Merge branch 'linus' into tracing/core
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25 * The ring buffer header is special. We must manually up keep it.
26 */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29 int ret;
30
31 ret = trace_seq_printf(s, "# compressed entry header\n");
32 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
40 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
41 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42
43 return ret;
44 }
45
46 /*
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
51 *
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
55 *
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
59 *
60 * Here's some silly ASCII art.
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
71 *
72 *
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
82 *
83 *
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
93 *
94 *
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
104 *
105 *
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
109 *
110 * We will be using cmpxchg soon to make all this lockless.
111 *
112 */
113
114 /*
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
120 *
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
123 *
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
127 *
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
130 */
131
132 /*
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
135 *
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
141 */
142
143 enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158 * tracing_on - enable all tracing buffers
159 *
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
162 */
163 void tracing_on(void)
164 {
165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170 * tracing_off - turn off all tracing buffers
171 *
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
176 */
177 void tracing_off(void)
178 {
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184 * tracing_off_permanent - permanently disable ring buffers
185 *
186 * This function, once called, will disable all ring buffers
187 * permanently.
188 */
189 void tracing_off_permanent(void)
190 {
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195 * tracing_is_on - show state of ring buffers enabled
196 */
197 int tracing_is_on(void)
198 {
199 return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 return event->type_len == RINGBUF_TYPE_PADDING
220 && event->time_delta == 0;
221 }
222
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
224 {
225 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
226 }
227
228 static void rb_event_set_padding(struct ring_buffer_event *event)
229 {
230 event->type_len = RINGBUF_TYPE_PADDING;
231 event->time_delta = 0;
232 }
233
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
236 {
237 unsigned length;
238
239 if (event->type_len)
240 length = event->type_len * RB_ALIGNMENT;
241 else
242 length = event->array[0];
243 return length + RB_EVNT_HDR_SIZE;
244 }
245
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
249 {
250 switch (event->type_len) {
251 case RINGBUF_TYPE_PADDING:
252 if (rb_null_event(event))
253 /* undefined */
254 return -1;
255 return event->array[0] + RB_EVNT_HDR_SIZE;
256
257 case RINGBUF_TYPE_TIME_EXTEND:
258 return RB_LEN_TIME_EXTEND;
259
260 case RINGBUF_TYPE_TIME_STAMP:
261 return RB_LEN_TIME_STAMP;
262
263 case RINGBUF_TYPE_DATA:
264 return rb_event_data_length(event);
265 default:
266 BUG();
267 }
268 /* not hit */
269 return 0;
270 }
271
272 /**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 */
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277 {
278 unsigned length = rb_event_length(event);
279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293 /* If length is in len field, then array[0] has the data */
294 if (event->type_len)
295 return (void *)&event->array[0];
296 /* Otherwise length is in array[0] and array[1] has the data */
297 return (void *)&event->array[1];
298 }
299
300 /**
301 * ring_buffer_event_data - return the data of the event
302 * @event: the event to get the data from
303 */
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
305 {
306 return rb_event_data(event);
307 }
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
309
310 #define for_each_buffer_cpu(buffer, cpu) \
311 for_each_cpu(cpu, buffer->cpumask)
312
313 #define TS_SHIFT 27
314 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST (~TS_MASK)
316
317 struct buffer_data_page {
318 u64 time_stamp; /* page time stamp */
319 local_t commit; /* write committed index */
320 unsigned char data[]; /* data of buffer page */
321 };
322
323 struct buffer_page {
324 struct list_head list; /* list of buffer pages */
325 local_t write; /* index for next write */
326 unsigned read; /* index for next read */
327 local_t entries; /* entries on this page */
328 struct buffer_data_page *page; /* Actual data page */
329 };
330
331 static void rb_init_page(struct buffer_data_page *bpage)
332 {
333 local_set(&bpage->commit, 0);
334 }
335
336 /**
337 * ring_buffer_page_len - the size of data on the page.
338 * @page: The page to read
339 *
340 * Returns the amount of data on the page, including buffer page header.
341 */
342 size_t ring_buffer_page_len(void *page)
343 {
344 return local_read(&((struct buffer_data_page *)page)->commit)
345 + BUF_PAGE_HDR_SIZE;
346 }
347
348 /*
349 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350 * this issue out.
351 */
352 static void free_buffer_page(struct buffer_page *bpage)
353 {
354 free_page((unsigned long)bpage->page);
355 kfree(bpage);
356 }
357
358 /*
359 * We need to fit the time_stamp delta into 27 bits.
360 */
361 static inline int test_time_stamp(u64 delta)
362 {
363 if (delta & TS_DELTA_TEST)
364 return 1;
365 return 0;
366 }
367
368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
369
370 int ring_buffer_print_page_header(struct trace_seq *s)
371 {
372 struct buffer_data_page field;
373 int ret;
374
375 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376 "offset:0;\tsize:%u;\n",
377 (unsigned int)sizeof(field.time_stamp));
378
379 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
380 "offset:%u;\tsize:%u;\n",
381 (unsigned int)offsetof(typeof(field), commit),
382 (unsigned int)sizeof(field.commit));
383
384 ret = trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE);
388
389 return ret;
390 }
391
392 /*
393 * head_page == tail_page && head == tail then buffer is empty.
394 */
395 struct ring_buffer_per_cpu {
396 int cpu;
397 struct ring_buffer *buffer;
398 spinlock_t reader_lock; /* serialize readers */
399 raw_spinlock_t lock;
400 struct lock_class_key lock_key;
401 struct list_head pages;
402 struct buffer_page *head_page; /* read from head */
403 struct buffer_page *tail_page; /* write to tail */
404 struct buffer_page *commit_page; /* committed pages */
405 struct buffer_page *reader_page;
406 unsigned long nmi_dropped;
407 unsigned long commit_overrun;
408 unsigned long overrun;
409 unsigned long read;
410 local_t entries;
411 u64 write_stamp;
412 u64 read_stamp;
413 atomic_t record_disabled;
414 };
415
416 struct ring_buffer {
417 unsigned pages;
418 unsigned flags;
419 int cpus;
420 atomic_t record_disabled;
421 cpumask_var_t cpumask;
422
423 struct mutex mutex;
424
425 struct ring_buffer_per_cpu **buffers;
426
427 #ifdef CONFIG_HOTPLUG_CPU
428 struct notifier_block cpu_notify;
429 #endif
430 u64 (*clock)(void);
431 };
432
433 struct ring_buffer_iter {
434 struct ring_buffer_per_cpu *cpu_buffer;
435 unsigned long head;
436 struct buffer_page *head_page;
437 u64 read_stamp;
438 };
439
440 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
441 #define RB_WARN_ON(buffer, cond) \
442 ({ \
443 int _____ret = unlikely(cond); \
444 if (_____ret) { \
445 atomic_inc(&buffer->record_disabled); \
446 WARN_ON(1); \
447 } \
448 _____ret; \
449 })
450
451 /* Up this if you want to test the TIME_EXTENTS and normalization */
452 #define DEBUG_SHIFT 0
453
454 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
455 {
456 u64 time;
457
458 preempt_disable_notrace();
459 /* shift to debug/test normalization and TIME_EXTENTS */
460 time = buffer->clock() << DEBUG_SHIFT;
461 preempt_enable_no_resched_notrace();
462
463 return time;
464 }
465 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
466
467 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
468 int cpu, u64 *ts)
469 {
470 /* Just stupid testing the normalize function and deltas */
471 *ts >>= DEBUG_SHIFT;
472 }
473 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
474
475 /**
476 * check_pages - integrity check of buffer pages
477 * @cpu_buffer: CPU buffer with pages to test
478 *
479 * As a safety measure we check to make sure the data pages have not
480 * been corrupted.
481 */
482 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
483 {
484 struct list_head *head = &cpu_buffer->pages;
485 struct buffer_page *bpage, *tmp;
486
487 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
488 return -1;
489 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
490 return -1;
491
492 list_for_each_entry_safe(bpage, tmp, head, list) {
493 if (RB_WARN_ON(cpu_buffer,
494 bpage->list.next->prev != &bpage->list))
495 return -1;
496 if (RB_WARN_ON(cpu_buffer,
497 bpage->list.prev->next != &bpage->list))
498 return -1;
499 }
500
501 return 0;
502 }
503
504 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
505 unsigned nr_pages)
506 {
507 struct list_head *head = &cpu_buffer->pages;
508 struct buffer_page *bpage, *tmp;
509 unsigned long addr;
510 LIST_HEAD(pages);
511 unsigned i;
512
513 for (i = 0; i < nr_pages; i++) {
514 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
515 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
516 if (!bpage)
517 goto free_pages;
518 list_add(&bpage->list, &pages);
519
520 addr = __get_free_page(GFP_KERNEL);
521 if (!addr)
522 goto free_pages;
523 bpage->page = (void *)addr;
524 rb_init_page(bpage->page);
525 }
526
527 list_splice(&pages, head);
528
529 rb_check_pages(cpu_buffer);
530
531 return 0;
532
533 free_pages:
534 list_for_each_entry_safe(bpage, tmp, &pages, list) {
535 list_del_init(&bpage->list);
536 free_buffer_page(bpage);
537 }
538 return -ENOMEM;
539 }
540
541 static struct ring_buffer_per_cpu *
542 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
543 {
544 struct ring_buffer_per_cpu *cpu_buffer;
545 struct buffer_page *bpage;
546 unsigned long addr;
547 int ret;
548
549 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
550 GFP_KERNEL, cpu_to_node(cpu));
551 if (!cpu_buffer)
552 return NULL;
553
554 cpu_buffer->cpu = cpu;
555 cpu_buffer->buffer = buffer;
556 spin_lock_init(&cpu_buffer->reader_lock);
557 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
558 INIT_LIST_HEAD(&cpu_buffer->pages);
559
560 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
561 GFP_KERNEL, cpu_to_node(cpu));
562 if (!bpage)
563 goto fail_free_buffer;
564
565 cpu_buffer->reader_page = bpage;
566 addr = __get_free_page(GFP_KERNEL);
567 if (!addr)
568 goto fail_free_reader;
569 bpage->page = (void *)addr;
570 rb_init_page(bpage->page);
571
572 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
573
574 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
575 if (ret < 0)
576 goto fail_free_reader;
577
578 cpu_buffer->head_page
579 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
580 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
581
582 return cpu_buffer;
583
584 fail_free_reader:
585 free_buffer_page(cpu_buffer->reader_page);
586
587 fail_free_buffer:
588 kfree(cpu_buffer);
589 return NULL;
590 }
591
592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
593 {
594 struct list_head *head = &cpu_buffer->pages;
595 struct buffer_page *bpage, *tmp;
596
597 free_buffer_page(cpu_buffer->reader_page);
598
599 list_for_each_entry_safe(bpage, tmp, head, list) {
600 list_del_init(&bpage->list);
601 free_buffer_page(bpage);
602 }
603 kfree(cpu_buffer);
604 }
605
606 /*
607 * Causes compile errors if the struct buffer_page gets bigger
608 * than the struct page.
609 */
610 extern int ring_buffer_page_too_big(void);
611
612 #ifdef CONFIG_HOTPLUG_CPU
613 static int rb_cpu_notify(struct notifier_block *self,
614 unsigned long action, void *hcpu);
615 #endif
616
617 /**
618 * ring_buffer_alloc - allocate a new ring_buffer
619 * @size: the size in bytes per cpu that is needed.
620 * @flags: attributes to set for the ring buffer.
621 *
622 * Currently the only flag that is available is the RB_FL_OVERWRITE
623 * flag. This flag means that the buffer will overwrite old data
624 * when the buffer wraps. If this flag is not set, the buffer will
625 * drop data when the tail hits the head.
626 */
627 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
628 {
629 struct ring_buffer *buffer;
630 int bsize;
631 int cpu;
632
633 /* Paranoid! Optimizes out when all is well */
634 if (sizeof(struct buffer_page) > sizeof(struct page))
635 ring_buffer_page_too_big();
636
637
638 /* keep it in its own cache line */
639 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
640 GFP_KERNEL);
641 if (!buffer)
642 return NULL;
643
644 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
645 goto fail_free_buffer;
646
647 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
648 buffer->flags = flags;
649 buffer->clock = trace_clock_local;
650
651 /* need at least two pages */
652 if (buffer->pages == 1)
653 buffer->pages++;
654
655 /*
656 * In case of non-hotplug cpu, if the ring-buffer is allocated
657 * in early initcall, it will not be notified of secondary cpus.
658 * In that off case, we need to allocate for all possible cpus.
659 */
660 #ifdef CONFIG_HOTPLUG_CPU
661 get_online_cpus();
662 cpumask_copy(buffer->cpumask, cpu_online_mask);
663 #else
664 cpumask_copy(buffer->cpumask, cpu_possible_mask);
665 #endif
666 buffer->cpus = nr_cpu_ids;
667
668 bsize = sizeof(void *) * nr_cpu_ids;
669 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
670 GFP_KERNEL);
671 if (!buffer->buffers)
672 goto fail_free_cpumask;
673
674 for_each_buffer_cpu(buffer, cpu) {
675 buffer->buffers[cpu] =
676 rb_allocate_cpu_buffer(buffer, cpu);
677 if (!buffer->buffers[cpu])
678 goto fail_free_buffers;
679 }
680
681 #ifdef CONFIG_HOTPLUG_CPU
682 buffer->cpu_notify.notifier_call = rb_cpu_notify;
683 buffer->cpu_notify.priority = 0;
684 register_cpu_notifier(&buffer->cpu_notify);
685 #endif
686
687 put_online_cpus();
688 mutex_init(&buffer->mutex);
689
690 return buffer;
691
692 fail_free_buffers:
693 for_each_buffer_cpu(buffer, cpu) {
694 if (buffer->buffers[cpu])
695 rb_free_cpu_buffer(buffer->buffers[cpu]);
696 }
697 kfree(buffer->buffers);
698
699 fail_free_cpumask:
700 free_cpumask_var(buffer->cpumask);
701 put_online_cpus();
702
703 fail_free_buffer:
704 kfree(buffer);
705 return NULL;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
708
709 /**
710 * ring_buffer_free - free a ring buffer.
711 * @buffer: the buffer to free.
712 */
713 void
714 ring_buffer_free(struct ring_buffer *buffer)
715 {
716 int cpu;
717
718 get_online_cpus();
719
720 #ifdef CONFIG_HOTPLUG_CPU
721 unregister_cpu_notifier(&buffer->cpu_notify);
722 #endif
723
724 for_each_buffer_cpu(buffer, cpu)
725 rb_free_cpu_buffer(buffer->buffers[cpu]);
726
727 put_online_cpus();
728
729 free_cpumask_var(buffer->cpumask);
730
731 kfree(buffer);
732 }
733 EXPORT_SYMBOL_GPL(ring_buffer_free);
734
735 void ring_buffer_set_clock(struct ring_buffer *buffer,
736 u64 (*clock)(void))
737 {
738 buffer->clock = clock;
739 }
740
741 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
742
743 static void
744 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
745 {
746 struct buffer_page *bpage;
747 struct list_head *p;
748 unsigned i;
749
750 atomic_inc(&cpu_buffer->record_disabled);
751 synchronize_sched();
752
753 for (i = 0; i < nr_pages; i++) {
754 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
755 return;
756 p = cpu_buffer->pages.next;
757 bpage = list_entry(p, struct buffer_page, list);
758 list_del_init(&bpage->list);
759 free_buffer_page(bpage);
760 }
761 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
762 return;
763
764 rb_reset_cpu(cpu_buffer);
765
766 rb_check_pages(cpu_buffer);
767
768 atomic_dec(&cpu_buffer->record_disabled);
769
770 }
771
772 static void
773 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
774 struct list_head *pages, unsigned nr_pages)
775 {
776 struct buffer_page *bpage;
777 struct list_head *p;
778 unsigned i;
779
780 atomic_inc(&cpu_buffer->record_disabled);
781 synchronize_sched();
782
783 for (i = 0; i < nr_pages; i++) {
784 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
785 return;
786 p = pages->next;
787 bpage = list_entry(p, struct buffer_page, list);
788 list_del_init(&bpage->list);
789 list_add_tail(&bpage->list, &cpu_buffer->pages);
790 }
791 rb_reset_cpu(cpu_buffer);
792
793 rb_check_pages(cpu_buffer);
794
795 atomic_dec(&cpu_buffer->record_disabled);
796 }
797
798 /**
799 * ring_buffer_resize - resize the ring buffer
800 * @buffer: the buffer to resize.
801 * @size: the new size.
802 *
803 * The tracer is responsible for making sure that the buffer is
804 * not being used while changing the size.
805 * Note: We may be able to change the above requirement by using
806 * RCU synchronizations.
807 *
808 * Minimum size is 2 * BUF_PAGE_SIZE.
809 *
810 * Returns -1 on failure.
811 */
812 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
813 {
814 struct ring_buffer_per_cpu *cpu_buffer;
815 unsigned nr_pages, rm_pages, new_pages;
816 struct buffer_page *bpage, *tmp;
817 unsigned long buffer_size;
818 unsigned long addr;
819 LIST_HEAD(pages);
820 int i, cpu;
821
822 /*
823 * Always succeed at resizing a non-existent buffer:
824 */
825 if (!buffer)
826 return size;
827
828 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
829 size *= BUF_PAGE_SIZE;
830 buffer_size = buffer->pages * BUF_PAGE_SIZE;
831
832 /* we need a minimum of two pages */
833 if (size < BUF_PAGE_SIZE * 2)
834 size = BUF_PAGE_SIZE * 2;
835
836 if (size == buffer_size)
837 return size;
838
839 mutex_lock(&buffer->mutex);
840 get_online_cpus();
841
842 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
843
844 if (size < buffer_size) {
845
846 /* easy case, just free pages */
847 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
848 goto out_fail;
849
850 rm_pages = buffer->pages - nr_pages;
851
852 for_each_buffer_cpu(buffer, cpu) {
853 cpu_buffer = buffer->buffers[cpu];
854 rb_remove_pages(cpu_buffer, rm_pages);
855 }
856 goto out;
857 }
858
859 /*
860 * This is a bit more difficult. We only want to add pages
861 * when we can allocate enough for all CPUs. We do this
862 * by allocating all the pages and storing them on a local
863 * link list. If we succeed in our allocation, then we
864 * add these pages to the cpu_buffers. Otherwise we just free
865 * them all and return -ENOMEM;
866 */
867 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
868 goto out_fail;
869
870 new_pages = nr_pages - buffer->pages;
871
872 for_each_buffer_cpu(buffer, cpu) {
873 for (i = 0; i < new_pages; i++) {
874 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
875 cache_line_size()),
876 GFP_KERNEL, cpu_to_node(cpu));
877 if (!bpage)
878 goto free_pages;
879 list_add(&bpage->list, &pages);
880 addr = __get_free_page(GFP_KERNEL);
881 if (!addr)
882 goto free_pages;
883 bpage->page = (void *)addr;
884 rb_init_page(bpage->page);
885 }
886 }
887
888 for_each_buffer_cpu(buffer, cpu) {
889 cpu_buffer = buffer->buffers[cpu];
890 rb_insert_pages(cpu_buffer, &pages, new_pages);
891 }
892
893 if (RB_WARN_ON(buffer, !list_empty(&pages)))
894 goto out_fail;
895
896 out:
897 buffer->pages = nr_pages;
898 put_online_cpus();
899 mutex_unlock(&buffer->mutex);
900
901 return size;
902
903 free_pages:
904 list_for_each_entry_safe(bpage, tmp, &pages, list) {
905 list_del_init(&bpage->list);
906 free_buffer_page(bpage);
907 }
908 put_online_cpus();
909 mutex_unlock(&buffer->mutex);
910 return -ENOMEM;
911
912 /*
913 * Something went totally wrong, and we are too paranoid
914 * to even clean up the mess.
915 */
916 out_fail:
917 put_online_cpus();
918 mutex_unlock(&buffer->mutex);
919 return -1;
920 }
921 EXPORT_SYMBOL_GPL(ring_buffer_resize);
922
923 static inline void *
924 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
925 {
926 return bpage->data + index;
927 }
928
929 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
930 {
931 return bpage->page->data + index;
932 }
933
934 static inline struct ring_buffer_event *
935 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
936 {
937 return __rb_page_index(cpu_buffer->reader_page,
938 cpu_buffer->reader_page->read);
939 }
940
941 static inline struct ring_buffer_event *
942 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
943 {
944 return __rb_page_index(cpu_buffer->head_page,
945 cpu_buffer->head_page->read);
946 }
947
948 static inline struct ring_buffer_event *
949 rb_iter_head_event(struct ring_buffer_iter *iter)
950 {
951 return __rb_page_index(iter->head_page, iter->head);
952 }
953
954 static inline unsigned rb_page_write(struct buffer_page *bpage)
955 {
956 return local_read(&bpage->write);
957 }
958
959 static inline unsigned rb_page_commit(struct buffer_page *bpage)
960 {
961 return local_read(&bpage->page->commit);
962 }
963
964 /* Size is determined by what has been commited */
965 static inline unsigned rb_page_size(struct buffer_page *bpage)
966 {
967 return rb_page_commit(bpage);
968 }
969
970 static inline unsigned
971 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
972 {
973 return rb_page_commit(cpu_buffer->commit_page);
974 }
975
976 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
977 {
978 return rb_page_commit(cpu_buffer->head_page);
979 }
980
981 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
982 struct buffer_page **bpage)
983 {
984 struct list_head *p = (*bpage)->list.next;
985
986 if (p == &cpu_buffer->pages)
987 p = p->next;
988
989 *bpage = list_entry(p, struct buffer_page, list);
990 }
991
992 static inline unsigned
993 rb_event_index(struct ring_buffer_event *event)
994 {
995 unsigned long addr = (unsigned long)event;
996
997 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
998 }
999
1000 static int
1001 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1002 struct ring_buffer_event *event)
1003 {
1004 unsigned long addr = (unsigned long)event;
1005 unsigned long index;
1006
1007 index = rb_event_index(event);
1008 addr &= PAGE_MASK;
1009
1010 return cpu_buffer->commit_page->page == (void *)addr &&
1011 rb_commit_index(cpu_buffer) == index;
1012 }
1013
1014 static void
1015 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1016 struct ring_buffer_event *event)
1017 {
1018 unsigned long addr = (unsigned long)event;
1019 unsigned long index;
1020
1021 index = rb_event_index(event);
1022 addr &= PAGE_MASK;
1023
1024 while (cpu_buffer->commit_page->page != (void *)addr) {
1025 if (RB_WARN_ON(cpu_buffer,
1026 cpu_buffer->commit_page == cpu_buffer->tail_page))
1027 return;
1028 cpu_buffer->commit_page->page->commit =
1029 cpu_buffer->commit_page->write;
1030 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1031 cpu_buffer->write_stamp =
1032 cpu_buffer->commit_page->page->time_stamp;
1033 }
1034
1035 /* Now set the commit to the event's index */
1036 local_set(&cpu_buffer->commit_page->page->commit, index);
1037 }
1038
1039 static void
1040 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1041 {
1042 /*
1043 * We only race with interrupts and NMIs on this CPU.
1044 * If we own the commit event, then we can commit
1045 * all others that interrupted us, since the interruptions
1046 * are in stack format (they finish before they come
1047 * back to us). This allows us to do a simple loop to
1048 * assign the commit to the tail.
1049 */
1050 again:
1051 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1052 cpu_buffer->commit_page->page->commit =
1053 cpu_buffer->commit_page->write;
1054 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1055 cpu_buffer->write_stamp =
1056 cpu_buffer->commit_page->page->time_stamp;
1057 /* add barrier to keep gcc from optimizing too much */
1058 barrier();
1059 }
1060 while (rb_commit_index(cpu_buffer) !=
1061 rb_page_write(cpu_buffer->commit_page)) {
1062 cpu_buffer->commit_page->page->commit =
1063 cpu_buffer->commit_page->write;
1064 barrier();
1065 }
1066
1067 /* again, keep gcc from optimizing */
1068 barrier();
1069
1070 /*
1071 * If an interrupt came in just after the first while loop
1072 * and pushed the tail page forward, we will be left with
1073 * a dangling commit that will never go forward.
1074 */
1075 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1076 goto again;
1077 }
1078
1079 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1080 {
1081 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1082 cpu_buffer->reader_page->read = 0;
1083 }
1084
1085 static void rb_inc_iter(struct ring_buffer_iter *iter)
1086 {
1087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1088
1089 /*
1090 * The iterator could be on the reader page (it starts there).
1091 * But the head could have moved, since the reader was
1092 * found. Check for this case and assign the iterator
1093 * to the head page instead of next.
1094 */
1095 if (iter->head_page == cpu_buffer->reader_page)
1096 iter->head_page = cpu_buffer->head_page;
1097 else
1098 rb_inc_page(cpu_buffer, &iter->head_page);
1099
1100 iter->read_stamp = iter->head_page->page->time_stamp;
1101 iter->head = 0;
1102 }
1103
1104 /**
1105 * ring_buffer_update_event - update event type and data
1106 * @event: the even to update
1107 * @type: the type of event
1108 * @length: the size of the event field in the ring buffer
1109 *
1110 * Update the type and data fields of the event. The length
1111 * is the actual size that is written to the ring buffer,
1112 * and with this, we can determine what to place into the
1113 * data field.
1114 */
1115 static void
1116 rb_update_event(struct ring_buffer_event *event,
1117 unsigned type, unsigned length)
1118 {
1119 event->type_len = type;
1120
1121 switch (type) {
1122
1123 case RINGBUF_TYPE_PADDING:
1124 case RINGBUF_TYPE_TIME_EXTEND:
1125 case RINGBUF_TYPE_TIME_STAMP:
1126 break;
1127
1128 case 0:
1129 length -= RB_EVNT_HDR_SIZE;
1130 if (length > RB_MAX_SMALL_DATA)
1131 event->array[0] = length;
1132 else
1133 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1134 break;
1135 default:
1136 BUG();
1137 }
1138 }
1139
1140 static unsigned rb_calculate_event_length(unsigned length)
1141 {
1142 struct ring_buffer_event event; /* Used only for sizeof array */
1143
1144 /* zero length can cause confusions */
1145 if (!length)
1146 length = 1;
1147
1148 if (length > RB_MAX_SMALL_DATA)
1149 length += sizeof(event.array[0]);
1150
1151 length += RB_EVNT_HDR_SIZE;
1152 length = ALIGN(length, RB_ALIGNMENT);
1153
1154 return length;
1155 }
1156
1157
1158 static struct ring_buffer_event *
1159 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1160 unsigned long length, unsigned long tail,
1161 struct buffer_page *commit_page,
1162 struct buffer_page *tail_page, u64 *ts)
1163 {
1164 struct buffer_page *next_page, *head_page, *reader_page;
1165 struct ring_buffer *buffer = cpu_buffer->buffer;
1166 struct ring_buffer_event *event;
1167 bool lock_taken = false;
1168 unsigned long flags;
1169
1170 next_page = tail_page;
1171
1172 local_irq_save(flags);
1173 /*
1174 * Since the write to the buffer is still not
1175 * fully lockless, we must be careful with NMIs.
1176 * The locks in the writers are taken when a write
1177 * crosses to a new page. The locks protect against
1178 * races with the readers (this will soon be fixed
1179 * with a lockless solution).
1180 *
1181 * Because we can not protect against NMIs, and we
1182 * want to keep traces reentrant, we need to manage
1183 * what happens when we are in an NMI.
1184 *
1185 * NMIs can happen after we take the lock.
1186 * If we are in an NMI, only take the lock
1187 * if it is not already taken. Otherwise
1188 * simply fail.
1189 */
1190 if (unlikely(in_nmi())) {
1191 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1192 cpu_buffer->nmi_dropped++;
1193 goto out_reset;
1194 }
1195 } else
1196 __raw_spin_lock(&cpu_buffer->lock);
1197
1198 lock_taken = true;
1199
1200 rb_inc_page(cpu_buffer, &next_page);
1201
1202 head_page = cpu_buffer->head_page;
1203 reader_page = cpu_buffer->reader_page;
1204
1205 /* we grabbed the lock before incrementing */
1206 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1207 goto out_reset;
1208
1209 /*
1210 * If for some reason, we had an interrupt storm that made
1211 * it all the way around the buffer, bail, and warn
1212 * about it.
1213 */
1214 if (unlikely(next_page == commit_page)) {
1215 cpu_buffer->commit_overrun++;
1216 goto out_reset;
1217 }
1218
1219 if (next_page == head_page) {
1220 if (!(buffer->flags & RB_FL_OVERWRITE))
1221 goto out_reset;
1222
1223 /* tail_page has not moved yet? */
1224 if (tail_page == cpu_buffer->tail_page) {
1225 /* count overflows */
1226 cpu_buffer->overrun +=
1227 local_read(&head_page->entries);
1228
1229 rb_inc_page(cpu_buffer, &head_page);
1230 cpu_buffer->head_page = head_page;
1231 cpu_buffer->head_page->read = 0;
1232 }
1233 }
1234
1235 /*
1236 * If the tail page is still the same as what we think
1237 * it is, then it is up to us to update the tail
1238 * pointer.
1239 */
1240 if (tail_page == cpu_buffer->tail_page) {
1241 local_set(&next_page->write, 0);
1242 local_set(&next_page->entries, 0);
1243 local_set(&next_page->page->commit, 0);
1244 cpu_buffer->tail_page = next_page;
1245
1246 /* reread the time stamp */
1247 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1248 cpu_buffer->tail_page->page->time_stamp = *ts;
1249 }
1250
1251 /*
1252 * The actual tail page has moved forward.
1253 */
1254 if (tail < BUF_PAGE_SIZE) {
1255 /* Mark the rest of the page with padding */
1256 event = __rb_page_index(tail_page, tail);
1257 rb_event_set_padding(event);
1258 }
1259
1260 /* Set the write back to the previous setting */
1261 local_sub(length, &tail_page->write);
1262
1263 /*
1264 * If this was a commit entry that failed,
1265 * increment that too
1266 */
1267 if (tail_page == cpu_buffer->commit_page &&
1268 tail == rb_commit_index(cpu_buffer)) {
1269 rb_set_commit_to_write(cpu_buffer);
1270 }
1271
1272 __raw_spin_unlock(&cpu_buffer->lock);
1273 local_irq_restore(flags);
1274
1275 /* fail and let the caller try again */
1276 return ERR_PTR(-EAGAIN);
1277
1278 out_reset:
1279 /* reset write */
1280 local_sub(length, &tail_page->write);
1281
1282 if (likely(lock_taken))
1283 __raw_spin_unlock(&cpu_buffer->lock);
1284 local_irq_restore(flags);
1285 return NULL;
1286 }
1287
1288 static struct ring_buffer_event *
1289 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1290 unsigned type, unsigned long length, u64 *ts)
1291 {
1292 struct buffer_page *tail_page, *commit_page;
1293 struct ring_buffer_event *event;
1294 unsigned long tail, write;
1295
1296 commit_page = cpu_buffer->commit_page;
1297 /* we just need to protect against interrupts */
1298 barrier();
1299 tail_page = cpu_buffer->tail_page;
1300 write = local_add_return(length, &tail_page->write);
1301 tail = write - length;
1302
1303 /* See if we shot pass the end of this buffer page */
1304 if (write > BUF_PAGE_SIZE)
1305 return rb_move_tail(cpu_buffer, length, tail,
1306 commit_page, tail_page, ts);
1307
1308 /* We reserved something on the buffer */
1309
1310 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1311 return NULL;
1312
1313 event = __rb_page_index(tail_page, tail);
1314 rb_update_event(event, type, length);
1315
1316 /* The passed in type is zero for DATA */
1317 if (likely(!type))
1318 local_inc(&tail_page->entries);
1319
1320 /*
1321 * If this is a commit and the tail is zero, then update
1322 * this page's time stamp.
1323 */
1324 if (!tail && rb_is_commit(cpu_buffer, event))
1325 cpu_buffer->commit_page->page->time_stamp = *ts;
1326
1327 return event;
1328 }
1329
1330 static int
1331 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1332 u64 *ts, u64 *delta)
1333 {
1334 struct ring_buffer_event *event;
1335 static int once;
1336 int ret;
1337
1338 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1339 printk(KERN_WARNING "Delta way too big! %llu"
1340 " ts=%llu write stamp = %llu\n",
1341 (unsigned long long)*delta,
1342 (unsigned long long)*ts,
1343 (unsigned long long)cpu_buffer->write_stamp);
1344 WARN_ON(1);
1345 }
1346
1347 /*
1348 * The delta is too big, we to add a
1349 * new timestamp.
1350 */
1351 event = __rb_reserve_next(cpu_buffer,
1352 RINGBUF_TYPE_TIME_EXTEND,
1353 RB_LEN_TIME_EXTEND,
1354 ts);
1355 if (!event)
1356 return -EBUSY;
1357
1358 if (PTR_ERR(event) == -EAGAIN)
1359 return -EAGAIN;
1360
1361 /* Only a commited time event can update the write stamp */
1362 if (rb_is_commit(cpu_buffer, event)) {
1363 /*
1364 * If this is the first on the page, then we need to
1365 * update the page itself, and just put in a zero.
1366 */
1367 if (rb_event_index(event)) {
1368 event->time_delta = *delta & TS_MASK;
1369 event->array[0] = *delta >> TS_SHIFT;
1370 } else {
1371 cpu_buffer->commit_page->page->time_stamp = *ts;
1372 event->time_delta = 0;
1373 event->array[0] = 0;
1374 }
1375 cpu_buffer->write_stamp = *ts;
1376 /* let the caller know this was the commit */
1377 ret = 1;
1378 } else {
1379 /* Darn, this is just wasted space */
1380 event->time_delta = 0;
1381 event->array[0] = 0;
1382 ret = 0;
1383 }
1384
1385 *delta = 0;
1386
1387 return ret;
1388 }
1389
1390 static struct ring_buffer_event *
1391 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1392 unsigned type, unsigned long length)
1393 {
1394 struct ring_buffer_event *event;
1395 u64 ts, delta;
1396 int commit = 0;
1397 int nr_loops = 0;
1398
1399 again:
1400 /*
1401 * We allow for interrupts to reenter here and do a trace.
1402 * If one does, it will cause this original code to loop
1403 * back here. Even with heavy interrupts happening, this
1404 * should only happen a few times in a row. If this happens
1405 * 1000 times in a row, there must be either an interrupt
1406 * storm or we have something buggy.
1407 * Bail!
1408 */
1409 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1410 return NULL;
1411
1412 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1413
1414 /*
1415 * Only the first commit can update the timestamp.
1416 * Yes there is a race here. If an interrupt comes in
1417 * just after the conditional and it traces too, then it
1418 * will also check the deltas. More than one timestamp may
1419 * also be made. But only the entry that did the actual
1420 * commit will be something other than zero.
1421 */
1422 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1423 rb_page_write(cpu_buffer->tail_page) ==
1424 rb_commit_index(cpu_buffer)) {
1425
1426 delta = ts - cpu_buffer->write_stamp;
1427
1428 /* make sure this delta is calculated here */
1429 barrier();
1430
1431 /* Did the write stamp get updated already? */
1432 if (unlikely(ts < cpu_buffer->write_stamp))
1433 delta = 0;
1434
1435 if (test_time_stamp(delta)) {
1436
1437 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1438
1439 if (commit == -EBUSY)
1440 return NULL;
1441
1442 if (commit == -EAGAIN)
1443 goto again;
1444
1445 RB_WARN_ON(cpu_buffer, commit < 0);
1446 }
1447 } else
1448 /* Non commits have zero deltas */
1449 delta = 0;
1450
1451 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1452 if (PTR_ERR(event) == -EAGAIN)
1453 goto again;
1454
1455 if (!event) {
1456 if (unlikely(commit))
1457 /*
1458 * Ouch! We needed a timestamp and it was commited. But
1459 * we didn't get our event reserved.
1460 */
1461 rb_set_commit_to_write(cpu_buffer);
1462 return NULL;
1463 }
1464
1465 /*
1466 * If the timestamp was commited, make the commit our entry
1467 * now so that we will update it when needed.
1468 */
1469 if (commit)
1470 rb_set_commit_event(cpu_buffer, event);
1471 else if (!rb_is_commit(cpu_buffer, event))
1472 delta = 0;
1473
1474 event->time_delta = delta;
1475
1476 return event;
1477 }
1478
1479 #define TRACE_RECURSIVE_DEPTH 16
1480
1481 static int trace_recursive_lock(void)
1482 {
1483 current->trace_recursion++;
1484
1485 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1486 return 0;
1487
1488 /* Disable all tracing before we do anything else */
1489 tracing_off_permanent();
1490
1491 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1492 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1493 current->trace_recursion,
1494 hardirq_count() >> HARDIRQ_SHIFT,
1495 softirq_count() >> SOFTIRQ_SHIFT,
1496 in_nmi());
1497
1498 WARN_ON_ONCE(1);
1499 return -1;
1500 }
1501
1502 static void trace_recursive_unlock(void)
1503 {
1504 WARN_ON_ONCE(!current->trace_recursion);
1505
1506 current->trace_recursion--;
1507 }
1508
1509 static DEFINE_PER_CPU(int, rb_need_resched);
1510
1511 /**
1512 * ring_buffer_lock_reserve - reserve a part of the buffer
1513 * @buffer: the ring buffer to reserve from
1514 * @length: the length of the data to reserve (excluding event header)
1515 *
1516 * Returns a reseverd event on the ring buffer to copy directly to.
1517 * The user of this interface will need to get the body to write into
1518 * and can use the ring_buffer_event_data() interface.
1519 *
1520 * The length is the length of the data needed, not the event length
1521 * which also includes the event header.
1522 *
1523 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1524 * If NULL is returned, then nothing has been allocated or locked.
1525 */
1526 struct ring_buffer_event *
1527 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1528 {
1529 struct ring_buffer_per_cpu *cpu_buffer;
1530 struct ring_buffer_event *event;
1531 int cpu, resched;
1532
1533 if (ring_buffer_flags != RB_BUFFERS_ON)
1534 return NULL;
1535
1536 if (atomic_read(&buffer->record_disabled))
1537 return NULL;
1538
1539 /* If we are tracing schedule, we don't want to recurse */
1540 resched = ftrace_preempt_disable();
1541
1542 if (trace_recursive_lock())
1543 goto out_nocheck;
1544
1545 cpu = raw_smp_processor_id();
1546
1547 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1548 goto out;
1549
1550 cpu_buffer = buffer->buffers[cpu];
1551
1552 if (atomic_read(&cpu_buffer->record_disabled))
1553 goto out;
1554
1555 length = rb_calculate_event_length(length);
1556 if (length > BUF_PAGE_SIZE)
1557 goto out;
1558
1559 event = rb_reserve_next_event(cpu_buffer, 0, length);
1560 if (!event)
1561 goto out;
1562
1563 /*
1564 * Need to store resched state on this cpu.
1565 * Only the first needs to.
1566 */
1567
1568 if (preempt_count() == 1)
1569 per_cpu(rb_need_resched, cpu) = resched;
1570
1571 return event;
1572
1573 out:
1574 trace_recursive_unlock();
1575
1576 out_nocheck:
1577 ftrace_preempt_enable(resched);
1578 return NULL;
1579 }
1580 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1581
1582 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1583 struct ring_buffer_event *event)
1584 {
1585 local_inc(&cpu_buffer->entries);
1586
1587 /* Only process further if we own the commit */
1588 if (!rb_is_commit(cpu_buffer, event))
1589 return;
1590
1591 cpu_buffer->write_stamp += event->time_delta;
1592
1593 rb_set_commit_to_write(cpu_buffer);
1594 }
1595
1596 /**
1597 * ring_buffer_unlock_commit - commit a reserved
1598 * @buffer: The buffer to commit to
1599 * @event: The event pointer to commit.
1600 *
1601 * This commits the data to the ring buffer, and releases any locks held.
1602 *
1603 * Must be paired with ring_buffer_lock_reserve.
1604 */
1605 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1606 struct ring_buffer_event *event)
1607 {
1608 struct ring_buffer_per_cpu *cpu_buffer;
1609 int cpu = raw_smp_processor_id();
1610
1611 cpu_buffer = buffer->buffers[cpu];
1612
1613 rb_commit(cpu_buffer, event);
1614
1615 trace_recursive_unlock();
1616
1617 /*
1618 * Only the last preempt count needs to restore preemption.
1619 */
1620 if (preempt_count() == 1)
1621 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1622 else
1623 preempt_enable_no_resched_notrace();
1624
1625 return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1628
1629 static inline void rb_event_discard(struct ring_buffer_event *event)
1630 {
1631 /* array[0] holds the actual length for the discarded event */
1632 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1633 event->type_len = RINGBUF_TYPE_PADDING;
1634 /* time delta must be non zero */
1635 if (!event->time_delta)
1636 event->time_delta = 1;
1637 }
1638
1639 /**
1640 * ring_buffer_event_discard - discard any event in the ring buffer
1641 * @event: the event to discard
1642 *
1643 * Sometimes a event that is in the ring buffer needs to be ignored.
1644 * This function lets the user discard an event in the ring buffer
1645 * and then that event will not be read later.
1646 *
1647 * Note, it is up to the user to be careful with this, and protect
1648 * against races. If the user discards an event that has been consumed
1649 * it is possible that it could corrupt the ring buffer.
1650 */
1651 void ring_buffer_event_discard(struct ring_buffer_event *event)
1652 {
1653 rb_event_discard(event);
1654 }
1655 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1656
1657 /**
1658 * ring_buffer_commit_discard - discard an event that has not been committed
1659 * @buffer: the ring buffer
1660 * @event: non committed event to discard
1661 *
1662 * This is similar to ring_buffer_event_discard but must only be
1663 * performed on an event that has not been committed yet. The difference
1664 * is that this will also try to free the event from the ring buffer
1665 * if another event has not been added behind it.
1666 *
1667 * If another event has been added behind it, it will set the event
1668 * up as discarded, and perform the commit.
1669 *
1670 * If this function is called, do not call ring_buffer_unlock_commit on
1671 * the event.
1672 */
1673 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1674 struct ring_buffer_event *event)
1675 {
1676 struct ring_buffer_per_cpu *cpu_buffer;
1677 unsigned long new_index, old_index;
1678 struct buffer_page *bpage;
1679 unsigned long index;
1680 unsigned long addr;
1681 int cpu;
1682
1683 /* The event is discarded regardless */
1684 rb_event_discard(event);
1685
1686 /*
1687 * This must only be called if the event has not been
1688 * committed yet. Thus we can assume that preemption
1689 * is still disabled.
1690 */
1691 RB_WARN_ON(buffer, !preempt_count());
1692
1693 cpu = smp_processor_id();
1694 cpu_buffer = buffer->buffers[cpu];
1695
1696 new_index = rb_event_index(event);
1697 old_index = new_index + rb_event_length(event);
1698 addr = (unsigned long)event;
1699 addr &= PAGE_MASK;
1700
1701 bpage = cpu_buffer->tail_page;
1702
1703 if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1704 /*
1705 * This is on the tail page. It is possible that
1706 * a write could come in and move the tail page
1707 * and write to the next page. That is fine
1708 * because we just shorten what is on this page.
1709 */
1710 index = local_cmpxchg(&bpage->write, old_index, new_index);
1711 if (index == old_index)
1712 goto out;
1713 }
1714
1715 /*
1716 * The commit is still visible by the reader, so we
1717 * must increment entries.
1718 */
1719 local_inc(&cpu_buffer->entries);
1720 out:
1721 /*
1722 * If a write came in and pushed the tail page
1723 * we still need to update the commit pointer
1724 * if we were the commit.
1725 */
1726 if (rb_is_commit(cpu_buffer, event))
1727 rb_set_commit_to_write(cpu_buffer);
1728
1729 trace_recursive_unlock();
1730
1731 /*
1732 * Only the last preempt count needs to restore preemption.
1733 */
1734 if (preempt_count() == 1)
1735 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1736 else
1737 preempt_enable_no_resched_notrace();
1738
1739 }
1740 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1741
1742 /**
1743 * ring_buffer_write - write data to the buffer without reserving
1744 * @buffer: The ring buffer to write to.
1745 * @length: The length of the data being written (excluding the event header)
1746 * @data: The data to write to the buffer.
1747 *
1748 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1749 * one function. If you already have the data to write to the buffer, it
1750 * may be easier to simply call this function.
1751 *
1752 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1753 * and not the length of the event which would hold the header.
1754 */
1755 int ring_buffer_write(struct ring_buffer *buffer,
1756 unsigned long length,
1757 void *data)
1758 {
1759 struct ring_buffer_per_cpu *cpu_buffer;
1760 struct ring_buffer_event *event;
1761 unsigned long event_length;
1762 void *body;
1763 int ret = -EBUSY;
1764 int cpu, resched;
1765
1766 if (ring_buffer_flags != RB_BUFFERS_ON)
1767 return -EBUSY;
1768
1769 if (atomic_read(&buffer->record_disabled))
1770 return -EBUSY;
1771
1772 resched = ftrace_preempt_disable();
1773
1774 cpu = raw_smp_processor_id();
1775
1776 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1777 goto out;
1778
1779 cpu_buffer = buffer->buffers[cpu];
1780
1781 if (atomic_read(&cpu_buffer->record_disabled))
1782 goto out;
1783
1784 event_length = rb_calculate_event_length(length);
1785 event = rb_reserve_next_event(cpu_buffer, 0, event_length);
1786 if (!event)
1787 goto out;
1788
1789 body = rb_event_data(event);
1790
1791 memcpy(body, data, length);
1792
1793 rb_commit(cpu_buffer, event);
1794
1795 ret = 0;
1796 out:
1797 ftrace_preempt_enable(resched);
1798
1799 return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(ring_buffer_write);
1802
1803 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1804 {
1805 struct buffer_page *reader = cpu_buffer->reader_page;
1806 struct buffer_page *head = cpu_buffer->head_page;
1807 struct buffer_page *commit = cpu_buffer->commit_page;
1808
1809 return reader->read == rb_page_commit(reader) &&
1810 (commit == reader ||
1811 (commit == head &&
1812 head->read == rb_page_commit(commit)));
1813 }
1814
1815 /**
1816 * ring_buffer_record_disable - stop all writes into the buffer
1817 * @buffer: The ring buffer to stop writes to.
1818 *
1819 * This prevents all writes to the buffer. Any attempt to write
1820 * to the buffer after this will fail and return NULL.
1821 *
1822 * The caller should call synchronize_sched() after this.
1823 */
1824 void ring_buffer_record_disable(struct ring_buffer *buffer)
1825 {
1826 atomic_inc(&buffer->record_disabled);
1827 }
1828 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1829
1830 /**
1831 * ring_buffer_record_enable - enable writes to the buffer
1832 * @buffer: The ring buffer to enable writes
1833 *
1834 * Note, multiple disables will need the same number of enables
1835 * to truely enable the writing (much like preempt_disable).
1836 */
1837 void ring_buffer_record_enable(struct ring_buffer *buffer)
1838 {
1839 atomic_dec(&buffer->record_disabled);
1840 }
1841 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1842
1843 /**
1844 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1845 * @buffer: The ring buffer to stop writes to.
1846 * @cpu: The CPU buffer to stop
1847 *
1848 * This prevents all writes to the buffer. Any attempt to write
1849 * to the buffer after this will fail and return NULL.
1850 *
1851 * The caller should call synchronize_sched() after this.
1852 */
1853 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1854 {
1855 struct ring_buffer_per_cpu *cpu_buffer;
1856
1857 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1858 return;
1859
1860 cpu_buffer = buffer->buffers[cpu];
1861 atomic_inc(&cpu_buffer->record_disabled);
1862 }
1863 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1864
1865 /**
1866 * ring_buffer_record_enable_cpu - enable writes to the buffer
1867 * @buffer: The ring buffer to enable writes
1868 * @cpu: The CPU to enable.
1869 *
1870 * Note, multiple disables will need the same number of enables
1871 * to truely enable the writing (much like preempt_disable).
1872 */
1873 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1874 {
1875 struct ring_buffer_per_cpu *cpu_buffer;
1876
1877 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1878 return;
1879
1880 cpu_buffer = buffer->buffers[cpu];
1881 atomic_dec(&cpu_buffer->record_disabled);
1882 }
1883 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1884
1885 /**
1886 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1887 * @buffer: The ring buffer
1888 * @cpu: The per CPU buffer to get the entries from.
1889 */
1890 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1891 {
1892 struct ring_buffer_per_cpu *cpu_buffer;
1893 unsigned long ret;
1894
1895 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1896 return 0;
1897
1898 cpu_buffer = buffer->buffers[cpu];
1899 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1900 - cpu_buffer->read;
1901
1902 return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1905
1906 /**
1907 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1908 * @buffer: The ring buffer
1909 * @cpu: The per CPU buffer to get the number of overruns from
1910 */
1911 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1912 {
1913 struct ring_buffer_per_cpu *cpu_buffer;
1914 unsigned long ret;
1915
1916 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1917 return 0;
1918
1919 cpu_buffer = buffer->buffers[cpu];
1920 ret = cpu_buffer->overrun;
1921
1922 return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1925
1926 /**
1927 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1928 * @buffer: The ring buffer
1929 * @cpu: The per CPU buffer to get the number of overruns from
1930 */
1931 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1932 {
1933 struct ring_buffer_per_cpu *cpu_buffer;
1934 unsigned long ret;
1935
1936 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1937 return 0;
1938
1939 cpu_buffer = buffer->buffers[cpu];
1940 ret = cpu_buffer->nmi_dropped;
1941
1942 return ret;
1943 }
1944 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1945
1946 /**
1947 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1948 * @buffer: The ring buffer
1949 * @cpu: The per CPU buffer to get the number of overruns from
1950 */
1951 unsigned long
1952 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1953 {
1954 struct ring_buffer_per_cpu *cpu_buffer;
1955 unsigned long ret;
1956
1957 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1958 return 0;
1959
1960 cpu_buffer = buffer->buffers[cpu];
1961 ret = cpu_buffer->commit_overrun;
1962
1963 return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1966
1967 /**
1968 * ring_buffer_entries - get the number of entries in a buffer
1969 * @buffer: The ring buffer
1970 *
1971 * Returns the total number of entries in the ring buffer
1972 * (all CPU entries)
1973 */
1974 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1975 {
1976 struct ring_buffer_per_cpu *cpu_buffer;
1977 unsigned long entries = 0;
1978 int cpu;
1979
1980 /* if you care about this being correct, lock the buffer */
1981 for_each_buffer_cpu(buffer, cpu) {
1982 cpu_buffer = buffer->buffers[cpu];
1983 entries += (local_read(&cpu_buffer->entries) -
1984 cpu_buffer->overrun) - cpu_buffer->read;
1985 }
1986
1987 return entries;
1988 }
1989 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1990
1991 /**
1992 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1993 * @buffer: The ring buffer
1994 *
1995 * Returns the total number of overruns in the ring buffer
1996 * (all CPU entries)
1997 */
1998 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1999 {
2000 struct ring_buffer_per_cpu *cpu_buffer;
2001 unsigned long overruns = 0;
2002 int cpu;
2003
2004 /* if you care about this being correct, lock the buffer */
2005 for_each_buffer_cpu(buffer, cpu) {
2006 cpu_buffer = buffer->buffers[cpu];
2007 overruns += cpu_buffer->overrun;
2008 }
2009
2010 return overruns;
2011 }
2012 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2013
2014 static void rb_iter_reset(struct ring_buffer_iter *iter)
2015 {
2016 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2017
2018 /* Iterator usage is expected to have record disabled */
2019 if (list_empty(&cpu_buffer->reader_page->list)) {
2020 iter->head_page = cpu_buffer->head_page;
2021 iter->head = cpu_buffer->head_page->read;
2022 } else {
2023 iter->head_page = cpu_buffer->reader_page;
2024 iter->head = cpu_buffer->reader_page->read;
2025 }
2026 if (iter->head)
2027 iter->read_stamp = cpu_buffer->read_stamp;
2028 else
2029 iter->read_stamp = iter->head_page->page->time_stamp;
2030 }
2031
2032 /**
2033 * ring_buffer_iter_reset - reset an iterator
2034 * @iter: The iterator to reset
2035 *
2036 * Resets the iterator, so that it will start from the beginning
2037 * again.
2038 */
2039 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2040 {
2041 struct ring_buffer_per_cpu *cpu_buffer;
2042 unsigned long flags;
2043
2044 if (!iter)
2045 return;
2046
2047 cpu_buffer = iter->cpu_buffer;
2048
2049 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2050 rb_iter_reset(iter);
2051 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2052 }
2053 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2054
2055 /**
2056 * ring_buffer_iter_empty - check if an iterator has no more to read
2057 * @iter: The iterator to check
2058 */
2059 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2060 {
2061 struct ring_buffer_per_cpu *cpu_buffer;
2062
2063 cpu_buffer = iter->cpu_buffer;
2064
2065 return iter->head_page == cpu_buffer->commit_page &&
2066 iter->head == rb_commit_index(cpu_buffer);
2067 }
2068 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2069
2070 static void
2071 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2072 struct ring_buffer_event *event)
2073 {
2074 u64 delta;
2075
2076 switch (event->type_len) {
2077 case RINGBUF_TYPE_PADDING:
2078 return;
2079
2080 case RINGBUF_TYPE_TIME_EXTEND:
2081 delta = event->array[0];
2082 delta <<= TS_SHIFT;
2083 delta += event->time_delta;
2084 cpu_buffer->read_stamp += delta;
2085 return;
2086
2087 case RINGBUF_TYPE_TIME_STAMP:
2088 /* FIXME: not implemented */
2089 return;
2090
2091 case RINGBUF_TYPE_DATA:
2092 cpu_buffer->read_stamp += event->time_delta;
2093 return;
2094
2095 default:
2096 BUG();
2097 }
2098 return;
2099 }
2100
2101 static void
2102 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2103 struct ring_buffer_event *event)
2104 {
2105 u64 delta;
2106
2107 switch (event->type_len) {
2108 case RINGBUF_TYPE_PADDING:
2109 return;
2110
2111 case RINGBUF_TYPE_TIME_EXTEND:
2112 delta = event->array[0];
2113 delta <<= TS_SHIFT;
2114 delta += event->time_delta;
2115 iter->read_stamp += delta;
2116 return;
2117
2118 case RINGBUF_TYPE_TIME_STAMP:
2119 /* FIXME: not implemented */
2120 return;
2121
2122 case RINGBUF_TYPE_DATA:
2123 iter->read_stamp += event->time_delta;
2124 return;
2125
2126 default:
2127 BUG();
2128 }
2129 return;
2130 }
2131
2132 static struct buffer_page *
2133 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2134 {
2135 struct buffer_page *reader = NULL;
2136 unsigned long flags;
2137 int nr_loops = 0;
2138
2139 local_irq_save(flags);
2140 __raw_spin_lock(&cpu_buffer->lock);
2141
2142 again:
2143 /*
2144 * This should normally only loop twice. But because the
2145 * start of the reader inserts an empty page, it causes
2146 * a case where we will loop three times. There should be no
2147 * reason to loop four times (that I know of).
2148 */
2149 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2150 reader = NULL;
2151 goto out;
2152 }
2153
2154 reader = cpu_buffer->reader_page;
2155
2156 /* If there's more to read, return this page */
2157 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2158 goto out;
2159
2160 /* Never should we have an index greater than the size */
2161 if (RB_WARN_ON(cpu_buffer,
2162 cpu_buffer->reader_page->read > rb_page_size(reader)))
2163 goto out;
2164
2165 /* check if we caught up to the tail */
2166 reader = NULL;
2167 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2168 goto out;
2169
2170 /*
2171 * Splice the empty reader page into the list around the head.
2172 * Reset the reader page to size zero.
2173 */
2174
2175 reader = cpu_buffer->head_page;
2176 cpu_buffer->reader_page->list.next = reader->list.next;
2177 cpu_buffer->reader_page->list.prev = reader->list.prev;
2178
2179 local_set(&cpu_buffer->reader_page->write, 0);
2180 local_set(&cpu_buffer->reader_page->entries, 0);
2181 local_set(&cpu_buffer->reader_page->page->commit, 0);
2182
2183 /* Make the reader page now replace the head */
2184 reader->list.prev->next = &cpu_buffer->reader_page->list;
2185 reader->list.next->prev = &cpu_buffer->reader_page->list;
2186
2187 /*
2188 * If the tail is on the reader, then we must set the head
2189 * to the inserted page, otherwise we set it one before.
2190 */
2191 cpu_buffer->head_page = cpu_buffer->reader_page;
2192
2193 if (cpu_buffer->commit_page != reader)
2194 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2195
2196 /* Finally update the reader page to the new head */
2197 cpu_buffer->reader_page = reader;
2198 rb_reset_reader_page(cpu_buffer);
2199
2200 goto again;
2201
2202 out:
2203 __raw_spin_unlock(&cpu_buffer->lock);
2204 local_irq_restore(flags);
2205
2206 return reader;
2207 }
2208
2209 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2210 {
2211 struct ring_buffer_event *event;
2212 struct buffer_page *reader;
2213 unsigned length;
2214
2215 reader = rb_get_reader_page(cpu_buffer);
2216
2217 /* This function should not be called when buffer is empty */
2218 if (RB_WARN_ON(cpu_buffer, !reader))
2219 return;
2220
2221 event = rb_reader_event(cpu_buffer);
2222
2223 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2224 || rb_discarded_event(event))
2225 cpu_buffer->read++;
2226
2227 rb_update_read_stamp(cpu_buffer, event);
2228
2229 length = rb_event_length(event);
2230 cpu_buffer->reader_page->read += length;
2231 }
2232
2233 static void rb_advance_iter(struct ring_buffer_iter *iter)
2234 {
2235 struct ring_buffer *buffer;
2236 struct ring_buffer_per_cpu *cpu_buffer;
2237 struct ring_buffer_event *event;
2238 unsigned length;
2239
2240 cpu_buffer = iter->cpu_buffer;
2241 buffer = cpu_buffer->buffer;
2242
2243 /*
2244 * Check if we are at the end of the buffer.
2245 */
2246 if (iter->head >= rb_page_size(iter->head_page)) {
2247 if (RB_WARN_ON(buffer,
2248 iter->head_page == cpu_buffer->commit_page))
2249 return;
2250 rb_inc_iter(iter);
2251 return;
2252 }
2253
2254 event = rb_iter_head_event(iter);
2255
2256 length = rb_event_length(event);
2257
2258 /*
2259 * This should not be called to advance the header if we are
2260 * at the tail of the buffer.
2261 */
2262 if (RB_WARN_ON(cpu_buffer,
2263 (iter->head_page == cpu_buffer->commit_page) &&
2264 (iter->head + length > rb_commit_index(cpu_buffer))))
2265 return;
2266
2267 rb_update_iter_read_stamp(iter, event);
2268
2269 iter->head += length;
2270
2271 /* check for end of page padding */
2272 if ((iter->head >= rb_page_size(iter->head_page)) &&
2273 (iter->head_page != cpu_buffer->commit_page))
2274 rb_advance_iter(iter);
2275 }
2276
2277 static struct ring_buffer_event *
2278 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2279 {
2280 struct ring_buffer_per_cpu *cpu_buffer;
2281 struct ring_buffer_event *event;
2282 struct buffer_page *reader;
2283 int nr_loops = 0;
2284
2285 cpu_buffer = buffer->buffers[cpu];
2286
2287 again:
2288 /*
2289 * We repeat when a timestamp is encountered. It is possible
2290 * to get multiple timestamps from an interrupt entering just
2291 * as one timestamp is about to be written. The max times
2292 * that this can happen is the number of nested interrupts we
2293 * can have. Nesting 10 deep of interrupts is clearly
2294 * an anomaly.
2295 */
2296 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2297 return NULL;
2298
2299 reader = rb_get_reader_page(cpu_buffer);
2300 if (!reader)
2301 return NULL;
2302
2303 event = rb_reader_event(cpu_buffer);
2304
2305 switch (event->type_len) {
2306 case RINGBUF_TYPE_PADDING:
2307 if (rb_null_event(event))
2308 RB_WARN_ON(cpu_buffer, 1);
2309 /*
2310 * Because the writer could be discarding every
2311 * event it creates (which would probably be bad)
2312 * if we were to go back to "again" then we may never
2313 * catch up, and will trigger the warn on, or lock
2314 * the box. Return the padding, and we will release
2315 * the current locks, and try again.
2316 */
2317 rb_advance_reader(cpu_buffer);
2318 return event;
2319
2320 case RINGBUF_TYPE_TIME_EXTEND:
2321 /* Internal data, OK to advance */
2322 rb_advance_reader(cpu_buffer);
2323 goto again;
2324
2325 case RINGBUF_TYPE_TIME_STAMP:
2326 /* FIXME: not implemented */
2327 rb_advance_reader(cpu_buffer);
2328 goto again;
2329
2330 case RINGBUF_TYPE_DATA:
2331 if (ts) {
2332 *ts = cpu_buffer->read_stamp + event->time_delta;
2333 ring_buffer_normalize_time_stamp(buffer,
2334 cpu_buffer->cpu, ts);
2335 }
2336 return event;
2337
2338 default:
2339 BUG();
2340 }
2341
2342 return NULL;
2343 }
2344 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2345
2346 static struct ring_buffer_event *
2347 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2348 {
2349 struct ring_buffer *buffer;
2350 struct ring_buffer_per_cpu *cpu_buffer;
2351 struct ring_buffer_event *event;
2352 int nr_loops = 0;
2353
2354 if (ring_buffer_iter_empty(iter))
2355 return NULL;
2356
2357 cpu_buffer = iter->cpu_buffer;
2358 buffer = cpu_buffer->buffer;
2359
2360 again:
2361 /*
2362 * We repeat when a timestamp is encountered. It is possible
2363 * to get multiple timestamps from an interrupt entering just
2364 * as one timestamp is about to be written. The max times
2365 * that this can happen is the number of nested interrupts we
2366 * can have. Nesting 10 deep of interrupts is clearly
2367 * an anomaly.
2368 */
2369 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2370 return NULL;
2371
2372 if (rb_per_cpu_empty(cpu_buffer))
2373 return NULL;
2374
2375 event = rb_iter_head_event(iter);
2376
2377 switch (event->type_len) {
2378 case RINGBUF_TYPE_PADDING:
2379 if (rb_null_event(event)) {
2380 rb_inc_iter(iter);
2381 goto again;
2382 }
2383 rb_advance_iter(iter);
2384 return event;
2385
2386 case RINGBUF_TYPE_TIME_EXTEND:
2387 /* Internal data, OK to advance */
2388 rb_advance_iter(iter);
2389 goto again;
2390
2391 case RINGBUF_TYPE_TIME_STAMP:
2392 /* FIXME: not implemented */
2393 rb_advance_iter(iter);
2394 goto again;
2395
2396 case RINGBUF_TYPE_DATA:
2397 if (ts) {
2398 *ts = iter->read_stamp + event->time_delta;
2399 ring_buffer_normalize_time_stamp(buffer,
2400 cpu_buffer->cpu, ts);
2401 }
2402 return event;
2403
2404 default:
2405 BUG();
2406 }
2407
2408 return NULL;
2409 }
2410 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2411
2412 /**
2413 * ring_buffer_peek - peek at the next event to be read
2414 * @buffer: The ring buffer to read
2415 * @cpu: The cpu to peak at
2416 * @ts: The timestamp counter of this event.
2417 *
2418 * This will return the event that will be read next, but does
2419 * not consume the data.
2420 */
2421 struct ring_buffer_event *
2422 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2423 {
2424 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2425 struct ring_buffer_event *event;
2426 unsigned long flags;
2427
2428 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2429 return NULL;
2430
2431 again:
2432 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2433 event = rb_buffer_peek(buffer, cpu, ts);
2434 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2435
2436 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2437 cpu_relax();
2438 goto again;
2439 }
2440
2441 return event;
2442 }
2443
2444 /**
2445 * ring_buffer_iter_peek - peek at the next event to be read
2446 * @iter: The ring buffer iterator
2447 * @ts: The timestamp counter of this event.
2448 *
2449 * This will return the event that will be read next, but does
2450 * not increment the iterator.
2451 */
2452 struct ring_buffer_event *
2453 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2454 {
2455 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2456 struct ring_buffer_event *event;
2457 unsigned long flags;
2458
2459 again:
2460 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2461 event = rb_iter_peek(iter, ts);
2462 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2463
2464 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2465 cpu_relax();
2466 goto again;
2467 }
2468
2469 return event;
2470 }
2471
2472 /**
2473 * ring_buffer_consume - return an event and consume it
2474 * @buffer: The ring buffer to get the next event from
2475 *
2476 * Returns the next event in the ring buffer, and that event is consumed.
2477 * Meaning, that sequential reads will keep returning a different event,
2478 * and eventually empty the ring buffer if the producer is slower.
2479 */
2480 struct ring_buffer_event *
2481 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2482 {
2483 struct ring_buffer_per_cpu *cpu_buffer;
2484 struct ring_buffer_event *event = NULL;
2485 unsigned long flags;
2486
2487 again:
2488 /* might be called in atomic */
2489 preempt_disable();
2490
2491 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2492 goto out;
2493
2494 cpu_buffer = buffer->buffers[cpu];
2495 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2496
2497 event = rb_buffer_peek(buffer, cpu, ts);
2498 if (!event)
2499 goto out_unlock;
2500
2501 rb_advance_reader(cpu_buffer);
2502
2503 out_unlock:
2504 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2505
2506 out:
2507 preempt_enable();
2508
2509 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2510 cpu_relax();
2511 goto again;
2512 }
2513
2514 return event;
2515 }
2516 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2517
2518 /**
2519 * ring_buffer_read_start - start a non consuming read of the buffer
2520 * @buffer: The ring buffer to read from
2521 * @cpu: The cpu buffer to iterate over
2522 *
2523 * This starts up an iteration through the buffer. It also disables
2524 * the recording to the buffer until the reading is finished.
2525 * This prevents the reading from being corrupted. This is not
2526 * a consuming read, so a producer is not expected.
2527 *
2528 * Must be paired with ring_buffer_finish.
2529 */
2530 struct ring_buffer_iter *
2531 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2532 {
2533 struct ring_buffer_per_cpu *cpu_buffer;
2534 struct ring_buffer_iter *iter;
2535 unsigned long flags;
2536
2537 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2538 return NULL;
2539
2540 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2541 if (!iter)
2542 return NULL;
2543
2544 cpu_buffer = buffer->buffers[cpu];
2545
2546 iter->cpu_buffer = cpu_buffer;
2547
2548 atomic_inc(&cpu_buffer->record_disabled);
2549 synchronize_sched();
2550
2551 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2552 __raw_spin_lock(&cpu_buffer->lock);
2553 rb_iter_reset(iter);
2554 __raw_spin_unlock(&cpu_buffer->lock);
2555 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2556
2557 return iter;
2558 }
2559 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2560
2561 /**
2562 * ring_buffer_finish - finish reading the iterator of the buffer
2563 * @iter: The iterator retrieved by ring_buffer_start
2564 *
2565 * This re-enables the recording to the buffer, and frees the
2566 * iterator.
2567 */
2568 void
2569 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2570 {
2571 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2572
2573 atomic_dec(&cpu_buffer->record_disabled);
2574 kfree(iter);
2575 }
2576 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2577
2578 /**
2579 * ring_buffer_read - read the next item in the ring buffer by the iterator
2580 * @iter: The ring buffer iterator
2581 * @ts: The time stamp of the event read.
2582 *
2583 * This reads the next event in the ring buffer and increments the iterator.
2584 */
2585 struct ring_buffer_event *
2586 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2587 {
2588 struct ring_buffer_event *event;
2589 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2590 unsigned long flags;
2591
2592 again:
2593 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2594 event = rb_iter_peek(iter, ts);
2595 if (!event)
2596 goto out;
2597
2598 rb_advance_iter(iter);
2599 out:
2600 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2601
2602 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2603 cpu_relax();
2604 goto again;
2605 }
2606
2607 return event;
2608 }
2609 EXPORT_SYMBOL_GPL(ring_buffer_read);
2610
2611 /**
2612 * ring_buffer_size - return the size of the ring buffer (in bytes)
2613 * @buffer: The ring buffer.
2614 */
2615 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2616 {
2617 return BUF_PAGE_SIZE * buffer->pages;
2618 }
2619 EXPORT_SYMBOL_GPL(ring_buffer_size);
2620
2621 static void
2622 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2623 {
2624 cpu_buffer->head_page
2625 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2626 local_set(&cpu_buffer->head_page->write, 0);
2627 local_set(&cpu_buffer->head_page->entries, 0);
2628 local_set(&cpu_buffer->head_page->page->commit, 0);
2629
2630 cpu_buffer->head_page->read = 0;
2631
2632 cpu_buffer->tail_page = cpu_buffer->head_page;
2633 cpu_buffer->commit_page = cpu_buffer->head_page;
2634
2635 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2636 local_set(&cpu_buffer->reader_page->write, 0);
2637 local_set(&cpu_buffer->reader_page->entries, 0);
2638 local_set(&cpu_buffer->reader_page->page->commit, 0);
2639 cpu_buffer->reader_page->read = 0;
2640
2641 cpu_buffer->nmi_dropped = 0;
2642 cpu_buffer->commit_overrun = 0;
2643 cpu_buffer->overrun = 0;
2644 cpu_buffer->read = 0;
2645 local_set(&cpu_buffer->entries, 0);
2646
2647 cpu_buffer->write_stamp = 0;
2648 cpu_buffer->read_stamp = 0;
2649 }
2650
2651 /**
2652 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2653 * @buffer: The ring buffer to reset a per cpu buffer of
2654 * @cpu: The CPU buffer to be reset
2655 */
2656 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2657 {
2658 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2659 unsigned long flags;
2660
2661 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2662 return;
2663
2664 atomic_inc(&cpu_buffer->record_disabled);
2665
2666 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2667
2668 __raw_spin_lock(&cpu_buffer->lock);
2669
2670 rb_reset_cpu(cpu_buffer);
2671
2672 __raw_spin_unlock(&cpu_buffer->lock);
2673
2674 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2675
2676 atomic_dec(&cpu_buffer->record_disabled);
2677 }
2678 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2679
2680 /**
2681 * ring_buffer_reset - reset a ring buffer
2682 * @buffer: The ring buffer to reset all cpu buffers
2683 */
2684 void ring_buffer_reset(struct ring_buffer *buffer)
2685 {
2686 int cpu;
2687
2688 for_each_buffer_cpu(buffer, cpu)
2689 ring_buffer_reset_cpu(buffer, cpu);
2690 }
2691 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2692
2693 /**
2694 * rind_buffer_empty - is the ring buffer empty?
2695 * @buffer: The ring buffer to test
2696 */
2697 int ring_buffer_empty(struct ring_buffer *buffer)
2698 {
2699 struct ring_buffer_per_cpu *cpu_buffer;
2700 int cpu;
2701
2702 /* yes this is racy, but if you don't like the race, lock the buffer */
2703 for_each_buffer_cpu(buffer, cpu) {
2704 cpu_buffer = buffer->buffers[cpu];
2705 if (!rb_per_cpu_empty(cpu_buffer))
2706 return 0;
2707 }
2708
2709 return 1;
2710 }
2711 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2712
2713 /**
2714 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2715 * @buffer: The ring buffer
2716 * @cpu: The CPU buffer to test
2717 */
2718 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2719 {
2720 struct ring_buffer_per_cpu *cpu_buffer;
2721 int ret;
2722
2723 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2724 return 1;
2725
2726 cpu_buffer = buffer->buffers[cpu];
2727 ret = rb_per_cpu_empty(cpu_buffer);
2728
2729
2730 return ret;
2731 }
2732 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2733
2734 /**
2735 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2736 * @buffer_a: One buffer to swap with
2737 * @buffer_b: The other buffer to swap with
2738 *
2739 * This function is useful for tracers that want to take a "snapshot"
2740 * of a CPU buffer and has another back up buffer lying around.
2741 * it is expected that the tracer handles the cpu buffer not being
2742 * used at the moment.
2743 */
2744 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2745 struct ring_buffer *buffer_b, int cpu)
2746 {
2747 struct ring_buffer_per_cpu *cpu_buffer_a;
2748 struct ring_buffer_per_cpu *cpu_buffer_b;
2749 int ret = -EINVAL;
2750
2751 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2752 !cpumask_test_cpu(cpu, buffer_b->cpumask))
2753 goto out;
2754
2755 /* At least make sure the two buffers are somewhat the same */
2756 if (buffer_a->pages != buffer_b->pages)
2757 goto out;
2758
2759 ret = -EAGAIN;
2760
2761 if (ring_buffer_flags != RB_BUFFERS_ON)
2762 goto out;
2763
2764 if (atomic_read(&buffer_a->record_disabled))
2765 goto out;
2766
2767 if (atomic_read(&buffer_b->record_disabled))
2768 goto out;
2769
2770 cpu_buffer_a = buffer_a->buffers[cpu];
2771 cpu_buffer_b = buffer_b->buffers[cpu];
2772
2773 if (atomic_read(&cpu_buffer_a->record_disabled))
2774 goto out;
2775
2776 if (atomic_read(&cpu_buffer_b->record_disabled))
2777 goto out;
2778
2779 /*
2780 * We can't do a synchronize_sched here because this
2781 * function can be called in atomic context.
2782 * Normally this will be called from the same CPU as cpu.
2783 * If not it's up to the caller to protect this.
2784 */
2785 atomic_inc(&cpu_buffer_a->record_disabled);
2786 atomic_inc(&cpu_buffer_b->record_disabled);
2787
2788 buffer_a->buffers[cpu] = cpu_buffer_b;
2789 buffer_b->buffers[cpu] = cpu_buffer_a;
2790
2791 cpu_buffer_b->buffer = buffer_a;
2792 cpu_buffer_a->buffer = buffer_b;
2793
2794 atomic_dec(&cpu_buffer_a->record_disabled);
2795 atomic_dec(&cpu_buffer_b->record_disabled);
2796
2797 ret = 0;
2798 out:
2799 return ret;
2800 }
2801 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2802
2803 /**
2804 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2805 * @buffer: the buffer to allocate for.
2806 *
2807 * This function is used in conjunction with ring_buffer_read_page.
2808 * When reading a full page from the ring buffer, these functions
2809 * can be used to speed up the process. The calling function should
2810 * allocate a few pages first with this function. Then when it
2811 * needs to get pages from the ring buffer, it passes the result
2812 * of this function into ring_buffer_read_page, which will swap
2813 * the page that was allocated, with the read page of the buffer.
2814 *
2815 * Returns:
2816 * The page allocated, or NULL on error.
2817 */
2818 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2819 {
2820 struct buffer_data_page *bpage;
2821 unsigned long addr;
2822
2823 addr = __get_free_page(GFP_KERNEL);
2824 if (!addr)
2825 return NULL;
2826
2827 bpage = (void *)addr;
2828
2829 rb_init_page(bpage);
2830
2831 return bpage;
2832 }
2833 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2834
2835 /**
2836 * ring_buffer_free_read_page - free an allocated read page
2837 * @buffer: the buffer the page was allocate for
2838 * @data: the page to free
2839 *
2840 * Free a page allocated from ring_buffer_alloc_read_page.
2841 */
2842 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2843 {
2844 free_page((unsigned long)data);
2845 }
2846 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2847
2848 /**
2849 * ring_buffer_read_page - extract a page from the ring buffer
2850 * @buffer: buffer to extract from
2851 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2852 * @len: amount to extract
2853 * @cpu: the cpu of the buffer to extract
2854 * @full: should the extraction only happen when the page is full.
2855 *
2856 * This function will pull out a page from the ring buffer and consume it.
2857 * @data_page must be the address of the variable that was returned
2858 * from ring_buffer_alloc_read_page. This is because the page might be used
2859 * to swap with a page in the ring buffer.
2860 *
2861 * for example:
2862 * rpage = ring_buffer_alloc_read_page(buffer);
2863 * if (!rpage)
2864 * return error;
2865 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2866 * if (ret >= 0)
2867 * process_page(rpage, ret);
2868 *
2869 * When @full is set, the function will not return true unless
2870 * the writer is off the reader page.
2871 *
2872 * Note: it is up to the calling functions to handle sleeps and wakeups.
2873 * The ring buffer can be used anywhere in the kernel and can not
2874 * blindly call wake_up. The layer that uses the ring buffer must be
2875 * responsible for that.
2876 *
2877 * Returns:
2878 * >=0 if data has been transferred, returns the offset of consumed data.
2879 * <0 if no data has been transferred.
2880 */
2881 int ring_buffer_read_page(struct ring_buffer *buffer,
2882 void **data_page, size_t len, int cpu, int full)
2883 {
2884 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2885 struct ring_buffer_event *event;
2886 struct buffer_data_page *bpage;
2887 struct buffer_page *reader;
2888 unsigned long flags;
2889 unsigned int commit;
2890 unsigned int read;
2891 u64 save_timestamp;
2892 int ret = -1;
2893
2894 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2895 goto out;
2896
2897 /*
2898 * If len is not big enough to hold the page header, then
2899 * we can not copy anything.
2900 */
2901 if (len <= BUF_PAGE_HDR_SIZE)
2902 goto out;
2903
2904 len -= BUF_PAGE_HDR_SIZE;
2905
2906 if (!data_page)
2907 goto out;
2908
2909 bpage = *data_page;
2910 if (!bpage)
2911 goto out;
2912
2913 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2914
2915 reader = rb_get_reader_page(cpu_buffer);
2916 if (!reader)
2917 goto out_unlock;
2918
2919 event = rb_reader_event(cpu_buffer);
2920
2921 read = reader->read;
2922 commit = rb_page_commit(reader);
2923
2924 /*
2925 * If this page has been partially read or
2926 * if len is not big enough to read the rest of the page or
2927 * a writer is still on the page, then
2928 * we must copy the data from the page to the buffer.
2929 * Otherwise, we can simply swap the page with the one passed in.
2930 */
2931 if (read || (len < (commit - read)) ||
2932 cpu_buffer->reader_page == cpu_buffer->commit_page) {
2933 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2934 unsigned int rpos = read;
2935 unsigned int pos = 0;
2936 unsigned int size;
2937
2938 if (full)
2939 goto out_unlock;
2940
2941 if (len > (commit - read))
2942 len = (commit - read);
2943
2944 size = rb_event_length(event);
2945
2946 if (len < size)
2947 goto out_unlock;
2948
2949 /* save the current timestamp, since the user will need it */
2950 save_timestamp = cpu_buffer->read_stamp;
2951
2952 /* Need to copy one event at a time */
2953 do {
2954 memcpy(bpage->data + pos, rpage->data + rpos, size);
2955
2956 len -= size;
2957
2958 rb_advance_reader(cpu_buffer);
2959 rpos = reader->read;
2960 pos += size;
2961
2962 event = rb_reader_event(cpu_buffer);
2963 size = rb_event_length(event);
2964 } while (len > size);
2965
2966 /* update bpage */
2967 local_set(&bpage->commit, pos);
2968 bpage->time_stamp = save_timestamp;
2969
2970 /* we copied everything to the beginning */
2971 read = 0;
2972 } else {
2973 /* update the entry counter */
2974 cpu_buffer->read += local_read(&reader->entries);
2975
2976 /* swap the pages */
2977 rb_init_page(bpage);
2978 bpage = reader->page;
2979 reader->page = *data_page;
2980 local_set(&reader->write, 0);
2981 local_set(&reader->entries, 0);
2982 reader->read = 0;
2983 *data_page = bpage;
2984 }
2985 ret = read;
2986
2987 out_unlock:
2988 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2989
2990 out:
2991 return ret;
2992 }
2993 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
2994
2995 static ssize_t
2996 rb_simple_read(struct file *filp, char __user *ubuf,
2997 size_t cnt, loff_t *ppos)
2998 {
2999 unsigned long *p = filp->private_data;
3000 char buf[64];
3001 int r;
3002
3003 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3004 r = sprintf(buf, "permanently disabled\n");
3005 else
3006 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3007
3008 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3009 }
3010
3011 static ssize_t
3012 rb_simple_write(struct file *filp, const char __user *ubuf,
3013 size_t cnt, loff_t *ppos)
3014 {
3015 unsigned long *p = filp->private_data;
3016 char buf[64];
3017 unsigned long val;
3018 int ret;
3019
3020 if (cnt >= sizeof(buf))
3021 return -EINVAL;
3022
3023 if (copy_from_user(&buf, ubuf, cnt))
3024 return -EFAULT;
3025
3026 buf[cnt] = 0;
3027
3028 ret = strict_strtoul(buf, 10, &val);
3029 if (ret < 0)
3030 return ret;
3031
3032 if (val)
3033 set_bit(RB_BUFFERS_ON_BIT, p);
3034 else
3035 clear_bit(RB_BUFFERS_ON_BIT, p);
3036
3037 (*ppos)++;
3038
3039 return cnt;
3040 }
3041
3042 static const struct file_operations rb_simple_fops = {
3043 .open = tracing_open_generic,
3044 .read = rb_simple_read,
3045 .write = rb_simple_write,
3046 };
3047
3048
3049 static __init int rb_init_debugfs(void)
3050 {
3051 struct dentry *d_tracer;
3052
3053 d_tracer = tracing_init_dentry();
3054
3055 trace_create_file("tracing_on", 0644, d_tracer,
3056 &ring_buffer_flags, &rb_simple_fops);
3057
3058 return 0;
3059 }
3060
3061 fs_initcall(rb_init_debugfs);
3062
3063 #ifdef CONFIG_HOTPLUG_CPU
3064 static int rb_cpu_notify(struct notifier_block *self,
3065 unsigned long action, void *hcpu)
3066 {
3067 struct ring_buffer *buffer =
3068 container_of(self, struct ring_buffer, cpu_notify);
3069 long cpu = (long)hcpu;
3070
3071 switch (action) {
3072 case CPU_UP_PREPARE:
3073 case CPU_UP_PREPARE_FROZEN:
3074 if (cpu_isset(cpu, *buffer->cpumask))
3075 return NOTIFY_OK;
3076
3077 buffer->buffers[cpu] =
3078 rb_allocate_cpu_buffer(buffer, cpu);
3079 if (!buffer->buffers[cpu]) {
3080 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3081 cpu);
3082 return NOTIFY_OK;
3083 }
3084 smp_wmb();
3085 cpu_set(cpu, *buffer->cpumask);
3086 break;
3087 case CPU_DOWN_PREPARE:
3088 case CPU_DOWN_PREPARE_FROZEN:
3089 /*
3090 * Do nothing.
3091 * If we were to free the buffer, then the user would
3092 * lose any trace that was in the buffer.
3093 */
3094 break;
3095 default:
3096 break;
3097 }
3098 return NOTIFY_OK;
3099 }
3100 #endif
This page took 0.095653 seconds and 6 git commands to generate.