
2087 if (RB_WARN_ON(cpu_buffer,
2088 !local_read(&cpu_buffer->committing)))
2089 return;
2090
2091 again:
2092 commits = local_read(&cpu_buffer->commits);
2093 /* synchronize with interrupts */
2094 barrier();
2095 if (local_read(&cpu_buffer->committing) == 1)
2096 rb_set_commit_to_write(cpu_buffer);
2097
2098 local_dec(&cpu_buffer->committing);
2099
2100 /* synchronize with interrupts */
2101 barrier();
2102
2103 /*
2104 * Need to account for interrupts coming in between the
2105 * updating of the commit page and the clearing of the
2106 * committing counter.
2107 */
2108 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2109 !local_read(&cpu_buffer->committing)) {
2110 local_inc(&cpu_buffer->committing);
2111 goto again;
2112 }
2113 }
2114
2115 static struct ring_buffer_event *
2116 rb_reserve_next_event(struct ring_buffer *buffer,
2117 struct ring_buffer_per_cpu *cpu_buffer,
2118 unsigned long length)
2119 {
2120 struct ring_buffer_event *event;
2121 u64 ts, delta;
2122 int nr_loops = 0;
2123 int add_timestamp;
2124 u64 diff;
2125
2126 rb_start_commit(cpu_buffer);
2127
2128 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2129 /*
2130 * Due to the ability to swap a cpu buffer from a buffer
2131 * it is possible it was swapped before we committed.
2132 * (committing stops a swap). We check for it here and
2133 * if it happened, we have to fail the write.
2134 */
2135 barrier();
2136 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2137 local_dec(&cpu_buffer->committing);
2138 local_dec(&cpu_buffer->commits);
2139 return NULL;
2140 }
2141 #endif
2142
2143 length = rb_calculate_event_length(length);
2144 again:
2145 add_timestamp = 0;
2146 delta = 0;
2147
2148 /*
2149 * We allow for interrupts to reenter here and do a trace.
2150 * If one does, it will cause this original code to loop
2151 * back here. Even with heavy interrupts happening, this
2152 * should only happen a few times in a row. If this happens
2153 * 1000 times in a row, there must be either an interrupt
2154 * storm or we have something buggy.
2155 * Bail!
2156 */
2157 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2158 goto out_fail;
2159
2160 ts = rb_time_stamp(cpu_buffer->buffer);
2161 diff = ts - cpu_buffer->write_stamp;
2162
2163 /* make sure this diff is calculated here */
2164 barrier();
2165
2166 /* Did the write stamp get updated already? */
2167 if (likely(ts >= cpu_buffer->write_stamp)) {
2168 delta = diff;
2169 if (unlikely(test_time_stamp(delta))) {
2170 int local_clock_stable = 1;
2171 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2172 local_clock_stable = sched_clock_stable;
2173 #endif
2174 WARN_ONCE(delta > (1ULL << 59),
2175 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2176 (unsigned long long)delta,
2177 (unsigned long long)ts,
2178 (unsigned long long)cpu_buffer->write_stamp,
2179 local_clock_stable ? "" :
2180 "If you just came from a suspend/resume,\n"
2181 "please switch to the trace global clock:\n"
2182 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2183 add_timestamp = 1;
2184 }
2185 }
2186
2187 event = __rb_reserve_next(cpu_buffer, length, ts,
2188 delta, add_timestamp);
2189 if (unlikely(PTR_ERR(event) == -EAGAIN))
2190 goto again;
2191
2192 if (!event)
2193 goto out_fail;
2194
2195 return event;
2196
2197 out_fail:
2198 rb_end_commit(cpu_buffer);
2199 return NULL;
2200 }
2201
2202 #ifdef CONFIG_TRACING
2203
2204 #define TRACE_RECURSIVE_DEPTH 16
2205
2206 /* Keep this code out of the fast path cache */
2207 static noinline void trace_recursive_fail(void)
2208 {
2209 /* Disable all tracing before we do anything else */
2210 tracing_off_permanent();
2211
2212 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2213 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2214 trace_recursion_buffer(),
2215 hardirq_count() >> HARDIRQ_SHIFT,
2216 softirq_count() >> SOFTIRQ_SHIFT,
2217 in_nmi());
2218
2219 WARN_ON_ONCE(1);
2220 }
2221
2222 static inline int trace_recursive_lock(void)
2223 {
2224 trace_recursion_inc();
2225
2226 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2227 return 0;
2228
2229 trace_recursive_fail();
2230
2231 return -1;
2232 }
2233
2234 static inline void trace_recursive_unlock(void)
2235 {
2236 WARN_ON_ONCE(!trace_recursion_buffer());
2237
2238 trace_recursion_dec();
2239 }
2240
2241 #else
2242
2243 #define trace_recursive_lock() (0)
2244 #define trace_recursive_unlock() do { } while (0)
2245
2246 #endif
2247
2248 /**
2249 * ring_buffer_lock_reserve - reserve a part of the buffer
2250 * @buffer: the ring buffer to reserve from
2251 * @length: the length of the data to reserve (excluding event header)
2252 *
2253 * Returns a reseverd event on the ring buffer to copy directly to.
2254 * The user of this interface will need to get the body to write into
2255 * and can use the ring_buffer_event_data() interface.
2256 *
2257 * The length is the length of the data needed, not the event length
2258 * which also includes the event header.
2259 *
2260 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2261 * If NULL is returned, then nothing has been allocated or locked.
2262 */
2263 struct ring_buffer_event *
2264 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2265 {
2266 struct ring_buffer_per_cpu *cpu_buffer;
2267 struct ring_buffer_event *event;
2268 int cpu;
2269
2270 if (ring_buffer_flags != RB_BUFFERS_ON)
2271 return NULL;
2272
2273 /* If we are tracing schedule, we don't want to recurse */
2274 preempt_disable_notrace();
2275
2276 if (atomic_read(&buffer->record_disabled))
2277 goto out_nocheck;
2278
2279 if (trace_recursive_lock())
2280 goto out_nocheck;
2281
2282 cpu = raw_smp_processor_id();
2283
2284 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2285 goto out;
2286
2287 cpu_buffer = buffer->buffers[cpu];
2288
2289 if (atomic_read(&cpu_buffer->record_disabled))
2290 goto out;
2291
2292 if (length > BUF_MAX_DATA_SIZE)
2293 goto out;
2294
2295 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2296 if (!event)
2297 goto out;
2298
2299 return event;
2300
2301 out:
2302 trace_recursive_unlock();
2303
2304 out_nocheck:
2305 preempt_enable_notrace();
2306 return NULL;
2307 }
2308 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2309
2310 static void
2311 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2312 struct ring_buffer_event *event)
2313 {
2314 u64 delta;
2315
2316 /*
2317 * The event first in the commit queue updates the
2318 * time stamp.
2319 */
2320 if (rb_event_is_commit(cpu_buffer, event)) {
2321 /*
2322 * A commit event that is first on a page
2323 * updates the write timestamp with the page stamp
2324 */
2325 if (!rb_event_index(event))
2326 cpu_buffer->write_stamp =
2327 cpu_buffer->commit_page->page->time_stamp;
2328 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2329 delta = event->array[0];
2330 delta <<= TS_SHIFT;
2331 delta += event->time_delta;
2332 cpu_buffer->write_stamp += delta;
2333 } else
2334 cpu_buffer->write_stamp += event->time_delta;
2335 }
2336 }
2337
2338 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2339 struct ring_buffer_event *event)
2340 {
2341 local_inc(&cpu_buffer->entries);
2342 rb_update_write_stamp(cpu_buffer, event);
2343 rb_end_commit(cpu_buffer);
2344 }
2345
2346 /**
2347 * ring_buffer_unlock_commit - commit a reserved
2348 * @buffer: The buffer to commit to
2349 * @event: The event pointer to commit.
2350 *
2351 * This commits the data to the ring buffer, and releases any locks held.
2352 *
2353 * Must be paired with ring_buffer_lock_reserve.
2354 */
2355 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2356 struct ring_buffer_event *event)
2357 {
2358 struct ring_buffer_per_cpu *cpu_buffer;
2359 int cpu = raw_smp_processor_id();
2360
2361 cpu_buffer = buffer->buffers[cpu];
2362
2363 rb_commit(cpu_buffer, event);
2364
2365 trace_recursive_unlock();
2366
2367 preempt_enable_notrace();
2368
2369 return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2372
2373 static inline void rb_event_discard(struct ring_buffer_event *event)
2374 {
2375 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2376 event = skip_time_extend(event);
2377
2378 /* array[0] holds the actual length for the discarded event */
2379 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2380 event->type_len = RINGBUF_TYPE_PADDING;
2381 /* time delta must be non zero */
2382 if (!event->time_delta)
2383 event->time_delta = 1;
2384 }
2385
2386 /*
2387 * Decrement the entries to the page that an event is on.
2388 * The event does not even need to exist, only the pointer
2389 * to the page it is on. This may only be called before the commit
2390 * takes place.
2391 */
2392 static inline void
2393 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2394 struct ring_buffer_event *event)
2395 {
2396 unsigned long addr = (unsigned long)event;
2397 struct buffer_page *bpage = cpu_buffer->commit_page;
2398 struct buffer_page *start;
2399
2400 addr &= PAGE_MASK;
2401
2402 /* Do the likely case first */
2403 if (likely(bpage->page == (void *)addr)) {
2404 local_dec(&bpage->entries);
2405 return;
2406 }
2407
2408 /*
2409 * Because the commit page may be on the reader page we
2410 * start with the next page and check the end loop there.
2411 */
2412 rb_inc_page(cpu_buffer, &bpage);
2413 start = bpage;
2414 do {
2415 if (bpage->page == (void *)addr) {
2416 local_dec(&bpage->entries);
2417 return;
2418 }
2419 rb_inc_page(cpu_buffer, &bpage);
2420 } while (bpage != start);
2421
2422 /* commit not part of this buffer?? */
2423 RB_WARN_ON(cpu_buffer, 1);
2424 }
2425
2426 /**
2427 * ring_buffer_commit_discard - discard an event that has not been committed
2428 * @buffer: the ring buffer
2429 * @event: non committed event to discard
2430 *
2431 * Sometimes an event that is in the ring buffer needs to be ignored.
2432 * This function lets the user discard an event in the ring buffer
2433 * and then that event will not be read later.
2434 *
2435 * This function only works if it is called before the the item has been
2436 * committed. It will try to free the event from the ring buffer
2437 * if another event has not been added behind it.
2438 *
2439 * If another event has been added behind it, it will set the event
2440 * up as discarded, and perform the commit.
2441 *
2442 * If this function is called, do not call ring_buffer_unlock_commit on
2443 * the event.
2444 */
2445 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2446 struct ring_buffer_event *event)
2447 {
2448 struct ring_buffer_per_cpu *cpu_buffer;
2449 int cpu;
2450
2451 /* The event is discarded regardless */
2452 rb_event_discard(event);
2453
2454 cpu = smp_processor_id();
2455 cpu_buffer = buffer->buffers[cpu];
2456
2457 /*
2458 * This must only be called if the event has not been
2459 * committed yet. Thus we can assume that preemption
2460 * is still disabled.
2461 */
2462 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2463
2464 rb_decrement_entry(cpu_buffer, event);
2465 if (rb_try_to_discard(cpu_buffer, event))
2466 goto out;
2467
2468 /*
2469 * The commit is still visible by the reader, so we
2470 * must still update the timestamp.
2471 */
2472 rb_update_write_stamp(cpu_buffer, event);
2473 out:
2474 rb_end_commit(cpu_buffer);
2475
2476 trace_recursive_unlock();
2477
2478 preempt_enable_notrace();
2479
2480 }
2481 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2482
2483 /**
2484 * ring_buffer_write - write data to the buffer without reserving
2485 * @buffer: The ring buffer to write to.
2486 * @length: The length of the data being written (excluding the event header)
2487 * @data: The data to write to the buffer.
2488 *
2489 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2490 * one function. If you already have the data to write to the buffer, it
2491 * may be easier to simply call this function.
2492 *
2493 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2494 * and not the length of the event which would hold the header.
2495 */
2496 int ring_buffer_write(struct ring_buffer *buffer,
2497 unsigned long length,
2498 void *data)
2499 {
2500 struct ring_buffer_per_cpu *cpu_buffer;
2501 struct ring_buffer_event *event;
2502 void *body;
2503 int ret = -EBUSY;
2504 int cpu;
2505
2506 if (ring_buffer_flags != RB_BUFFERS_ON)
2507 return -EBUSY;
2508
2509 preempt_disable_notrace();
2510
2511 if (atomic_read(&buffer->record_disabled))
2512 goto out;
2513
2514 cpu = raw_smp_processor_id();
2515
2516 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2517 goto out;
2518
2519 cpu_buffer = buffer->buffers[cpu];
2520
2521 if (atomic_read(&cpu_buffer->record_disabled))
2522 goto out;
2523
2524 if (length > BUF_MAX_DATA_SIZE)
2525 goto out;
2526
2527 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2528 if (!event)
2529 goto out;
2530
2531 body = rb_event_data(event);
2532
2533 memcpy(body, data, length);
2534
2535 rb_commit(cpu_buffer, event);
2536
2537 ret = 0;
2538 out:
2539 preempt_enable_notrace();
2540
2541 return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(ring_buffer_write);
2544
2545 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2546 {
2547 struct buffer_page *reader = cpu_buffer->reader_page;
2548 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2549 struct buffer_page *commit = cpu_buffer->commit_page;
2550
2551 /* In case of error, head will be NULL */
2552 if (unlikely(!head))
2553 return 1;
2554
2555 return reader->read == rb_page_commit(reader) &&
2556 (commit == reader ||
2557 (commit == head &&
2558 head->read == rb_page_commit(commit)));
2559 }
2560
2561 /**
2562 * ring_buffer_record_disable - stop all writes into the buffer
2563 * @buffer: The ring buffer to stop writes to.
2564 *
2565 * This prevents all writes to the buffer. Any attempt to write
2566 * to the buffer after this will fail and return NULL.
2567 *
2568 * The caller should call synchronize_sched() after this.
2569 */
2570 void ring_buffer_record_disable(struct ring_buffer *buffer)
2571 {
2572 atomic_inc(&buffer->record_disabled);
2573 }
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2575
2576 /**
2577 * ring_buffer_record_enable - enable writes to the buffer
2578 * @buffer: The ring buffer to enable writes
2579 *
2580 * Note, multiple disables will need the same number of enables
2581 * to truly enable the writing (much like preempt_disable).
2582 */
2583 void ring_buffer_record_enable(struct ring_buffer *buffer)
2584 {
2585 atomic_dec(&buffer->record_disabled);
2586 }
2587 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2588
2589 /**
2590 * ring_buffer_record_off - stop all writes into the buffer
2591 * @buffer: The ring buffer to stop writes to.
2592 *
2593 * This prevents all writes to the buffer. Any attempt to write
2594 * to the buffer after this will fail and return NULL.
2595 *
2596 * This is different than ring_buffer_record_disable() as
2597 * it works like an on/off switch, where as the disable() verison
2598 * must be paired with a enable().
2599 */
2600 void ring_buffer_record_off(struct ring_buffer *buffer)
2601 {
2602 unsigned int rd;
2603 unsigned int new_rd;
2604
2605 do {
2606 rd = atomic_read(&buffer->record_disabled);
2607 new_rd = rd | RB_BUFFER_OFF;
2608 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2609 }
2610 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2611
2612 /**
2613 * ring_buffer_record_on - restart writes into the buffer
2614 * @buffer: The ring buffer to start writes to.
2615 *
2616 * This enables all writes to the buffer that was disabled by
2617 * ring_buffer_record_off().
2618 *
2619 * This is different than ring_buffer_record_enable() as
2620 * it works like an on/off switch, where as the enable() verison
2621 * must be paired with a disable().
2622 */
2623 void ring_buffer_record_on(struct ring_buffer *buffer)
2624 {
2625 unsigned int rd;
2626 unsigned int new_rd;
2627
2628 do {
2629 rd = atomic_read(&buffer->record_disabled);
2630 new_rd = rd & ~RB_BUFFER_OFF;
2631 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2632 }
2633 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2634
2635 /**
2636 * ring_buffer_record_is_on - return true if the ring buffer can write
2637 * @buffer: The ring buffer to see if write is enabled
2638 *
2639 * Returns true if the ring buffer is in a state that it accepts writes.
2640 */
2641 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2642 {
2643 return !atomic_read(&buffer->record_disabled);
2644 }
2645
2646 /**
2647 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2648 * @buffer: The ring buffer to stop writes to.
2649 * @cpu: The CPU buffer to stop
2650 *
2651 * This prevents all writes to the buffer. Any attempt to write
2652 * to the buffer after this will fail and return NULL.
2653 *
2654 * The caller should call synchronize_sched() after this.
2655 */
2656 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2657 {
2658 struct ring_buffer_per_cpu *cpu_buffer;
2659
2660 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2661 return;
2662
2663 cpu_buffer = buffer->buffers[cpu];
2664 atomic_inc(&cpu_buffer->record_disabled);
2665 }
2666 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2667
2668 /**
2669 * ring_buffer_record_enable_cpu - enable writes to the buffer
2670 * @buffer: The ring buffer to enable writes
2671 * @cpu: The CPU to enable.
2672 *
2673 * Note, multiple disables will need the same number of enables
2674 * to truly enable the writing (much like preempt_disable).
2675 */
2676 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2677 {
2678 struct ring_buffer_per_cpu *cpu_buffer;
2679
2680 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2681 return;
2682
2683 cpu_buffer = buffer->buffers[cpu];
2684 atomic_dec(&cpu_buffer->record_disabled);
2685 }
2686 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2687
2688 /*
2689 * The total entries in the ring buffer is the running counter
2690 * of entries entered into the ring buffer, minus the sum of
2691 * the entries read from the ring buffer and the number of
2692 * entries that were overwritten.
2693 */
2694 static inline unsigned long
2695 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2696 {
2697 return local_read(&cpu_buffer->entries) -
2698 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2699 }
2700
2701 /**
2702 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2703 * @buffer: The ring buffer
2704 * @cpu: The per CPU buffer to read from.
2705 */
2706 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2707 {
2708 unsigned long flags;
2709 struct ring_buffer_per_cpu *cpu_buffer;
2710 struct buffer_page *bpage;
2711 unsigned long ret;
2712
2713 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2714 return 0;
2715
2716 cpu_buffer = buffer->buffers[cpu];
2717 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2718 /*
2719 * if the tail is on reader_page, oldest time stamp is on the reader
2720 * page
2721 */
2722 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2723 bpage = cpu_buffer->reader_page;
2724 else
2725 bpage = rb_set_head_page(cpu_buffer);
2726 ret = bpage->page->time_stamp;
2727 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728
2729 return ret;
2730 }
2731 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2732
2733 /**
2734 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2735 * @buffer: The ring buffer
2736 * @cpu: The per CPU buffer to read from.
2737 */
2738 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2739 {
2740 struct ring_buffer_per_cpu *cpu_buffer;
2741 unsigned long ret;
2742
2743 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2744 return 0;
2745
2746 cpu_buffer = buffer->buffers[cpu];
2747 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2748
2749 return ret;
2750 }
2751 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2752
2753 /**
2754 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2755 * @buffer: The ring buffer
2756 * @cpu: The per CPU buffer to get the entries from.
2757 */
2758 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2759 {
2760 struct ring_buffer_per_cpu *cpu_buffer;
2761
2762 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2763 return 0;
2764
2765 cpu_buffer = buffer->buffers[cpu];
2766
2767 return rb_num_of_entries(cpu_buffer);
2768 }
2769 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2770
2771 /**
2772 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2773 * @buffer: The ring buffer
2774 * @cpu: The per CPU buffer to get the number of overruns from
2775 */
2776 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2777 {
2778 struct ring_buffer_per_cpu *cpu_buffer;
2779 unsigned long ret;
2780
2781 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2782 return 0;
2783
2784 cpu_buffer = buffer->buffers[cpu];
2785 ret = local_read(&cpu_buffer->overrun);
2786
2787 return ret;
2788 }
2789 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2790
2791 /**
2792 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2793 * @buffer: The ring buffer
2794 * @cpu: The per CPU buffer to get the number of overruns from
2795 */
2796 unsigned long
2797 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2798 {
2799 struct ring_buffer_per_cpu *cpu_buffer;
2800 unsigned long ret;
2801
2802 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2803 return 0;
2804
2805 cpu_buffer = buffer->buffers[cpu];
2806 ret = local_read(&cpu_buffer->commit_overrun);
2807
2808 return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2811
2812 /**
2813 * ring_buffer_entries - get the number of entries in a buffer
2814 * @buffer: The ring buffer
2815 *
2816 * Returns the total number of entries in the ring buffer
2817 * (all CPU entries)
2818 */
2819 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2820 {
2821 struct ring_buffer_per_cpu *cpu_buffer;
2822 unsigned long entries = 0;
2823 int cpu;
2824
2825 /* if you care about this being correct, lock the buffer */
2826 for_each_buffer_cpu(buffer, cpu) {
2827 cpu_buffer = buffer->buffers[cpu];
2828 entries += rb_num_of_entries(cpu_buffer);
2829 }
2830
2831 return entries;
2832 }
2833 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2834
2835 /**
2836 * ring_buffer_overruns - get the number of overruns in buffer
2837 * @buffer: The ring buffer
2838 *
2839 * Returns the total number of overruns in the ring buffer
2840 * (all CPU entries)
2841 */
2842 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2843 {
2844 struct ring_buffer_per_cpu *cpu_buffer;
2845 unsigned long overruns = 0;
2846 int cpu;
2847
2848 /* if you care about this being correct, lock the buffer */
2849 for_each_buffer_cpu(buffer, cpu) {
2850 cpu_buffer = buffer->buffers[cpu];
2851 overruns += local_read(&cpu_buffer->overrun);
2852 }
2853
2854 return overruns;
2855 }
2856 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2857
2858 static void rb_iter_reset(struct ring_buffer_iter *iter)
2859 {
2860 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2861
2862 /* Iterator usage is expected to have record disabled */
2863 if (list_empty(&cpu_buffer->reader_page->list)) {
2864 iter->head_page = rb_set_head_page(cpu_buffer);
2865 if (unlikely(!iter->head_page))
2866 return;
2867 iter->head = iter->head_page->read;
2868 } else {
2869 iter->head_page = cpu_buffer->reader_page;
2870 iter->head = cpu_buffer->reader_page->read;
2871 }
2872 if (iter->head)
2873 iter->read_stamp = cpu_buffer->read_stamp;
2874 else
2875 iter->read_stamp = iter->head_page->page->time_stamp;
2876 iter->cache_reader_page = cpu_buffer->reader_page;
2877 iter->cache_read = cpu_buffer->read;
2878 }
2879
2880 /**
2881 * ring_buffer_iter_reset - reset an iterator
2882 * @iter: The iterator to reset
2883 *
2884 * Resets the iterator, so that it will start from the beginning
2885 * again.
2886 */
2887 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2888 {
2889 struct ring_buffer_per_cpu *cpu_buffer;
2890 unsigned long flags;
2891
2892 if (!iter)
2893 return;
2894
2895 cpu_buffer = iter->cpu_buffer;
2896
2897 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2898 rb_iter_reset(iter);
2899 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2900 }
2901 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2902
2903 /**
2904 * ring_buffer_iter_empty - check if an iterator has no more to read
2905 * @iter: The iterator to check
2906 */
2907 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2908 {
2909 struct ring_buffer_per_cpu *cpu_buffer;
2910
2911 cpu_buffer = iter->cpu_buffer;
2912
2913 return iter->head_page == cpu_buffer->commit_page &&
2914 iter->head == rb_commit_index(cpu_buffer);
2915 }
2916 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2917
2918 static void
2919 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2920 struct ring_buffer_event *event)
2921 {
2922 u64 delta;
2923
2924 switch (event->type_len) {
2925 case RINGBUF_TYPE_PADDING:
2926 return;
2927
2928 case RINGBUF_TYPE_TIME_EXTEND:
2929 delta = event->array[0];
2930 delta <<= TS_SHIFT;
2931 delta += event->time_delta;
2932 cpu_buffer->read_stamp += delta;
2933 return;
2934
2935 case RINGBUF_TYPE_TIME_STAMP:
2936 /* FIXME: not implemented */
2937 return;
2938
2939 case RINGBUF_TYPE_DATA:
2940 cpu_buffer->read_stamp += event->time_delta;
2941 return;
2942
2943 default:
2944 BUG();
2945 }
2946 return;
2947 }
2948
2949 static void
2950 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2951 struct ring_buffer_event *event)
2952 {
2953 u64 delta;
2954
2955 switch (event->type_len) {
2956 case RINGBUF_TYPE_PADDING:
2957 return;
2958
2959 case RINGBUF_TYPE_TIME_EXTEND:
2960 delta = event->array[0];
2961 delta <<= TS_SHIFT;
2962 delta += event->time_delta;
2963 iter->read_stamp += delta;
2964 return;
2965
2966 case RINGBUF_TYPE_TIME_STAMP:
2967 /* FIXME: not implemented */
2968 return;
2969
2970 case RINGBUF_TYPE_DATA:
2971 iter->read_stamp += event->time_delta;
2972 return;
2973
2974 default:
2975 BUG();
2976 }
2977 return;
2978 }
2979
2980 static struct buffer_page *
2981 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2982 {
2983 struct buffer_page *reader = NULL;
2984 unsigned long overwrite;
2985 unsigned long flags;
2986 int nr_loops = 0;
2987 int ret;
2988
2989 local_irq_save(flags);
2990 arch_spin_lock(&cpu_buffer->lock);
2991
2992 again:
2993 /*
2994 * This should normally only loop twice. But because the
2995 * start of the reader inserts an empty page, it causes
2996 * a case where we will loop three times. There should be no
2997 * reason to loop four times (that I know of).
2998 */
2999 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3000 reader = NULL;
3001 goto out;
3002 }
3003
3004 reader = cpu_buffer->reader_page;
3005
3006 /* If there's more to read, return this page */
3007 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3008 goto out;
3009
3010 /* Never should we have an index greater than the size */
3011 if (RB_WARN_ON(cpu_buffer,
3012 cpu_buffer->reader_page->read > rb_page_size(reader)))
3013 goto out;
3014
3015 /* check if we caught up to the tail */
3016 reader = NULL;
3017 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3018 goto out;
3019
3020 /*
3021 * Reset the reader page to size zero.
3022 */
3023 local_set(&cpu_buffer->reader_page->write, 0);
3024 local_set(&cpu_buffer->reader_page->entries, 0);
3025 local_set(&cpu_buffer->reader_page->page->commit, 0);
3026 cpu_buffer->reader_page->real_end = 0;
3027
3028 spin:
3029 /*
3030 * Splice the empty reader page into the list around the head.
3031 */
3032 reader = rb_set_head_page(cpu_buffer);
3033 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3034 cpu_buffer->reader_page->list.prev = reader->list.prev;
3035
3036 /*
3037 * cpu_buffer->pages just needs to point to the buffer, it
3038 * has no specific buffer page to point to. Lets move it out
3039 * of our way so we don't accidentally swap it.
3040 */
3041 cpu_buffer->pages = reader->list.prev;
3042
3043 /* The reader page will be pointing to the new head */
3044 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3045
3046 /*
3047 * We want to make sure we read the overruns after we set up our
3048 * pointers to the next object. The writer side does a
3049 * cmpxchg to cross pages which acts as the mb on the writer
3050 * side. Note, the reader will constantly fail the swap
3051 * while the writer is updating the pointers, so this
3052 * guarantees that the overwrite recorded here is the one we
3053 * want to compare with the last_overrun.
3054 */
3055 smp_mb();
3056 overwrite = local_read(&(cpu_buffer->overrun));
3057
3058 /*
3059 * Here's the tricky part.
3060 *
3061 * We need to move the pointer past the header page.
3062 * But we can only do that if a writer is not currently
3063 * moving it. The page before the header page has the
3064 * flag bit '1' set if it is pointing to the page we want.
3065 * but if the writer is in the process of moving it
3066 * than it will be '2' or already moved '0'.
3067 */
3068
3069 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3070
3071 /*
3072 * If we did not convert it, then we must try again.
3073 */
3074 if (!ret)
3075 goto spin;
3076
3077 /*
3078 * Yeah! We succeeded in replacing the page.
3079 *
3080 * Now make the new head point back to the reader page.
3081 */
3082 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3083 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3084
3085 /* Finally update the reader page to the new head */
3086 cpu_buffer->reader_page = reader;
3087 rb_reset_reader_page(cpu_buffer);
3088
3089 if (overwrite != cpu_buffer->last_overrun) {
3090 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3091 cpu_buffer->last_overrun = overwrite;
3092 }
3093
3094 goto again;
3095
3096 out:
3097 arch_spin_unlock(&cpu_buffer->lock);
3098 local_irq_restore(flags);
3099
3100 return reader;
3101 }
3102
3103 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3104 {
3105 struct ring_buffer_event *event;
3106 struct buffer_page *reader;
3107 unsigned length;
3108
3109 reader = rb_get_reader_page(cpu_buffer);
3110
3111 /* This function should not be called when buffer is empty */
3112 if (RB_WARN_ON(cpu_buffer, !reader))
3113 return;
3114
3115 event = rb_reader_event(cpu_buffer);
3116
3117 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3118 cpu_buffer->read++;
3119
3120 rb_update_read_stamp(cpu_buffer, event);
3121
3122 length = rb_event_length(event);
3123 cpu_buffer->reader_page->read += length;
3124 }
3125
3126 static void rb_advance_iter(struct ring_buffer_iter *iter)
3127 {
3128 struct ring_buffer_per_cpu *cpu_buffer;
3129 struct ring_buffer_event *event;
3130 unsigned length;
3131
3132 cpu_buffer = iter->cpu_buffer;
3133
3134 /*
3135 * Check if we are at the end of the buffer.
3136 */
3137 if (iter->head >= rb_page_size(iter->head_page)) {
3138 /* discarded commits can make the page empty */
3139 if (iter->head_page == cpu_buffer->commit_page)
3140 return;
3141 rb_inc_iter(iter);
3142 return;
3143 }
3144
3145 event = rb_iter_head_event(iter);
3146
3147 length = rb_event_length(event);
3148
3149 /*
3150 * This should not be called to advance the header if we are
3151 * at the tail of the buffer.
3152 */
3153 if (RB_WARN_ON(cpu_buffer,
3154 (iter->head_page == cpu_buffer->commit_page) &&
3155 (iter->head + length > rb_commit_index(cpu_buffer))))
3156 return;
3157
3158 rb_update_iter_read_stamp(iter, event);
3159
3160 iter->head += length;
3161
3162 /* check for end of page padding */
3163 if ((iter->head >= rb_page_size(iter->head_page)) &&
3164 (iter->head_page != cpu_buffer->commit_page))
3165 rb_advance_iter(iter);
3166 }
3167
3168 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3169 {
3170 return cpu_buffer->lost_events;
3171 }
3172
3173 static struct ring_buffer_event *
3174 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3175 unsigned long *lost_events)
3176 {
3177 struct ring_buffer_event *event;
3178 struct buffer_page *reader;
3179 int nr_loops = 0;
3180
3181 again:
3182 /*
3183 * We repeat when a time extend is encountered.
3184 * Since the time extend is always attached to a data event,
3185 * we should never loop more than once.
3186 * (We never hit the following condition more than twice).
3187 */
3188 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3189 return NULL;
3190
3191 reader = rb_get_reader_page(cpu_buffer);
3192 if (!reader)
3193 return NULL;
3194
3195 event = rb_reader_event(cpu_buffer);
3196
3197 switch (event->type_len) {
3198 case RINGBUF_TYPE_PADDING:
3199 if (rb_null_event(event))
3200 RB_WARN_ON(cpu_buffer, 1);
3201 /*
3202 * Because the writer could be discarding every
3203 * event it creates (which would probably be bad)
3204 * if we were to go back to "again" then we may never
3205 * catch up, and will trigger the warn on, or lock
3206 * the box. Return the padding, and we will release
3207 * the current locks, and try again.
3208 */
3209 return event;
3210
3211 case RINGBUF_TYPE_TIME_EXTEND:
3212 /* Internal data, OK to advance */
3213 rb_advance_reader(cpu_buffer);
3214 goto again;
3215
3216 case RINGBUF_TYPE_TIME_STAMP:
3217 /* FIXME: not implemented */
3218 rb_advance_reader(cpu_buffer);
3219 goto again;
3220
3221 case RINGBUF_TYPE_DATA:
3222 if (ts) {
3223 *ts = cpu_buffer->read_stamp + event->time_delta;
3224 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3225 cpu_buffer->cpu, ts);
3226 }
3227 if (lost_events)
3228 *lost_events = rb_lost_events(cpu_buffer);
3229 return event;
3230
3231 default:
3232 BUG();
3233 }
3234
3235 return NULL;
3236 }
3237 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3238
3239 static struct ring_buffer_event *
3240 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3241 {
3242 struct ring_buffer *buffer;
3243 struct ring_buffer_per_cpu *cpu_buffer;
3244 struct ring_buffer_event *event;
3245 int nr_loops = 0;
3246
3247 cpu_buffer = iter->cpu_buffer;
3248 buffer = cpu_buffer->buffer;
3249
3250 /*
3251 * Check if someone performed a consuming read to
3252 * the buffer. A consuming read invalidates the iterator
3253 * and we need to reset the iterator in this case.
3254 */
3255 if (unlikely(iter->cache_read != cpu_buffer->read ||
3256 iter->cache_reader_page != cpu_buffer->reader_page))
3257 rb_iter_reset(iter);
3258
3259 again:
3260 if (ring_buffer_iter_empty(iter))
3261 return NULL;
3262
3263 /*
3264 * We repeat when a time extend is encountered.
3265 * Since the time extend is always attached to a data event,
3266 * we should never loop more than once.
3267 * (We never hit the following condition more than twice).
3268 */
3269 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3270 return NULL;
3271
3272 if (rb_per_cpu_empty(cpu_buffer))
3273 return NULL;
3274
3275 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3276 rb_inc_iter(iter);
3277 goto again;
3278 }
3279
3280 event = rb_iter_head_event(iter);
3281
3282 switch (event->type_len) {
3283 case RINGBUF_TYPE_PADDING:
3284 if (rb_null_event(event)) {
3285 rb_inc_iter(iter);
3286 goto again;
3287 }
3288 rb_advance_iter(iter);
3289 return event;
3290
3291 case RINGBUF_TYPE_TIME_EXTEND:
3292 /* Internal data, OK to advance */
3293 rb_advance_iter(iter);
3294 goto again;
3295
3296 case RINGBUF_TYPE_TIME_STAMP:
3297 /* FIXME: not implemented */
3298 rb_advance_iter(iter);
3299 goto again;
3300
3301 case RINGBUF_TYPE_DATA:
3302 if (ts) {
3303 *ts = iter->read_stamp + event->time_delta;
3304 ring_buffer_normalize_time_stamp(buffer,
3305 cpu_buffer->cpu, ts);
3306 }
3307 return event;
3308
3309 default:
3310 BUG();
3311 }
3312
3313 return NULL;
3314 }
3315 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3316
3317 static inline int rb_ok_to_lock(void)
3318 {
3319 /*
3320 * If an NMI die dumps out the content of the ring buffer
3321 * do not grab locks. We also permanently disable the ring
3322 * buffer too. A one time deal is all you get from reading
3323 * the ring buffer from an NMI.
3324 */
3325 if (likely(!in_nmi()))
3326 return 1;
3327
3328 tracing_off_permanent();
3329 return 0;
3330 }
3331
3332 /**
3333 * ring_buffer_peek - peek at the next event to be read
3334 * @buffer: The ring buffer to read
3335 * @cpu: The cpu to peak at
3336 * @ts: The timestamp counter of this event.
3337 * @lost_events: a variable to store if events were lost (may be NULL)
3338 *
3339 * This will return the event that will be read next, but does
3340 * not consume the data.
3341 */
3342 struct ring_buffer_event *
3343 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3344 unsigned long *lost_events)
3345 {
3346 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3347 struct ring_buffer_event *event;
3348 unsigned long flags;
3349 int dolock;
3350
3351 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3352 return NULL;
3353
3354 dolock = rb_ok_to_lock();
3355 again:
3356 local_irq_save(flags);
3357 if (dolock)
3358 raw_spin_lock(&cpu_buffer->reader_lock);
3359 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3360 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3361 rb_advance_reader(cpu_buffer);
3362 if (dolock)
3363 raw_spin_unlock(&cpu_buffer->reader_lock);
3364 local_irq_restore(flags);
3365
3366 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3367 goto again;
3368
3369 return event;
3370 }
3371
3372 /**
3373 * ring_buffer_iter_peek - peek at the next event to be read
3374 * @iter: The ring buffer iterator
3375 * @ts: The timestamp counter of this event.
3376 *
3377 * This will return the event that will be read next, but does
3378 * not increment the iterator.
3379 */
3380 struct ring_buffer_event *
3381 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3382 {
3383 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3384 struct ring_buffer_event *event;
3385 unsigned long flags;
3386
3387 again:
3388 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3389 event = rb_iter_peek(iter, ts);
3390 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3391
3392 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3393 goto again;
3394
3395 return event;
3396 }
3397
3398 /**
3399 * ring_buffer_consume - return an event and consume it
3400 * @buffer: The ring buffer to get the next event from
3401 * @cpu: the cpu to read the buffer from
3402 * @ts: a variable to store the timestamp (may be NULL)
3403 * @lost_events: a variable to store if events were lost (may be NULL)
3404 *
3405 * Returns the next event in the ring buffer, and that event is consumed.
3406 * Meaning, that sequential reads will keep returning a different event,
3407 * and eventually empty the ring buffer if the producer is slower.
3408 */
3409 struct ring_buffer_event *
3410 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3411 unsigned long *lost_events)
3412 {
3413 struct ring_buffer_per_cpu *cpu_buffer;
3414 struct ring_buffer_event *event = NULL;
3415 unsigned long flags;
3416 int dolock;
3417
3418 dolock = rb_ok_to_lock();
3419
3420 again:
3421 /* might be called in atomic */
3422 preempt_disable();
3423
3424 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 goto out;
3426
3427 cpu_buffer = buffer->buffers[cpu];
3428 local_irq_save(flags);
3429 if (dolock)
3430 raw_spin_lock(&cpu_buffer->reader_lock);
3431
3432 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3433 if (event) {
3434 cpu_buffer->lost_events = 0;
3435 rb_advance_reader(cpu_buffer);
3436 }
3437
3438 if (dolock)
3439 raw_spin_unlock(&cpu_buffer->reader_lock);
3440 local_irq_restore(flags);
3441
3442 out:
3443 preempt_enable();
3444
3445 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3446 goto again;
3447
3448 return event;
3449 }
3450 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3451
3452 /**
3453 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3454 * @buffer: The ring buffer to read from
3455 * @cpu: The cpu buffer to iterate over
3456 *
3457 * This performs the initial preparations necessary to iterate
3458 * through the buffer. Memory is allocated, buffer recording
3459 * is disabled, and the iterator pointer is returned to the caller.
3460 *
3461 * Disabling buffer recordng prevents the reading from being
3462 * corrupted. This is not a consuming read, so a producer is not
3463 * expected.
3464 *
3465 * After a sequence of ring_buffer_read_prepare calls, the user is
3466 * expected to make at least one call to ring_buffer_prepare_sync.
3467 * Afterwards, ring_buffer_read_start is invoked to get things going
3468 * for real.
3469 *
3470 * This overall must be paired with ring_buffer_finish.
3471 */
3472 struct ring_buffer_iter *
3473 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3474 {
3475 struct ring_buffer_per_cpu *cpu_buffer;
3476 struct ring_buffer_iter *iter;
3477
3478 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3479 return NULL;
3480
3481 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3482 if (!iter)
3483 return NULL;
3484
3485 cpu_buffer = buffer->buffers[cpu];
3486
3487 iter->cpu_buffer = cpu_buffer;
3488
3489 atomic_inc(&cpu_buffer->record_disabled);
3490
3491 return iter;
3492 }
3493 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3494
3495 /**
3496 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3497 *
3498 * All previously invoked ring_buffer_read_prepare calls to prepare
3499 * iterators will be synchronized. Afterwards, read_buffer_read_start
3500 * calls on those iterators are allowed.
3501 */
3502 void
3503 ring_buffer_read_prepare_sync(void)
3504 {
3505 synchronize_sched();
3506 }
3507 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3508
3509 /**
3510 * ring_buffer_read_start - start a non consuming read of the buffer
3511 * @iter: The iterator returned by ring_buffer_read_prepare
3512 *
3513 * This finalizes the startup of an iteration through the buffer.
3514 * The iterator comes from a call to ring_buffer_read_prepare and
3515 * an intervening ring_buffer_read_prepare_sync must have been
3516 * performed.
3517 *
3518 * Must be paired with ring_buffer_finish.
3519 */
3520 void
3521 ring_buffer_read_start(struct ring_buffer_iter *iter)
3522 {
3523 struct ring_buffer_per_cpu *cpu_buffer;
3524 unsigned long flags;
3525
3526 if (!iter)
3527 return;
3528
3529 cpu_buffer = iter->cpu_buffer;
3530
3531 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3532 arch_spin_lock(&cpu_buffer->lock);
3533 rb_iter_reset(iter);
3534 arch_spin_unlock(&cpu_buffer->lock);
3535 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3536 }
3537 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3538
3539 /**
3540 * ring_buffer_finish - finish reading the iterator of the buffer
3541 * @iter: The iterator retrieved by ring_buffer_start
3542 *
3543 * This re-enables the recording to the buffer, and frees the
3544 * iterator.
3545 */
3546 void
3547 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3548 {
3549 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3550
3551 atomic_dec(&cpu_buffer->record_disabled);
3552 kfree(iter);
3553 }
3554 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3555
3556 /**
3557 * ring_buffer_read - read the next item in the ring buffer by the iterator
3558 * @iter: The ring buffer iterator
3559 * @ts: The time stamp of the event read.
3560 *
3561 * This reads the next event in the ring buffer and increments the iterator.
3562 */
3563 struct ring_buffer_event *
3564 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3565 {
3566 struct ring_buffer_event *event;
3567 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3568 unsigned long flags;
3569
3570 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3571 again:
3572 event = rb_iter_peek(iter, ts);
3573 if (!event)
3574 goto out;
3575
3576 if (event->type_len == RINGBUF_TYPE_PADDING)
3577 goto again;
3578
3579 rb_advance_iter(iter);
3580 out:
3581 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3582
3583 return event;
3584 }
3585 EXPORT_SYMBOL_GPL(ring_buffer_read);
3586
3587 /**
3588 * ring_buffer_size - return the size of the ring buffer (in bytes)
3589 * @buffer: The ring buffer.
3590 */
3591 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3592 {
3593 return BUF_PAGE_SIZE * buffer->pages;
3594 }
3595 EXPORT_SYMBOL_GPL(ring_buffer_size);
3596
3597 static void
3598 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3599 {
3600 rb_head_page_deactivate(cpu_buffer);
3601
3602 cpu_buffer->head_page
3603 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3604 local_set(&cpu_buffer->head_page->write, 0);
3605 local_set(&cpu_buffer->head_page->entries, 0);
3606 local_set(&cpu_buffer->head_page->page->commit, 0);
3607
3608 cpu_buffer->head_page->read = 0;
3609
3610 cpu_buffer->tail_page = cpu_buffer->head_page;
3611 cpu_buffer->commit_page = cpu_buffer->head_page;
3612
3613 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3614 local_set(&cpu_buffer->reader_page->write, 0);
3615 local_set(&cpu_buffer->reader_page->entries, 0);
3616 local_set(&cpu_buffer->reader_page->page->commit, 0);
3617 cpu_buffer->reader_page->read = 0;
3618
3619 local_set(&cpu_buffer->commit_overrun, 0);
3620 local_set(&cpu_buffer->entries_bytes, 0);
3621 local_set(&cpu_buffer->overrun, 0);
3622 local_set(&cpu_buffer->entries, 0);
3623 local_set(&cpu_buffer->committing, 0);
3624 local_set(&cpu_buffer->commits, 0);
3625 cpu_buffer->read = 0;
3626 cpu_buffer->read_bytes = 0;
3627
3628 cpu_buffer->write_stamp = 0;
3629 cpu_buffer->read_stamp = 0;
3630
3631 cpu_buffer->lost_events = 0;
3632 cpu_buffer->last_overrun = 0;
3633
3634 rb_head_page_activate(cpu_buffer);
3635 }
3636
3637 /**
3638 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3639 * @buffer: The ring buffer to reset a per cpu buffer of
3640 * @cpu: The CPU buffer to be reset
3641 */
3642 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3643 {
3644 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3645 unsigned long flags;
3646
3647 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3648 return;
3649
3650 atomic_inc(&cpu_buffer->record_disabled);
3651
3652 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3653
3654 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3655 goto out;
3656
3657 arch_spin_lock(&cpu_buffer->lock);
3658
3659 rb_reset_cpu(cpu_buffer);
3660
3661 arch_spin_unlock(&cpu_buffer->lock);
3662
3663 out:
3664 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3665
3666 atomic_dec(&cpu_buffer->record_disabled);
3667 }
3668 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3669
3670 /**
3671 * ring_buffer_reset - reset a ring buffer
3672 * @buffer: The ring buffer to reset all cpu buffers
3673 */
3674 void ring_buffer_reset(struct ring_buffer *buffer)
3675 {
3676 int cpu;
3677
3678 for_each_buffer_cpu(buffer, cpu)
3679 ring_buffer_reset_cpu(buffer, cpu);
3680 }
3681 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3682
3683 /**
3684 * rind_buffer_empty - is the ring buffer empty?
3685 * @buffer: The ring buffer to test
3686 */
3687 int ring_buffer_empty(struct ring_buffer *buffer)
3688 {
3689 struct ring_buffer_per_cpu *cpu_buffer;
3690 unsigned long flags;
3691 int dolock;
3692 int cpu;
3693 int ret;
3694
3695 dolock = rb_ok_to_lock();
3696
3697 /* yes this is racy, but if you don't like the race, lock the buffer */
3698 for_each_buffer_cpu(buffer, cpu) {
3699 cpu_buffer = buffer->buffers[cpu];
3700 local_irq_save(flags);
3701 if (dolock)
3702 raw_spin_lock(&cpu_buffer->reader_lock);
3703 ret = rb_per_cpu_empty(cpu_buffer);
3704 if (dolock)
3705 raw_spin_unlock(&cpu_buffer->reader_lock);
3706 local_irq_restore(flags);
3707
3708 if (!ret)
3709 return 0;
3710 }
3711
3712 return 1;
3713 }
3714 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3715
3716 /**
3717 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3718 * @buffer: The ring buffer
3719 * @cpu: The CPU buffer to test
3720 */
3721 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3722 {
3723 struct ring_buffer_per_cpu *cpu_buffer;
3724 unsigned long flags;
3725 int dolock;
3726 int ret;
3727
3728 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3729 return 1;
3730
3731 dolock = rb_ok_to_lock();
3732
3733 cpu_buffer = buffer->buffers[cpu];
3734 local_irq_save(flags);
3735 if (dolock)
3736 raw_spin_lock(&cpu_buffer->reader_lock);
3737 ret = rb_per_cpu_empty(cpu_buffer);
3738 if (dolock)
3739 raw_spin_unlock(&cpu_buffer->reader_lock);
3740 local_irq_restore(flags);
3741
3742 return ret;
3743 }
3744 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3745
3746 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3747 /**
3748 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3749 * @buffer_a: One buffer to swap with
3750 * @buffer_b: The other buffer to swap with
3751 *
3752 * This function is useful for tracers that want to take a "snapshot"
3753 * of a CPU buffer and has another back up buffer lying around.
3754 * it is expected that the tracer handles the cpu buffer not being
3755 * used at the moment.
3756 */
3757 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3758 struct ring_buffer *buffer_b, int cpu)
3759 {
3760 struct ring_buffer_per_cpu *cpu_buffer_a;
3761 struct ring_buffer_per_cpu *cpu_buffer_b;
3762 int ret = -EINVAL;
3763
3764 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3765 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3766 goto out;
3767
3768 /* At least make sure the two buffers are somewhat the same */
3769 if (buffer_a->pages != buffer_b->pages)
3770 goto out;
3771
3772 ret = -EAGAIN;
3773
3774 if (ring_buffer_flags != RB_BUFFERS_ON)
3775 goto out;
3776
3777 if (atomic_read(&buffer_a->record_disabled))
3778 goto out;
3779
3780 if (atomic_read(&buffer_b->record_disabled))
3781 goto out;
3782
3783 cpu_buffer_a = buffer_a->buffers[cpu];
3784 cpu_buffer_b = buffer_b->buffers[cpu];
3785
3786 if (atomic_read(&cpu_buffer_a->record_disabled))
3787 goto out;
3788
3789 if (atomic_read(&cpu_buffer_b->record_disabled))
3790 goto out;
3791
3792 /*
3793 * We can't do a synchronize_sched here because this
3794 * function can be called in atomic context.
3795 * Normally this will be called from the same CPU as cpu.
3796 * If not it's up to the caller to protect this.
3797 */
3798 atomic_inc(&cpu_buffer_a->record_disabled);
3799 atomic_inc(&cpu_buffer_b->record_disabled);
3800
3801 ret = -EBUSY;
3802 if (local_read(&cpu_buffer_a->committing))
3803 goto out_dec;
3804 if (local_read(&cpu_buffer_b->committing))
3805 goto out_dec;
3806
3807 buffer_a->buffers[cpu] = cpu_buffer_b;
3808 buffer_b->buffers[cpu] = cpu_buffer_a;
3809
3810 cpu_buffer_b->buffer = buffer_a;
3811 cpu_buffer_a->buffer = buffer_b;
3812
3813 ret = 0;
3814
3815 out_dec:
3816 atomic_dec(&cpu_buffer_a->record_disabled);
3817 atomic_dec(&cpu_buffer_b->record_disabled);
3818 out:
3819 return ret;
3820 }
3821 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3822 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3823
3824 /**
3825 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3826 * @buffer: the buffer to allocate for.
3827 *
3828 * This function is used in conjunction with ring_buffer_read_page.
3829 * When reading a full page from the ring buffer, these functions
3830 * can be used to speed up the process. The calling function should
3831 * allocate a few pages first with this function. Then when it
3832 * needs to get pages from the ring buffer, it passes the result
3833 * of this function into ring_buffer_read_page, which will swap
3834 * the page that was allocated, with the read page of the buffer.
3835 *
3836 * Returns:
3837 * The page allocated, or NULL on error.
3838 */
3839 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3840 {
3841 struct buffer_data_page *bpage;
3842 struct page *page;
3843
3844 page = alloc_pages_node(cpu_to_node(cpu),
3845 GFP_KERNEL | __GFP_NORETRY, 0);
3846 if (!page)
3847 return NULL;
3848
3849 bpage = page_address(page);
3850
3851 rb_init_page(bpage);
3852
3853 return bpage;
3854 }
3855 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3856
3857 /**
3858 * ring_buffer_free_read_page - free an allocated read page
3859 * @buffer: the buffer the page was allocate for
3860 * @data: the page to free
3861 *
3862 * Free a page allocated from ring_buffer_alloc_read_page.
3863 */
3864 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3865 {
3866 free_page((unsigned long)data);
3867 }
3868 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3869
3870 /**
3871 * ring_buffer_read_page - extract a page from the ring buffer
3872 * @buffer: buffer to extract from
3873 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3874 * @len: amount to extract
3875 * @cpu: the cpu of the buffer to extract
3876 * @full: should the extraction only happen when the page is full.
3877 *
3878 * This function will pull out a page from the ring buffer and consume it.
3879 * @data_page must be the address of the variable that was returned
3880 * from ring_buffer_alloc_read_page. This is because the page might be used
3881 * to swap with a page in the ring buffer.
3882 *
3883 * for example:
3884 * rpage = ring_buffer_alloc_read_page(buffer);
3885 * if (!rpage)
3886 * return error;
3887 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3888 * if (ret >= 0)
3889 * process_page(rpage, ret);
3890 *
3891 * When @full is set, the function will not return true unless
3892 * the writer is off the reader page.
3893 *
3894 * Note: it is up to the calling functions to handle sleeps and wakeups.
3895 * The ring buffer can be used anywhere in the kernel and can not
3896 * blindly call wake_up. The layer that uses the ring buffer must be
3897 * responsible for that.
3898 *
3899 * Returns:
3900 * >=0 if data has been transferred, returns the offset of consumed data.
3901 * <0 if no data has been transferred.
3902 */
3903 int ring_buffer_read_page(struct ring_buffer *buffer,
3904 void **data_page, size_t len, int cpu, int full)
3905 {
3906 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3907 struct ring_buffer_event *event;
3908 struct buffer_data_page *bpage;
3909 struct buffer_page *reader;
3910 unsigned long missed_events;
3911 unsigned long flags;
3912 unsigned int commit;
3913 unsigned int read;
3914 u64 save_timestamp;
3915 int ret = -1;
3916
3917 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3918 goto out;
3919
3920 /*
3921 * If len is not big enough to hold the page header, then
3922 * we can not copy anything.
3923 */
3924 if (len <= BUF_PAGE_HDR_SIZE)
3925 goto out;
3926
3927 len -= BUF_PAGE_HDR_SIZE;
3928
3929 if (!data_page)
3930 goto out;
3931
3932 bpage = *data_page;
3933 if (!bpage)
3934 goto out;
3935
3936 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3937
3938 reader = rb_get_reader_page(cpu_buffer);
3939 if (!reader)
3940 goto out_unlock;
3941
3942 event = rb_reader_event(cpu_buffer);
3943
3944 read = reader->read;
3945 commit = rb_page_commit(reader);
3946
3947 /* Check if any events were dropped */
3948 missed_events = cpu_buffer->lost_events;
3949
3950 /*
3951 * If this page has been partially read or
3952 * if len is not big enough to read the rest of the page or
3953 * a writer is still on the page, then
3954 * we must copy the data from the page to the buffer.
3955 * Otherwise, we can simply swap the page with the one passed in.
3956 */
3957 if (read || (len < (commit - read)) ||
3958 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3959 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3960 unsigned int rpos = read;
3961 unsigned int pos = 0;
3962 unsigned int size;
3963
3964 if (full)
3965 goto out_unlock;
3966
3967 if (len > (commit - read))
3968 len = (commit - read);
3969
3970 /* Always keep the time extend and data together */
3971 size = rb_event_ts_length(event);
3972
3973 if (len < size)
3974 goto out_unlock;
3975
3976 /* save the current timestamp, since the user will need it */
3977 save_timestamp = cpu_buffer->read_stamp;
3978
3979 /* Need to copy one event at a time */
3980 do {
3981 /* We need the size of one event, because
3982 * rb_advance_reader only advances by one event,
3983 * whereas rb_event_ts_length may include the size of
3984 * one or two events.
3985 * We have already ensured there's enough space if this
3986 * is a time extend. */
3987 size = rb_event_length(event);
3988 memcpy(bpage->data + pos, rpage->data + rpos, size);
3989
3990 len -= size;
3991
3992 rb_advance_reader(cpu_buffer);
3993 rpos = reader->read;
3994 pos += size;
3995
3996 if (rpos >= commit)
3997 break;
3998
3999 event = rb_reader_event(cpu_buffer);
4000 /* Always keep the time extend and data together */
4001 size = rb_event_ts_length(event);
4002 } while (len >= size);
4003
4004 /* update bpage */
4005 local_set(&bpage->commit, pos);
4006 bpage->time_stamp = save_timestamp;
4007
4008 /* we copied everything to the beginning */
4009 read = 0;
4010 } else {
4011 /* update the entry counter */
4012 cpu_buffer->read += rb_page_entries(reader);
4013 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4014
4015 /* swap the pages */
4016 rb_init_page(bpage);
4017 bpage = reader->page;
4018 reader->page = *data_page;
4019 local_set(&reader->write, 0);
4020 local_set(&reader->entries, 0);
4021 reader->read = 0;
4022 *data_page = bpage;
4023
4024 /*
4025 * Use the real_end for the data size,
4026 * This gives us a chance to store the lost events
4027 * on the page.
4028 */
4029 if (reader->real_end)
4030 local_set(&bpage->commit, reader->real_end);
4031 }
4032 ret = read;
4033
4034 cpu_buffer->lost_events = 0;
4035
4036 commit = local_read(&bpage->commit);
4037 /*
4038 * Set a flag in the commit field if we lost events
4039 */
4040 if (missed_events) {
4041 /* If there is room at the end of the page to save the
4042 * missed events, then record it there.
4043 */
4044 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4045 memcpy(&bpage->data[commit], &missed_events,
4046 sizeof(missed_events));
4047 local_add(RB_MISSED_STORED, &bpage->commit);
4048 commit += sizeof(missed_events);
4049 }
4050 local_add(RB_MISSED_EVENTS, &bpage->commit);
4051 }
4052
4053 /*
4054 * This page may be off to user land. Zero it out here.
4055 */
4056 if (commit < BUF_PAGE_SIZE)
4057 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4058
4059 out_unlock:
4060 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4061
4062 out:
4063 return ret;
4064 }
4065 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4066
4067 #ifdef CONFIG_HOTPLUG_CPU
4068 static int rb_cpu_notify(struct notifier_block *self,
4069 unsigned long action, void *hcpu)
4070 {
4071 struct ring_buffer *buffer =
4072 container_of(self, struct ring_buffer, cpu_notify);
4073 long cpu = (long)hcpu;
4074
4075 switch (action) {
4076 case CPU_UP_PREPARE:
4077 case CPU_UP_PREPARE_FROZEN:
4078 if (cpumask_test_cpu(cpu, buffer->cpumask))
4079 return NOTIFY_OK;
4080
4081 buffer->buffers[cpu] =
4082 rb_allocate_cpu_buffer(buffer, cpu);
4083 if (!buffer->buffers[cpu]) {
4084 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4085 cpu);
4086 return NOTIFY_OK;
4087 }
4088 smp_wmb();
4089 cpumask_set_cpu(cpu, buffer->cpumask);
4090 break;
4091 case CPU_DOWN_PREPARE:
4092 case CPU_DOWN_PREPARE_FROZEN:
4093 /*
4094 * Do nothing.
4095 * If we were to free the buffer, then the user would
4096 * lose any trace that was in the buffer.
4097 */
4098 break;
4099 default:
4100 break;
4101 }
4102 return NOTIFY_OK;
4103 }
4104 #endif
This page took 0.114362 seconds and 6 git commands to generate.