Btrfs: make the chunk allocator completely tree lockless
[deliverable/linux.git] / kernel / trace / trace_clock.c
1 /*
2 * tracing clocks
3 *
4 * Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Implements 3 trace clock variants, with differing scalability/precision
7 * tradeoffs:
8 *
9 * - local: CPU-local trace clock
10 * - medium: scalable global clock with some jitter
11 * - global: globally monotonic, serialized clock
12 *
13 * Tracer plugins will chose a default from these clocks.
14 */
15 #include <linux/spinlock.h>
16 #include <linux/irqflags.h>
17 #include <linux/hardirq.h>
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/sched.h>
21 #include <linux/ktime.h>
22 #include <linux/trace_clock.h>
23
24 /*
25 * trace_clock_local(): the simplest and least coherent tracing clock.
26 *
27 * Useful for tracing that does not cross to other CPUs nor
28 * does it go through idle events.
29 */
30 u64 notrace trace_clock_local(void)
31 {
32 u64 clock;
33
34 /*
35 * sched_clock() is an architecture implemented, fast, scalable,
36 * lockless clock. It is not guaranteed to be coherent across
37 * CPUs, nor across CPU idle events.
38 */
39 preempt_disable_notrace();
40 clock = sched_clock();
41 preempt_enable_notrace();
42
43 return clock;
44 }
45 EXPORT_SYMBOL_GPL(trace_clock_local);
46
47 /*
48 * trace_clock(): 'between' trace clock. Not completely serialized,
49 * but not completely incorrect when crossing CPUs either.
50 *
51 * This is based on cpu_clock(), which will allow at most ~1 jiffy of
52 * jitter between CPUs. So it's a pretty scalable clock, but there
53 * can be offsets in the trace data.
54 */
55 u64 notrace trace_clock(void)
56 {
57 return local_clock();
58 }
59
60
61 /*
62 * trace_clock_global(): special globally coherent trace clock
63 *
64 * It has higher overhead than the other trace clocks but is still
65 * an order of magnitude faster than GTOD derived hardware clocks.
66 *
67 * Used by plugins that need globally coherent timestamps.
68 */
69
70 /* keep prev_time and lock in the same cacheline. */
71 static struct {
72 u64 prev_time;
73 arch_spinlock_t lock;
74 } trace_clock_struct ____cacheline_aligned_in_smp =
75 {
76 .lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
77 };
78
79 u64 notrace trace_clock_global(void)
80 {
81 unsigned long flags;
82 int this_cpu;
83 u64 now;
84
85 local_irq_save(flags);
86
87 this_cpu = raw_smp_processor_id();
88 now = sched_clock_cpu(this_cpu);
89 /*
90 * If in an NMI context then dont risk lockups and return the
91 * cpu_clock() time:
92 */
93 if (unlikely(in_nmi()))
94 goto out;
95
96 arch_spin_lock(&trace_clock_struct.lock);
97
98 /*
99 * TODO: if this happens often then maybe we should reset
100 * my_scd->clock to prev_time+1, to make sure
101 * we start ticking with the local clock from now on?
102 */
103 if ((s64)(now - trace_clock_struct.prev_time) < 0)
104 now = trace_clock_struct.prev_time + 1;
105
106 trace_clock_struct.prev_time = now;
107
108 arch_spin_unlock(&trace_clock_struct.lock);
109
110 out:
111 local_irq_restore(flags);
112
113 return now;
114 }
115
116 static atomic64_t trace_counter;
117
118 /*
119 * trace_clock_counter(): simply an atomic counter.
120 * Use the trace_counter "counter" for cases where you do not care
121 * about timings, but are interested in strict ordering.
122 */
123 u64 notrace trace_clock_counter(void)
124 {
125 return atomic64_add_return(1, &trace_counter);
126 }
This page took 0.051429 seconds and 5 git commands to generate.