Merge branch 'misc-2.6.33' into release
[deliverable/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include "trace.h"
24
25 /*
26 * The ring buffer header is special. We must manually up keep it.
27 */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 int ret;
31
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43
44 return ret;
45 }
46
47 /*
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
52 *
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
56 *
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
60 *
61 * Here's some silly ASCII art.
62 *
63 * +------+
64 * |reader| RING BUFFER
65 * |page |
66 * +------+ +---+ +---+ +---+
67 * | |-->| |-->| |
68 * +---+ +---+ +---+
69 * ^ |
70 * | |
71 * +---------------+
72 *
73 *
74 * +------+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
78 * | |-->| |-->| |
79 * +---+ +---+ +---+
80 * ^ |
81 * | |
82 * +---------------+
83 *
84 *
85 * +------+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
89 * ^ | |-->| |-->| |
90 * | +---+ +---+ +---+
91 * | |
92 * | |
93 * +------------------------------+
94 *
95 *
96 * +------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
100 * ^ | | | |-->| |
101 * | New +---+ +---+ +---+
102 * | Reader------^ |
103 * | page |
104 * +------------------------------+
105 *
106 *
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
110 *
111 * We will be using cmpxchg soon to make all this lockless.
112 *
113 */
114
115 /*
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
121 *
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
124 *
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
128 *
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
131 */
132
133 /*
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
136 *
137 * ON DISABLED
138 * ---- ----------
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
142 */
143
144 enum {
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
147 };
148
149 enum {
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
158 /**
159 * tracing_on - enable all tracing buffers
160 *
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
163 */
164 void tracing_on(void)
165 {
166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169
170 /**
171 * tracing_off - turn off all tracing buffers
172 *
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
177 */
178 void tracing_off(void)
179 {
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183
184 /**
185 * tracing_off_permanent - permanently disable ring buffers
186 *
187 * This function, once called, will disable all ring buffers
188 * permanently.
189 */
190 void tracing_off_permanent(void)
191 {
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194
195 /**
196 * tracing_is_on - show state of ring buffers enabled
197 */
198 int tracing_is_on(void)
199 {
200 return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT 4U
206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
208
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211
212 enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
215 };
216
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224 /* padding has a NULL time_delta */
225 event->type_len = RINGBUF_TYPE_PADDING;
226 event->time_delta = 0;
227 }
228
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232 unsigned length;
233
234 if (event->type_len)
235 length = event->type_len * RB_ALIGNMENT;
236 else
237 length = event->array[0];
238 return length + RB_EVNT_HDR_SIZE;
239 }
240
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245 switch (event->type_len) {
246 case RINGBUF_TYPE_PADDING:
247 if (rb_null_event(event))
248 /* undefined */
249 return -1;
250 return event->array[0] + RB_EVNT_HDR_SIZE;
251
252 case RINGBUF_TYPE_TIME_EXTEND:
253 return RB_LEN_TIME_EXTEND;
254
255 case RINGBUF_TYPE_TIME_STAMP:
256 return RB_LEN_TIME_STAMP;
257
258 case RINGBUF_TYPE_DATA:
259 return rb_event_data_length(event);
260 default:
261 BUG();
262 }
263 /* not hit */
264 return 0;
265 }
266
267 /**
268 * ring_buffer_event_length - return the length of the event
269 * @event: the event to get the length of
270 */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 unsigned length = rb_event_length(event);
274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275 return length;
276 length -= RB_EVNT_HDR_SIZE;
277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278 length -= sizeof(event->array[0]);
279 return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 /* If length is in len field, then array[0] has the data */
289 if (event->type_len)
290 return (void *)&event->array[0];
291 /* Otherwise length is in array[0] and array[1] has the data */
292 return (void *)&event->array[1];
293 }
294
295 /**
296 * ring_buffer_event_data - return the data of the event
297 * @event: the event to get the data from
298 */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301 return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304
305 #define for_each_buffer_cpu(buffer, cpu) \
306 for_each_cpu(cpu, buffer->cpumask)
307
308 #define TS_SHIFT 27
309 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST (~TS_MASK)
311
312 struct buffer_data_page {
313 u64 time_stamp; /* page time stamp */
314 local_t commit; /* write committed index */
315 unsigned char data[]; /* data of buffer page */
316 };
317
318 /*
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
324 * lockless.
325 */
326 struct buffer_page {
327 struct list_head list; /* list of buffer pages */
328 local_t write; /* index for next write */
329 unsigned read; /* index for next read */
330 local_t entries; /* entries on this page */
331 struct buffer_data_page *page; /* Actual data page */
332 };
333
334 /*
335 * The buffer page counters, write and entries, must be reset
336 * atomically when crossing page boundaries. To synchronize this
337 * update, two counters are inserted into the number. One is
338 * the actual counter for the write position or count on the page.
339 *
340 * The other is a counter of updaters. Before an update happens
341 * the update partition of the counter is incremented. This will
342 * allow the updater to update the counter atomically.
343 *
344 * The counter is 20 bits, and the state data is 12.
345 */
346 #define RB_WRITE_MASK 0xfffff
347 #define RB_WRITE_INTCNT (1 << 20)
348
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351 local_set(&bpage->commit, 0);
352 }
353
354 /**
355 * ring_buffer_page_len - the size of data on the page.
356 * @page: The page to read
357 *
358 * Returns the amount of data on the page, including buffer page header.
359 */
360 size_t ring_buffer_page_len(void *page)
361 {
362 return local_read(&((struct buffer_data_page *)page)->commit)
363 + BUF_PAGE_HDR_SIZE;
364 }
365
366 /*
367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368 * this issue out.
369 */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372 free_page((unsigned long)bpage->page);
373 kfree(bpage);
374 }
375
376 /*
377 * We need to fit the time_stamp delta into 27 bits.
378 */
379 static inline int test_time_stamp(u64 delta)
380 {
381 if (delta & TS_DELTA_TEST)
382 return 1;
383 return 0;
384 }
385
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396 struct buffer_data_page field;
397 int ret;
398
399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\tsigned:%u;\n",
401 (unsigned int)sizeof(field.time_stamp),
402 (unsigned int)is_signed_type(u64));
403
404 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field), commit),
407 (unsigned int)sizeof(field.commit),
408 (unsigned int)is_signed_type(long));
409
410 ret = trace_seq_printf(s, "\tfield: char data;\t"
411 "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 (unsigned int)offsetof(typeof(field), data),
413 (unsigned int)BUF_PAGE_SIZE,
414 (unsigned int)is_signed_type(char));
415
416 return ret;
417 }
418
419 /*
420 * head_page == tail_page && head == tail then buffer is empty.
421 */
422 struct ring_buffer_per_cpu {
423 int cpu;
424 struct ring_buffer *buffer;
425 spinlock_t reader_lock; /* serialize readers */
426 arch_spinlock_t lock;
427 struct lock_class_key lock_key;
428 struct list_head *pages;
429 struct buffer_page *head_page; /* read from head */
430 struct buffer_page *tail_page; /* write to tail */
431 struct buffer_page *commit_page; /* committed pages */
432 struct buffer_page *reader_page;
433 local_t commit_overrun;
434 local_t overrun;
435 local_t entries;
436 local_t committing;
437 local_t commits;
438 unsigned long read;
439 u64 write_stamp;
440 u64 read_stamp;
441 atomic_t record_disabled;
442 };
443
444 struct ring_buffer {
445 unsigned pages;
446 unsigned flags;
447 int cpus;
448 atomic_t record_disabled;
449 cpumask_var_t cpumask;
450
451 struct lock_class_key *reader_lock_key;
452
453 struct mutex mutex;
454
455 struct ring_buffer_per_cpu **buffers;
456
457 #ifdef CONFIG_HOTPLUG_CPU
458 struct notifier_block cpu_notify;
459 #endif
460 u64 (*clock)(void);
461 };
462
463 struct ring_buffer_iter {
464 struct ring_buffer_per_cpu *cpu_buffer;
465 unsigned long head;
466 struct buffer_page *head_page;
467 u64 read_stamp;
468 };
469
470 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
471 #define RB_WARN_ON(b, cond) \
472 ({ \
473 int _____ret = unlikely(cond); \
474 if (_____ret) { \
475 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
476 struct ring_buffer_per_cpu *__b = \
477 (void *)b; \
478 atomic_inc(&__b->buffer->record_disabled); \
479 } else \
480 atomic_inc(&b->record_disabled); \
481 WARN_ON(1); \
482 } \
483 _____ret; \
484 })
485
486 /* Up this if you want to test the TIME_EXTENTS and normalization */
487 #define DEBUG_SHIFT 0
488
489 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
490 {
491 /* shift to debug/test normalization and TIME_EXTENTS */
492 return buffer->clock() << DEBUG_SHIFT;
493 }
494
495 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
496 {
497 u64 time;
498
499 preempt_disable_notrace();
500 time = rb_time_stamp(buffer);
501 preempt_enable_no_resched_notrace();
502
503 return time;
504 }
505 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
506
507 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
508 int cpu, u64 *ts)
509 {
510 /* Just stupid testing the normalize function and deltas */
511 *ts >>= DEBUG_SHIFT;
512 }
513 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
514
515 /*
516 * Making the ring buffer lockless makes things tricky.
517 * Although writes only happen on the CPU that they are on,
518 * and they only need to worry about interrupts. Reads can
519 * happen on any CPU.
520 *
521 * The reader page is always off the ring buffer, but when the
522 * reader finishes with a page, it needs to swap its page with
523 * a new one from the buffer. The reader needs to take from
524 * the head (writes go to the tail). But if a writer is in overwrite
525 * mode and wraps, it must push the head page forward.
526 *
527 * Here lies the problem.
528 *
529 * The reader must be careful to replace only the head page, and
530 * not another one. As described at the top of the file in the
531 * ASCII art, the reader sets its old page to point to the next
532 * page after head. It then sets the page after head to point to
533 * the old reader page. But if the writer moves the head page
534 * during this operation, the reader could end up with the tail.
535 *
536 * We use cmpxchg to help prevent this race. We also do something
537 * special with the page before head. We set the LSB to 1.
538 *
539 * When the writer must push the page forward, it will clear the
540 * bit that points to the head page, move the head, and then set
541 * the bit that points to the new head page.
542 *
543 * We also don't want an interrupt coming in and moving the head
544 * page on another writer. Thus we use the second LSB to catch
545 * that too. Thus:
546 *
547 * head->list->prev->next bit 1 bit 0
548 * ------- -------
549 * Normal page 0 0
550 * Points to head page 0 1
551 * New head page 1 0
552 *
553 * Note we can not trust the prev pointer of the head page, because:
554 *
555 * +----+ +-----+ +-----+
556 * | |------>| T |---X--->| N |
557 * | |<------| | | |
558 * +----+ +-----+ +-----+
559 * ^ ^ |
560 * | +-----+ | |
561 * +----------| R |----------+ |
562 * | |<-----------+
563 * +-----+
564 *
565 * Key: ---X--> HEAD flag set in pointer
566 * T Tail page
567 * R Reader page
568 * N Next page
569 *
570 * (see __rb_reserve_next() to see where this happens)
571 *
572 * What the above shows is that the reader just swapped out
573 * the reader page with a page in the buffer, but before it
574 * could make the new header point back to the new page added
575 * it was preempted by a writer. The writer moved forward onto
576 * the new page added by the reader and is about to move forward
577 * again.
578 *
579 * You can see, it is legitimate for the previous pointer of
580 * the head (or any page) not to point back to itself. But only
581 * temporarially.
582 */
583
584 #define RB_PAGE_NORMAL 0UL
585 #define RB_PAGE_HEAD 1UL
586 #define RB_PAGE_UPDATE 2UL
587
588
589 #define RB_FLAG_MASK 3UL
590
591 /* PAGE_MOVED is not part of the mask */
592 #define RB_PAGE_MOVED 4UL
593
594 /*
595 * rb_list_head - remove any bit
596 */
597 static struct list_head *rb_list_head(struct list_head *list)
598 {
599 unsigned long val = (unsigned long)list;
600
601 return (struct list_head *)(val & ~RB_FLAG_MASK);
602 }
603
604 /*
605 * rb_is_head_page - test if the given page is the head page
606 *
607 * Because the reader may move the head_page pointer, we can
608 * not trust what the head page is (it may be pointing to
609 * the reader page). But if the next page is a header page,
610 * its flags will be non zero.
611 */
612 static int inline
613 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
614 struct buffer_page *page, struct list_head *list)
615 {
616 unsigned long val;
617
618 val = (unsigned long)list->next;
619
620 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
621 return RB_PAGE_MOVED;
622
623 return val & RB_FLAG_MASK;
624 }
625
626 /*
627 * rb_is_reader_page
628 *
629 * The unique thing about the reader page, is that, if the
630 * writer is ever on it, the previous pointer never points
631 * back to the reader page.
632 */
633 static int rb_is_reader_page(struct buffer_page *page)
634 {
635 struct list_head *list = page->list.prev;
636
637 return rb_list_head(list->next) != &page->list;
638 }
639
640 /*
641 * rb_set_list_to_head - set a list_head to be pointing to head.
642 */
643 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
644 struct list_head *list)
645 {
646 unsigned long *ptr;
647
648 ptr = (unsigned long *)&list->next;
649 *ptr |= RB_PAGE_HEAD;
650 *ptr &= ~RB_PAGE_UPDATE;
651 }
652
653 /*
654 * rb_head_page_activate - sets up head page
655 */
656 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
657 {
658 struct buffer_page *head;
659
660 head = cpu_buffer->head_page;
661 if (!head)
662 return;
663
664 /*
665 * Set the previous list pointer to have the HEAD flag.
666 */
667 rb_set_list_to_head(cpu_buffer, head->list.prev);
668 }
669
670 static void rb_list_head_clear(struct list_head *list)
671 {
672 unsigned long *ptr = (unsigned long *)&list->next;
673
674 *ptr &= ~RB_FLAG_MASK;
675 }
676
677 /*
678 * rb_head_page_dactivate - clears head page ptr (for free list)
679 */
680 static void
681 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
682 {
683 struct list_head *hd;
684
685 /* Go through the whole list and clear any pointers found. */
686 rb_list_head_clear(cpu_buffer->pages);
687
688 list_for_each(hd, cpu_buffer->pages)
689 rb_list_head_clear(hd);
690 }
691
692 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
693 struct buffer_page *head,
694 struct buffer_page *prev,
695 int old_flag, int new_flag)
696 {
697 struct list_head *list;
698 unsigned long val = (unsigned long)&head->list;
699 unsigned long ret;
700
701 list = &prev->list;
702
703 val &= ~RB_FLAG_MASK;
704
705 ret = cmpxchg((unsigned long *)&list->next,
706 val | old_flag, val | new_flag);
707
708 /* check if the reader took the page */
709 if ((ret & ~RB_FLAG_MASK) != val)
710 return RB_PAGE_MOVED;
711
712 return ret & RB_FLAG_MASK;
713 }
714
715 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
716 struct buffer_page *head,
717 struct buffer_page *prev,
718 int old_flag)
719 {
720 return rb_head_page_set(cpu_buffer, head, prev,
721 old_flag, RB_PAGE_UPDATE);
722 }
723
724 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
725 struct buffer_page *head,
726 struct buffer_page *prev,
727 int old_flag)
728 {
729 return rb_head_page_set(cpu_buffer, head, prev,
730 old_flag, RB_PAGE_HEAD);
731 }
732
733 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
734 struct buffer_page *head,
735 struct buffer_page *prev,
736 int old_flag)
737 {
738 return rb_head_page_set(cpu_buffer, head, prev,
739 old_flag, RB_PAGE_NORMAL);
740 }
741
742 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
743 struct buffer_page **bpage)
744 {
745 struct list_head *p = rb_list_head((*bpage)->list.next);
746
747 *bpage = list_entry(p, struct buffer_page, list);
748 }
749
750 static struct buffer_page *
751 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
752 {
753 struct buffer_page *head;
754 struct buffer_page *page;
755 struct list_head *list;
756 int i;
757
758 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
759 return NULL;
760
761 /* sanity check */
762 list = cpu_buffer->pages;
763 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
764 return NULL;
765
766 page = head = cpu_buffer->head_page;
767 /*
768 * It is possible that the writer moves the header behind
769 * where we started, and we miss in one loop.
770 * A second loop should grab the header, but we'll do
771 * three loops just because I'm paranoid.
772 */
773 for (i = 0; i < 3; i++) {
774 do {
775 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
776 cpu_buffer->head_page = page;
777 return page;
778 }
779 rb_inc_page(cpu_buffer, &page);
780 } while (page != head);
781 }
782
783 RB_WARN_ON(cpu_buffer, 1);
784
785 return NULL;
786 }
787
788 static int rb_head_page_replace(struct buffer_page *old,
789 struct buffer_page *new)
790 {
791 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
792 unsigned long val;
793 unsigned long ret;
794
795 val = *ptr & ~RB_FLAG_MASK;
796 val |= RB_PAGE_HEAD;
797
798 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
799
800 return ret == val;
801 }
802
803 /*
804 * rb_tail_page_update - move the tail page forward
805 *
806 * Returns 1 if moved tail page, 0 if someone else did.
807 */
808 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
809 struct buffer_page *tail_page,
810 struct buffer_page *next_page)
811 {
812 struct buffer_page *old_tail;
813 unsigned long old_entries;
814 unsigned long old_write;
815 int ret = 0;
816
817 /*
818 * The tail page now needs to be moved forward.
819 *
820 * We need to reset the tail page, but without messing
821 * with possible erasing of data brought in by interrupts
822 * that have moved the tail page and are currently on it.
823 *
824 * We add a counter to the write field to denote this.
825 */
826 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
827 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
828
829 /*
830 * Just make sure we have seen our old_write and synchronize
831 * with any interrupts that come in.
832 */
833 barrier();
834
835 /*
836 * If the tail page is still the same as what we think
837 * it is, then it is up to us to update the tail
838 * pointer.
839 */
840 if (tail_page == cpu_buffer->tail_page) {
841 /* Zero the write counter */
842 unsigned long val = old_write & ~RB_WRITE_MASK;
843 unsigned long eval = old_entries & ~RB_WRITE_MASK;
844
845 /*
846 * This will only succeed if an interrupt did
847 * not come in and change it. In which case, we
848 * do not want to modify it.
849 *
850 * We add (void) to let the compiler know that we do not care
851 * about the return value of these functions. We use the
852 * cmpxchg to only update if an interrupt did not already
853 * do it for us. If the cmpxchg fails, we don't care.
854 */
855 (void)local_cmpxchg(&next_page->write, old_write, val);
856 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
857
858 /*
859 * No need to worry about races with clearing out the commit.
860 * it only can increment when a commit takes place. But that
861 * only happens in the outer most nested commit.
862 */
863 local_set(&next_page->page->commit, 0);
864
865 old_tail = cmpxchg(&cpu_buffer->tail_page,
866 tail_page, next_page);
867
868 if (old_tail == tail_page)
869 ret = 1;
870 }
871
872 return ret;
873 }
874
875 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
876 struct buffer_page *bpage)
877 {
878 unsigned long val = (unsigned long)bpage;
879
880 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
881 return 1;
882
883 return 0;
884 }
885
886 /**
887 * rb_check_list - make sure a pointer to a list has the last bits zero
888 */
889 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
890 struct list_head *list)
891 {
892 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
893 return 1;
894 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
895 return 1;
896 return 0;
897 }
898
899 /**
900 * check_pages - integrity check of buffer pages
901 * @cpu_buffer: CPU buffer with pages to test
902 *
903 * As a safety measure we check to make sure the data pages have not
904 * been corrupted.
905 */
906 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
907 {
908 struct list_head *head = cpu_buffer->pages;
909 struct buffer_page *bpage, *tmp;
910
911 rb_head_page_deactivate(cpu_buffer);
912
913 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
914 return -1;
915 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
916 return -1;
917
918 if (rb_check_list(cpu_buffer, head))
919 return -1;
920
921 list_for_each_entry_safe(bpage, tmp, head, list) {
922 if (RB_WARN_ON(cpu_buffer,
923 bpage->list.next->prev != &bpage->list))
924 return -1;
925 if (RB_WARN_ON(cpu_buffer,
926 bpage->list.prev->next != &bpage->list))
927 return -1;
928 if (rb_check_list(cpu_buffer, &bpage->list))
929 return -1;
930 }
931
932 rb_head_page_activate(cpu_buffer);
933
934 return 0;
935 }
936
937 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
938 unsigned nr_pages)
939 {
940 struct buffer_page *bpage, *tmp;
941 unsigned long addr;
942 LIST_HEAD(pages);
943 unsigned i;
944
945 WARN_ON(!nr_pages);
946
947 for (i = 0; i < nr_pages; i++) {
948 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
949 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
950 if (!bpage)
951 goto free_pages;
952
953 rb_check_bpage(cpu_buffer, bpage);
954
955 list_add(&bpage->list, &pages);
956
957 addr = __get_free_page(GFP_KERNEL);
958 if (!addr)
959 goto free_pages;
960 bpage->page = (void *)addr;
961 rb_init_page(bpage->page);
962 }
963
964 /*
965 * The ring buffer page list is a circular list that does not
966 * start and end with a list head. All page list items point to
967 * other pages.
968 */
969 cpu_buffer->pages = pages.next;
970 list_del(&pages);
971
972 rb_check_pages(cpu_buffer);
973
974 return 0;
975
976 free_pages:
977 list_for_each_entry_safe(bpage, tmp, &pages, list) {
978 list_del_init(&bpage->list);
979 free_buffer_page(bpage);
980 }
981 return -ENOMEM;
982 }
983
984 static struct ring_buffer_per_cpu *
985 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
986 {
987 struct ring_buffer_per_cpu *cpu_buffer;
988 struct buffer_page *bpage;
989 unsigned long addr;
990 int ret;
991
992 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
993 GFP_KERNEL, cpu_to_node(cpu));
994 if (!cpu_buffer)
995 return NULL;
996
997 cpu_buffer->cpu = cpu;
998 cpu_buffer->buffer = buffer;
999 spin_lock_init(&cpu_buffer->reader_lock);
1000 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1001 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1002
1003 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1004 GFP_KERNEL, cpu_to_node(cpu));
1005 if (!bpage)
1006 goto fail_free_buffer;
1007
1008 rb_check_bpage(cpu_buffer, bpage);
1009
1010 cpu_buffer->reader_page = bpage;
1011 addr = __get_free_page(GFP_KERNEL);
1012 if (!addr)
1013 goto fail_free_reader;
1014 bpage->page = (void *)addr;
1015 rb_init_page(bpage->page);
1016
1017 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1018
1019 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1020 if (ret < 0)
1021 goto fail_free_reader;
1022
1023 cpu_buffer->head_page
1024 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1025 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1026
1027 rb_head_page_activate(cpu_buffer);
1028
1029 return cpu_buffer;
1030
1031 fail_free_reader:
1032 free_buffer_page(cpu_buffer->reader_page);
1033
1034 fail_free_buffer:
1035 kfree(cpu_buffer);
1036 return NULL;
1037 }
1038
1039 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1040 {
1041 struct list_head *head = cpu_buffer->pages;
1042 struct buffer_page *bpage, *tmp;
1043
1044 free_buffer_page(cpu_buffer->reader_page);
1045
1046 rb_head_page_deactivate(cpu_buffer);
1047
1048 if (head) {
1049 list_for_each_entry_safe(bpage, tmp, head, list) {
1050 list_del_init(&bpage->list);
1051 free_buffer_page(bpage);
1052 }
1053 bpage = list_entry(head, struct buffer_page, list);
1054 free_buffer_page(bpage);
1055 }
1056
1057 kfree(cpu_buffer);
1058 }
1059
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 static int rb_cpu_notify(struct notifier_block *self,
1062 unsigned long action, void *hcpu);
1063 #endif
1064
1065 /**
1066 * ring_buffer_alloc - allocate a new ring_buffer
1067 * @size: the size in bytes per cpu that is needed.
1068 * @flags: attributes to set for the ring buffer.
1069 *
1070 * Currently the only flag that is available is the RB_FL_OVERWRITE
1071 * flag. This flag means that the buffer will overwrite old data
1072 * when the buffer wraps. If this flag is not set, the buffer will
1073 * drop data when the tail hits the head.
1074 */
1075 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1076 struct lock_class_key *key)
1077 {
1078 struct ring_buffer *buffer;
1079 int bsize;
1080 int cpu;
1081
1082 /* keep it in its own cache line */
1083 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1084 GFP_KERNEL);
1085 if (!buffer)
1086 return NULL;
1087
1088 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1089 goto fail_free_buffer;
1090
1091 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1092 buffer->flags = flags;
1093 buffer->clock = trace_clock_local;
1094 buffer->reader_lock_key = key;
1095
1096 /* need at least two pages */
1097 if (buffer->pages < 2)
1098 buffer->pages = 2;
1099
1100 /*
1101 * In case of non-hotplug cpu, if the ring-buffer is allocated
1102 * in early initcall, it will not be notified of secondary cpus.
1103 * In that off case, we need to allocate for all possible cpus.
1104 */
1105 #ifdef CONFIG_HOTPLUG_CPU
1106 get_online_cpus();
1107 cpumask_copy(buffer->cpumask, cpu_online_mask);
1108 #else
1109 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1110 #endif
1111 buffer->cpus = nr_cpu_ids;
1112
1113 bsize = sizeof(void *) * nr_cpu_ids;
1114 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1115 GFP_KERNEL);
1116 if (!buffer->buffers)
1117 goto fail_free_cpumask;
1118
1119 for_each_buffer_cpu(buffer, cpu) {
1120 buffer->buffers[cpu] =
1121 rb_allocate_cpu_buffer(buffer, cpu);
1122 if (!buffer->buffers[cpu])
1123 goto fail_free_buffers;
1124 }
1125
1126 #ifdef CONFIG_HOTPLUG_CPU
1127 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1128 buffer->cpu_notify.priority = 0;
1129 register_cpu_notifier(&buffer->cpu_notify);
1130 #endif
1131
1132 put_online_cpus();
1133 mutex_init(&buffer->mutex);
1134
1135 return buffer;
1136
1137 fail_free_buffers:
1138 for_each_buffer_cpu(buffer, cpu) {
1139 if (buffer->buffers[cpu])
1140 rb_free_cpu_buffer(buffer->buffers[cpu]);
1141 }
1142 kfree(buffer->buffers);
1143
1144 fail_free_cpumask:
1145 free_cpumask_var(buffer->cpumask);
1146 put_online_cpus();
1147
1148 fail_free_buffer:
1149 kfree(buffer);
1150 return NULL;
1151 }
1152 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1153
1154 /**
1155 * ring_buffer_free - free a ring buffer.
1156 * @buffer: the buffer to free.
1157 */
1158 void
1159 ring_buffer_free(struct ring_buffer *buffer)
1160 {
1161 int cpu;
1162
1163 get_online_cpus();
1164
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 unregister_cpu_notifier(&buffer->cpu_notify);
1167 #endif
1168
1169 for_each_buffer_cpu(buffer, cpu)
1170 rb_free_cpu_buffer(buffer->buffers[cpu]);
1171
1172 put_online_cpus();
1173
1174 kfree(buffer->buffers);
1175 free_cpumask_var(buffer->cpumask);
1176
1177 kfree(buffer);
1178 }
1179 EXPORT_SYMBOL_GPL(ring_buffer_free);
1180
1181 void ring_buffer_set_clock(struct ring_buffer *buffer,
1182 u64 (*clock)(void))
1183 {
1184 buffer->clock = clock;
1185 }
1186
1187 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1188
1189 static void
1190 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1191 {
1192 struct buffer_page *bpage;
1193 struct list_head *p;
1194 unsigned i;
1195
1196 atomic_inc(&cpu_buffer->record_disabled);
1197 synchronize_sched();
1198
1199 spin_lock_irq(&cpu_buffer->reader_lock);
1200 rb_head_page_deactivate(cpu_buffer);
1201
1202 for (i = 0; i < nr_pages; i++) {
1203 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1204 return;
1205 p = cpu_buffer->pages->next;
1206 bpage = list_entry(p, struct buffer_page, list);
1207 list_del_init(&bpage->list);
1208 free_buffer_page(bpage);
1209 }
1210 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1211 return;
1212
1213 rb_reset_cpu(cpu_buffer);
1214 spin_unlock_irq(&cpu_buffer->reader_lock);
1215
1216 rb_check_pages(cpu_buffer);
1217
1218 atomic_dec(&cpu_buffer->record_disabled);
1219
1220 }
1221
1222 static void
1223 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1224 struct list_head *pages, unsigned nr_pages)
1225 {
1226 struct buffer_page *bpage;
1227 struct list_head *p;
1228 unsigned i;
1229
1230 atomic_inc(&cpu_buffer->record_disabled);
1231 synchronize_sched();
1232
1233 spin_lock_irq(&cpu_buffer->reader_lock);
1234 rb_head_page_deactivate(cpu_buffer);
1235
1236 for (i = 0; i < nr_pages; i++) {
1237 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1238 return;
1239 p = pages->next;
1240 bpage = list_entry(p, struct buffer_page, list);
1241 list_del_init(&bpage->list);
1242 list_add_tail(&bpage->list, cpu_buffer->pages);
1243 }
1244 rb_reset_cpu(cpu_buffer);
1245 spin_unlock_irq(&cpu_buffer->reader_lock);
1246
1247 rb_check_pages(cpu_buffer);
1248
1249 atomic_dec(&cpu_buffer->record_disabled);
1250 }
1251
1252 /**
1253 * ring_buffer_resize - resize the ring buffer
1254 * @buffer: the buffer to resize.
1255 * @size: the new size.
1256 *
1257 * The tracer is responsible for making sure that the buffer is
1258 * not being used while changing the size.
1259 * Note: We may be able to change the above requirement by using
1260 * RCU synchronizations.
1261 *
1262 * Minimum size is 2 * BUF_PAGE_SIZE.
1263 *
1264 * Returns -1 on failure.
1265 */
1266 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1267 {
1268 struct ring_buffer_per_cpu *cpu_buffer;
1269 unsigned nr_pages, rm_pages, new_pages;
1270 struct buffer_page *bpage, *tmp;
1271 unsigned long buffer_size;
1272 unsigned long addr;
1273 LIST_HEAD(pages);
1274 int i, cpu;
1275
1276 /*
1277 * Always succeed at resizing a non-existent buffer:
1278 */
1279 if (!buffer)
1280 return size;
1281
1282 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1283 size *= BUF_PAGE_SIZE;
1284 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1285
1286 /* we need a minimum of two pages */
1287 if (size < BUF_PAGE_SIZE * 2)
1288 size = BUF_PAGE_SIZE * 2;
1289
1290 if (size == buffer_size)
1291 return size;
1292
1293 mutex_lock(&buffer->mutex);
1294 get_online_cpus();
1295
1296 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1297
1298 if (size < buffer_size) {
1299
1300 /* easy case, just free pages */
1301 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1302 goto out_fail;
1303
1304 rm_pages = buffer->pages - nr_pages;
1305
1306 for_each_buffer_cpu(buffer, cpu) {
1307 cpu_buffer = buffer->buffers[cpu];
1308 rb_remove_pages(cpu_buffer, rm_pages);
1309 }
1310 goto out;
1311 }
1312
1313 /*
1314 * This is a bit more difficult. We only want to add pages
1315 * when we can allocate enough for all CPUs. We do this
1316 * by allocating all the pages and storing them on a local
1317 * link list. If we succeed in our allocation, then we
1318 * add these pages to the cpu_buffers. Otherwise we just free
1319 * them all and return -ENOMEM;
1320 */
1321 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1322 goto out_fail;
1323
1324 new_pages = nr_pages - buffer->pages;
1325
1326 for_each_buffer_cpu(buffer, cpu) {
1327 for (i = 0; i < new_pages; i++) {
1328 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1329 cache_line_size()),
1330 GFP_KERNEL, cpu_to_node(cpu));
1331 if (!bpage)
1332 goto free_pages;
1333 list_add(&bpage->list, &pages);
1334 addr = __get_free_page(GFP_KERNEL);
1335 if (!addr)
1336 goto free_pages;
1337 bpage->page = (void *)addr;
1338 rb_init_page(bpage->page);
1339 }
1340 }
1341
1342 for_each_buffer_cpu(buffer, cpu) {
1343 cpu_buffer = buffer->buffers[cpu];
1344 rb_insert_pages(cpu_buffer, &pages, new_pages);
1345 }
1346
1347 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1348 goto out_fail;
1349
1350 out:
1351 buffer->pages = nr_pages;
1352 put_online_cpus();
1353 mutex_unlock(&buffer->mutex);
1354
1355 return size;
1356
1357 free_pages:
1358 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1359 list_del_init(&bpage->list);
1360 free_buffer_page(bpage);
1361 }
1362 put_online_cpus();
1363 mutex_unlock(&buffer->mutex);
1364 return -ENOMEM;
1365
1366 /*
1367 * Something went totally wrong, and we are too paranoid
1368 * to even clean up the mess.
1369 */
1370 out_fail:
1371 put_online_cpus();
1372 mutex_unlock(&buffer->mutex);
1373 return -1;
1374 }
1375 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1376
1377 static inline void *
1378 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1379 {
1380 return bpage->data + index;
1381 }
1382
1383 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1384 {
1385 return bpage->page->data + index;
1386 }
1387
1388 static inline struct ring_buffer_event *
1389 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1390 {
1391 return __rb_page_index(cpu_buffer->reader_page,
1392 cpu_buffer->reader_page->read);
1393 }
1394
1395 static inline struct ring_buffer_event *
1396 rb_iter_head_event(struct ring_buffer_iter *iter)
1397 {
1398 return __rb_page_index(iter->head_page, iter->head);
1399 }
1400
1401 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1402 {
1403 return local_read(&bpage->write) & RB_WRITE_MASK;
1404 }
1405
1406 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1407 {
1408 return local_read(&bpage->page->commit);
1409 }
1410
1411 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1412 {
1413 return local_read(&bpage->entries) & RB_WRITE_MASK;
1414 }
1415
1416 /* Size is determined by what has been commited */
1417 static inline unsigned rb_page_size(struct buffer_page *bpage)
1418 {
1419 return rb_page_commit(bpage);
1420 }
1421
1422 static inline unsigned
1423 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1424 {
1425 return rb_page_commit(cpu_buffer->commit_page);
1426 }
1427
1428 static inline unsigned
1429 rb_event_index(struct ring_buffer_event *event)
1430 {
1431 unsigned long addr = (unsigned long)event;
1432
1433 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1434 }
1435
1436 static inline int
1437 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1438 struct ring_buffer_event *event)
1439 {
1440 unsigned long addr = (unsigned long)event;
1441 unsigned long index;
1442
1443 index = rb_event_index(event);
1444 addr &= PAGE_MASK;
1445
1446 return cpu_buffer->commit_page->page == (void *)addr &&
1447 rb_commit_index(cpu_buffer) == index;
1448 }
1449
1450 static void
1451 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1452 {
1453 unsigned long max_count;
1454
1455 /*
1456 * We only race with interrupts and NMIs on this CPU.
1457 * If we own the commit event, then we can commit
1458 * all others that interrupted us, since the interruptions
1459 * are in stack format (they finish before they come
1460 * back to us). This allows us to do a simple loop to
1461 * assign the commit to the tail.
1462 */
1463 again:
1464 max_count = cpu_buffer->buffer->pages * 100;
1465
1466 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1467 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1468 return;
1469 if (RB_WARN_ON(cpu_buffer,
1470 rb_is_reader_page(cpu_buffer->tail_page)))
1471 return;
1472 local_set(&cpu_buffer->commit_page->page->commit,
1473 rb_page_write(cpu_buffer->commit_page));
1474 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1475 cpu_buffer->write_stamp =
1476 cpu_buffer->commit_page->page->time_stamp;
1477 /* add barrier to keep gcc from optimizing too much */
1478 barrier();
1479 }
1480 while (rb_commit_index(cpu_buffer) !=
1481 rb_page_write(cpu_buffer->commit_page)) {
1482
1483 local_set(&cpu_buffer->commit_page->page->commit,
1484 rb_page_write(cpu_buffer->commit_page));
1485 RB_WARN_ON(cpu_buffer,
1486 local_read(&cpu_buffer->commit_page->page->commit) &
1487 ~RB_WRITE_MASK);
1488 barrier();
1489 }
1490
1491 /* again, keep gcc from optimizing */
1492 barrier();
1493
1494 /*
1495 * If an interrupt came in just after the first while loop
1496 * and pushed the tail page forward, we will be left with
1497 * a dangling commit that will never go forward.
1498 */
1499 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1500 goto again;
1501 }
1502
1503 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1504 {
1505 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1506 cpu_buffer->reader_page->read = 0;
1507 }
1508
1509 static void rb_inc_iter(struct ring_buffer_iter *iter)
1510 {
1511 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1512
1513 /*
1514 * The iterator could be on the reader page (it starts there).
1515 * But the head could have moved, since the reader was
1516 * found. Check for this case and assign the iterator
1517 * to the head page instead of next.
1518 */
1519 if (iter->head_page == cpu_buffer->reader_page)
1520 iter->head_page = rb_set_head_page(cpu_buffer);
1521 else
1522 rb_inc_page(cpu_buffer, &iter->head_page);
1523
1524 iter->read_stamp = iter->head_page->page->time_stamp;
1525 iter->head = 0;
1526 }
1527
1528 /**
1529 * ring_buffer_update_event - update event type and data
1530 * @event: the even to update
1531 * @type: the type of event
1532 * @length: the size of the event field in the ring buffer
1533 *
1534 * Update the type and data fields of the event. The length
1535 * is the actual size that is written to the ring buffer,
1536 * and with this, we can determine what to place into the
1537 * data field.
1538 */
1539 static void
1540 rb_update_event(struct ring_buffer_event *event,
1541 unsigned type, unsigned length)
1542 {
1543 event->type_len = type;
1544
1545 switch (type) {
1546
1547 case RINGBUF_TYPE_PADDING:
1548 case RINGBUF_TYPE_TIME_EXTEND:
1549 case RINGBUF_TYPE_TIME_STAMP:
1550 break;
1551
1552 case 0:
1553 length -= RB_EVNT_HDR_SIZE;
1554 if (length > RB_MAX_SMALL_DATA)
1555 event->array[0] = length;
1556 else
1557 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1558 break;
1559 default:
1560 BUG();
1561 }
1562 }
1563
1564 /*
1565 * rb_handle_head_page - writer hit the head page
1566 *
1567 * Returns: +1 to retry page
1568 * 0 to continue
1569 * -1 on error
1570 */
1571 static int
1572 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1573 struct buffer_page *tail_page,
1574 struct buffer_page *next_page)
1575 {
1576 struct buffer_page *new_head;
1577 int entries;
1578 int type;
1579 int ret;
1580
1581 entries = rb_page_entries(next_page);
1582
1583 /*
1584 * The hard part is here. We need to move the head
1585 * forward, and protect against both readers on
1586 * other CPUs and writers coming in via interrupts.
1587 */
1588 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1589 RB_PAGE_HEAD);
1590
1591 /*
1592 * type can be one of four:
1593 * NORMAL - an interrupt already moved it for us
1594 * HEAD - we are the first to get here.
1595 * UPDATE - we are the interrupt interrupting
1596 * a current move.
1597 * MOVED - a reader on another CPU moved the next
1598 * pointer to its reader page. Give up
1599 * and try again.
1600 */
1601
1602 switch (type) {
1603 case RB_PAGE_HEAD:
1604 /*
1605 * We changed the head to UPDATE, thus
1606 * it is our responsibility to update
1607 * the counters.
1608 */
1609 local_add(entries, &cpu_buffer->overrun);
1610
1611 /*
1612 * The entries will be zeroed out when we move the
1613 * tail page.
1614 */
1615
1616 /* still more to do */
1617 break;
1618
1619 case RB_PAGE_UPDATE:
1620 /*
1621 * This is an interrupt that interrupt the
1622 * previous update. Still more to do.
1623 */
1624 break;
1625 case RB_PAGE_NORMAL:
1626 /*
1627 * An interrupt came in before the update
1628 * and processed this for us.
1629 * Nothing left to do.
1630 */
1631 return 1;
1632 case RB_PAGE_MOVED:
1633 /*
1634 * The reader is on another CPU and just did
1635 * a swap with our next_page.
1636 * Try again.
1637 */
1638 return 1;
1639 default:
1640 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1641 return -1;
1642 }
1643
1644 /*
1645 * Now that we are here, the old head pointer is
1646 * set to UPDATE. This will keep the reader from
1647 * swapping the head page with the reader page.
1648 * The reader (on another CPU) will spin till
1649 * we are finished.
1650 *
1651 * We just need to protect against interrupts
1652 * doing the job. We will set the next pointer
1653 * to HEAD. After that, we set the old pointer
1654 * to NORMAL, but only if it was HEAD before.
1655 * otherwise we are an interrupt, and only
1656 * want the outer most commit to reset it.
1657 */
1658 new_head = next_page;
1659 rb_inc_page(cpu_buffer, &new_head);
1660
1661 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1662 RB_PAGE_NORMAL);
1663
1664 /*
1665 * Valid returns are:
1666 * HEAD - an interrupt came in and already set it.
1667 * NORMAL - One of two things:
1668 * 1) We really set it.
1669 * 2) A bunch of interrupts came in and moved
1670 * the page forward again.
1671 */
1672 switch (ret) {
1673 case RB_PAGE_HEAD:
1674 case RB_PAGE_NORMAL:
1675 /* OK */
1676 break;
1677 default:
1678 RB_WARN_ON(cpu_buffer, 1);
1679 return -1;
1680 }
1681
1682 /*
1683 * It is possible that an interrupt came in,
1684 * set the head up, then more interrupts came in
1685 * and moved it again. When we get back here,
1686 * the page would have been set to NORMAL but we
1687 * just set it back to HEAD.
1688 *
1689 * How do you detect this? Well, if that happened
1690 * the tail page would have moved.
1691 */
1692 if (ret == RB_PAGE_NORMAL) {
1693 /*
1694 * If the tail had moved passed next, then we need
1695 * to reset the pointer.
1696 */
1697 if (cpu_buffer->tail_page != tail_page &&
1698 cpu_buffer->tail_page != next_page)
1699 rb_head_page_set_normal(cpu_buffer, new_head,
1700 next_page,
1701 RB_PAGE_HEAD);
1702 }
1703
1704 /*
1705 * If this was the outer most commit (the one that
1706 * changed the original pointer from HEAD to UPDATE),
1707 * then it is up to us to reset it to NORMAL.
1708 */
1709 if (type == RB_PAGE_HEAD) {
1710 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1711 tail_page,
1712 RB_PAGE_UPDATE);
1713 if (RB_WARN_ON(cpu_buffer,
1714 ret != RB_PAGE_UPDATE))
1715 return -1;
1716 }
1717
1718 return 0;
1719 }
1720
1721 static unsigned rb_calculate_event_length(unsigned length)
1722 {
1723 struct ring_buffer_event event; /* Used only for sizeof array */
1724
1725 /* zero length can cause confusions */
1726 if (!length)
1727 length = 1;
1728
1729 if (length > RB_MAX_SMALL_DATA)
1730 length += sizeof(event.array[0]);
1731
1732 length += RB_EVNT_HDR_SIZE;
1733 length = ALIGN(length, RB_ALIGNMENT);
1734
1735 return length;
1736 }
1737
1738 static inline void
1739 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1740 struct buffer_page *tail_page,
1741 unsigned long tail, unsigned long length)
1742 {
1743 struct ring_buffer_event *event;
1744
1745 /*
1746 * Only the event that crossed the page boundary
1747 * must fill the old tail_page with padding.
1748 */
1749 if (tail >= BUF_PAGE_SIZE) {
1750 local_sub(length, &tail_page->write);
1751 return;
1752 }
1753
1754 event = __rb_page_index(tail_page, tail);
1755 kmemcheck_annotate_bitfield(event, bitfield);
1756
1757 /*
1758 * If this event is bigger than the minimum size, then
1759 * we need to be careful that we don't subtract the
1760 * write counter enough to allow another writer to slip
1761 * in on this page.
1762 * We put in a discarded commit instead, to make sure
1763 * that this space is not used again.
1764 *
1765 * If we are less than the minimum size, we don't need to
1766 * worry about it.
1767 */
1768 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1769 /* No room for any events */
1770
1771 /* Mark the rest of the page with padding */
1772 rb_event_set_padding(event);
1773
1774 /* Set the write back to the previous setting */
1775 local_sub(length, &tail_page->write);
1776 return;
1777 }
1778
1779 /* Put in a discarded event */
1780 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1781 event->type_len = RINGBUF_TYPE_PADDING;
1782 /* time delta must be non zero */
1783 event->time_delta = 1;
1784
1785 /* Set write to end of buffer */
1786 length = (tail + length) - BUF_PAGE_SIZE;
1787 local_sub(length, &tail_page->write);
1788 }
1789
1790 static struct ring_buffer_event *
1791 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1792 unsigned long length, unsigned long tail,
1793 struct buffer_page *tail_page, u64 *ts)
1794 {
1795 struct buffer_page *commit_page = cpu_buffer->commit_page;
1796 struct ring_buffer *buffer = cpu_buffer->buffer;
1797 struct buffer_page *next_page;
1798 int ret;
1799
1800 next_page = tail_page;
1801
1802 rb_inc_page(cpu_buffer, &next_page);
1803
1804 /*
1805 * If for some reason, we had an interrupt storm that made
1806 * it all the way around the buffer, bail, and warn
1807 * about it.
1808 */
1809 if (unlikely(next_page == commit_page)) {
1810 local_inc(&cpu_buffer->commit_overrun);
1811 goto out_reset;
1812 }
1813
1814 /*
1815 * This is where the fun begins!
1816 *
1817 * We are fighting against races between a reader that
1818 * could be on another CPU trying to swap its reader
1819 * page with the buffer head.
1820 *
1821 * We are also fighting against interrupts coming in and
1822 * moving the head or tail on us as well.
1823 *
1824 * If the next page is the head page then we have filled
1825 * the buffer, unless the commit page is still on the
1826 * reader page.
1827 */
1828 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1829
1830 /*
1831 * If the commit is not on the reader page, then
1832 * move the header page.
1833 */
1834 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1835 /*
1836 * If we are not in overwrite mode,
1837 * this is easy, just stop here.
1838 */
1839 if (!(buffer->flags & RB_FL_OVERWRITE))
1840 goto out_reset;
1841
1842 ret = rb_handle_head_page(cpu_buffer,
1843 tail_page,
1844 next_page);
1845 if (ret < 0)
1846 goto out_reset;
1847 if (ret)
1848 goto out_again;
1849 } else {
1850 /*
1851 * We need to be careful here too. The
1852 * commit page could still be on the reader
1853 * page. We could have a small buffer, and
1854 * have filled up the buffer with events
1855 * from interrupts and such, and wrapped.
1856 *
1857 * Note, if the tail page is also the on the
1858 * reader_page, we let it move out.
1859 */
1860 if (unlikely((cpu_buffer->commit_page !=
1861 cpu_buffer->tail_page) &&
1862 (cpu_buffer->commit_page ==
1863 cpu_buffer->reader_page))) {
1864 local_inc(&cpu_buffer->commit_overrun);
1865 goto out_reset;
1866 }
1867 }
1868 }
1869
1870 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1871 if (ret) {
1872 /*
1873 * Nested commits always have zero deltas, so
1874 * just reread the time stamp
1875 */
1876 *ts = rb_time_stamp(buffer);
1877 next_page->page->time_stamp = *ts;
1878 }
1879
1880 out_again:
1881
1882 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1883
1884 /* fail and let the caller try again */
1885 return ERR_PTR(-EAGAIN);
1886
1887 out_reset:
1888 /* reset write */
1889 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1890
1891 return NULL;
1892 }
1893
1894 static struct ring_buffer_event *
1895 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1896 unsigned type, unsigned long length, u64 *ts)
1897 {
1898 struct buffer_page *tail_page;
1899 struct ring_buffer_event *event;
1900 unsigned long tail, write;
1901
1902 tail_page = cpu_buffer->tail_page;
1903 write = local_add_return(length, &tail_page->write);
1904
1905 /* set write to only the index of the write */
1906 write &= RB_WRITE_MASK;
1907 tail = write - length;
1908
1909 /* See if we shot pass the end of this buffer page */
1910 if (write > BUF_PAGE_SIZE)
1911 return rb_move_tail(cpu_buffer, length, tail,
1912 tail_page, ts);
1913
1914 /* We reserved something on the buffer */
1915
1916 event = __rb_page_index(tail_page, tail);
1917 kmemcheck_annotate_bitfield(event, bitfield);
1918 rb_update_event(event, type, length);
1919
1920 /* The passed in type is zero for DATA */
1921 if (likely(!type))
1922 local_inc(&tail_page->entries);
1923
1924 /*
1925 * If this is the first commit on the page, then update
1926 * its timestamp.
1927 */
1928 if (!tail)
1929 tail_page->page->time_stamp = *ts;
1930
1931 return event;
1932 }
1933
1934 static inline int
1935 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1936 struct ring_buffer_event *event)
1937 {
1938 unsigned long new_index, old_index;
1939 struct buffer_page *bpage;
1940 unsigned long index;
1941 unsigned long addr;
1942
1943 new_index = rb_event_index(event);
1944 old_index = new_index + rb_event_length(event);
1945 addr = (unsigned long)event;
1946 addr &= PAGE_MASK;
1947
1948 bpage = cpu_buffer->tail_page;
1949
1950 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1951 unsigned long write_mask =
1952 local_read(&bpage->write) & ~RB_WRITE_MASK;
1953 /*
1954 * This is on the tail page. It is possible that
1955 * a write could come in and move the tail page
1956 * and write to the next page. That is fine
1957 * because we just shorten what is on this page.
1958 */
1959 old_index += write_mask;
1960 new_index += write_mask;
1961 index = local_cmpxchg(&bpage->write, old_index, new_index);
1962 if (index == old_index)
1963 return 1;
1964 }
1965
1966 /* could not discard */
1967 return 0;
1968 }
1969
1970 static int
1971 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1972 u64 *ts, u64 *delta)
1973 {
1974 struct ring_buffer_event *event;
1975 static int once;
1976 int ret;
1977
1978 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1979 printk(KERN_WARNING "Delta way too big! %llu"
1980 " ts=%llu write stamp = %llu\n",
1981 (unsigned long long)*delta,
1982 (unsigned long long)*ts,
1983 (unsigned long long)cpu_buffer->write_stamp);
1984 WARN_ON(1);
1985 }
1986
1987 /*
1988 * The delta is too big, we to add a
1989 * new timestamp.
1990 */
1991 event = __rb_reserve_next(cpu_buffer,
1992 RINGBUF_TYPE_TIME_EXTEND,
1993 RB_LEN_TIME_EXTEND,
1994 ts);
1995 if (!event)
1996 return -EBUSY;
1997
1998 if (PTR_ERR(event) == -EAGAIN)
1999 return -EAGAIN;
2000
2001 /* Only a commited time event can update the write stamp */
2002 if (rb_event_is_commit(cpu_buffer, event)) {
2003 /*
2004 * If this is the first on the page, then it was
2005 * updated with the page itself. Try to discard it
2006 * and if we can't just make it zero.
2007 */
2008 if (rb_event_index(event)) {
2009 event->time_delta = *delta & TS_MASK;
2010 event->array[0] = *delta >> TS_SHIFT;
2011 } else {
2012 /* try to discard, since we do not need this */
2013 if (!rb_try_to_discard(cpu_buffer, event)) {
2014 /* nope, just zero it */
2015 event->time_delta = 0;
2016 event->array[0] = 0;
2017 }
2018 }
2019 cpu_buffer->write_stamp = *ts;
2020 /* let the caller know this was the commit */
2021 ret = 1;
2022 } else {
2023 /* Try to discard the event */
2024 if (!rb_try_to_discard(cpu_buffer, event)) {
2025 /* Darn, this is just wasted space */
2026 event->time_delta = 0;
2027 event->array[0] = 0;
2028 }
2029 ret = 0;
2030 }
2031
2032 *delta = 0;
2033
2034 return ret;
2035 }
2036
2037 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2038 {
2039 local_inc(&cpu_buffer->committing);
2040 local_inc(&cpu_buffer->commits);
2041 }
2042
2043 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2044 {
2045 unsigned long commits;
2046
2047 if (RB_WARN_ON(cpu_buffer,
2048 !local_read(&cpu_buffer->committing)))
2049 return;
2050
2051 again:
2052 commits = local_read(&cpu_buffer->commits);
2053 /* synchronize with interrupts */
2054 barrier();
2055 if (local_read(&cpu_buffer->committing) == 1)
2056 rb_set_commit_to_write(cpu_buffer);
2057
2058 local_dec(&cpu_buffer->committing);
2059
2060 /* synchronize with interrupts */
2061 barrier();
2062
2063 /*
2064 * Need to account for interrupts coming in between the
2065 * updating of the commit page and the clearing of the
2066 * committing counter.
2067 */
2068 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2069 !local_read(&cpu_buffer->committing)) {
2070 local_inc(&cpu_buffer->committing);
2071 goto again;
2072 }
2073 }
2074
2075 static struct ring_buffer_event *
2076 rb_reserve_next_event(struct ring_buffer *buffer,
2077 struct ring_buffer_per_cpu *cpu_buffer,
2078 unsigned long length)
2079 {
2080 struct ring_buffer_event *event;
2081 u64 ts, delta = 0;
2082 int commit = 0;
2083 int nr_loops = 0;
2084
2085 rb_start_commit(cpu_buffer);
2086
2087 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2088 /*
2089 * Due to the ability to swap a cpu buffer from a buffer
2090 * it is possible it was swapped before we committed.
2091 * (committing stops a swap). We check for it here and
2092 * if it happened, we have to fail the write.
2093 */
2094 barrier();
2095 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2096 local_dec(&cpu_buffer->committing);
2097 local_dec(&cpu_buffer->commits);
2098 return NULL;
2099 }
2100 #endif
2101
2102 length = rb_calculate_event_length(length);
2103 again:
2104 /*
2105 * We allow for interrupts to reenter here and do a trace.
2106 * If one does, it will cause this original code to loop
2107 * back here. Even with heavy interrupts happening, this
2108 * should only happen a few times in a row. If this happens
2109 * 1000 times in a row, there must be either an interrupt
2110 * storm or we have something buggy.
2111 * Bail!
2112 */
2113 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2114 goto out_fail;
2115
2116 ts = rb_time_stamp(cpu_buffer->buffer);
2117
2118 /*
2119 * Only the first commit can update the timestamp.
2120 * Yes there is a race here. If an interrupt comes in
2121 * just after the conditional and it traces too, then it
2122 * will also check the deltas. More than one timestamp may
2123 * also be made. But only the entry that did the actual
2124 * commit will be something other than zero.
2125 */
2126 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2127 rb_page_write(cpu_buffer->tail_page) ==
2128 rb_commit_index(cpu_buffer))) {
2129 u64 diff;
2130
2131 diff = ts - cpu_buffer->write_stamp;
2132
2133 /* make sure this diff is calculated here */
2134 barrier();
2135
2136 /* Did the write stamp get updated already? */
2137 if (unlikely(ts < cpu_buffer->write_stamp))
2138 goto get_event;
2139
2140 delta = diff;
2141 if (unlikely(test_time_stamp(delta))) {
2142
2143 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2144 if (commit == -EBUSY)
2145 goto out_fail;
2146
2147 if (commit == -EAGAIN)
2148 goto again;
2149
2150 RB_WARN_ON(cpu_buffer, commit < 0);
2151 }
2152 }
2153
2154 get_event:
2155 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2156 if (unlikely(PTR_ERR(event) == -EAGAIN))
2157 goto again;
2158
2159 if (!event)
2160 goto out_fail;
2161
2162 if (!rb_event_is_commit(cpu_buffer, event))
2163 delta = 0;
2164
2165 event->time_delta = delta;
2166
2167 return event;
2168
2169 out_fail:
2170 rb_end_commit(cpu_buffer);
2171 return NULL;
2172 }
2173
2174 #ifdef CONFIG_TRACING
2175
2176 #define TRACE_RECURSIVE_DEPTH 16
2177
2178 static int trace_recursive_lock(void)
2179 {
2180 current->trace_recursion++;
2181
2182 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2183 return 0;
2184
2185 /* Disable all tracing before we do anything else */
2186 tracing_off_permanent();
2187
2188 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2189 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2190 current->trace_recursion,
2191 hardirq_count() >> HARDIRQ_SHIFT,
2192 softirq_count() >> SOFTIRQ_SHIFT,
2193 in_nmi());
2194
2195 WARN_ON_ONCE(1);
2196 return -1;
2197 }
2198
2199 static void trace_recursive_unlock(void)
2200 {
2201 WARN_ON_ONCE(!current->trace_recursion);
2202
2203 current->trace_recursion--;
2204 }
2205
2206 #else
2207
2208 #define trace_recursive_lock() (0)
2209 #define trace_recursive_unlock() do { } while (0)
2210
2211 #endif
2212
2213 static DEFINE_PER_CPU(int, rb_need_resched);
2214
2215 /**
2216 * ring_buffer_lock_reserve - reserve a part of the buffer
2217 * @buffer: the ring buffer to reserve from
2218 * @length: the length of the data to reserve (excluding event header)
2219 *
2220 * Returns a reseverd event on the ring buffer to copy directly to.
2221 * The user of this interface will need to get the body to write into
2222 * and can use the ring_buffer_event_data() interface.
2223 *
2224 * The length is the length of the data needed, not the event length
2225 * which also includes the event header.
2226 *
2227 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2228 * If NULL is returned, then nothing has been allocated or locked.
2229 */
2230 struct ring_buffer_event *
2231 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2232 {
2233 struct ring_buffer_per_cpu *cpu_buffer;
2234 struct ring_buffer_event *event;
2235 int cpu, resched;
2236
2237 if (ring_buffer_flags != RB_BUFFERS_ON)
2238 return NULL;
2239
2240 if (atomic_read(&buffer->record_disabled))
2241 return NULL;
2242
2243 /* If we are tracing schedule, we don't want to recurse */
2244 resched = ftrace_preempt_disable();
2245
2246 if (trace_recursive_lock())
2247 goto out_nocheck;
2248
2249 cpu = raw_smp_processor_id();
2250
2251 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2252 goto out;
2253
2254 cpu_buffer = buffer->buffers[cpu];
2255
2256 if (atomic_read(&cpu_buffer->record_disabled))
2257 goto out;
2258
2259 if (length > BUF_MAX_DATA_SIZE)
2260 goto out;
2261
2262 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2263 if (!event)
2264 goto out;
2265
2266 /*
2267 * Need to store resched state on this cpu.
2268 * Only the first needs to.
2269 */
2270
2271 if (preempt_count() == 1)
2272 per_cpu(rb_need_resched, cpu) = resched;
2273
2274 return event;
2275
2276 out:
2277 trace_recursive_unlock();
2278
2279 out_nocheck:
2280 ftrace_preempt_enable(resched);
2281 return NULL;
2282 }
2283 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2284
2285 static void
2286 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2287 struct ring_buffer_event *event)
2288 {
2289 /*
2290 * The event first in the commit queue updates the
2291 * time stamp.
2292 */
2293 if (rb_event_is_commit(cpu_buffer, event))
2294 cpu_buffer->write_stamp += event->time_delta;
2295 }
2296
2297 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2298 struct ring_buffer_event *event)
2299 {
2300 local_inc(&cpu_buffer->entries);
2301 rb_update_write_stamp(cpu_buffer, event);
2302 rb_end_commit(cpu_buffer);
2303 }
2304
2305 /**
2306 * ring_buffer_unlock_commit - commit a reserved
2307 * @buffer: The buffer to commit to
2308 * @event: The event pointer to commit.
2309 *
2310 * This commits the data to the ring buffer, and releases any locks held.
2311 *
2312 * Must be paired with ring_buffer_lock_reserve.
2313 */
2314 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2315 struct ring_buffer_event *event)
2316 {
2317 struct ring_buffer_per_cpu *cpu_buffer;
2318 int cpu = raw_smp_processor_id();
2319
2320 cpu_buffer = buffer->buffers[cpu];
2321
2322 rb_commit(cpu_buffer, event);
2323
2324 trace_recursive_unlock();
2325
2326 /*
2327 * Only the last preempt count needs to restore preemption.
2328 */
2329 if (preempt_count() == 1)
2330 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2331 else
2332 preempt_enable_no_resched_notrace();
2333
2334 return 0;
2335 }
2336 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2337
2338 static inline void rb_event_discard(struct ring_buffer_event *event)
2339 {
2340 /* array[0] holds the actual length for the discarded event */
2341 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2342 event->type_len = RINGBUF_TYPE_PADDING;
2343 /* time delta must be non zero */
2344 if (!event->time_delta)
2345 event->time_delta = 1;
2346 }
2347
2348 /*
2349 * Decrement the entries to the page that an event is on.
2350 * The event does not even need to exist, only the pointer
2351 * to the page it is on. This may only be called before the commit
2352 * takes place.
2353 */
2354 static inline void
2355 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2356 struct ring_buffer_event *event)
2357 {
2358 unsigned long addr = (unsigned long)event;
2359 struct buffer_page *bpage = cpu_buffer->commit_page;
2360 struct buffer_page *start;
2361
2362 addr &= PAGE_MASK;
2363
2364 /* Do the likely case first */
2365 if (likely(bpage->page == (void *)addr)) {
2366 local_dec(&bpage->entries);
2367 return;
2368 }
2369
2370 /*
2371 * Because the commit page may be on the reader page we
2372 * start with the next page and check the end loop there.
2373 */
2374 rb_inc_page(cpu_buffer, &bpage);
2375 start = bpage;
2376 do {
2377 if (bpage->page == (void *)addr) {
2378 local_dec(&bpage->entries);
2379 return;
2380 }
2381 rb_inc_page(cpu_buffer, &bpage);
2382 } while (bpage != start);
2383
2384 /* commit not part of this buffer?? */
2385 RB_WARN_ON(cpu_buffer, 1);
2386 }
2387
2388 /**
2389 * ring_buffer_commit_discard - discard an event that has not been committed
2390 * @buffer: the ring buffer
2391 * @event: non committed event to discard
2392 *
2393 * Sometimes an event that is in the ring buffer needs to be ignored.
2394 * This function lets the user discard an event in the ring buffer
2395 * and then that event will not be read later.
2396 *
2397 * This function only works if it is called before the the item has been
2398 * committed. It will try to free the event from the ring buffer
2399 * if another event has not been added behind it.
2400 *
2401 * If another event has been added behind it, it will set the event
2402 * up as discarded, and perform the commit.
2403 *
2404 * If this function is called, do not call ring_buffer_unlock_commit on
2405 * the event.
2406 */
2407 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2408 struct ring_buffer_event *event)
2409 {
2410 struct ring_buffer_per_cpu *cpu_buffer;
2411 int cpu;
2412
2413 /* The event is discarded regardless */
2414 rb_event_discard(event);
2415
2416 cpu = smp_processor_id();
2417 cpu_buffer = buffer->buffers[cpu];
2418
2419 /*
2420 * This must only be called if the event has not been
2421 * committed yet. Thus we can assume that preemption
2422 * is still disabled.
2423 */
2424 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2425
2426 rb_decrement_entry(cpu_buffer, event);
2427 if (rb_try_to_discard(cpu_buffer, event))
2428 goto out;
2429
2430 /*
2431 * The commit is still visible by the reader, so we
2432 * must still update the timestamp.
2433 */
2434 rb_update_write_stamp(cpu_buffer, event);
2435 out:
2436 rb_end_commit(cpu_buffer);
2437
2438 trace_recursive_unlock();
2439
2440 /*
2441 * Only the last preempt count needs to restore preemption.
2442 */
2443 if (preempt_count() == 1)
2444 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2445 else
2446 preempt_enable_no_resched_notrace();
2447
2448 }
2449 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2450
2451 /**
2452 * ring_buffer_write - write data to the buffer without reserving
2453 * @buffer: The ring buffer to write to.
2454 * @length: The length of the data being written (excluding the event header)
2455 * @data: The data to write to the buffer.
2456 *
2457 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2458 * one function. If you already have the data to write to the buffer, it
2459 * may be easier to simply call this function.
2460 *
2461 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2462 * and not the length of the event which would hold the header.
2463 */
2464 int ring_buffer_write(struct ring_buffer *buffer,
2465 unsigned long length,
2466 void *data)
2467 {
2468 struct ring_buffer_per_cpu *cpu_buffer;
2469 struct ring_buffer_event *event;
2470 void *body;
2471 int ret = -EBUSY;
2472 int cpu, resched;
2473
2474 if (ring_buffer_flags != RB_BUFFERS_ON)
2475 return -EBUSY;
2476
2477 if (atomic_read(&buffer->record_disabled))
2478 return -EBUSY;
2479
2480 resched = ftrace_preempt_disable();
2481
2482 cpu = raw_smp_processor_id();
2483
2484 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2485 goto out;
2486
2487 cpu_buffer = buffer->buffers[cpu];
2488
2489 if (atomic_read(&cpu_buffer->record_disabled))
2490 goto out;
2491
2492 if (length > BUF_MAX_DATA_SIZE)
2493 goto out;
2494
2495 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2496 if (!event)
2497 goto out;
2498
2499 body = rb_event_data(event);
2500
2501 memcpy(body, data, length);
2502
2503 rb_commit(cpu_buffer, event);
2504
2505 ret = 0;
2506 out:
2507 ftrace_preempt_enable(resched);
2508
2509 return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(ring_buffer_write);
2512
2513 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2514 {
2515 struct buffer_page *reader = cpu_buffer->reader_page;
2516 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2517 struct buffer_page *commit = cpu_buffer->commit_page;
2518
2519 /* In case of error, head will be NULL */
2520 if (unlikely(!head))
2521 return 1;
2522
2523 return reader->read == rb_page_commit(reader) &&
2524 (commit == reader ||
2525 (commit == head &&
2526 head->read == rb_page_commit(commit)));
2527 }
2528
2529 /**
2530 * ring_buffer_record_disable - stop all writes into the buffer
2531 * @buffer: The ring buffer to stop writes to.
2532 *
2533 * This prevents all writes to the buffer. Any attempt to write
2534 * to the buffer after this will fail and return NULL.
2535 *
2536 * The caller should call synchronize_sched() after this.
2537 */
2538 void ring_buffer_record_disable(struct ring_buffer *buffer)
2539 {
2540 atomic_inc(&buffer->record_disabled);
2541 }
2542 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2543
2544 /**
2545 * ring_buffer_record_enable - enable writes to the buffer
2546 * @buffer: The ring buffer to enable writes
2547 *
2548 * Note, multiple disables will need the same number of enables
2549 * to truely enable the writing (much like preempt_disable).
2550 */
2551 void ring_buffer_record_enable(struct ring_buffer *buffer)
2552 {
2553 atomic_dec(&buffer->record_disabled);
2554 }
2555 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2556
2557 /**
2558 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2559 * @buffer: The ring buffer to stop writes to.
2560 * @cpu: The CPU buffer to stop
2561 *
2562 * This prevents all writes to the buffer. Any attempt to write
2563 * to the buffer after this will fail and return NULL.
2564 *
2565 * The caller should call synchronize_sched() after this.
2566 */
2567 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2568 {
2569 struct ring_buffer_per_cpu *cpu_buffer;
2570
2571 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2572 return;
2573
2574 cpu_buffer = buffer->buffers[cpu];
2575 atomic_inc(&cpu_buffer->record_disabled);
2576 }
2577 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2578
2579 /**
2580 * ring_buffer_record_enable_cpu - enable writes to the buffer
2581 * @buffer: The ring buffer to enable writes
2582 * @cpu: The CPU to enable.
2583 *
2584 * Note, multiple disables will need the same number of enables
2585 * to truely enable the writing (much like preempt_disable).
2586 */
2587 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2588 {
2589 struct ring_buffer_per_cpu *cpu_buffer;
2590
2591 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2592 return;
2593
2594 cpu_buffer = buffer->buffers[cpu];
2595 atomic_dec(&cpu_buffer->record_disabled);
2596 }
2597 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2598
2599 /**
2600 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2601 * @buffer: The ring buffer
2602 * @cpu: The per CPU buffer to get the entries from.
2603 */
2604 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2605 {
2606 struct ring_buffer_per_cpu *cpu_buffer;
2607 unsigned long ret;
2608
2609 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2610 return 0;
2611
2612 cpu_buffer = buffer->buffers[cpu];
2613 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2614 - cpu_buffer->read;
2615
2616 return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2619
2620 /**
2621 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2622 * @buffer: The ring buffer
2623 * @cpu: The per CPU buffer to get the number of overruns from
2624 */
2625 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2626 {
2627 struct ring_buffer_per_cpu *cpu_buffer;
2628 unsigned long ret;
2629
2630 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2631 return 0;
2632
2633 cpu_buffer = buffer->buffers[cpu];
2634 ret = local_read(&cpu_buffer->overrun);
2635
2636 return ret;
2637 }
2638 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2639
2640 /**
2641 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2642 * @buffer: The ring buffer
2643 * @cpu: The per CPU buffer to get the number of overruns from
2644 */
2645 unsigned long
2646 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2647 {
2648 struct ring_buffer_per_cpu *cpu_buffer;
2649 unsigned long ret;
2650
2651 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2652 return 0;
2653
2654 cpu_buffer = buffer->buffers[cpu];
2655 ret = local_read(&cpu_buffer->commit_overrun);
2656
2657 return ret;
2658 }
2659 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2660
2661 /**
2662 * ring_buffer_entries - get the number of entries in a buffer
2663 * @buffer: The ring buffer
2664 *
2665 * Returns the total number of entries in the ring buffer
2666 * (all CPU entries)
2667 */
2668 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2669 {
2670 struct ring_buffer_per_cpu *cpu_buffer;
2671 unsigned long entries = 0;
2672 int cpu;
2673
2674 /* if you care about this being correct, lock the buffer */
2675 for_each_buffer_cpu(buffer, cpu) {
2676 cpu_buffer = buffer->buffers[cpu];
2677 entries += (local_read(&cpu_buffer->entries) -
2678 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2679 }
2680
2681 return entries;
2682 }
2683 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2684
2685 /**
2686 * ring_buffer_overruns - get the number of overruns in buffer
2687 * @buffer: The ring buffer
2688 *
2689 * Returns the total number of overruns in the ring buffer
2690 * (all CPU entries)
2691 */
2692 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2693 {
2694 struct ring_buffer_per_cpu *cpu_buffer;
2695 unsigned long overruns = 0;
2696 int cpu;
2697
2698 /* if you care about this being correct, lock the buffer */
2699 for_each_buffer_cpu(buffer, cpu) {
2700 cpu_buffer = buffer->buffers[cpu];
2701 overruns += local_read(&cpu_buffer->overrun);
2702 }
2703
2704 return overruns;
2705 }
2706 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2707
2708 static void rb_iter_reset(struct ring_buffer_iter *iter)
2709 {
2710 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2711
2712 /* Iterator usage is expected to have record disabled */
2713 if (list_empty(&cpu_buffer->reader_page->list)) {
2714 iter->head_page = rb_set_head_page(cpu_buffer);
2715 if (unlikely(!iter->head_page))
2716 return;
2717 iter->head = iter->head_page->read;
2718 } else {
2719 iter->head_page = cpu_buffer->reader_page;
2720 iter->head = cpu_buffer->reader_page->read;
2721 }
2722 if (iter->head)
2723 iter->read_stamp = cpu_buffer->read_stamp;
2724 else
2725 iter->read_stamp = iter->head_page->page->time_stamp;
2726 }
2727
2728 /**
2729 * ring_buffer_iter_reset - reset an iterator
2730 * @iter: The iterator to reset
2731 *
2732 * Resets the iterator, so that it will start from the beginning
2733 * again.
2734 */
2735 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2736 {
2737 struct ring_buffer_per_cpu *cpu_buffer;
2738 unsigned long flags;
2739
2740 if (!iter)
2741 return;
2742
2743 cpu_buffer = iter->cpu_buffer;
2744
2745 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2746 rb_iter_reset(iter);
2747 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2748 }
2749 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2750
2751 /**
2752 * ring_buffer_iter_empty - check if an iterator has no more to read
2753 * @iter: The iterator to check
2754 */
2755 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2756 {
2757 struct ring_buffer_per_cpu *cpu_buffer;
2758
2759 cpu_buffer = iter->cpu_buffer;
2760
2761 return iter->head_page == cpu_buffer->commit_page &&
2762 iter->head == rb_commit_index(cpu_buffer);
2763 }
2764 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2765
2766 static void
2767 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2768 struct ring_buffer_event *event)
2769 {
2770 u64 delta;
2771
2772 switch (event->type_len) {
2773 case RINGBUF_TYPE_PADDING:
2774 return;
2775
2776 case RINGBUF_TYPE_TIME_EXTEND:
2777 delta = event->array[0];
2778 delta <<= TS_SHIFT;
2779 delta += event->time_delta;
2780 cpu_buffer->read_stamp += delta;
2781 return;
2782
2783 case RINGBUF_TYPE_TIME_STAMP:
2784 /* FIXME: not implemented */
2785 return;
2786
2787 case RINGBUF_TYPE_DATA:
2788 cpu_buffer->read_stamp += event->time_delta;
2789 return;
2790
2791 default:
2792 BUG();
2793 }
2794 return;
2795 }
2796
2797 static void
2798 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2799 struct ring_buffer_event *event)
2800 {
2801 u64 delta;
2802
2803 switch (event->type_len) {
2804 case RINGBUF_TYPE_PADDING:
2805 return;
2806
2807 case RINGBUF_TYPE_TIME_EXTEND:
2808 delta = event->array[0];
2809 delta <<= TS_SHIFT;
2810 delta += event->time_delta;
2811 iter->read_stamp += delta;
2812 return;
2813
2814 case RINGBUF_TYPE_TIME_STAMP:
2815 /* FIXME: not implemented */
2816 return;
2817
2818 case RINGBUF_TYPE_DATA:
2819 iter->read_stamp += event->time_delta;
2820 return;
2821
2822 default:
2823 BUG();
2824 }
2825 return;
2826 }
2827
2828 static struct buffer_page *
2829 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2830 {
2831 struct buffer_page *reader = NULL;
2832 unsigned long flags;
2833 int nr_loops = 0;
2834 int ret;
2835
2836 local_irq_save(flags);
2837 arch_spin_lock(&cpu_buffer->lock);
2838
2839 again:
2840 /*
2841 * This should normally only loop twice. But because the
2842 * start of the reader inserts an empty page, it causes
2843 * a case where we will loop three times. There should be no
2844 * reason to loop four times (that I know of).
2845 */
2846 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2847 reader = NULL;
2848 goto out;
2849 }
2850
2851 reader = cpu_buffer->reader_page;
2852
2853 /* If there's more to read, return this page */
2854 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2855 goto out;
2856
2857 /* Never should we have an index greater than the size */
2858 if (RB_WARN_ON(cpu_buffer,
2859 cpu_buffer->reader_page->read > rb_page_size(reader)))
2860 goto out;
2861
2862 /* check if we caught up to the tail */
2863 reader = NULL;
2864 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2865 goto out;
2866
2867 /*
2868 * Reset the reader page to size zero.
2869 */
2870 local_set(&cpu_buffer->reader_page->write, 0);
2871 local_set(&cpu_buffer->reader_page->entries, 0);
2872 local_set(&cpu_buffer->reader_page->page->commit, 0);
2873
2874 spin:
2875 /*
2876 * Splice the empty reader page into the list around the head.
2877 */
2878 reader = rb_set_head_page(cpu_buffer);
2879 cpu_buffer->reader_page->list.next = reader->list.next;
2880 cpu_buffer->reader_page->list.prev = reader->list.prev;
2881
2882 /*
2883 * cpu_buffer->pages just needs to point to the buffer, it
2884 * has no specific buffer page to point to. Lets move it out
2885 * of our way so we don't accidently swap it.
2886 */
2887 cpu_buffer->pages = reader->list.prev;
2888
2889 /* The reader page will be pointing to the new head */
2890 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2891
2892 /*
2893 * Here's the tricky part.
2894 *
2895 * We need to move the pointer past the header page.
2896 * But we can only do that if a writer is not currently
2897 * moving it. The page before the header page has the
2898 * flag bit '1' set if it is pointing to the page we want.
2899 * but if the writer is in the process of moving it
2900 * than it will be '2' or already moved '0'.
2901 */
2902
2903 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2904
2905 /*
2906 * If we did not convert it, then we must try again.
2907 */
2908 if (!ret)
2909 goto spin;
2910
2911 /*
2912 * Yeah! We succeeded in replacing the page.
2913 *
2914 * Now make the new head point back to the reader page.
2915 */
2916 reader->list.next->prev = &cpu_buffer->reader_page->list;
2917 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2918
2919 /* Finally update the reader page to the new head */
2920 cpu_buffer->reader_page = reader;
2921 rb_reset_reader_page(cpu_buffer);
2922
2923 goto again;
2924
2925 out:
2926 arch_spin_unlock(&cpu_buffer->lock);
2927 local_irq_restore(flags);
2928
2929 return reader;
2930 }
2931
2932 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2933 {
2934 struct ring_buffer_event *event;
2935 struct buffer_page *reader;
2936 unsigned length;
2937
2938 reader = rb_get_reader_page(cpu_buffer);
2939
2940 /* This function should not be called when buffer is empty */
2941 if (RB_WARN_ON(cpu_buffer, !reader))
2942 return;
2943
2944 event = rb_reader_event(cpu_buffer);
2945
2946 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2947 cpu_buffer->read++;
2948
2949 rb_update_read_stamp(cpu_buffer, event);
2950
2951 length = rb_event_length(event);
2952 cpu_buffer->reader_page->read += length;
2953 }
2954
2955 static void rb_advance_iter(struct ring_buffer_iter *iter)
2956 {
2957 struct ring_buffer *buffer;
2958 struct ring_buffer_per_cpu *cpu_buffer;
2959 struct ring_buffer_event *event;
2960 unsigned length;
2961
2962 cpu_buffer = iter->cpu_buffer;
2963 buffer = cpu_buffer->buffer;
2964
2965 /*
2966 * Check if we are at the end of the buffer.
2967 */
2968 if (iter->head >= rb_page_size(iter->head_page)) {
2969 /* discarded commits can make the page empty */
2970 if (iter->head_page == cpu_buffer->commit_page)
2971 return;
2972 rb_inc_iter(iter);
2973 return;
2974 }
2975
2976 event = rb_iter_head_event(iter);
2977
2978 length = rb_event_length(event);
2979
2980 /*
2981 * This should not be called to advance the header if we are
2982 * at the tail of the buffer.
2983 */
2984 if (RB_WARN_ON(cpu_buffer,
2985 (iter->head_page == cpu_buffer->commit_page) &&
2986 (iter->head + length > rb_commit_index(cpu_buffer))))
2987 return;
2988
2989 rb_update_iter_read_stamp(iter, event);
2990
2991 iter->head += length;
2992
2993 /* check for end of page padding */
2994 if ((iter->head >= rb_page_size(iter->head_page)) &&
2995 (iter->head_page != cpu_buffer->commit_page))
2996 rb_advance_iter(iter);
2997 }
2998
2999 static struct ring_buffer_event *
3000 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3001 {
3002 struct ring_buffer_event *event;
3003 struct buffer_page *reader;
3004 int nr_loops = 0;
3005
3006 again:
3007 /*
3008 * We repeat when a timestamp is encountered. It is possible
3009 * to get multiple timestamps from an interrupt entering just
3010 * as one timestamp is about to be written, or from discarded
3011 * commits. The most that we can have is the number on a single page.
3012 */
3013 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3014 return NULL;
3015
3016 reader = rb_get_reader_page(cpu_buffer);
3017 if (!reader)
3018 return NULL;
3019
3020 event = rb_reader_event(cpu_buffer);
3021
3022 switch (event->type_len) {
3023 case RINGBUF_TYPE_PADDING:
3024 if (rb_null_event(event))
3025 RB_WARN_ON(cpu_buffer, 1);
3026 /*
3027 * Because the writer could be discarding every
3028 * event it creates (which would probably be bad)
3029 * if we were to go back to "again" then we may never
3030 * catch up, and will trigger the warn on, or lock
3031 * the box. Return the padding, and we will release
3032 * the current locks, and try again.
3033 */
3034 return event;
3035
3036 case RINGBUF_TYPE_TIME_EXTEND:
3037 /* Internal data, OK to advance */
3038 rb_advance_reader(cpu_buffer);
3039 goto again;
3040
3041 case RINGBUF_TYPE_TIME_STAMP:
3042 /* FIXME: not implemented */
3043 rb_advance_reader(cpu_buffer);
3044 goto again;
3045
3046 case RINGBUF_TYPE_DATA:
3047 if (ts) {
3048 *ts = cpu_buffer->read_stamp + event->time_delta;
3049 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3050 cpu_buffer->cpu, ts);
3051 }
3052 return event;
3053
3054 default:
3055 BUG();
3056 }
3057
3058 return NULL;
3059 }
3060 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3061
3062 static struct ring_buffer_event *
3063 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3064 {
3065 struct ring_buffer *buffer;
3066 struct ring_buffer_per_cpu *cpu_buffer;
3067 struct ring_buffer_event *event;
3068 int nr_loops = 0;
3069
3070 if (ring_buffer_iter_empty(iter))
3071 return NULL;
3072
3073 cpu_buffer = iter->cpu_buffer;
3074 buffer = cpu_buffer->buffer;
3075
3076 again:
3077 /*
3078 * We repeat when a timestamp is encountered.
3079 * We can get multiple timestamps by nested interrupts or also
3080 * if filtering is on (discarding commits). Since discarding
3081 * commits can be frequent we can get a lot of timestamps.
3082 * But we limit them by not adding timestamps if they begin
3083 * at the start of a page.
3084 */
3085 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3086 return NULL;
3087
3088 if (rb_per_cpu_empty(cpu_buffer))
3089 return NULL;
3090
3091 event = rb_iter_head_event(iter);
3092
3093 switch (event->type_len) {
3094 case RINGBUF_TYPE_PADDING:
3095 if (rb_null_event(event)) {
3096 rb_inc_iter(iter);
3097 goto again;
3098 }
3099 rb_advance_iter(iter);
3100 return event;
3101
3102 case RINGBUF_TYPE_TIME_EXTEND:
3103 /* Internal data, OK to advance */
3104 rb_advance_iter(iter);
3105 goto again;
3106
3107 case RINGBUF_TYPE_TIME_STAMP:
3108 /* FIXME: not implemented */
3109 rb_advance_iter(iter);
3110 goto again;
3111
3112 case RINGBUF_TYPE_DATA:
3113 if (ts) {
3114 *ts = iter->read_stamp + event->time_delta;
3115 ring_buffer_normalize_time_stamp(buffer,
3116 cpu_buffer->cpu, ts);
3117 }
3118 return event;
3119
3120 default:
3121 BUG();
3122 }
3123
3124 return NULL;
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3127
3128 static inline int rb_ok_to_lock(void)
3129 {
3130 /*
3131 * If an NMI die dumps out the content of the ring buffer
3132 * do not grab locks. We also permanently disable the ring
3133 * buffer too. A one time deal is all you get from reading
3134 * the ring buffer from an NMI.
3135 */
3136 if (likely(!in_nmi()))
3137 return 1;
3138
3139 tracing_off_permanent();
3140 return 0;
3141 }
3142
3143 /**
3144 * ring_buffer_peek - peek at the next event to be read
3145 * @buffer: The ring buffer to read
3146 * @cpu: The cpu to peak at
3147 * @ts: The timestamp counter of this event.
3148 *
3149 * This will return the event that will be read next, but does
3150 * not consume the data.
3151 */
3152 struct ring_buffer_event *
3153 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3154 {
3155 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3156 struct ring_buffer_event *event;
3157 unsigned long flags;
3158 int dolock;
3159
3160 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3161 return NULL;
3162
3163 dolock = rb_ok_to_lock();
3164 again:
3165 local_irq_save(flags);
3166 if (dolock)
3167 spin_lock(&cpu_buffer->reader_lock);
3168 event = rb_buffer_peek(cpu_buffer, ts);
3169 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3170 rb_advance_reader(cpu_buffer);
3171 if (dolock)
3172 spin_unlock(&cpu_buffer->reader_lock);
3173 local_irq_restore(flags);
3174
3175 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3176 goto again;
3177
3178 return event;
3179 }
3180
3181 /**
3182 * ring_buffer_iter_peek - peek at the next event to be read
3183 * @iter: The ring buffer iterator
3184 * @ts: The timestamp counter of this event.
3185 *
3186 * This will return the event that will be read next, but does
3187 * not increment the iterator.
3188 */
3189 struct ring_buffer_event *
3190 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3191 {
3192 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3193 struct ring_buffer_event *event;
3194 unsigned long flags;
3195
3196 again:
3197 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3198 event = rb_iter_peek(iter, ts);
3199 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3200
3201 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3202 goto again;
3203
3204 return event;
3205 }
3206
3207 /**
3208 * ring_buffer_consume - return an event and consume it
3209 * @buffer: The ring buffer to get the next event from
3210 *
3211 * Returns the next event in the ring buffer, and that event is consumed.
3212 * Meaning, that sequential reads will keep returning a different event,
3213 * and eventually empty the ring buffer if the producer is slower.
3214 */
3215 struct ring_buffer_event *
3216 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3217 {
3218 struct ring_buffer_per_cpu *cpu_buffer;
3219 struct ring_buffer_event *event = NULL;
3220 unsigned long flags;
3221 int dolock;
3222
3223 dolock = rb_ok_to_lock();
3224
3225 again:
3226 /* might be called in atomic */
3227 preempt_disable();
3228
3229 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3230 goto out;
3231
3232 cpu_buffer = buffer->buffers[cpu];
3233 local_irq_save(flags);
3234 if (dolock)
3235 spin_lock(&cpu_buffer->reader_lock);
3236
3237 event = rb_buffer_peek(cpu_buffer, ts);
3238 if (event)
3239 rb_advance_reader(cpu_buffer);
3240
3241 if (dolock)
3242 spin_unlock(&cpu_buffer->reader_lock);
3243 local_irq_restore(flags);
3244
3245 out:
3246 preempt_enable();
3247
3248 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3249 goto again;
3250
3251 return event;
3252 }
3253 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3254
3255 /**
3256 * ring_buffer_read_start - start a non consuming read of the buffer
3257 * @buffer: The ring buffer to read from
3258 * @cpu: The cpu buffer to iterate over
3259 *
3260 * This starts up an iteration through the buffer. It also disables
3261 * the recording to the buffer until the reading is finished.
3262 * This prevents the reading from being corrupted. This is not
3263 * a consuming read, so a producer is not expected.
3264 *
3265 * Must be paired with ring_buffer_finish.
3266 */
3267 struct ring_buffer_iter *
3268 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3269 {
3270 struct ring_buffer_per_cpu *cpu_buffer;
3271 struct ring_buffer_iter *iter;
3272 unsigned long flags;
3273
3274 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3275 return NULL;
3276
3277 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3278 if (!iter)
3279 return NULL;
3280
3281 cpu_buffer = buffer->buffers[cpu];
3282
3283 iter->cpu_buffer = cpu_buffer;
3284
3285 atomic_inc(&cpu_buffer->record_disabled);
3286 synchronize_sched();
3287
3288 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3289 arch_spin_lock(&cpu_buffer->lock);
3290 rb_iter_reset(iter);
3291 arch_spin_unlock(&cpu_buffer->lock);
3292 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3293
3294 return iter;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3297
3298 /**
3299 * ring_buffer_finish - finish reading the iterator of the buffer
3300 * @iter: The iterator retrieved by ring_buffer_start
3301 *
3302 * This re-enables the recording to the buffer, and frees the
3303 * iterator.
3304 */
3305 void
3306 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3307 {
3308 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3309
3310 atomic_dec(&cpu_buffer->record_disabled);
3311 kfree(iter);
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3314
3315 /**
3316 * ring_buffer_read - read the next item in the ring buffer by the iterator
3317 * @iter: The ring buffer iterator
3318 * @ts: The time stamp of the event read.
3319 *
3320 * This reads the next event in the ring buffer and increments the iterator.
3321 */
3322 struct ring_buffer_event *
3323 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3324 {
3325 struct ring_buffer_event *event;
3326 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3327 unsigned long flags;
3328
3329 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3330 again:
3331 event = rb_iter_peek(iter, ts);
3332 if (!event)
3333 goto out;
3334
3335 if (event->type_len == RINGBUF_TYPE_PADDING)
3336 goto again;
3337
3338 rb_advance_iter(iter);
3339 out:
3340 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3341
3342 return event;
3343 }
3344 EXPORT_SYMBOL_GPL(ring_buffer_read);
3345
3346 /**
3347 * ring_buffer_size - return the size of the ring buffer (in bytes)
3348 * @buffer: The ring buffer.
3349 */
3350 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3351 {
3352 return BUF_PAGE_SIZE * buffer->pages;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_size);
3355
3356 static void
3357 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3358 {
3359 rb_head_page_deactivate(cpu_buffer);
3360
3361 cpu_buffer->head_page
3362 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3363 local_set(&cpu_buffer->head_page->write, 0);
3364 local_set(&cpu_buffer->head_page->entries, 0);
3365 local_set(&cpu_buffer->head_page->page->commit, 0);
3366
3367 cpu_buffer->head_page->read = 0;
3368
3369 cpu_buffer->tail_page = cpu_buffer->head_page;
3370 cpu_buffer->commit_page = cpu_buffer->head_page;
3371
3372 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3373 local_set(&cpu_buffer->reader_page->write, 0);
3374 local_set(&cpu_buffer->reader_page->entries, 0);
3375 local_set(&cpu_buffer->reader_page->page->commit, 0);
3376 cpu_buffer->reader_page->read = 0;
3377
3378 local_set(&cpu_buffer->commit_overrun, 0);
3379 local_set(&cpu_buffer->overrun, 0);
3380 local_set(&cpu_buffer->entries, 0);
3381 local_set(&cpu_buffer->committing, 0);
3382 local_set(&cpu_buffer->commits, 0);
3383 cpu_buffer->read = 0;
3384
3385 cpu_buffer->write_stamp = 0;
3386 cpu_buffer->read_stamp = 0;
3387
3388 rb_head_page_activate(cpu_buffer);
3389 }
3390
3391 /**
3392 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3393 * @buffer: The ring buffer to reset a per cpu buffer of
3394 * @cpu: The CPU buffer to be reset
3395 */
3396 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3397 {
3398 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3399 unsigned long flags;
3400
3401 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3402 return;
3403
3404 atomic_inc(&cpu_buffer->record_disabled);
3405
3406 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3407
3408 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3409 goto out;
3410
3411 arch_spin_lock(&cpu_buffer->lock);
3412
3413 rb_reset_cpu(cpu_buffer);
3414
3415 arch_spin_unlock(&cpu_buffer->lock);
3416
3417 out:
3418 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3419
3420 atomic_dec(&cpu_buffer->record_disabled);
3421 }
3422 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3423
3424 /**
3425 * ring_buffer_reset - reset a ring buffer
3426 * @buffer: The ring buffer to reset all cpu buffers
3427 */
3428 void ring_buffer_reset(struct ring_buffer *buffer)
3429 {
3430 int cpu;
3431
3432 for_each_buffer_cpu(buffer, cpu)
3433 ring_buffer_reset_cpu(buffer, cpu);
3434 }
3435 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3436
3437 /**
3438 * rind_buffer_empty - is the ring buffer empty?
3439 * @buffer: The ring buffer to test
3440 */
3441 int ring_buffer_empty(struct ring_buffer *buffer)
3442 {
3443 struct ring_buffer_per_cpu *cpu_buffer;
3444 unsigned long flags;
3445 int dolock;
3446 int cpu;
3447 int ret;
3448
3449 dolock = rb_ok_to_lock();
3450
3451 /* yes this is racy, but if you don't like the race, lock the buffer */
3452 for_each_buffer_cpu(buffer, cpu) {
3453 cpu_buffer = buffer->buffers[cpu];
3454 local_irq_save(flags);
3455 if (dolock)
3456 spin_lock(&cpu_buffer->reader_lock);
3457 ret = rb_per_cpu_empty(cpu_buffer);
3458 if (dolock)
3459 spin_unlock(&cpu_buffer->reader_lock);
3460 local_irq_restore(flags);
3461
3462 if (!ret)
3463 return 0;
3464 }
3465
3466 return 1;
3467 }
3468 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3469
3470 /**
3471 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3472 * @buffer: The ring buffer
3473 * @cpu: The CPU buffer to test
3474 */
3475 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3476 {
3477 struct ring_buffer_per_cpu *cpu_buffer;
3478 unsigned long flags;
3479 int dolock;
3480 int ret;
3481
3482 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3483 return 1;
3484
3485 dolock = rb_ok_to_lock();
3486
3487 cpu_buffer = buffer->buffers[cpu];
3488 local_irq_save(flags);
3489 if (dolock)
3490 spin_lock(&cpu_buffer->reader_lock);
3491 ret = rb_per_cpu_empty(cpu_buffer);
3492 if (dolock)
3493 spin_unlock(&cpu_buffer->reader_lock);
3494 local_irq_restore(flags);
3495
3496 return ret;
3497 }
3498 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3499
3500 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3501 /**
3502 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3503 * @buffer_a: One buffer to swap with
3504 * @buffer_b: The other buffer to swap with
3505 *
3506 * This function is useful for tracers that want to take a "snapshot"
3507 * of a CPU buffer and has another back up buffer lying around.
3508 * it is expected that the tracer handles the cpu buffer not being
3509 * used at the moment.
3510 */
3511 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3512 struct ring_buffer *buffer_b, int cpu)
3513 {
3514 struct ring_buffer_per_cpu *cpu_buffer_a;
3515 struct ring_buffer_per_cpu *cpu_buffer_b;
3516 int ret = -EINVAL;
3517
3518 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3519 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3520 goto out;
3521
3522 /* At least make sure the two buffers are somewhat the same */
3523 if (buffer_a->pages != buffer_b->pages)
3524 goto out;
3525
3526 ret = -EAGAIN;
3527
3528 if (ring_buffer_flags != RB_BUFFERS_ON)
3529 goto out;
3530
3531 if (atomic_read(&buffer_a->record_disabled))
3532 goto out;
3533
3534 if (atomic_read(&buffer_b->record_disabled))
3535 goto out;
3536
3537 cpu_buffer_a = buffer_a->buffers[cpu];
3538 cpu_buffer_b = buffer_b->buffers[cpu];
3539
3540 if (atomic_read(&cpu_buffer_a->record_disabled))
3541 goto out;
3542
3543 if (atomic_read(&cpu_buffer_b->record_disabled))
3544 goto out;
3545
3546 /*
3547 * We can't do a synchronize_sched here because this
3548 * function can be called in atomic context.
3549 * Normally this will be called from the same CPU as cpu.
3550 * If not it's up to the caller to protect this.
3551 */
3552 atomic_inc(&cpu_buffer_a->record_disabled);
3553 atomic_inc(&cpu_buffer_b->record_disabled);
3554
3555 ret = -EBUSY;
3556 if (local_read(&cpu_buffer_a->committing))
3557 goto out_dec;
3558 if (local_read(&cpu_buffer_b->committing))
3559 goto out_dec;
3560
3561 buffer_a->buffers[cpu] = cpu_buffer_b;
3562 buffer_b->buffers[cpu] = cpu_buffer_a;
3563
3564 cpu_buffer_b->buffer = buffer_a;
3565 cpu_buffer_a->buffer = buffer_b;
3566
3567 ret = 0;
3568
3569 out_dec:
3570 atomic_dec(&cpu_buffer_a->record_disabled);
3571 atomic_dec(&cpu_buffer_b->record_disabled);
3572 out:
3573 return ret;
3574 }
3575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3577
3578 /**
3579 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3580 * @buffer: the buffer to allocate for.
3581 *
3582 * This function is used in conjunction with ring_buffer_read_page.
3583 * When reading a full page from the ring buffer, these functions
3584 * can be used to speed up the process. The calling function should
3585 * allocate a few pages first with this function. Then when it
3586 * needs to get pages from the ring buffer, it passes the result
3587 * of this function into ring_buffer_read_page, which will swap
3588 * the page that was allocated, with the read page of the buffer.
3589 *
3590 * Returns:
3591 * The page allocated, or NULL on error.
3592 */
3593 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3594 {
3595 struct buffer_data_page *bpage;
3596 unsigned long addr;
3597
3598 addr = __get_free_page(GFP_KERNEL);
3599 if (!addr)
3600 return NULL;
3601
3602 bpage = (void *)addr;
3603
3604 rb_init_page(bpage);
3605
3606 return bpage;
3607 }
3608 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3609
3610 /**
3611 * ring_buffer_free_read_page - free an allocated read page
3612 * @buffer: the buffer the page was allocate for
3613 * @data: the page to free
3614 *
3615 * Free a page allocated from ring_buffer_alloc_read_page.
3616 */
3617 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3618 {
3619 free_page((unsigned long)data);
3620 }
3621 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3622
3623 /**
3624 * ring_buffer_read_page - extract a page from the ring buffer
3625 * @buffer: buffer to extract from
3626 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3627 * @len: amount to extract
3628 * @cpu: the cpu of the buffer to extract
3629 * @full: should the extraction only happen when the page is full.
3630 *
3631 * This function will pull out a page from the ring buffer and consume it.
3632 * @data_page must be the address of the variable that was returned
3633 * from ring_buffer_alloc_read_page. This is because the page might be used
3634 * to swap with a page in the ring buffer.
3635 *
3636 * for example:
3637 * rpage = ring_buffer_alloc_read_page(buffer);
3638 * if (!rpage)
3639 * return error;
3640 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3641 * if (ret >= 0)
3642 * process_page(rpage, ret);
3643 *
3644 * When @full is set, the function will not return true unless
3645 * the writer is off the reader page.
3646 *
3647 * Note: it is up to the calling functions to handle sleeps and wakeups.
3648 * The ring buffer can be used anywhere in the kernel and can not
3649 * blindly call wake_up. The layer that uses the ring buffer must be
3650 * responsible for that.
3651 *
3652 * Returns:
3653 * >=0 if data has been transferred, returns the offset of consumed data.
3654 * <0 if no data has been transferred.
3655 */
3656 int ring_buffer_read_page(struct ring_buffer *buffer,
3657 void **data_page, size_t len, int cpu, int full)
3658 {
3659 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3660 struct ring_buffer_event *event;
3661 struct buffer_data_page *bpage;
3662 struct buffer_page *reader;
3663 unsigned long flags;
3664 unsigned int commit;
3665 unsigned int read;
3666 u64 save_timestamp;
3667 int ret = -1;
3668
3669 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3670 goto out;
3671
3672 /*
3673 * If len is not big enough to hold the page header, then
3674 * we can not copy anything.
3675 */
3676 if (len <= BUF_PAGE_HDR_SIZE)
3677 goto out;
3678
3679 len -= BUF_PAGE_HDR_SIZE;
3680
3681 if (!data_page)
3682 goto out;
3683
3684 bpage = *data_page;
3685 if (!bpage)
3686 goto out;
3687
3688 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3689
3690 reader = rb_get_reader_page(cpu_buffer);
3691 if (!reader)
3692 goto out_unlock;
3693
3694 event = rb_reader_event(cpu_buffer);
3695
3696 read = reader->read;
3697 commit = rb_page_commit(reader);
3698
3699 /*
3700 * If this page has been partially read or
3701 * if len is not big enough to read the rest of the page or
3702 * a writer is still on the page, then
3703 * we must copy the data from the page to the buffer.
3704 * Otherwise, we can simply swap the page with the one passed in.
3705 */
3706 if (read || (len < (commit - read)) ||
3707 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3708 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3709 unsigned int rpos = read;
3710 unsigned int pos = 0;
3711 unsigned int size;
3712
3713 if (full)
3714 goto out_unlock;
3715
3716 if (len > (commit - read))
3717 len = (commit - read);
3718
3719 size = rb_event_length(event);
3720
3721 if (len < size)
3722 goto out_unlock;
3723
3724 /* save the current timestamp, since the user will need it */
3725 save_timestamp = cpu_buffer->read_stamp;
3726
3727 /* Need to copy one event at a time */
3728 do {
3729 memcpy(bpage->data + pos, rpage->data + rpos, size);
3730
3731 len -= size;
3732
3733 rb_advance_reader(cpu_buffer);
3734 rpos = reader->read;
3735 pos += size;
3736
3737 event = rb_reader_event(cpu_buffer);
3738 size = rb_event_length(event);
3739 } while (len > size);
3740
3741 /* update bpage */
3742 local_set(&bpage->commit, pos);
3743 bpage->time_stamp = save_timestamp;
3744
3745 /* we copied everything to the beginning */
3746 read = 0;
3747 } else {
3748 /* update the entry counter */
3749 cpu_buffer->read += rb_page_entries(reader);
3750
3751 /* swap the pages */
3752 rb_init_page(bpage);
3753 bpage = reader->page;
3754 reader->page = *data_page;
3755 local_set(&reader->write, 0);
3756 local_set(&reader->entries, 0);
3757 reader->read = 0;
3758 *data_page = bpage;
3759 }
3760 ret = read;
3761
3762 out_unlock:
3763 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3764
3765 out:
3766 return ret;
3767 }
3768 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3769
3770 #ifdef CONFIG_TRACING
3771 static ssize_t
3772 rb_simple_read(struct file *filp, char __user *ubuf,
3773 size_t cnt, loff_t *ppos)
3774 {
3775 unsigned long *p = filp->private_data;
3776 char buf[64];
3777 int r;
3778
3779 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3780 r = sprintf(buf, "permanently disabled\n");
3781 else
3782 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3783
3784 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3785 }
3786
3787 static ssize_t
3788 rb_simple_write(struct file *filp, const char __user *ubuf,
3789 size_t cnt, loff_t *ppos)
3790 {
3791 unsigned long *p = filp->private_data;
3792 char buf[64];
3793 unsigned long val;
3794 int ret;
3795
3796 if (cnt >= sizeof(buf))
3797 return -EINVAL;
3798
3799 if (copy_from_user(&buf, ubuf, cnt))
3800 return -EFAULT;
3801
3802 buf[cnt] = 0;
3803
3804 ret = strict_strtoul(buf, 10, &val);
3805 if (ret < 0)
3806 return ret;
3807
3808 if (val)
3809 set_bit(RB_BUFFERS_ON_BIT, p);
3810 else
3811 clear_bit(RB_BUFFERS_ON_BIT, p);
3812
3813 (*ppos)++;
3814
3815 return cnt;
3816 }
3817
3818 static const struct file_operations rb_simple_fops = {
3819 .open = tracing_open_generic,
3820 .read = rb_simple_read,
3821 .write = rb_simple_write,
3822 };
3823
3824
3825 static __init int rb_init_debugfs(void)
3826 {
3827 struct dentry *d_tracer;
3828
3829 d_tracer = tracing_init_dentry();
3830
3831 trace_create_file("tracing_on", 0644, d_tracer,
3832 &ring_buffer_flags, &rb_simple_fops);
3833
3834 return 0;
3835 }
3836
3837 fs_initcall(rb_init_debugfs);
3838 #endif
3839
3840 #ifdef CONFIG_HOTPLUG_CPU
3841 static int rb_cpu_notify(struct notifier_block *self,
3842 unsigned long action, void *hcpu)
3843 {
3844 struct ring_buffer *buffer =
3845 container_of(self, struct ring_buffer, cpu_notify);
3846 long cpu = (long)hcpu;
3847
3848 switch (action) {
3849 case CPU_UP_PREPARE:
3850 case CPU_UP_PREPARE_FROZEN:
3851 if (cpumask_test_cpu(cpu, buffer->cpumask))
3852 return NOTIFY_OK;
3853
3854 buffer->buffers[cpu] =
3855 rb_allocate_cpu_buffer(buffer, cpu);
3856 if (!buffer->buffers[cpu]) {
3857 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3858 cpu);
3859 return NOTIFY_OK;
3860 }
3861 smp_wmb();
3862 cpumask_set_cpu(cpu, buffer->cpumask);
3863 break;
3864 case CPU_DOWN_PREPARE:
3865 case CPU_DOWN_PREPARE_FROZEN:
3866 /*
3867 * Do nothing.
3868 * If we were to free the buffer, then the user would
3869 * lose any trace that was in the buffer.
3870 */
3871 break;
3872 default:
3873 break;
3874 }
3875 return NOTIFY_OK;
3876 }
3877 #endif
This page took 0.172928 seconds and 6 git commands to generate.