workqueue: make GCWQ_FREEZING a pool flag
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45
46 #include "workqueue_internal.h"
47
48 enum {
49 /*
50 * worker_pool flags
51 *
52 * A bound pool is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The pool behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
64 */
65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
68 POOL_FREEZING = 1 << 3, /* freeze in progress */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
77
78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
79 WORKER_CPU_INTENSIVE,
80
81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
82
83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
84
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
99 HIGHPRI_NICE_LEVEL = -20,
100 };
101
102 /*
103 * Structure fields follow one of the following exclusion rules.
104 *
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
107 *
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
111 * L: gcwq->lock protected. Access with gcwq->lock held.
112 *
113 * X: During normal operation, modification requires gcwq->lock and
114 * should be done only from local cpu. Either disabling preemption
115 * on local cpu or grabbing gcwq->lock is enough for read access.
116 * If POOL_DISASSOCIATED is set, it's identical to L.
117 *
118 * F: wq->flush_mutex protected.
119 *
120 * W: workqueue_lock protected.
121 */
122
123 /* struct worker is defined in workqueue_internal.h */
124
125 struct worker_pool {
126 struct global_cwq *gcwq; /* I: the owning gcwq */
127 unsigned int flags; /* X: flags */
128
129 struct list_head worklist; /* L: list of pending works */
130 int nr_workers; /* L: total number of workers */
131
132 /* nr_idle includes the ones off idle_list for rebinding */
133 int nr_idle; /* L: currently idle ones */
134
135 struct list_head idle_list; /* X: list of idle workers */
136 struct timer_list idle_timer; /* L: worker idle timeout */
137 struct timer_list mayday_timer; /* L: SOS timer for workers */
138
139 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
140 struct ida worker_ida; /* L: for worker IDs */
141 };
142
143 /*
144 * Global per-cpu workqueue. There's one and only one for each cpu
145 * and all works are queued and processed here regardless of their
146 * target workqueues.
147 */
148 struct global_cwq {
149 spinlock_t lock; /* the gcwq lock */
150 unsigned int cpu; /* I: the associated cpu */
151
152 /* workers are chained either in busy_hash or pool idle_list */
153 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
154 /* L: hash of busy workers */
155
156 struct worker_pool pools[NR_STD_WORKER_POOLS];
157 /* normal and highpri pools */
158 } ____cacheline_aligned_in_smp;
159
160 /*
161 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
162 * work_struct->data are used for flags and thus cwqs need to be
163 * aligned at two's power of the number of flag bits.
164 */
165 struct cpu_workqueue_struct {
166 struct worker_pool *pool; /* I: the associated pool */
167 struct workqueue_struct *wq; /* I: the owning workqueue */
168 int work_color; /* L: current color */
169 int flush_color; /* L: flushing color */
170 int nr_in_flight[WORK_NR_COLORS];
171 /* L: nr of in_flight works */
172 int nr_active; /* L: nr of active works */
173 int max_active; /* L: max active works */
174 struct list_head delayed_works; /* L: delayed works */
175 };
176
177 /*
178 * Structure used to wait for workqueue flush.
179 */
180 struct wq_flusher {
181 struct list_head list; /* F: list of flushers */
182 int flush_color; /* F: flush color waiting for */
183 struct completion done; /* flush completion */
184 };
185
186 /*
187 * All cpumasks are assumed to be always set on UP and thus can't be
188 * used to determine whether there's something to be done.
189 */
190 #ifdef CONFIG_SMP
191 typedef cpumask_var_t mayday_mask_t;
192 #define mayday_test_and_set_cpu(cpu, mask) \
193 cpumask_test_and_set_cpu((cpu), (mask))
194 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
195 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
196 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
197 #define free_mayday_mask(mask) free_cpumask_var((mask))
198 #else
199 typedef unsigned long mayday_mask_t;
200 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
201 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
202 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
203 #define alloc_mayday_mask(maskp, gfp) true
204 #define free_mayday_mask(mask) do { } while (0)
205 #endif
206
207 /*
208 * The externally visible workqueue abstraction is an array of
209 * per-CPU workqueues:
210 */
211 struct workqueue_struct {
212 unsigned int flags; /* W: WQ_* flags */
213 union {
214 struct cpu_workqueue_struct __percpu *pcpu;
215 struct cpu_workqueue_struct *single;
216 unsigned long v;
217 } cpu_wq; /* I: cwq's */
218 struct list_head list; /* W: list of all workqueues */
219
220 struct mutex flush_mutex; /* protects wq flushing */
221 int work_color; /* F: current work color */
222 int flush_color; /* F: current flush color */
223 atomic_t nr_cwqs_to_flush; /* flush in progress */
224 struct wq_flusher *first_flusher; /* F: first flusher */
225 struct list_head flusher_queue; /* F: flush waiters */
226 struct list_head flusher_overflow; /* F: flush overflow list */
227
228 mayday_mask_t mayday_mask; /* cpus requesting rescue */
229 struct worker *rescuer; /* I: rescue worker */
230
231 int nr_drainers; /* W: drain in progress */
232 int saved_max_active; /* W: saved cwq max_active */
233 #ifdef CONFIG_LOCKDEP
234 struct lockdep_map lockdep_map;
235 #endif
236 char name[]; /* I: workqueue name */
237 };
238
239 struct workqueue_struct *system_wq __read_mostly;
240 EXPORT_SYMBOL_GPL(system_wq);
241 struct workqueue_struct *system_highpri_wq __read_mostly;
242 EXPORT_SYMBOL_GPL(system_highpri_wq);
243 struct workqueue_struct *system_long_wq __read_mostly;
244 EXPORT_SYMBOL_GPL(system_long_wq);
245 struct workqueue_struct *system_unbound_wq __read_mostly;
246 EXPORT_SYMBOL_GPL(system_unbound_wq);
247 struct workqueue_struct *system_freezable_wq __read_mostly;
248 EXPORT_SYMBOL_GPL(system_freezable_wq);
249
250 #define CREATE_TRACE_POINTS
251 #include <trace/events/workqueue.h>
252
253 #define for_each_worker_pool(pool, gcwq) \
254 for ((pool) = &(gcwq)->pools[0]; \
255 (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
256
257 #define for_each_busy_worker(worker, i, pos, gcwq) \
258 hash_for_each(gcwq->busy_hash, i, pos, worker, hentry)
259
260 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
261 unsigned int sw)
262 {
263 if (cpu < nr_cpu_ids) {
264 if (sw & 1) {
265 cpu = cpumask_next(cpu, mask);
266 if (cpu < nr_cpu_ids)
267 return cpu;
268 }
269 if (sw & 2)
270 return WORK_CPU_UNBOUND;
271 }
272 return WORK_CPU_NONE;
273 }
274
275 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
276 struct workqueue_struct *wq)
277 {
278 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
279 }
280
281 /*
282 * CPU iterators
283 *
284 * An extra gcwq is defined for an invalid cpu number
285 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
286 * specific CPU. The following iterators are similar to
287 * for_each_*_cpu() iterators but also considers the unbound gcwq.
288 *
289 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
290 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
291 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
292 * WORK_CPU_UNBOUND for unbound workqueues
293 */
294 #define for_each_gcwq_cpu(cpu) \
295 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
296 (cpu) < WORK_CPU_NONE; \
297 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
298
299 #define for_each_online_gcwq_cpu(cpu) \
300 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
301 (cpu) < WORK_CPU_NONE; \
302 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
303
304 #define for_each_cwq_cpu(cpu, wq) \
305 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
306 (cpu) < WORK_CPU_NONE; \
307 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
308
309 #ifdef CONFIG_DEBUG_OBJECTS_WORK
310
311 static struct debug_obj_descr work_debug_descr;
312
313 static void *work_debug_hint(void *addr)
314 {
315 return ((struct work_struct *) addr)->func;
316 }
317
318 /*
319 * fixup_init is called when:
320 * - an active object is initialized
321 */
322 static int work_fixup_init(void *addr, enum debug_obj_state state)
323 {
324 struct work_struct *work = addr;
325
326 switch (state) {
327 case ODEBUG_STATE_ACTIVE:
328 cancel_work_sync(work);
329 debug_object_init(work, &work_debug_descr);
330 return 1;
331 default:
332 return 0;
333 }
334 }
335
336 /*
337 * fixup_activate is called when:
338 * - an active object is activated
339 * - an unknown object is activated (might be a statically initialized object)
340 */
341 static int work_fixup_activate(void *addr, enum debug_obj_state state)
342 {
343 struct work_struct *work = addr;
344
345 switch (state) {
346
347 case ODEBUG_STATE_NOTAVAILABLE:
348 /*
349 * This is not really a fixup. The work struct was
350 * statically initialized. We just make sure that it
351 * is tracked in the object tracker.
352 */
353 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
354 debug_object_init(work, &work_debug_descr);
355 debug_object_activate(work, &work_debug_descr);
356 return 0;
357 }
358 WARN_ON_ONCE(1);
359 return 0;
360
361 case ODEBUG_STATE_ACTIVE:
362 WARN_ON(1);
363
364 default:
365 return 0;
366 }
367 }
368
369 /*
370 * fixup_free is called when:
371 * - an active object is freed
372 */
373 static int work_fixup_free(void *addr, enum debug_obj_state state)
374 {
375 struct work_struct *work = addr;
376
377 switch (state) {
378 case ODEBUG_STATE_ACTIVE:
379 cancel_work_sync(work);
380 debug_object_free(work, &work_debug_descr);
381 return 1;
382 default:
383 return 0;
384 }
385 }
386
387 static struct debug_obj_descr work_debug_descr = {
388 .name = "work_struct",
389 .debug_hint = work_debug_hint,
390 .fixup_init = work_fixup_init,
391 .fixup_activate = work_fixup_activate,
392 .fixup_free = work_fixup_free,
393 };
394
395 static inline void debug_work_activate(struct work_struct *work)
396 {
397 debug_object_activate(work, &work_debug_descr);
398 }
399
400 static inline void debug_work_deactivate(struct work_struct *work)
401 {
402 debug_object_deactivate(work, &work_debug_descr);
403 }
404
405 void __init_work(struct work_struct *work, int onstack)
406 {
407 if (onstack)
408 debug_object_init_on_stack(work, &work_debug_descr);
409 else
410 debug_object_init(work, &work_debug_descr);
411 }
412 EXPORT_SYMBOL_GPL(__init_work);
413
414 void destroy_work_on_stack(struct work_struct *work)
415 {
416 debug_object_free(work, &work_debug_descr);
417 }
418 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
419
420 #else
421 static inline void debug_work_activate(struct work_struct *work) { }
422 static inline void debug_work_deactivate(struct work_struct *work) { }
423 #endif
424
425 /* Serializes the accesses to the list of workqueues. */
426 static DEFINE_SPINLOCK(workqueue_lock);
427 static LIST_HEAD(workqueues);
428 static bool workqueue_freezing; /* W: have wqs started freezing? */
429
430 /*
431 * The almighty global cpu workqueues. nr_running is the only field
432 * which is expected to be used frequently by other cpus via
433 * try_to_wake_up(). Put it in a separate cacheline.
434 */
435 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
436 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
437
438 /*
439 * Global cpu workqueue and nr_running counter for unbound gcwq. The pools
440 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
441 * WORKER_UNBOUND set.
442 */
443 static struct global_cwq unbound_global_cwq;
444 static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
445 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
446 };
447
448 static int worker_thread(void *__worker);
449 static unsigned int work_cpu(struct work_struct *work);
450
451 static int std_worker_pool_pri(struct worker_pool *pool)
452 {
453 return pool - pool->gcwq->pools;
454 }
455
456 static struct global_cwq *get_gcwq(unsigned int cpu)
457 {
458 if (cpu != WORK_CPU_UNBOUND)
459 return &per_cpu(global_cwq, cpu);
460 else
461 return &unbound_global_cwq;
462 }
463
464 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
465 {
466 int cpu = pool->gcwq->cpu;
467 int idx = std_worker_pool_pri(pool);
468
469 if (cpu != WORK_CPU_UNBOUND)
470 return &per_cpu(pool_nr_running, cpu)[idx];
471 else
472 return &unbound_pool_nr_running[idx];
473 }
474
475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 struct workqueue_struct *wq)
477 {
478 if (!(wq->flags & WQ_UNBOUND)) {
479 if (likely(cpu < nr_cpu_ids))
480 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
481 } else if (likely(cpu == WORK_CPU_UNBOUND))
482 return wq->cpu_wq.single;
483 return NULL;
484 }
485
486 static unsigned int work_color_to_flags(int color)
487 {
488 return color << WORK_STRUCT_COLOR_SHIFT;
489 }
490
491 static int get_work_color(struct work_struct *work)
492 {
493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
495 }
496
497 static int work_next_color(int color)
498 {
499 return (color + 1) % WORK_NR_COLORS;
500 }
501
502 /*
503 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
504 * contain the pointer to the queued cwq. Once execution starts, the flag
505 * is cleared and the high bits contain OFFQ flags and CPU number.
506 *
507 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
508 * and clear_work_data() can be used to set the cwq, cpu or clear
509 * work->data. These functions should only be called while the work is
510 * owned - ie. while the PENDING bit is set.
511 *
512 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
513 * a work. gcwq is available once the work has been queued anywhere after
514 * initialization until it is sync canceled. cwq is available only while
515 * the work item is queued.
516 *
517 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
518 * canceled. While being canceled, a work item may have its PENDING set
519 * but stay off timer and worklist for arbitrarily long and nobody should
520 * try to steal the PENDING bit.
521 */
522 static inline void set_work_data(struct work_struct *work, unsigned long data,
523 unsigned long flags)
524 {
525 BUG_ON(!work_pending(work));
526 atomic_long_set(&work->data, data | flags | work_static(work));
527 }
528
529 static void set_work_cwq(struct work_struct *work,
530 struct cpu_workqueue_struct *cwq,
531 unsigned long extra_flags)
532 {
533 set_work_data(work, (unsigned long)cwq,
534 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
535 }
536
537 static void set_work_cpu_and_clear_pending(struct work_struct *work,
538 unsigned int cpu)
539 {
540 /*
541 * The following wmb is paired with the implied mb in
542 * test_and_set_bit(PENDING) and ensures all updates to @work made
543 * here are visible to and precede any updates by the next PENDING
544 * owner.
545 */
546 smp_wmb();
547 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
548 }
549
550 static void clear_work_data(struct work_struct *work)
551 {
552 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
553 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
554 }
555
556 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
557 {
558 unsigned long data = atomic_long_read(&work->data);
559
560 if (data & WORK_STRUCT_CWQ)
561 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
562 else
563 return NULL;
564 }
565
566 static struct global_cwq *get_work_gcwq(struct work_struct *work)
567 {
568 unsigned long data = atomic_long_read(&work->data);
569 unsigned int cpu;
570
571 if (data & WORK_STRUCT_CWQ)
572 return ((struct cpu_workqueue_struct *)
573 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
574
575 cpu = data >> WORK_OFFQ_CPU_SHIFT;
576 if (cpu == WORK_CPU_NONE)
577 return NULL;
578
579 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
580 return get_gcwq(cpu);
581 }
582
583 static void mark_work_canceling(struct work_struct *work)
584 {
585 struct global_cwq *gcwq = get_work_gcwq(work);
586 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
587
588 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
589 WORK_STRUCT_PENDING);
590 }
591
592 static bool work_is_canceling(struct work_struct *work)
593 {
594 unsigned long data = atomic_long_read(&work->data);
595
596 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
597 }
598
599 /*
600 * Policy functions. These define the policies on how the global worker
601 * pools are managed. Unless noted otherwise, these functions assume that
602 * they're being called with gcwq->lock held.
603 */
604
605 static bool __need_more_worker(struct worker_pool *pool)
606 {
607 return !atomic_read(get_pool_nr_running(pool));
608 }
609
610 /*
611 * Need to wake up a worker? Called from anything but currently
612 * running workers.
613 *
614 * Note that, because unbound workers never contribute to nr_running, this
615 * function will always return %true for unbound gcwq as long as the
616 * worklist isn't empty.
617 */
618 static bool need_more_worker(struct worker_pool *pool)
619 {
620 return !list_empty(&pool->worklist) && __need_more_worker(pool);
621 }
622
623 /* Can I start working? Called from busy but !running workers. */
624 static bool may_start_working(struct worker_pool *pool)
625 {
626 return pool->nr_idle;
627 }
628
629 /* Do I need to keep working? Called from currently running workers. */
630 static bool keep_working(struct worker_pool *pool)
631 {
632 atomic_t *nr_running = get_pool_nr_running(pool);
633
634 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
635 }
636
637 /* Do we need a new worker? Called from manager. */
638 static bool need_to_create_worker(struct worker_pool *pool)
639 {
640 return need_more_worker(pool) && !may_start_working(pool);
641 }
642
643 /* Do I need to be the manager? */
644 static bool need_to_manage_workers(struct worker_pool *pool)
645 {
646 return need_to_create_worker(pool) ||
647 (pool->flags & POOL_MANAGE_WORKERS);
648 }
649
650 /* Do we have too many workers and should some go away? */
651 static bool too_many_workers(struct worker_pool *pool)
652 {
653 bool managing = pool->flags & POOL_MANAGING_WORKERS;
654 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
655 int nr_busy = pool->nr_workers - nr_idle;
656
657 /*
658 * nr_idle and idle_list may disagree if idle rebinding is in
659 * progress. Never return %true if idle_list is empty.
660 */
661 if (list_empty(&pool->idle_list))
662 return false;
663
664 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
665 }
666
667 /*
668 * Wake up functions.
669 */
670
671 /* Return the first worker. Safe with preemption disabled */
672 static struct worker *first_worker(struct worker_pool *pool)
673 {
674 if (unlikely(list_empty(&pool->idle_list)))
675 return NULL;
676
677 return list_first_entry(&pool->idle_list, struct worker, entry);
678 }
679
680 /**
681 * wake_up_worker - wake up an idle worker
682 * @pool: worker pool to wake worker from
683 *
684 * Wake up the first idle worker of @pool.
685 *
686 * CONTEXT:
687 * spin_lock_irq(gcwq->lock).
688 */
689 static void wake_up_worker(struct worker_pool *pool)
690 {
691 struct worker *worker = first_worker(pool);
692
693 if (likely(worker))
694 wake_up_process(worker->task);
695 }
696
697 /**
698 * wq_worker_waking_up - a worker is waking up
699 * @task: task waking up
700 * @cpu: CPU @task is waking up to
701 *
702 * This function is called during try_to_wake_up() when a worker is
703 * being awoken.
704 *
705 * CONTEXT:
706 * spin_lock_irq(rq->lock)
707 */
708 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
709 {
710 struct worker *worker = kthread_data(task);
711
712 if (!(worker->flags & WORKER_NOT_RUNNING)) {
713 WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
714 atomic_inc(get_pool_nr_running(worker->pool));
715 }
716 }
717
718 /**
719 * wq_worker_sleeping - a worker is going to sleep
720 * @task: task going to sleep
721 * @cpu: CPU in question, must be the current CPU number
722 *
723 * This function is called during schedule() when a busy worker is
724 * going to sleep. Worker on the same cpu can be woken up by
725 * returning pointer to its task.
726 *
727 * CONTEXT:
728 * spin_lock_irq(rq->lock)
729 *
730 * RETURNS:
731 * Worker task on @cpu to wake up, %NULL if none.
732 */
733 struct task_struct *wq_worker_sleeping(struct task_struct *task,
734 unsigned int cpu)
735 {
736 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
737 struct worker_pool *pool;
738 atomic_t *nr_running;
739
740 /*
741 * Rescuers, which may not have all the fields set up like normal
742 * workers, also reach here, let's not access anything before
743 * checking NOT_RUNNING.
744 */
745 if (worker->flags & WORKER_NOT_RUNNING)
746 return NULL;
747
748 pool = worker->pool;
749 nr_running = get_pool_nr_running(pool);
750
751 /* this can only happen on the local cpu */
752 BUG_ON(cpu != raw_smp_processor_id());
753
754 /*
755 * The counterpart of the following dec_and_test, implied mb,
756 * worklist not empty test sequence is in insert_work().
757 * Please read comment there.
758 *
759 * NOT_RUNNING is clear. This means that we're bound to and
760 * running on the local cpu w/ rq lock held and preemption
761 * disabled, which in turn means that none else could be
762 * manipulating idle_list, so dereferencing idle_list without gcwq
763 * lock is safe.
764 */
765 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
766 to_wakeup = first_worker(pool);
767 return to_wakeup ? to_wakeup->task : NULL;
768 }
769
770 /**
771 * worker_set_flags - set worker flags and adjust nr_running accordingly
772 * @worker: self
773 * @flags: flags to set
774 * @wakeup: wakeup an idle worker if necessary
775 *
776 * Set @flags in @worker->flags and adjust nr_running accordingly. If
777 * nr_running becomes zero and @wakeup is %true, an idle worker is
778 * woken up.
779 *
780 * CONTEXT:
781 * spin_lock_irq(gcwq->lock)
782 */
783 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
784 bool wakeup)
785 {
786 struct worker_pool *pool = worker->pool;
787
788 WARN_ON_ONCE(worker->task != current);
789
790 /*
791 * If transitioning into NOT_RUNNING, adjust nr_running and
792 * wake up an idle worker as necessary if requested by
793 * @wakeup.
794 */
795 if ((flags & WORKER_NOT_RUNNING) &&
796 !(worker->flags & WORKER_NOT_RUNNING)) {
797 atomic_t *nr_running = get_pool_nr_running(pool);
798
799 if (wakeup) {
800 if (atomic_dec_and_test(nr_running) &&
801 !list_empty(&pool->worklist))
802 wake_up_worker(pool);
803 } else
804 atomic_dec(nr_running);
805 }
806
807 worker->flags |= flags;
808 }
809
810 /**
811 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
812 * @worker: self
813 * @flags: flags to clear
814 *
815 * Clear @flags in @worker->flags and adjust nr_running accordingly.
816 *
817 * CONTEXT:
818 * spin_lock_irq(gcwq->lock)
819 */
820 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
821 {
822 struct worker_pool *pool = worker->pool;
823 unsigned int oflags = worker->flags;
824
825 WARN_ON_ONCE(worker->task != current);
826
827 worker->flags &= ~flags;
828
829 /*
830 * If transitioning out of NOT_RUNNING, increment nr_running. Note
831 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
832 * of multiple flags, not a single flag.
833 */
834 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
835 if (!(worker->flags & WORKER_NOT_RUNNING))
836 atomic_inc(get_pool_nr_running(pool));
837 }
838
839 /**
840 * find_worker_executing_work - find worker which is executing a work
841 * @gcwq: gcwq of interest
842 * @work: work to find worker for
843 *
844 * Find a worker which is executing @work on @gcwq by searching
845 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
846 * to match, its current execution should match the address of @work and
847 * its work function. This is to avoid unwanted dependency between
848 * unrelated work executions through a work item being recycled while still
849 * being executed.
850 *
851 * This is a bit tricky. A work item may be freed once its execution
852 * starts and nothing prevents the freed area from being recycled for
853 * another work item. If the same work item address ends up being reused
854 * before the original execution finishes, workqueue will identify the
855 * recycled work item as currently executing and make it wait until the
856 * current execution finishes, introducing an unwanted dependency.
857 *
858 * This function checks the work item address, work function and workqueue
859 * to avoid false positives. Note that this isn't complete as one may
860 * construct a work function which can introduce dependency onto itself
861 * through a recycled work item. Well, if somebody wants to shoot oneself
862 * in the foot that badly, there's only so much we can do, and if such
863 * deadlock actually occurs, it should be easy to locate the culprit work
864 * function.
865 *
866 * CONTEXT:
867 * spin_lock_irq(gcwq->lock).
868 *
869 * RETURNS:
870 * Pointer to worker which is executing @work if found, NULL
871 * otherwise.
872 */
873 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
874 struct work_struct *work)
875 {
876 struct worker *worker;
877 struct hlist_node *tmp;
878
879 hash_for_each_possible(gcwq->busy_hash, worker, tmp, hentry,
880 (unsigned long)work)
881 if (worker->current_work == work &&
882 worker->current_func == work->func)
883 return worker;
884
885 return NULL;
886 }
887
888 /**
889 * move_linked_works - move linked works to a list
890 * @work: start of series of works to be scheduled
891 * @head: target list to append @work to
892 * @nextp: out paramter for nested worklist walking
893 *
894 * Schedule linked works starting from @work to @head. Work series to
895 * be scheduled starts at @work and includes any consecutive work with
896 * WORK_STRUCT_LINKED set in its predecessor.
897 *
898 * If @nextp is not NULL, it's updated to point to the next work of
899 * the last scheduled work. This allows move_linked_works() to be
900 * nested inside outer list_for_each_entry_safe().
901 *
902 * CONTEXT:
903 * spin_lock_irq(gcwq->lock).
904 */
905 static void move_linked_works(struct work_struct *work, struct list_head *head,
906 struct work_struct **nextp)
907 {
908 struct work_struct *n;
909
910 /*
911 * Linked worklist will always end before the end of the list,
912 * use NULL for list head.
913 */
914 list_for_each_entry_safe_from(work, n, NULL, entry) {
915 list_move_tail(&work->entry, head);
916 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
917 break;
918 }
919
920 /*
921 * If we're already inside safe list traversal and have moved
922 * multiple works to the scheduled queue, the next position
923 * needs to be updated.
924 */
925 if (nextp)
926 *nextp = n;
927 }
928
929 static void cwq_activate_delayed_work(struct work_struct *work)
930 {
931 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
932
933 trace_workqueue_activate_work(work);
934 move_linked_works(work, &cwq->pool->worklist, NULL);
935 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
936 cwq->nr_active++;
937 }
938
939 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
940 {
941 struct work_struct *work = list_first_entry(&cwq->delayed_works,
942 struct work_struct, entry);
943
944 cwq_activate_delayed_work(work);
945 }
946
947 /**
948 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
949 * @cwq: cwq of interest
950 * @color: color of work which left the queue
951 *
952 * A work either has completed or is removed from pending queue,
953 * decrement nr_in_flight of its cwq and handle workqueue flushing.
954 *
955 * CONTEXT:
956 * spin_lock_irq(gcwq->lock).
957 */
958 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
959 {
960 /* ignore uncolored works */
961 if (color == WORK_NO_COLOR)
962 return;
963
964 cwq->nr_in_flight[color]--;
965
966 cwq->nr_active--;
967 if (!list_empty(&cwq->delayed_works)) {
968 /* one down, submit a delayed one */
969 if (cwq->nr_active < cwq->max_active)
970 cwq_activate_first_delayed(cwq);
971 }
972
973 /* is flush in progress and are we at the flushing tip? */
974 if (likely(cwq->flush_color != color))
975 return;
976
977 /* are there still in-flight works? */
978 if (cwq->nr_in_flight[color])
979 return;
980
981 /* this cwq is done, clear flush_color */
982 cwq->flush_color = -1;
983
984 /*
985 * If this was the last cwq, wake up the first flusher. It
986 * will handle the rest.
987 */
988 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
989 complete(&cwq->wq->first_flusher->done);
990 }
991
992 /**
993 * try_to_grab_pending - steal work item from worklist and disable irq
994 * @work: work item to steal
995 * @is_dwork: @work is a delayed_work
996 * @flags: place to store irq state
997 *
998 * Try to grab PENDING bit of @work. This function can handle @work in any
999 * stable state - idle, on timer or on worklist. Return values are
1000 *
1001 * 1 if @work was pending and we successfully stole PENDING
1002 * 0 if @work was idle and we claimed PENDING
1003 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1004 * -ENOENT if someone else is canceling @work, this state may persist
1005 * for arbitrarily long
1006 *
1007 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1008 * interrupted while holding PENDING and @work off queue, irq must be
1009 * disabled on entry. This, combined with delayed_work->timer being
1010 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1011 *
1012 * On successful return, >= 0, irq is disabled and the caller is
1013 * responsible for releasing it using local_irq_restore(*@flags).
1014 *
1015 * This function is safe to call from any context including IRQ handler.
1016 */
1017 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1018 unsigned long *flags)
1019 {
1020 struct global_cwq *gcwq;
1021
1022 local_irq_save(*flags);
1023
1024 /* try to steal the timer if it exists */
1025 if (is_dwork) {
1026 struct delayed_work *dwork = to_delayed_work(work);
1027
1028 /*
1029 * dwork->timer is irqsafe. If del_timer() fails, it's
1030 * guaranteed that the timer is not queued anywhere and not
1031 * running on the local CPU.
1032 */
1033 if (likely(del_timer(&dwork->timer)))
1034 return 1;
1035 }
1036
1037 /* try to claim PENDING the normal way */
1038 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1039 return 0;
1040
1041 /*
1042 * The queueing is in progress, or it is already queued. Try to
1043 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1044 */
1045 gcwq = get_work_gcwq(work);
1046 if (!gcwq)
1047 goto fail;
1048
1049 spin_lock(&gcwq->lock);
1050 if (!list_empty(&work->entry)) {
1051 /*
1052 * This work is queued, but perhaps we locked the wrong gcwq.
1053 * In that case we must see the new value after rmb(), see
1054 * insert_work()->wmb().
1055 */
1056 smp_rmb();
1057 if (gcwq == get_work_gcwq(work)) {
1058 debug_work_deactivate(work);
1059
1060 /*
1061 * A delayed work item cannot be grabbed directly
1062 * because it might have linked NO_COLOR work items
1063 * which, if left on the delayed_list, will confuse
1064 * cwq->nr_active management later on and cause
1065 * stall. Make sure the work item is activated
1066 * before grabbing.
1067 */
1068 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1069 cwq_activate_delayed_work(work);
1070
1071 list_del_init(&work->entry);
1072 cwq_dec_nr_in_flight(get_work_cwq(work),
1073 get_work_color(work));
1074
1075 spin_unlock(&gcwq->lock);
1076 return 1;
1077 }
1078 }
1079 spin_unlock(&gcwq->lock);
1080 fail:
1081 local_irq_restore(*flags);
1082 if (work_is_canceling(work))
1083 return -ENOENT;
1084 cpu_relax();
1085 return -EAGAIN;
1086 }
1087
1088 /**
1089 * insert_work - insert a work into gcwq
1090 * @cwq: cwq @work belongs to
1091 * @work: work to insert
1092 * @head: insertion point
1093 * @extra_flags: extra WORK_STRUCT_* flags to set
1094 *
1095 * Insert @work which belongs to @cwq into @gcwq after @head.
1096 * @extra_flags is or'd to work_struct flags.
1097 *
1098 * CONTEXT:
1099 * spin_lock_irq(gcwq->lock).
1100 */
1101 static void insert_work(struct cpu_workqueue_struct *cwq,
1102 struct work_struct *work, struct list_head *head,
1103 unsigned int extra_flags)
1104 {
1105 struct worker_pool *pool = cwq->pool;
1106
1107 /* we own @work, set data and link */
1108 set_work_cwq(work, cwq, extra_flags);
1109
1110 /*
1111 * Ensure that we get the right work->data if we see the
1112 * result of list_add() below, see try_to_grab_pending().
1113 */
1114 smp_wmb();
1115
1116 list_add_tail(&work->entry, head);
1117
1118 /*
1119 * Ensure either worker_sched_deactivated() sees the above
1120 * list_add_tail() or we see zero nr_running to avoid workers
1121 * lying around lazily while there are works to be processed.
1122 */
1123 smp_mb();
1124
1125 if (__need_more_worker(pool))
1126 wake_up_worker(pool);
1127 }
1128
1129 /*
1130 * Test whether @work is being queued from another work executing on the
1131 * same workqueue. This is rather expensive and should only be used from
1132 * cold paths.
1133 */
1134 static bool is_chained_work(struct workqueue_struct *wq)
1135 {
1136 unsigned long flags;
1137 unsigned int cpu;
1138
1139 for_each_gcwq_cpu(cpu) {
1140 struct global_cwq *gcwq = get_gcwq(cpu);
1141 struct worker *worker;
1142 struct hlist_node *pos;
1143 int i;
1144
1145 spin_lock_irqsave(&gcwq->lock, flags);
1146 for_each_busy_worker(worker, i, pos, gcwq) {
1147 if (worker->task != current)
1148 continue;
1149 spin_unlock_irqrestore(&gcwq->lock, flags);
1150 /*
1151 * I'm @worker, no locking necessary. See if @work
1152 * is headed to the same workqueue.
1153 */
1154 return worker->current_cwq->wq == wq;
1155 }
1156 spin_unlock_irqrestore(&gcwq->lock, flags);
1157 }
1158 return false;
1159 }
1160
1161 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1162 struct work_struct *work)
1163 {
1164 struct global_cwq *gcwq;
1165 struct cpu_workqueue_struct *cwq;
1166 struct list_head *worklist;
1167 unsigned int work_flags;
1168 unsigned int req_cpu = cpu;
1169
1170 /*
1171 * While a work item is PENDING && off queue, a task trying to
1172 * steal the PENDING will busy-loop waiting for it to either get
1173 * queued or lose PENDING. Grabbing PENDING and queueing should
1174 * happen with IRQ disabled.
1175 */
1176 WARN_ON_ONCE(!irqs_disabled());
1177
1178 debug_work_activate(work);
1179
1180 /* if dying, only works from the same workqueue are allowed */
1181 if (unlikely(wq->flags & WQ_DRAINING) &&
1182 WARN_ON_ONCE(!is_chained_work(wq)))
1183 return;
1184
1185 /* determine gcwq to use */
1186 if (!(wq->flags & WQ_UNBOUND)) {
1187 struct global_cwq *last_gcwq;
1188
1189 if (cpu == WORK_CPU_UNBOUND)
1190 cpu = raw_smp_processor_id();
1191
1192 /*
1193 * It's multi cpu. If @work was previously on a different
1194 * cpu, it might still be running there, in which case the
1195 * work needs to be queued on that cpu to guarantee
1196 * non-reentrancy.
1197 */
1198 gcwq = get_gcwq(cpu);
1199 last_gcwq = get_work_gcwq(work);
1200
1201 if (last_gcwq && last_gcwq != gcwq) {
1202 struct worker *worker;
1203
1204 spin_lock(&last_gcwq->lock);
1205
1206 worker = find_worker_executing_work(last_gcwq, work);
1207
1208 if (worker && worker->current_cwq->wq == wq)
1209 gcwq = last_gcwq;
1210 else {
1211 /* meh... not running there, queue here */
1212 spin_unlock(&last_gcwq->lock);
1213 spin_lock(&gcwq->lock);
1214 }
1215 } else {
1216 spin_lock(&gcwq->lock);
1217 }
1218 } else {
1219 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1220 spin_lock(&gcwq->lock);
1221 }
1222
1223 /* gcwq determined, get cwq and queue */
1224 cwq = get_cwq(gcwq->cpu, wq);
1225 trace_workqueue_queue_work(req_cpu, cwq, work);
1226
1227 if (WARN_ON(!list_empty(&work->entry))) {
1228 spin_unlock(&gcwq->lock);
1229 return;
1230 }
1231
1232 cwq->nr_in_flight[cwq->work_color]++;
1233 work_flags = work_color_to_flags(cwq->work_color);
1234
1235 if (likely(cwq->nr_active < cwq->max_active)) {
1236 trace_workqueue_activate_work(work);
1237 cwq->nr_active++;
1238 worklist = &cwq->pool->worklist;
1239 } else {
1240 work_flags |= WORK_STRUCT_DELAYED;
1241 worklist = &cwq->delayed_works;
1242 }
1243
1244 insert_work(cwq, work, worklist, work_flags);
1245
1246 spin_unlock(&gcwq->lock);
1247 }
1248
1249 /**
1250 * queue_work_on - queue work on specific cpu
1251 * @cpu: CPU number to execute work on
1252 * @wq: workqueue to use
1253 * @work: work to queue
1254 *
1255 * Returns %false if @work was already on a queue, %true otherwise.
1256 *
1257 * We queue the work to a specific CPU, the caller must ensure it
1258 * can't go away.
1259 */
1260 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1261 struct work_struct *work)
1262 {
1263 bool ret = false;
1264 unsigned long flags;
1265
1266 local_irq_save(flags);
1267
1268 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1269 __queue_work(cpu, wq, work);
1270 ret = true;
1271 }
1272
1273 local_irq_restore(flags);
1274 return ret;
1275 }
1276 EXPORT_SYMBOL_GPL(queue_work_on);
1277
1278 /**
1279 * queue_work - queue work on a workqueue
1280 * @wq: workqueue to use
1281 * @work: work to queue
1282 *
1283 * Returns %false if @work was already on a queue, %true otherwise.
1284 *
1285 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1286 * it can be processed by another CPU.
1287 */
1288 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1289 {
1290 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1291 }
1292 EXPORT_SYMBOL_GPL(queue_work);
1293
1294 void delayed_work_timer_fn(unsigned long __data)
1295 {
1296 struct delayed_work *dwork = (struct delayed_work *)__data;
1297 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1298
1299 /* should have been called from irqsafe timer with irq already off */
1300 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1301 }
1302 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1303
1304 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1305 struct delayed_work *dwork, unsigned long delay)
1306 {
1307 struct timer_list *timer = &dwork->timer;
1308 struct work_struct *work = &dwork->work;
1309 unsigned int lcpu;
1310
1311 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1312 timer->data != (unsigned long)dwork);
1313 WARN_ON_ONCE(timer_pending(timer));
1314 WARN_ON_ONCE(!list_empty(&work->entry));
1315
1316 /*
1317 * If @delay is 0, queue @dwork->work immediately. This is for
1318 * both optimization and correctness. The earliest @timer can
1319 * expire is on the closest next tick and delayed_work users depend
1320 * on that there's no such delay when @delay is 0.
1321 */
1322 if (!delay) {
1323 __queue_work(cpu, wq, &dwork->work);
1324 return;
1325 }
1326
1327 timer_stats_timer_set_start_info(&dwork->timer);
1328
1329 /*
1330 * This stores cwq for the moment, for the timer_fn. Note that the
1331 * work's gcwq is preserved to allow reentrance detection for
1332 * delayed works.
1333 */
1334 if (!(wq->flags & WQ_UNBOUND)) {
1335 struct global_cwq *gcwq = get_work_gcwq(work);
1336
1337 /*
1338 * If we cannot get the last gcwq from @work directly,
1339 * select the last CPU such that it avoids unnecessarily
1340 * triggering non-reentrancy check in __queue_work().
1341 */
1342 lcpu = cpu;
1343 if (gcwq)
1344 lcpu = gcwq->cpu;
1345 if (lcpu == WORK_CPU_UNBOUND)
1346 lcpu = raw_smp_processor_id();
1347 } else {
1348 lcpu = WORK_CPU_UNBOUND;
1349 }
1350
1351 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1352
1353 dwork->cpu = cpu;
1354 timer->expires = jiffies + delay;
1355
1356 if (unlikely(cpu != WORK_CPU_UNBOUND))
1357 add_timer_on(timer, cpu);
1358 else
1359 add_timer(timer);
1360 }
1361
1362 /**
1363 * queue_delayed_work_on - queue work on specific CPU after delay
1364 * @cpu: CPU number to execute work on
1365 * @wq: workqueue to use
1366 * @dwork: work to queue
1367 * @delay: number of jiffies to wait before queueing
1368 *
1369 * Returns %false if @work was already on a queue, %true otherwise. If
1370 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1371 * execution.
1372 */
1373 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1374 struct delayed_work *dwork, unsigned long delay)
1375 {
1376 struct work_struct *work = &dwork->work;
1377 bool ret = false;
1378 unsigned long flags;
1379
1380 /* read the comment in __queue_work() */
1381 local_irq_save(flags);
1382
1383 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1384 __queue_delayed_work(cpu, wq, dwork, delay);
1385 ret = true;
1386 }
1387
1388 local_irq_restore(flags);
1389 return ret;
1390 }
1391 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1392
1393 /**
1394 * queue_delayed_work - queue work on a workqueue after delay
1395 * @wq: workqueue to use
1396 * @dwork: delayable work to queue
1397 * @delay: number of jiffies to wait before queueing
1398 *
1399 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1400 */
1401 bool queue_delayed_work(struct workqueue_struct *wq,
1402 struct delayed_work *dwork, unsigned long delay)
1403 {
1404 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1405 }
1406 EXPORT_SYMBOL_GPL(queue_delayed_work);
1407
1408 /**
1409 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1410 * @cpu: CPU number to execute work on
1411 * @wq: workqueue to use
1412 * @dwork: work to queue
1413 * @delay: number of jiffies to wait before queueing
1414 *
1415 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1416 * modify @dwork's timer so that it expires after @delay. If @delay is
1417 * zero, @work is guaranteed to be scheduled immediately regardless of its
1418 * current state.
1419 *
1420 * Returns %false if @dwork was idle and queued, %true if @dwork was
1421 * pending and its timer was modified.
1422 *
1423 * This function is safe to call from any context including IRQ handler.
1424 * See try_to_grab_pending() for details.
1425 */
1426 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1427 struct delayed_work *dwork, unsigned long delay)
1428 {
1429 unsigned long flags;
1430 int ret;
1431
1432 do {
1433 ret = try_to_grab_pending(&dwork->work, true, &flags);
1434 } while (unlikely(ret == -EAGAIN));
1435
1436 if (likely(ret >= 0)) {
1437 __queue_delayed_work(cpu, wq, dwork, delay);
1438 local_irq_restore(flags);
1439 }
1440
1441 /* -ENOENT from try_to_grab_pending() becomes %true */
1442 return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1445
1446 /**
1447 * mod_delayed_work - modify delay of or queue a delayed work
1448 * @wq: workqueue to use
1449 * @dwork: work to queue
1450 * @delay: number of jiffies to wait before queueing
1451 *
1452 * mod_delayed_work_on() on local CPU.
1453 */
1454 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1455 unsigned long delay)
1456 {
1457 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1458 }
1459 EXPORT_SYMBOL_GPL(mod_delayed_work);
1460
1461 /**
1462 * worker_enter_idle - enter idle state
1463 * @worker: worker which is entering idle state
1464 *
1465 * @worker is entering idle state. Update stats and idle timer if
1466 * necessary.
1467 *
1468 * LOCKING:
1469 * spin_lock_irq(gcwq->lock).
1470 */
1471 static void worker_enter_idle(struct worker *worker)
1472 {
1473 struct worker_pool *pool = worker->pool;
1474
1475 BUG_ON(worker->flags & WORKER_IDLE);
1476 BUG_ON(!list_empty(&worker->entry) &&
1477 (worker->hentry.next || worker->hentry.pprev));
1478
1479 /* can't use worker_set_flags(), also called from start_worker() */
1480 worker->flags |= WORKER_IDLE;
1481 pool->nr_idle++;
1482 worker->last_active = jiffies;
1483
1484 /* idle_list is LIFO */
1485 list_add(&worker->entry, &pool->idle_list);
1486
1487 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1488 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1489
1490 /*
1491 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1492 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1493 * nr_running, the warning may trigger spuriously. Check iff
1494 * unbind is not in progress.
1495 */
1496 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1497 pool->nr_workers == pool->nr_idle &&
1498 atomic_read(get_pool_nr_running(pool)));
1499 }
1500
1501 /**
1502 * worker_leave_idle - leave idle state
1503 * @worker: worker which is leaving idle state
1504 *
1505 * @worker is leaving idle state. Update stats.
1506 *
1507 * LOCKING:
1508 * spin_lock_irq(gcwq->lock).
1509 */
1510 static void worker_leave_idle(struct worker *worker)
1511 {
1512 struct worker_pool *pool = worker->pool;
1513
1514 BUG_ON(!(worker->flags & WORKER_IDLE));
1515 worker_clr_flags(worker, WORKER_IDLE);
1516 pool->nr_idle--;
1517 list_del_init(&worker->entry);
1518 }
1519
1520 /**
1521 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1522 * @worker: self
1523 *
1524 * Works which are scheduled while the cpu is online must at least be
1525 * scheduled to a worker which is bound to the cpu so that if they are
1526 * flushed from cpu callbacks while cpu is going down, they are
1527 * guaranteed to execute on the cpu.
1528 *
1529 * This function is to be used by rogue workers and rescuers to bind
1530 * themselves to the target cpu and may race with cpu going down or
1531 * coming online. kthread_bind() can't be used because it may put the
1532 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1533 * verbatim as it's best effort and blocking and gcwq may be
1534 * [dis]associated in the meantime.
1535 *
1536 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1537 * binding against %POOL_DISASSOCIATED which is set during
1538 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1539 * enters idle state or fetches works without dropping lock, it can
1540 * guarantee the scheduling requirement described in the first paragraph.
1541 *
1542 * CONTEXT:
1543 * Might sleep. Called without any lock but returns with gcwq->lock
1544 * held.
1545 *
1546 * RETURNS:
1547 * %true if the associated gcwq is online (@worker is successfully
1548 * bound), %false if offline.
1549 */
1550 static bool worker_maybe_bind_and_lock(struct worker *worker)
1551 __acquires(&gcwq->lock)
1552 {
1553 struct worker_pool *pool = worker->pool;
1554 struct global_cwq *gcwq = pool->gcwq;
1555 struct task_struct *task = worker->task;
1556
1557 while (true) {
1558 /*
1559 * The following call may fail, succeed or succeed
1560 * without actually migrating the task to the cpu if
1561 * it races with cpu hotunplug operation. Verify
1562 * against POOL_DISASSOCIATED.
1563 */
1564 if (!(pool->flags & POOL_DISASSOCIATED))
1565 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1566
1567 spin_lock_irq(&gcwq->lock);
1568 if (pool->flags & POOL_DISASSOCIATED)
1569 return false;
1570 if (task_cpu(task) == gcwq->cpu &&
1571 cpumask_equal(&current->cpus_allowed,
1572 get_cpu_mask(gcwq->cpu)))
1573 return true;
1574 spin_unlock_irq(&gcwq->lock);
1575
1576 /*
1577 * We've raced with CPU hot[un]plug. Give it a breather
1578 * and retry migration. cond_resched() is required here;
1579 * otherwise, we might deadlock against cpu_stop trying to
1580 * bring down the CPU on non-preemptive kernel.
1581 */
1582 cpu_relax();
1583 cond_resched();
1584 }
1585 }
1586
1587 /*
1588 * Rebind an idle @worker to its CPU. worker_thread() will test
1589 * list_empty(@worker->entry) before leaving idle and call this function.
1590 */
1591 static void idle_worker_rebind(struct worker *worker)
1592 {
1593 struct global_cwq *gcwq = worker->pool->gcwq;
1594
1595 /* CPU may go down again inbetween, clear UNBOUND only on success */
1596 if (worker_maybe_bind_and_lock(worker))
1597 worker_clr_flags(worker, WORKER_UNBOUND);
1598
1599 /* rebind complete, become available again */
1600 list_add(&worker->entry, &worker->pool->idle_list);
1601 spin_unlock_irq(&gcwq->lock);
1602 }
1603
1604 /*
1605 * Function for @worker->rebind.work used to rebind unbound busy workers to
1606 * the associated cpu which is coming back online. This is scheduled by
1607 * cpu up but can race with other cpu hotplug operations and may be
1608 * executed twice without intervening cpu down.
1609 */
1610 static void busy_worker_rebind_fn(struct work_struct *work)
1611 {
1612 struct worker *worker = container_of(work, struct worker, rebind_work);
1613 struct global_cwq *gcwq = worker->pool->gcwq;
1614
1615 if (worker_maybe_bind_and_lock(worker))
1616 worker_clr_flags(worker, WORKER_UNBOUND);
1617
1618 spin_unlock_irq(&gcwq->lock);
1619 }
1620
1621 /**
1622 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1623 * @gcwq: gcwq of interest
1624 *
1625 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1626 * is different for idle and busy ones.
1627 *
1628 * Idle ones will be removed from the idle_list and woken up. They will
1629 * add themselves back after completing rebind. This ensures that the
1630 * idle_list doesn't contain any unbound workers when re-bound busy workers
1631 * try to perform local wake-ups for concurrency management.
1632 *
1633 * Busy workers can rebind after they finish their current work items.
1634 * Queueing the rebind work item at the head of the scheduled list is
1635 * enough. Note that nr_running will be properly bumped as busy workers
1636 * rebind.
1637 *
1638 * On return, all non-manager workers are scheduled for rebind - see
1639 * manage_workers() for the manager special case. Any idle worker
1640 * including the manager will not appear on @idle_list until rebind is
1641 * complete, making local wake-ups safe.
1642 */
1643 static void rebind_workers(struct global_cwq *gcwq)
1644 {
1645 struct worker_pool *pool;
1646 struct worker *worker, *n;
1647 struct hlist_node *pos;
1648 int i;
1649
1650 lockdep_assert_held(&gcwq->lock);
1651
1652 for_each_worker_pool(pool, gcwq)
1653 lockdep_assert_held(&pool->assoc_mutex);
1654
1655 /* dequeue and kick idle ones */
1656 for_each_worker_pool(pool, gcwq) {
1657 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1658 /*
1659 * idle workers should be off @pool->idle_list
1660 * until rebind is complete to avoid receiving
1661 * premature local wake-ups.
1662 */
1663 list_del_init(&worker->entry);
1664
1665 /*
1666 * worker_thread() will see the above dequeuing
1667 * and call idle_worker_rebind().
1668 */
1669 wake_up_process(worker->task);
1670 }
1671 }
1672
1673 /* rebind busy workers */
1674 for_each_busy_worker(worker, i, pos, gcwq) {
1675 struct work_struct *rebind_work = &worker->rebind_work;
1676 struct workqueue_struct *wq;
1677
1678 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1679 work_data_bits(rebind_work)))
1680 continue;
1681
1682 debug_work_activate(rebind_work);
1683
1684 /*
1685 * wq doesn't really matter but let's keep @worker->pool
1686 * and @cwq->pool consistent for sanity.
1687 */
1688 if (std_worker_pool_pri(worker->pool))
1689 wq = system_highpri_wq;
1690 else
1691 wq = system_wq;
1692
1693 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1694 worker->scheduled.next,
1695 work_color_to_flags(WORK_NO_COLOR));
1696 }
1697 }
1698
1699 static struct worker *alloc_worker(void)
1700 {
1701 struct worker *worker;
1702
1703 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1704 if (worker) {
1705 INIT_LIST_HEAD(&worker->entry);
1706 INIT_LIST_HEAD(&worker->scheduled);
1707 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1708 /* on creation a worker is in !idle && prep state */
1709 worker->flags = WORKER_PREP;
1710 }
1711 return worker;
1712 }
1713
1714 /**
1715 * create_worker - create a new workqueue worker
1716 * @pool: pool the new worker will belong to
1717 *
1718 * Create a new worker which is bound to @pool. The returned worker
1719 * can be started by calling start_worker() or destroyed using
1720 * destroy_worker().
1721 *
1722 * CONTEXT:
1723 * Might sleep. Does GFP_KERNEL allocations.
1724 *
1725 * RETURNS:
1726 * Pointer to the newly created worker.
1727 */
1728 static struct worker *create_worker(struct worker_pool *pool)
1729 {
1730 struct global_cwq *gcwq = pool->gcwq;
1731 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1732 struct worker *worker = NULL;
1733 int id = -1;
1734
1735 spin_lock_irq(&gcwq->lock);
1736 while (ida_get_new(&pool->worker_ida, &id)) {
1737 spin_unlock_irq(&gcwq->lock);
1738 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1739 goto fail;
1740 spin_lock_irq(&gcwq->lock);
1741 }
1742 spin_unlock_irq(&gcwq->lock);
1743
1744 worker = alloc_worker();
1745 if (!worker)
1746 goto fail;
1747
1748 worker->pool = pool;
1749 worker->id = id;
1750
1751 if (gcwq->cpu != WORK_CPU_UNBOUND)
1752 worker->task = kthread_create_on_node(worker_thread,
1753 worker, cpu_to_node(gcwq->cpu),
1754 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1755 else
1756 worker->task = kthread_create(worker_thread, worker,
1757 "kworker/u:%d%s", id, pri);
1758 if (IS_ERR(worker->task))
1759 goto fail;
1760
1761 if (std_worker_pool_pri(pool))
1762 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1763
1764 /*
1765 * Determine CPU binding of the new worker depending on
1766 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1767 * flag remains stable across this function. See the comments
1768 * above the flag definition for details.
1769 *
1770 * As an unbound worker may later become a regular one if CPU comes
1771 * online, make sure every worker has %PF_THREAD_BOUND set.
1772 */
1773 if (!(pool->flags & POOL_DISASSOCIATED)) {
1774 kthread_bind(worker->task, gcwq->cpu);
1775 } else {
1776 worker->task->flags |= PF_THREAD_BOUND;
1777 worker->flags |= WORKER_UNBOUND;
1778 }
1779
1780 return worker;
1781 fail:
1782 if (id >= 0) {
1783 spin_lock_irq(&gcwq->lock);
1784 ida_remove(&pool->worker_ida, id);
1785 spin_unlock_irq(&gcwq->lock);
1786 }
1787 kfree(worker);
1788 return NULL;
1789 }
1790
1791 /**
1792 * start_worker - start a newly created worker
1793 * @worker: worker to start
1794 *
1795 * Make the gcwq aware of @worker and start it.
1796 *
1797 * CONTEXT:
1798 * spin_lock_irq(gcwq->lock).
1799 */
1800 static void start_worker(struct worker *worker)
1801 {
1802 worker->flags |= WORKER_STARTED;
1803 worker->pool->nr_workers++;
1804 worker_enter_idle(worker);
1805 wake_up_process(worker->task);
1806 }
1807
1808 /**
1809 * destroy_worker - destroy a workqueue worker
1810 * @worker: worker to be destroyed
1811 *
1812 * Destroy @worker and adjust @gcwq stats accordingly.
1813 *
1814 * CONTEXT:
1815 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1816 */
1817 static void destroy_worker(struct worker *worker)
1818 {
1819 struct worker_pool *pool = worker->pool;
1820 struct global_cwq *gcwq = pool->gcwq;
1821 int id = worker->id;
1822
1823 /* sanity check frenzy */
1824 BUG_ON(worker->current_work);
1825 BUG_ON(!list_empty(&worker->scheduled));
1826
1827 if (worker->flags & WORKER_STARTED)
1828 pool->nr_workers--;
1829 if (worker->flags & WORKER_IDLE)
1830 pool->nr_idle--;
1831
1832 list_del_init(&worker->entry);
1833 worker->flags |= WORKER_DIE;
1834
1835 spin_unlock_irq(&gcwq->lock);
1836
1837 kthread_stop(worker->task);
1838 kfree(worker);
1839
1840 spin_lock_irq(&gcwq->lock);
1841 ida_remove(&pool->worker_ida, id);
1842 }
1843
1844 static void idle_worker_timeout(unsigned long __pool)
1845 {
1846 struct worker_pool *pool = (void *)__pool;
1847 struct global_cwq *gcwq = pool->gcwq;
1848
1849 spin_lock_irq(&gcwq->lock);
1850
1851 if (too_many_workers(pool)) {
1852 struct worker *worker;
1853 unsigned long expires;
1854
1855 /* idle_list is kept in LIFO order, check the last one */
1856 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1857 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1858
1859 if (time_before(jiffies, expires))
1860 mod_timer(&pool->idle_timer, expires);
1861 else {
1862 /* it's been idle for too long, wake up manager */
1863 pool->flags |= POOL_MANAGE_WORKERS;
1864 wake_up_worker(pool);
1865 }
1866 }
1867
1868 spin_unlock_irq(&gcwq->lock);
1869 }
1870
1871 static bool send_mayday(struct work_struct *work)
1872 {
1873 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1874 struct workqueue_struct *wq = cwq->wq;
1875 unsigned int cpu;
1876
1877 if (!(wq->flags & WQ_RESCUER))
1878 return false;
1879
1880 /* mayday mayday mayday */
1881 cpu = cwq->pool->gcwq->cpu;
1882 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1883 if (cpu == WORK_CPU_UNBOUND)
1884 cpu = 0;
1885 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1886 wake_up_process(wq->rescuer->task);
1887 return true;
1888 }
1889
1890 static void gcwq_mayday_timeout(unsigned long __pool)
1891 {
1892 struct worker_pool *pool = (void *)__pool;
1893 struct global_cwq *gcwq = pool->gcwq;
1894 struct work_struct *work;
1895
1896 spin_lock_irq(&gcwq->lock);
1897
1898 if (need_to_create_worker(pool)) {
1899 /*
1900 * We've been trying to create a new worker but
1901 * haven't been successful. We might be hitting an
1902 * allocation deadlock. Send distress signals to
1903 * rescuers.
1904 */
1905 list_for_each_entry(work, &pool->worklist, entry)
1906 send_mayday(work);
1907 }
1908
1909 spin_unlock_irq(&gcwq->lock);
1910
1911 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1912 }
1913
1914 /**
1915 * maybe_create_worker - create a new worker if necessary
1916 * @pool: pool to create a new worker for
1917 *
1918 * Create a new worker for @pool if necessary. @pool is guaranteed to
1919 * have at least one idle worker on return from this function. If
1920 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1921 * sent to all rescuers with works scheduled on @pool to resolve
1922 * possible allocation deadlock.
1923 *
1924 * On return, need_to_create_worker() is guaranteed to be false and
1925 * may_start_working() true.
1926 *
1927 * LOCKING:
1928 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1929 * multiple times. Does GFP_KERNEL allocations. Called only from
1930 * manager.
1931 *
1932 * RETURNS:
1933 * false if no action was taken and gcwq->lock stayed locked, true
1934 * otherwise.
1935 */
1936 static bool maybe_create_worker(struct worker_pool *pool)
1937 __releases(&gcwq->lock)
1938 __acquires(&gcwq->lock)
1939 {
1940 struct global_cwq *gcwq = pool->gcwq;
1941
1942 if (!need_to_create_worker(pool))
1943 return false;
1944 restart:
1945 spin_unlock_irq(&gcwq->lock);
1946
1947 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1948 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1949
1950 while (true) {
1951 struct worker *worker;
1952
1953 worker = create_worker(pool);
1954 if (worker) {
1955 del_timer_sync(&pool->mayday_timer);
1956 spin_lock_irq(&gcwq->lock);
1957 start_worker(worker);
1958 BUG_ON(need_to_create_worker(pool));
1959 return true;
1960 }
1961
1962 if (!need_to_create_worker(pool))
1963 break;
1964
1965 __set_current_state(TASK_INTERRUPTIBLE);
1966 schedule_timeout(CREATE_COOLDOWN);
1967
1968 if (!need_to_create_worker(pool))
1969 break;
1970 }
1971
1972 del_timer_sync(&pool->mayday_timer);
1973 spin_lock_irq(&gcwq->lock);
1974 if (need_to_create_worker(pool))
1975 goto restart;
1976 return true;
1977 }
1978
1979 /**
1980 * maybe_destroy_worker - destroy workers which have been idle for a while
1981 * @pool: pool to destroy workers for
1982 *
1983 * Destroy @pool workers which have been idle for longer than
1984 * IDLE_WORKER_TIMEOUT.
1985 *
1986 * LOCKING:
1987 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1988 * multiple times. Called only from manager.
1989 *
1990 * RETURNS:
1991 * false if no action was taken and gcwq->lock stayed locked, true
1992 * otherwise.
1993 */
1994 static bool maybe_destroy_workers(struct worker_pool *pool)
1995 {
1996 bool ret = false;
1997
1998 while (too_many_workers(pool)) {
1999 struct worker *worker;
2000 unsigned long expires;
2001
2002 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2003 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2004
2005 if (time_before(jiffies, expires)) {
2006 mod_timer(&pool->idle_timer, expires);
2007 break;
2008 }
2009
2010 destroy_worker(worker);
2011 ret = true;
2012 }
2013
2014 return ret;
2015 }
2016
2017 /**
2018 * manage_workers - manage worker pool
2019 * @worker: self
2020 *
2021 * Assume the manager role and manage gcwq worker pool @worker belongs
2022 * to. At any given time, there can be only zero or one manager per
2023 * gcwq. The exclusion is handled automatically by this function.
2024 *
2025 * The caller can safely start processing works on false return. On
2026 * true return, it's guaranteed that need_to_create_worker() is false
2027 * and may_start_working() is true.
2028 *
2029 * CONTEXT:
2030 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2031 * multiple times. Does GFP_KERNEL allocations.
2032 *
2033 * RETURNS:
2034 * false if no action was taken and gcwq->lock stayed locked, true if
2035 * some action was taken.
2036 */
2037 static bool manage_workers(struct worker *worker)
2038 {
2039 struct worker_pool *pool = worker->pool;
2040 bool ret = false;
2041
2042 if (pool->flags & POOL_MANAGING_WORKERS)
2043 return ret;
2044
2045 pool->flags |= POOL_MANAGING_WORKERS;
2046
2047 /*
2048 * To simplify both worker management and CPU hotplug, hold off
2049 * management while hotplug is in progress. CPU hotplug path can't
2050 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2051 * lead to idle worker depletion (all become busy thinking someone
2052 * else is managing) which in turn can result in deadlock under
2053 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2054 * manager against CPU hotplug.
2055 *
2056 * assoc_mutex would always be free unless CPU hotplug is in
2057 * progress. trylock first without dropping @gcwq->lock.
2058 */
2059 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2060 spin_unlock_irq(&pool->gcwq->lock);
2061 mutex_lock(&pool->assoc_mutex);
2062 /*
2063 * CPU hotplug could have happened while we were waiting
2064 * for assoc_mutex. Hotplug itself can't handle us
2065 * because manager isn't either on idle or busy list, and
2066 * @gcwq's state and ours could have deviated.
2067 *
2068 * As hotplug is now excluded via assoc_mutex, we can
2069 * simply try to bind. It will succeed or fail depending
2070 * on @gcwq's current state. Try it and adjust
2071 * %WORKER_UNBOUND accordingly.
2072 */
2073 if (worker_maybe_bind_and_lock(worker))
2074 worker->flags &= ~WORKER_UNBOUND;
2075 else
2076 worker->flags |= WORKER_UNBOUND;
2077
2078 ret = true;
2079 }
2080
2081 pool->flags &= ~POOL_MANAGE_WORKERS;
2082
2083 /*
2084 * Destroy and then create so that may_start_working() is true
2085 * on return.
2086 */
2087 ret |= maybe_destroy_workers(pool);
2088 ret |= maybe_create_worker(pool);
2089
2090 pool->flags &= ~POOL_MANAGING_WORKERS;
2091 mutex_unlock(&pool->assoc_mutex);
2092 return ret;
2093 }
2094
2095 /**
2096 * process_one_work - process single work
2097 * @worker: self
2098 * @work: work to process
2099 *
2100 * Process @work. This function contains all the logics necessary to
2101 * process a single work including synchronization against and
2102 * interaction with other workers on the same cpu, queueing and
2103 * flushing. As long as context requirement is met, any worker can
2104 * call this function to process a work.
2105 *
2106 * CONTEXT:
2107 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2108 */
2109 static void process_one_work(struct worker *worker, struct work_struct *work)
2110 __releases(&gcwq->lock)
2111 __acquires(&gcwq->lock)
2112 {
2113 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2114 struct worker_pool *pool = worker->pool;
2115 struct global_cwq *gcwq = pool->gcwq;
2116 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2117 int work_color;
2118 struct worker *collision;
2119 #ifdef CONFIG_LOCKDEP
2120 /*
2121 * It is permissible to free the struct work_struct from
2122 * inside the function that is called from it, this we need to
2123 * take into account for lockdep too. To avoid bogus "held
2124 * lock freed" warnings as well as problems when looking into
2125 * work->lockdep_map, make a copy and use that here.
2126 */
2127 struct lockdep_map lockdep_map;
2128
2129 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2130 #endif
2131 /*
2132 * Ensure we're on the correct CPU. DISASSOCIATED test is
2133 * necessary to avoid spurious warnings from rescuers servicing the
2134 * unbound or a disassociated pool.
2135 */
2136 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2137 !(pool->flags & POOL_DISASSOCIATED) &&
2138 raw_smp_processor_id() != gcwq->cpu);
2139
2140 /*
2141 * A single work shouldn't be executed concurrently by
2142 * multiple workers on a single cpu. Check whether anyone is
2143 * already processing the work. If so, defer the work to the
2144 * currently executing one.
2145 */
2146 collision = find_worker_executing_work(gcwq, work);
2147 if (unlikely(collision)) {
2148 move_linked_works(work, &collision->scheduled, NULL);
2149 return;
2150 }
2151
2152 /* claim and dequeue */
2153 debug_work_deactivate(work);
2154 hash_add(gcwq->busy_hash, &worker->hentry, (unsigned long)work);
2155 worker->current_work = work;
2156 worker->current_func = work->func;
2157 worker->current_cwq = cwq;
2158 work_color = get_work_color(work);
2159
2160 list_del_init(&work->entry);
2161
2162 /*
2163 * CPU intensive works don't participate in concurrency
2164 * management. They're the scheduler's responsibility.
2165 */
2166 if (unlikely(cpu_intensive))
2167 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2168
2169 /*
2170 * Unbound gcwq isn't concurrency managed and work items should be
2171 * executed ASAP. Wake up another worker if necessary.
2172 */
2173 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2174 wake_up_worker(pool);
2175
2176 /*
2177 * Record the last CPU and clear PENDING which should be the last
2178 * update to @work. Also, do this inside @gcwq->lock so that
2179 * PENDING and queued state changes happen together while IRQ is
2180 * disabled.
2181 */
2182 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2183
2184 spin_unlock_irq(&gcwq->lock);
2185
2186 lock_map_acquire_read(&cwq->wq->lockdep_map);
2187 lock_map_acquire(&lockdep_map);
2188 trace_workqueue_execute_start(work);
2189 worker->current_func(work);
2190 /*
2191 * While we must be careful to not use "work" after this, the trace
2192 * point will only record its address.
2193 */
2194 trace_workqueue_execute_end(work);
2195 lock_map_release(&lockdep_map);
2196 lock_map_release(&cwq->wq->lockdep_map);
2197
2198 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2199 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2200 " last function: %pf\n",
2201 current->comm, preempt_count(), task_pid_nr(current),
2202 worker->current_func);
2203 debug_show_held_locks(current);
2204 dump_stack();
2205 }
2206
2207 spin_lock_irq(&gcwq->lock);
2208
2209 /* clear cpu intensive status */
2210 if (unlikely(cpu_intensive))
2211 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2212
2213 /* we're done with it, release */
2214 hash_del(&worker->hentry);
2215 worker->current_work = NULL;
2216 worker->current_func = NULL;
2217 worker->current_cwq = NULL;
2218 cwq_dec_nr_in_flight(cwq, work_color);
2219 }
2220
2221 /**
2222 * process_scheduled_works - process scheduled works
2223 * @worker: self
2224 *
2225 * Process all scheduled works. Please note that the scheduled list
2226 * may change while processing a work, so this function repeatedly
2227 * fetches a work from the top and executes it.
2228 *
2229 * CONTEXT:
2230 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2231 * multiple times.
2232 */
2233 static void process_scheduled_works(struct worker *worker)
2234 {
2235 while (!list_empty(&worker->scheduled)) {
2236 struct work_struct *work = list_first_entry(&worker->scheduled,
2237 struct work_struct, entry);
2238 process_one_work(worker, work);
2239 }
2240 }
2241
2242 /**
2243 * worker_thread - the worker thread function
2244 * @__worker: self
2245 *
2246 * The gcwq worker thread function. There's a single dynamic pool of
2247 * these per each cpu. These workers process all works regardless of
2248 * their specific target workqueue. The only exception is works which
2249 * belong to workqueues with a rescuer which will be explained in
2250 * rescuer_thread().
2251 */
2252 static int worker_thread(void *__worker)
2253 {
2254 struct worker *worker = __worker;
2255 struct worker_pool *pool = worker->pool;
2256 struct global_cwq *gcwq = pool->gcwq;
2257
2258 /* tell the scheduler that this is a workqueue worker */
2259 worker->task->flags |= PF_WQ_WORKER;
2260 woke_up:
2261 spin_lock_irq(&gcwq->lock);
2262
2263 /* we are off idle list if destruction or rebind is requested */
2264 if (unlikely(list_empty(&worker->entry))) {
2265 spin_unlock_irq(&gcwq->lock);
2266
2267 /* if DIE is set, destruction is requested */
2268 if (worker->flags & WORKER_DIE) {
2269 worker->task->flags &= ~PF_WQ_WORKER;
2270 return 0;
2271 }
2272
2273 /* otherwise, rebind */
2274 idle_worker_rebind(worker);
2275 goto woke_up;
2276 }
2277
2278 worker_leave_idle(worker);
2279 recheck:
2280 /* no more worker necessary? */
2281 if (!need_more_worker(pool))
2282 goto sleep;
2283
2284 /* do we need to manage? */
2285 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2286 goto recheck;
2287
2288 /*
2289 * ->scheduled list can only be filled while a worker is
2290 * preparing to process a work or actually processing it.
2291 * Make sure nobody diddled with it while I was sleeping.
2292 */
2293 BUG_ON(!list_empty(&worker->scheduled));
2294
2295 /*
2296 * When control reaches this point, we're guaranteed to have
2297 * at least one idle worker or that someone else has already
2298 * assumed the manager role.
2299 */
2300 worker_clr_flags(worker, WORKER_PREP);
2301
2302 do {
2303 struct work_struct *work =
2304 list_first_entry(&pool->worklist,
2305 struct work_struct, entry);
2306
2307 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2308 /* optimization path, not strictly necessary */
2309 process_one_work(worker, work);
2310 if (unlikely(!list_empty(&worker->scheduled)))
2311 process_scheduled_works(worker);
2312 } else {
2313 move_linked_works(work, &worker->scheduled, NULL);
2314 process_scheduled_works(worker);
2315 }
2316 } while (keep_working(pool));
2317
2318 worker_set_flags(worker, WORKER_PREP, false);
2319 sleep:
2320 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2321 goto recheck;
2322
2323 /*
2324 * gcwq->lock is held and there's no work to process and no
2325 * need to manage, sleep. Workers are woken up only while
2326 * holding gcwq->lock or from local cpu, so setting the
2327 * current state before releasing gcwq->lock is enough to
2328 * prevent losing any event.
2329 */
2330 worker_enter_idle(worker);
2331 __set_current_state(TASK_INTERRUPTIBLE);
2332 spin_unlock_irq(&gcwq->lock);
2333 schedule();
2334 goto woke_up;
2335 }
2336
2337 /**
2338 * rescuer_thread - the rescuer thread function
2339 * @__rescuer: self
2340 *
2341 * Workqueue rescuer thread function. There's one rescuer for each
2342 * workqueue which has WQ_RESCUER set.
2343 *
2344 * Regular work processing on a gcwq may block trying to create a new
2345 * worker which uses GFP_KERNEL allocation which has slight chance of
2346 * developing into deadlock if some works currently on the same queue
2347 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2348 * the problem rescuer solves.
2349 *
2350 * When such condition is possible, the gcwq summons rescuers of all
2351 * workqueues which have works queued on the gcwq and let them process
2352 * those works so that forward progress can be guaranteed.
2353 *
2354 * This should happen rarely.
2355 */
2356 static int rescuer_thread(void *__rescuer)
2357 {
2358 struct worker *rescuer = __rescuer;
2359 struct workqueue_struct *wq = rescuer->rescue_wq;
2360 struct list_head *scheduled = &rescuer->scheduled;
2361 bool is_unbound = wq->flags & WQ_UNBOUND;
2362 unsigned int cpu;
2363
2364 set_user_nice(current, RESCUER_NICE_LEVEL);
2365
2366 /*
2367 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2368 * doesn't participate in concurrency management.
2369 */
2370 rescuer->task->flags |= PF_WQ_WORKER;
2371 repeat:
2372 set_current_state(TASK_INTERRUPTIBLE);
2373
2374 if (kthread_should_stop()) {
2375 __set_current_state(TASK_RUNNING);
2376 rescuer->task->flags &= ~PF_WQ_WORKER;
2377 return 0;
2378 }
2379
2380 /*
2381 * See whether any cpu is asking for help. Unbounded
2382 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2383 */
2384 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2385 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2386 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2387 struct worker_pool *pool = cwq->pool;
2388 struct global_cwq *gcwq = pool->gcwq;
2389 struct work_struct *work, *n;
2390
2391 __set_current_state(TASK_RUNNING);
2392 mayday_clear_cpu(cpu, wq->mayday_mask);
2393
2394 /* migrate to the target cpu if possible */
2395 rescuer->pool = pool;
2396 worker_maybe_bind_and_lock(rescuer);
2397
2398 /*
2399 * Slurp in all works issued via this workqueue and
2400 * process'em.
2401 */
2402 BUG_ON(!list_empty(&rescuer->scheduled));
2403 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2404 if (get_work_cwq(work) == cwq)
2405 move_linked_works(work, scheduled, &n);
2406
2407 process_scheduled_works(rescuer);
2408
2409 /*
2410 * Leave this gcwq. If keep_working() is %true, notify a
2411 * regular worker; otherwise, we end up with 0 concurrency
2412 * and stalling the execution.
2413 */
2414 if (keep_working(pool))
2415 wake_up_worker(pool);
2416
2417 spin_unlock_irq(&gcwq->lock);
2418 }
2419
2420 /* rescuers should never participate in concurrency management */
2421 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2422 schedule();
2423 goto repeat;
2424 }
2425
2426 struct wq_barrier {
2427 struct work_struct work;
2428 struct completion done;
2429 };
2430
2431 static void wq_barrier_func(struct work_struct *work)
2432 {
2433 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2434 complete(&barr->done);
2435 }
2436
2437 /**
2438 * insert_wq_barrier - insert a barrier work
2439 * @cwq: cwq to insert barrier into
2440 * @barr: wq_barrier to insert
2441 * @target: target work to attach @barr to
2442 * @worker: worker currently executing @target, NULL if @target is not executing
2443 *
2444 * @barr is linked to @target such that @barr is completed only after
2445 * @target finishes execution. Please note that the ordering
2446 * guarantee is observed only with respect to @target and on the local
2447 * cpu.
2448 *
2449 * Currently, a queued barrier can't be canceled. This is because
2450 * try_to_grab_pending() can't determine whether the work to be
2451 * grabbed is at the head of the queue and thus can't clear LINKED
2452 * flag of the previous work while there must be a valid next work
2453 * after a work with LINKED flag set.
2454 *
2455 * Note that when @worker is non-NULL, @target may be modified
2456 * underneath us, so we can't reliably determine cwq from @target.
2457 *
2458 * CONTEXT:
2459 * spin_lock_irq(gcwq->lock).
2460 */
2461 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2462 struct wq_barrier *barr,
2463 struct work_struct *target, struct worker *worker)
2464 {
2465 struct list_head *head;
2466 unsigned int linked = 0;
2467
2468 /*
2469 * debugobject calls are safe here even with gcwq->lock locked
2470 * as we know for sure that this will not trigger any of the
2471 * checks and call back into the fixup functions where we
2472 * might deadlock.
2473 */
2474 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2476 init_completion(&barr->done);
2477
2478 /*
2479 * If @target is currently being executed, schedule the
2480 * barrier to the worker; otherwise, put it after @target.
2481 */
2482 if (worker)
2483 head = worker->scheduled.next;
2484 else {
2485 unsigned long *bits = work_data_bits(target);
2486
2487 head = target->entry.next;
2488 /* there can already be other linked works, inherit and set */
2489 linked = *bits & WORK_STRUCT_LINKED;
2490 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2491 }
2492
2493 debug_work_activate(&barr->work);
2494 insert_work(cwq, &barr->work, head,
2495 work_color_to_flags(WORK_NO_COLOR) | linked);
2496 }
2497
2498 /**
2499 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2500 * @wq: workqueue being flushed
2501 * @flush_color: new flush color, < 0 for no-op
2502 * @work_color: new work color, < 0 for no-op
2503 *
2504 * Prepare cwqs for workqueue flushing.
2505 *
2506 * If @flush_color is non-negative, flush_color on all cwqs should be
2507 * -1. If no cwq has in-flight commands at the specified color, all
2508 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2509 * has in flight commands, its cwq->flush_color is set to
2510 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2511 * wakeup logic is armed and %true is returned.
2512 *
2513 * The caller should have initialized @wq->first_flusher prior to
2514 * calling this function with non-negative @flush_color. If
2515 * @flush_color is negative, no flush color update is done and %false
2516 * is returned.
2517 *
2518 * If @work_color is non-negative, all cwqs should have the same
2519 * work_color which is previous to @work_color and all will be
2520 * advanced to @work_color.
2521 *
2522 * CONTEXT:
2523 * mutex_lock(wq->flush_mutex).
2524 *
2525 * RETURNS:
2526 * %true if @flush_color >= 0 and there's something to flush. %false
2527 * otherwise.
2528 */
2529 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2530 int flush_color, int work_color)
2531 {
2532 bool wait = false;
2533 unsigned int cpu;
2534
2535 if (flush_color >= 0) {
2536 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2537 atomic_set(&wq->nr_cwqs_to_flush, 1);
2538 }
2539
2540 for_each_cwq_cpu(cpu, wq) {
2541 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2542 struct global_cwq *gcwq = cwq->pool->gcwq;
2543
2544 spin_lock_irq(&gcwq->lock);
2545
2546 if (flush_color >= 0) {
2547 BUG_ON(cwq->flush_color != -1);
2548
2549 if (cwq->nr_in_flight[flush_color]) {
2550 cwq->flush_color = flush_color;
2551 atomic_inc(&wq->nr_cwqs_to_flush);
2552 wait = true;
2553 }
2554 }
2555
2556 if (work_color >= 0) {
2557 BUG_ON(work_color != work_next_color(cwq->work_color));
2558 cwq->work_color = work_color;
2559 }
2560
2561 spin_unlock_irq(&gcwq->lock);
2562 }
2563
2564 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2565 complete(&wq->first_flusher->done);
2566
2567 return wait;
2568 }
2569
2570 /**
2571 * flush_workqueue - ensure that any scheduled work has run to completion.
2572 * @wq: workqueue to flush
2573 *
2574 * Forces execution of the workqueue and blocks until its completion.
2575 * This is typically used in driver shutdown handlers.
2576 *
2577 * We sleep until all works which were queued on entry have been handled,
2578 * but we are not livelocked by new incoming ones.
2579 */
2580 void flush_workqueue(struct workqueue_struct *wq)
2581 {
2582 struct wq_flusher this_flusher = {
2583 .list = LIST_HEAD_INIT(this_flusher.list),
2584 .flush_color = -1,
2585 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2586 };
2587 int next_color;
2588
2589 lock_map_acquire(&wq->lockdep_map);
2590 lock_map_release(&wq->lockdep_map);
2591
2592 mutex_lock(&wq->flush_mutex);
2593
2594 /*
2595 * Start-to-wait phase
2596 */
2597 next_color = work_next_color(wq->work_color);
2598
2599 if (next_color != wq->flush_color) {
2600 /*
2601 * Color space is not full. The current work_color
2602 * becomes our flush_color and work_color is advanced
2603 * by one.
2604 */
2605 BUG_ON(!list_empty(&wq->flusher_overflow));
2606 this_flusher.flush_color = wq->work_color;
2607 wq->work_color = next_color;
2608
2609 if (!wq->first_flusher) {
2610 /* no flush in progress, become the first flusher */
2611 BUG_ON(wq->flush_color != this_flusher.flush_color);
2612
2613 wq->first_flusher = &this_flusher;
2614
2615 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2616 wq->work_color)) {
2617 /* nothing to flush, done */
2618 wq->flush_color = next_color;
2619 wq->first_flusher = NULL;
2620 goto out_unlock;
2621 }
2622 } else {
2623 /* wait in queue */
2624 BUG_ON(wq->flush_color == this_flusher.flush_color);
2625 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2626 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2627 }
2628 } else {
2629 /*
2630 * Oops, color space is full, wait on overflow queue.
2631 * The next flush completion will assign us
2632 * flush_color and transfer to flusher_queue.
2633 */
2634 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2635 }
2636
2637 mutex_unlock(&wq->flush_mutex);
2638
2639 wait_for_completion(&this_flusher.done);
2640
2641 /*
2642 * Wake-up-and-cascade phase
2643 *
2644 * First flushers are responsible for cascading flushes and
2645 * handling overflow. Non-first flushers can simply return.
2646 */
2647 if (wq->first_flusher != &this_flusher)
2648 return;
2649
2650 mutex_lock(&wq->flush_mutex);
2651
2652 /* we might have raced, check again with mutex held */
2653 if (wq->first_flusher != &this_flusher)
2654 goto out_unlock;
2655
2656 wq->first_flusher = NULL;
2657
2658 BUG_ON(!list_empty(&this_flusher.list));
2659 BUG_ON(wq->flush_color != this_flusher.flush_color);
2660
2661 while (true) {
2662 struct wq_flusher *next, *tmp;
2663
2664 /* complete all the flushers sharing the current flush color */
2665 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2666 if (next->flush_color != wq->flush_color)
2667 break;
2668 list_del_init(&next->list);
2669 complete(&next->done);
2670 }
2671
2672 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2673 wq->flush_color != work_next_color(wq->work_color));
2674
2675 /* this flush_color is finished, advance by one */
2676 wq->flush_color = work_next_color(wq->flush_color);
2677
2678 /* one color has been freed, handle overflow queue */
2679 if (!list_empty(&wq->flusher_overflow)) {
2680 /*
2681 * Assign the same color to all overflowed
2682 * flushers, advance work_color and append to
2683 * flusher_queue. This is the start-to-wait
2684 * phase for these overflowed flushers.
2685 */
2686 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2687 tmp->flush_color = wq->work_color;
2688
2689 wq->work_color = work_next_color(wq->work_color);
2690
2691 list_splice_tail_init(&wq->flusher_overflow,
2692 &wq->flusher_queue);
2693 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2694 }
2695
2696 if (list_empty(&wq->flusher_queue)) {
2697 BUG_ON(wq->flush_color != wq->work_color);
2698 break;
2699 }
2700
2701 /*
2702 * Need to flush more colors. Make the next flusher
2703 * the new first flusher and arm cwqs.
2704 */
2705 BUG_ON(wq->flush_color == wq->work_color);
2706 BUG_ON(wq->flush_color != next->flush_color);
2707
2708 list_del_init(&next->list);
2709 wq->first_flusher = next;
2710
2711 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2712 break;
2713
2714 /*
2715 * Meh... this color is already done, clear first
2716 * flusher and repeat cascading.
2717 */
2718 wq->first_flusher = NULL;
2719 }
2720
2721 out_unlock:
2722 mutex_unlock(&wq->flush_mutex);
2723 }
2724 EXPORT_SYMBOL_GPL(flush_workqueue);
2725
2726 /**
2727 * drain_workqueue - drain a workqueue
2728 * @wq: workqueue to drain
2729 *
2730 * Wait until the workqueue becomes empty. While draining is in progress,
2731 * only chain queueing is allowed. IOW, only currently pending or running
2732 * work items on @wq can queue further work items on it. @wq is flushed
2733 * repeatedly until it becomes empty. The number of flushing is detemined
2734 * by the depth of chaining and should be relatively short. Whine if it
2735 * takes too long.
2736 */
2737 void drain_workqueue(struct workqueue_struct *wq)
2738 {
2739 unsigned int flush_cnt = 0;
2740 unsigned int cpu;
2741
2742 /*
2743 * __queue_work() needs to test whether there are drainers, is much
2744 * hotter than drain_workqueue() and already looks at @wq->flags.
2745 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2746 */
2747 spin_lock(&workqueue_lock);
2748 if (!wq->nr_drainers++)
2749 wq->flags |= WQ_DRAINING;
2750 spin_unlock(&workqueue_lock);
2751 reflush:
2752 flush_workqueue(wq);
2753
2754 for_each_cwq_cpu(cpu, wq) {
2755 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2756 bool drained;
2757
2758 spin_lock_irq(&cwq->pool->gcwq->lock);
2759 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2760 spin_unlock_irq(&cwq->pool->gcwq->lock);
2761
2762 if (drained)
2763 continue;
2764
2765 if (++flush_cnt == 10 ||
2766 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2768 wq->name, flush_cnt);
2769 goto reflush;
2770 }
2771
2772 spin_lock(&workqueue_lock);
2773 if (!--wq->nr_drainers)
2774 wq->flags &= ~WQ_DRAINING;
2775 spin_unlock(&workqueue_lock);
2776 }
2777 EXPORT_SYMBOL_GPL(drain_workqueue);
2778
2779 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2780 {
2781 struct worker *worker = NULL;
2782 struct global_cwq *gcwq;
2783 struct cpu_workqueue_struct *cwq;
2784
2785 might_sleep();
2786 gcwq = get_work_gcwq(work);
2787 if (!gcwq)
2788 return false;
2789
2790 spin_lock_irq(&gcwq->lock);
2791 if (!list_empty(&work->entry)) {
2792 /*
2793 * See the comment near try_to_grab_pending()->smp_rmb().
2794 * If it was re-queued to a different gcwq under us, we
2795 * are not going to wait.
2796 */
2797 smp_rmb();
2798 cwq = get_work_cwq(work);
2799 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2800 goto already_gone;
2801 } else {
2802 worker = find_worker_executing_work(gcwq, work);
2803 if (!worker)
2804 goto already_gone;
2805 cwq = worker->current_cwq;
2806 }
2807
2808 insert_wq_barrier(cwq, barr, work, worker);
2809 spin_unlock_irq(&gcwq->lock);
2810
2811 /*
2812 * If @max_active is 1 or rescuer is in use, flushing another work
2813 * item on the same workqueue may lead to deadlock. Make sure the
2814 * flusher is not running on the same workqueue by verifying write
2815 * access.
2816 */
2817 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2818 lock_map_acquire(&cwq->wq->lockdep_map);
2819 else
2820 lock_map_acquire_read(&cwq->wq->lockdep_map);
2821 lock_map_release(&cwq->wq->lockdep_map);
2822
2823 return true;
2824 already_gone:
2825 spin_unlock_irq(&gcwq->lock);
2826 return false;
2827 }
2828
2829 /**
2830 * flush_work - wait for a work to finish executing the last queueing instance
2831 * @work: the work to flush
2832 *
2833 * Wait until @work has finished execution. @work is guaranteed to be idle
2834 * on return if it hasn't been requeued since flush started.
2835 *
2836 * RETURNS:
2837 * %true if flush_work() waited for the work to finish execution,
2838 * %false if it was already idle.
2839 */
2840 bool flush_work(struct work_struct *work)
2841 {
2842 struct wq_barrier barr;
2843
2844 lock_map_acquire(&work->lockdep_map);
2845 lock_map_release(&work->lockdep_map);
2846
2847 if (start_flush_work(work, &barr)) {
2848 wait_for_completion(&barr.done);
2849 destroy_work_on_stack(&barr.work);
2850 return true;
2851 } else {
2852 return false;
2853 }
2854 }
2855 EXPORT_SYMBOL_GPL(flush_work);
2856
2857 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2858 {
2859 unsigned long flags;
2860 int ret;
2861
2862 do {
2863 ret = try_to_grab_pending(work, is_dwork, &flags);
2864 /*
2865 * If someone else is canceling, wait for the same event it
2866 * would be waiting for before retrying.
2867 */
2868 if (unlikely(ret == -ENOENT))
2869 flush_work(work);
2870 } while (unlikely(ret < 0));
2871
2872 /* tell other tasks trying to grab @work to back off */
2873 mark_work_canceling(work);
2874 local_irq_restore(flags);
2875
2876 flush_work(work);
2877 clear_work_data(work);
2878 return ret;
2879 }
2880
2881 /**
2882 * cancel_work_sync - cancel a work and wait for it to finish
2883 * @work: the work to cancel
2884 *
2885 * Cancel @work and wait for its execution to finish. This function
2886 * can be used even if the work re-queues itself or migrates to
2887 * another workqueue. On return from this function, @work is
2888 * guaranteed to be not pending or executing on any CPU.
2889 *
2890 * cancel_work_sync(&delayed_work->work) must not be used for
2891 * delayed_work's. Use cancel_delayed_work_sync() instead.
2892 *
2893 * The caller must ensure that the workqueue on which @work was last
2894 * queued can't be destroyed before this function returns.
2895 *
2896 * RETURNS:
2897 * %true if @work was pending, %false otherwise.
2898 */
2899 bool cancel_work_sync(struct work_struct *work)
2900 {
2901 return __cancel_work_timer(work, false);
2902 }
2903 EXPORT_SYMBOL_GPL(cancel_work_sync);
2904
2905 /**
2906 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2907 * @dwork: the delayed work to flush
2908 *
2909 * Delayed timer is cancelled and the pending work is queued for
2910 * immediate execution. Like flush_work(), this function only
2911 * considers the last queueing instance of @dwork.
2912 *
2913 * RETURNS:
2914 * %true if flush_work() waited for the work to finish execution,
2915 * %false if it was already idle.
2916 */
2917 bool flush_delayed_work(struct delayed_work *dwork)
2918 {
2919 local_irq_disable();
2920 if (del_timer_sync(&dwork->timer))
2921 __queue_work(dwork->cpu,
2922 get_work_cwq(&dwork->work)->wq, &dwork->work);
2923 local_irq_enable();
2924 return flush_work(&dwork->work);
2925 }
2926 EXPORT_SYMBOL(flush_delayed_work);
2927
2928 /**
2929 * cancel_delayed_work - cancel a delayed work
2930 * @dwork: delayed_work to cancel
2931 *
2932 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2933 * and canceled; %false if wasn't pending. Note that the work callback
2934 * function may still be running on return, unless it returns %true and the
2935 * work doesn't re-arm itself. Explicitly flush or use
2936 * cancel_delayed_work_sync() to wait on it.
2937 *
2938 * This function is safe to call from any context including IRQ handler.
2939 */
2940 bool cancel_delayed_work(struct delayed_work *dwork)
2941 {
2942 unsigned long flags;
2943 int ret;
2944
2945 do {
2946 ret = try_to_grab_pending(&dwork->work, true, &flags);
2947 } while (unlikely(ret == -EAGAIN));
2948
2949 if (unlikely(ret < 0))
2950 return false;
2951
2952 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2953 local_irq_restore(flags);
2954 return ret;
2955 }
2956 EXPORT_SYMBOL(cancel_delayed_work);
2957
2958 /**
2959 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2960 * @dwork: the delayed work cancel
2961 *
2962 * This is cancel_work_sync() for delayed works.
2963 *
2964 * RETURNS:
2965 * %true if @dwork was pending, %false otherwise.
2966 */
2967 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2968 {
2969 return __cancel_work_timer(&dwork->work, true);
2970 }
2971 EXPORT_SYMBOL(cancel_delayed_work_sync);
2972
2973 /**
2974 * schedule_work_on - put work task on a specific cpu
2975 * @cpu: cpu to put the work task on
2976 * @work: job to be done
2977 *
2978 * This puts a job on a specific cpu
2979 */
2980 bool schedule_work_on(int cpu, struct work_struct *work)
2981 {
2982 return queue_work_on(cpu, system_wq, work);
2983 }
2984 EXPORT_SYMBOL(schedule_work_on);
2985
2986 /**
2987 * schedule_work - put work task in global workqueue
2988 * @work: job to be done
2989 *
2990 * Returns %false if @work was already on the kernel-global workqueue and
2991 * %true otherwise.
2992 *
2993 * This puts a job in the kernel-global workqueue if it was not already
2994 * queued and leaves it in the same position on the kernel-global
2995 * workqueue otherwise.
2996 */
2997 bool schedule_work(struct work_struct *work)
2998 {
2999 return queue_work(system_wq, work);
3000 }
3001 EXPORT_SYMBOL(schedule_work);
3002
3003 /**
3004 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3005 * @cpu: cpu to use
3006 * @dwork: job to be done
3007 * @delay: number of jiffies to wait
3008 *
3009 * After waiting for a given time this puts a job in the kernel-global
3010 * workqueue on the specified CPU.
3011 */
3012 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3013 unsigned long delay)
3014 {
3015 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3016 }
3017 EXPORT_SYMBOL(schedule_delayed_work_on);
3018
3019 /**
3020 * schedule_delayed_work - put work task in global workqueue after delay
3021 * @dwork: job to be done
3022 * @delay: number of jiffies to wait or 0 for immediate execution
3023 *
3024 * After waiting for a given time this puts a job in the kernel-global
3025 * workqueue.
3026 */
3027 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3028 {
3029 return queue_delayed_work(system_wq, dwork, delay);
3030 }
3031 EXPORT_SYMBOL(schedule_delayed_work);
3032
3033 /**
3034 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3035 * @func: the function to call
3036 *
3037 * schedule_on_each_cpu() executes @func on each online CPU using the
3038 * system workqueue and blocks until all CPUs have completed.
3039 * schedule_on_each_cpu() is very slow.
3040 *
3041 * RETURNS:
3042 * 0 on success, -errno on failure.
3043 */
3044 int schedule_on_each_cpu(work_func_t func)
3045 {
3046 int cpu;
3047 struct work_struct __percpu *works;
3048
3049 works = alloc_percpu(struct work_struct);
3050 if (!works)
3051 return -ENOMEM;
3052
3053 get_online_cpus();
3054
3055 for_each_online_cpu(cpu) {
3056 struct work_struct *work = per_cpu_ptr(works, cpu);
3057
3058 INIT_WORK(work, func);
3059 schedule_work_on(cpu, work);
3060 }
3061
3062 for_each_online_cpu(cpu)
3063 flush_work(per_cpu_ptr(works, cpu));
3064
3065 put_online_cpus();
3066 free_percpu(works);
3067 return 0;
3068 }
3069
3070 /**
3071 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3072 *
3073 * Forces execution of the kernel-global workqueue and blocks until its
3074 * completion.
3075 *
3076 * Think twice before calling this function! It's very easy to get into
3077 * trouble if you don't take great care. Either of the following situations
3078 * will lead to deadlock:
3079 *
3080 * One of the work items currently on the workqueue needs to acquire
3081 * a lock held by your code or its caller.
3082 *
3083 * Your code is running in the context of a work routine.
3084 *
3085 * They will be detected by lockdep when they occur, but the first might not
3086 * occur very often. It depends on what work items are on the workqueue and
3087 * what locks they need, which you have no control over.
3088 *
3089 * In most situations flushing the entire workqueue is overkill; you merely
3090 * need to know that a particular work item isn't queued and isn't running.
3091 * In such cases you should use cancel_delayed_work_sync() or
3092 * cancel_work_sync() instead.
3093 */
3094 void flush_scheduled_work(void)
3095 {
3096 flush_workqueue(system_wq);
3097 }
3098 EXPORT_SYMBOL(flush_scheduled_work);
3099
3100 /**
3101 * execute_in_process_context - reliably execute the routine with user context
3102 * @fn: the function to execute
3103 * @ew: guaranteed storage for the execute work structure (must
3104 * be available when the work executes)
3105 *
3106 * Executes the function immediately if process context is available,
3107 * otherwise schedules the function for delayed execution.
3108 *
3109 * Returns: 0 - function was executed
3110 * 1 - function was scheduled for execution
3111 */
3112 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3113 {
3114 if (!in_interrupt()) {
3115 fn(&ew->work);
3116 return 0;
3117 }
3118
3119 INIT_WORK(&ew->work, fn);
3120 schedule_work(&ew->work);
3121
3122 return 1;
3123 }
3124 EXPORT_SYMBOL_GPL(execute_in_process_context);
3125
3126 int keventd_up(void)
3127 {
3128 return system_wq != NULL;
3129 }
3130
3131 static int alloc_cwqs(struct workqueue_struct *wq)
3132 {
3133 /*
3134 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3135 * Make sure that the alignment isn't lower than that of
3136 * unsigned long long.
3137 */
3138 const size_t size = sizeof(struct cpu_workqueue_struct);
3139 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3140 __alignof__(unsigned long long));
3141
3142 if (!(wq->flags & WQ_UNBOUND))
3143 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3144 else {
3145 void *ptr;
3146
3147 /*
3148 * Allocate enough room to align cwq and put an extra
3149 * pointer at the end pointing back to the originally
3150 * allocated pointer which will be used for free.
3151 */
3152 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3153 if (ptr) {
3154 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3155 *(void **)(wq->cpu_wq.single + 1) = ptr;
3156 }
3157 }
3158
3159 /* just in case, make sure it's actually aligned */
3160 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3161 return wq->cpu_wq.v ? 0 : -ENOMEM;
3162 }
3163
3164 static void free_cwqs(struct workqueue_struct *wq)
3165 {
3166 if (!(wq->flags & WQ_UNBOUND))
3167 free_percpu(wq->cpu_wq.pcpu);
3168 else if (wq->cpu_wq.single) {
3169 /* the pointer to free is stored right after the cwq */
3170 kfree(*(void **)(wq->cpu_wq.single + 1));
3171 }
3172 }
3173
3174 static int wq_clamp_max_active(int max_active, unsigned int flags,
3175 const char *name)
3176 {
3177 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3178
3179 if (max_active < 1 || max_active > lim)
3180 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3181 max_active, name, 1, lim);
3182
3183 return clamp_val(max_active, 1, lim);
3184 }
3185
3186 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3187 unsigned int flags,
3188 int max_active,
3189 struct lock_class_key *key,
3190 const char *lock_name, ...)
3191 {
3192 va_list args, args1;
3193 struct workqueue_struct *wq;
3194 unsigned int cpu;
3195 size_t namelen;
3196
3197 /* determine namelen, allocate wq and format name */
3198 va_start(args, lock_name);
3199 va_copy(args1, args);
3200 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3201
3202 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3203 if (!wq)
3204 goto err;
3205
3206 vsnprintf(wq->name, namelen, fmt, args1);
3207 va_end(args);
3208 va_end(args1);
3209
3210 /*
3211 * Workqueues which may be used during memory reclaim should
3212 * have a rescuer to guarantee forward progress.
3213 */
3214 if (flags & WQ_MEM_RECLAIM)
3215 flags |= WQ_RESCUER;
3216
3217 max_active = max_active ?: WQ_DFL_ACTIVE;
3218 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3219
3220 /* init wq */
3221 wq->flags = flags;
3222 wq->saved_max_active = max_active;
3223 mutex_init(&wq->flush_mutex);
3224 atomic_set(&wq->nr_cwqs_to_flush, 0);
3225 INIT_LIST_HEAD(&wq->flusher_queue);
3226 INIT_LIST_HEAD(&wq->flusher_overflow);
3227
3228 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3229 INIT_LIST_HEAD(&wq->list);
3230
3231 if (alloc_cwqs(wq) < 0)
3232 goto err;
3233
3234 for_each_cwq_cpu(cpu, wq) {
3235 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3236 struct global_cwq *gcwq = get_gcwq(cpu);
3237 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3238
3239 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3240 cwq->pool = &gcwq->pools[pool_idx];
3241 cwq->wq = wq;
3242 cwq->flush_color = -1;
3243 cwq->max_active = max_active;
3244 INIT_LIST_HEAD(&cwq->delayed_works);
3245 }
3246
3247 if (flags & WQ_RESCUER) {
3248 struct worker *rescuer;
3249
3250 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3251 goto err;
3252
3253 wq->rescuer = rescuer = alloc_worker();
3254 if (!rescuer)
3255 goto err;
3256
3257 rescuer->rescue_wq = wq;
3258 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3259 wq->name);
3260 if (IS_ERR(rescuer->task))
3261 goto err;
3262
3263 rescuer->task->flags |= PF_THREAD_BOUND;
3264 wake_up_process(rescuer->task);
3265 }
3266
3267 /*
3268 * workqueue_lock protects global freeze state and workqueues
3269 * list. Grab it, set max_active accordingly and add the new
3270 * workqueue to workqueues list.
3271 */
3272 spin_lock(&workqueue_lock);
3273
3274 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3275 for_each_cwq_cpu(cpu, wq)
3276 get_cwq(cpu, wq)->max_active = 0;
3277
3278 list_add(&wq->list, &workqueues);
3279
3280 spin_unlock(&workqueue_lock);
3281
3282 return wq;
3283 err:
3284 if (wq) {
3285 free_cwqs(wq);
3286 free_mayday_mask(wq->mayday_mask);
3287 kfree(wq->rescuer);
3288 kfree(wq);
3289 }
3290 return NULL;
3291 }
3292 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3293
3294 /**
3295 * destroy_workqueue - safely terminate a workqueue
3296 * @wq: target workqueue
3297 *
3298 * Safely destroy a workqueue. All work currently pending will be done first.
3299 */
3300 void destroy_workqueue(struct workqueue_struct *wq)
3301 {
3302 unsigned int cpu;
3303
3304 /* drain it before proceeding with destruction */
3305 drain_workqueue(wq);
3306
3307 /*
3308 * wq list is used to freeze wq, remove from list after
3309 * flushing is complete in case freeze races us.
3310 */
3311 spin_lock(&workqueue_lock);
3312 list_del(&wq->list);
3313 spin_unlock(&workqueue_lock);
3314
3315 /* sanity check */
3316 for_each_cwq_cpu(cpu, wq) {
3317 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3318 int i;
3319
3320 for (i = 0; i < WORK_NR_COLORS; i++)
3321 BUG_ON(cwq->nr_in_flight[i]);
3322 BUG_ON(cwq->nr_active);
3323 BUG_ON(!list_empty(&cwq->delayed_works));
3324 }
3325
3326 if (wq->flags & WQ_RESCUER) {
3327 kthread_stop(wq->rescuer->task);
3328 free_mayday_mask(wq->mayday_mask);
3329 kfree(wq->rescuer);
3330 }
3331
3332 free_cwqs(wq);
3333 kfree(wq);
3334 }
3335 EXPORT_SYMBOL_GPL(destroy_workqueue);
3336
3337 /**
3338 * cwq_set_max_active - adjust max_active of a cwq
3339 * @cwq: target cpu_workqueue_struct
3340 * @max_active: new max_active value.
3341 *
3342 * Set @cwq->max_active to @max_active and activate delayed works if
3343 * increased.
3344 *
3345 * CONTEXT:
3346 * spin_lock_irq(gcwq->lock).
3347 */
3348 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3349 {
3350 cwq->max_active = max_active;
3351
3352 while (!list_empty(&cwq->delayed_works) &&
3353 cwq->nr_active < cwq->max_active)
3354 cwq_activate_first_delayed(cwq);
3355 }
3356
3357 /**
3358 * workqueue_set_max_active - adjust max_active of a workqueue
3359 * @wq: target workqueue
3360 * @max_active: new max_active value.
3361 *
3362 * Set max_active of @wq to @max_active.
3363 *
3364 * CONTEXT:
3365 * Don't call from IRQ context.
3366 */
3367 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3368 {
3369 unsigned int cpu;
3370
3371 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3372
3373 spin_lock(&workqueue_lock);
3374
3375 wq->saved_max_active = max_active;
3376
3377 for_each_cwq_cpu(cpu, wq) {
3378 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3379 struct worker_pool *pool = cwq->pool;
3380 struct global_cwq *gcwq = pool->gcwq;
3381
3382 spin_lock_irq(&gcwq->lock);
3383
3384 if (!(wq->flags & WQ_FREEZABLE) ||
3385 !(pool->flags & POOL_FREEZING))
3386 cwq_set_max_active(cwq, max_active);
3387
3388 spin_unlock_irq(&gcwq->lock);
3389 }
3390
3391 spin_unlock(&workqueue_lock);
3392 }
3393 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3394
3395 /**
3396 * workqueue_congested - test whether a workqueue is congested
3397 * @cpu: CPU in question
3398 * @wq: target workqueue
3399 *
3400 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3401 * no synchronization around this function and the test result is
3402 * unreliable and only useful as advisory hints or for debugging.
3403 *
3404 * RETURNS:
3405 * %true if congested, %false otherwise.
3406 */
3407 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3408 {
3409 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3410
3411 return !list_empty(&cwq->delayed_works);
3412 }
3413 EXPORT_SYMBOL_GPL(workqueue_congested);
3414
3415 /**
3416 * work_cpu - return the last known associated cpu for @work
3417 * @work: the work of interest
3418 *
3419 * RETURNS:
3420 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3421 */
3422 static unsigned int work_cpu(struct work_struct *work)
3423 {
3424 struct global_cwq *gcwq = get_work_gcwq(work);
3425
3426 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3427 }
3428
3429 /**
3430 * work_busy - test whether a work is currently pending or running
3431 * @work: the work to be tested
3432 *
3433 * Test whether @work is currently pending or running. There is no
3434 * synchronization around this function and the test result is
3435 * unreliable and only useful as advisory hints or for debugging.
3436 * Especially for reentrant wqs, the pending state might hide the
3437 * running state.
3438 *
3439 * RETURNS:
3440 * OR'd bitmask of WORK_BUSY_* bits.
3441 */
3442 unsigned int work_busy(struct work_struct *work)
3443 {
3444 struct global_cwq *gcwq = get_work_gcwq(work);
3445 unsigned long flags;
3446 unsigned int ret = 0;
3447
3448 if (!gcwq)
3449 return 0;
3450
3451 spin_lock_irqsave(&gcwq->lock, flags);
3452
3453 if (work_pending(work))
3454 ret |= WORK_BUSY_PENDING;
3455 if (find_worker_executing_work(gcwq, work))
3456 ret |= WORK_BUSY_RUNNING;
3457
3458 spin_unlock_irqrestore(&gcwq->lock, flags);
3459
3460 return ret;
3461 }
3462 EXPORT_SYMBOL_GPL(work_busy);
3463
3464 /*
3465 * CPU hotplug.
3466 *
3467 * There are two challenges in supporting CPU hotplug. Firstly, there
3468 * are a lot of assumptions on strong associations among work, cwq and
3469 * gcwq which make migrating pending and scheduled works very
3470 * difficult to implement without impacting hot paths. Secondly,
3471 * gcwqs serve mix of short, long and very long running works making
3472 * blocked draining impractical.
3473 *
3474 * This is solved by allowing the pools to be disassociated from the CPU
3475 * running as an unbound one and allowing it to be reattached later if the
3476 * cpu comes back online.
3477 */
3478
3479 /* claim manager positions of all pools */
3480 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3481 {
3482 struct worker_pool *pool;
3483
3484 for_each_worker_pool(pool, gcwq)
3485 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3486 spin_lock_irq(&gcwq->lock);
3487 }
3488
3489 /* release manager positions */
3490 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3491 {
3492 struct worker_pool *pool;
3493
3494 spin_unlock_irq(&gcwq->lock);
3495 for_each_worker_pool(pool, gcwq)
3496 mutex_unlock(&pool->assoc_mutex);
3497 }
3498
3499 static void gcwq_unbind_fn(struct work_struct *work)
3500 {
3501 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3502 struct worker_pool *pool;
3503 struct worker *worker;
3504 struct hlist_node *pos;
3505 int i;
3506
3507 BUG_ON(gcwq->cpu != smp_processor_id());
3508
3509 gcwq_claim_assoc_and_lock(gcwq);
3510
3511 /*
3512 * We've claimed all manager positions. Make all workers unbound
3513 * and set DISASSOCIATED. Before this, all workers except for the
3514 * ones which are still executing works from before the last CPU
3515 * down must be on the cpu. After this, they may become diasporas.
3516 */
3517 for_each_worker_pool(pool, gcwq)
3518 list_for_each_entry(worker, &pool->idle_list, entry)
3519 worker->flags |= WORKER_UNBOUND;
3520
3521 for_each_busy_worker(worker, i, pos, gcwq)
3522 worker->flags |= WORKER_UNBOUND;
3523
3524 for_each_worker_pool(pool, gcwq)
3525 pool->flags |= POOL_DISASSOCIATED;
3526
3527 gcwq_release_assoc_and_unlock(gcwq);
3528
3529 /*
3530 * Call schedule() so that we cross rq->lock and thus can guarantee
3531 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3532 * as scheduler callbacks may be invoked from other cpus.
3533 */
3534 schedule();
3535
3536 /*
3537 * Sched callbacks are disabled now. Zap nr_running. After this,
3538 * nr_running stays zero and need_more_worker() and keep_working()
3539 * are always true as long as the worklist is not empty. @gcwq now
3540 * behaves as unbound (in terms of concurrency management) gcwq
3541 * which is served by workers tied to the CPU.
3542 *
3543 * On return from this function, the current worker would trigger
3544 * unbound chain execution of pending work items if other workers
3545 * didn't already.
3546 */
3547 for_each_worker_pool(pool, gcwq)
3548 atomic_set(get_pool_nr_running(pool), 0);
3549 }
3550
3551 /*
3552 * Workqueues should be brought up before normal priority CPU notifiers.
3553 * This will be registered high priority CPU notifier.
3554 */
3555 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3556 unsigned long action,
3557 void *hcpu)
3558 {
3559 unsigned int cpu = (unsigned long)hcpu;
3560 struct global_cwq *gcwq = get_gcwq(cpu);
3561 struct worker_pool *pool;
3562
3563 switch (action & ~CPU_TASKS_FROZEN) {
3564 case CPU_UP_PREPARE:
3565 for_each_worker_pool(pool, gcwq) {
3566 struct worker *worker;
3567
3568 if (pool->nr_workers)
3569 continue;
3570
3571 worker = create_worker(pool);
3572 if (!worker)
3573 return NOTIFY_BAD;
3574
3575 spin_lock_irq(&gcwq->lock);
3576 start_worker(worker);
3577 spin_unlock_irq(&gcwq->lock);
3578 }
3579 break;
3580
3581 case CPU_DOWN_FAILED:
3582 case CPU_ONLINE:
3583 gcwq_claim_assoc_and_lock(gcwq);
3584 for_each_worker_pool(pool, gcwq)
3585 pool->flags &= ~POOL_DISASSOCIATED;
3586 rebind_workers(gcwq);
3587 gcwq_release_assoc_and_unlock(gcwq);
3588 break;
3589 }
3590 return NOTIFY_OK;
3591 }
3592
3593 /*
3594 * Workqueues should be brought down after normal priority CPU notifiers.
3595 * This will be registered as low priority CPU notifier.
3596 */
3597 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3598 unsigned long action,
3599 void *hcpu)
3600 {
3601 unsigned int cpu = (unsigned long)hcpu;
3602 struct work_struct unbind_work;
3603
3604 switch (action & ~CPU_TASKS_FROZEN) {
3605 case CPU_DOWN_PREPARE:
3606 /* unbinding should happen on the local CPU */
3607 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3608 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3609 flush_work(&unbind_work);
3610 break;
3611 }
3612 return NOTIFY_OK;
3613 }
3614
3615 #ifdef CONFIG_SMP
3616
3617 struct work_for_cpu {
3618 struct work_struct work;
3619 long (*fn)(void *);
3620 void *arg;
3621 long ret;
3622 };
3623
3624 static void work_for_cpu_fn(struct work_struct *work)
3625 {
3626 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3627
3628 wfc->ret = wfc->fn(wfc->arg);
3629 }
3630
3631 /**
3632 * work_on_cpu - run a function in user context on a particular cpu
3633 * @cpu: the cpu to run on
3634 * @fn: the function to run
3635 * @arg: the function arg
3636 *
3637 * This will return the value @fn returns.
3638 * It is up to the caller to ensure that the cpu doesn't go offline.
3639 * The caller must not hold any locks which would prevent @fn from completing.
3640 */
3641 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3642 {
3643 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3644
3645 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3646 schedule_work_on(cpu, &wfc.work);
3647 flush_work(&wfc.work);
3648 return wfc.ret;
3649 }
3650 EXPORT_SYMBOL_GPL(work_on_cpu);
3651 #endif /* CONFIG_SMP */
3652
3653 #ifdef CONFIG_FREEZER
3654
3655 /**
3656 * freeze_workqueues_begin - begin freezing workqueues
3657 *
3658 * Start freezing workqueues. After this function returns, all freezable
3659 * workqueues will queue new works to their frozen_works list instead of
3660 * gcwq->worklist.
3661 *
3662 * CONTEXT:
3663 * Grabs and releases workqueue_lock and gcwq->lock's.
3664 */
3665 void freeze_workqueues_begin(void)
3666 {
3667 unsigned int cpu;
3668
3669 spin_lock(&workqueue_lock);
3670
3671 BUG_ON(workqueue_freezing);
3672 workqueue_freezing = true;
3673
3674 for_each_gcwq_cpu(cpu) {
3675 struct global_cwq *gcwq = get_gcwq(cpu);
3676 struct worker_pool *pool;
3677 struct workqueue_struct *wq;
3678
3679 spin_lock_irq(&gcwq->lock);
3680
3681 for_each_worker_pool(pool, gcwq) {
3682 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3683 pool->flags |= POOL_FREEZING;
3684 }
3685
3686 list_for_each_entry(wq, &workqueues, list) {
3687 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3688
3689 if (cwq && wq->flags & WQ_FREEZABLE)
3690 cwq->max_active = 0;
3691 }
3692
3693 spin_unlock_irq(&gcwq->lock);
3694 }
3695
3696 spin_unlock(&workqueue_lock);
3697 }
3698
3699 /**
3700 * freeze_workqueues_busy - are freezable workqueues still busy?
3701 *
3702 * Check whether freezing is complete. This function must be called
3703 * between freeze_workqueues_begin() and thaw_workqueues().
3704 *
3705 * CONTEXT:
3706 * Grabs and releases workqueue_lock.
3707 *
3708 * RETURNS:
3709 * %true if some freezable workqueues are still busy. %false if freezing
3710 * is complete.
3711 */
3712 bool freeze_workqueues_busy(void)
3713 {
3714 unsigned int cpu;
3715 bool busy = false;
3716
3717 spin_lock(&workqueue_lock);
3718
3719 BUG_ON(!workqueue_freezing);
3720
3721 for_each_gcwq_cpu(cpu) {
3722 struct workqueue_struct *wq;
3723 /*
3724 * nr_active is monotonically decreasing. It's safe
3725 * to peek without lock.
3726 */
3727 list_for_each_entry(wq, &workqueues, list) {
3728 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3729
3730 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3731 continue;
3732
3733 BUG_ON(cwq->nr_active < 0);
3734 if (cwq->nr_active) {
3735 busy = true;
3736 goto out_unlock;
3737 }
3738 }
3739 }
3740 out_unlock:
3741 spin_unlock(&workqueue_lock);
3742 return busy;
3743 }
3744
3745 /**
3746 * thaw_workqueues - thaw workqueues
3747 *
3748 * Thaw workqueues. Normal queueing is restored and all collected
3749 * frozen works are transferred to their respective gcwq worklists.
3750 *
3751 * CONTEXT:
3752 * Grabs and releases workqueue_lock and gcwq->lock's.
3753 */
3754 void thaw_workqueues(void)
3755 {
3756 unsigned int cpu;
3757
3758 spin_lock(&workqueue_lock);
3759
3760 if (!workqueue_freezing)
3761 goto out_unlock;
3762
3763 for_each_gcwq_cpu(cpu) {
3764 struct global_cwq *gcwq = get_gcwq(cpu);
3765 struct worker_pool *pool;
3766 struct workqueue_struct *wq;
3767
3768 spin_lock_irq(&gcwq->lock);
3769
3770 for_each_worker_pool(pool, gcwq) {
3771 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3772 pool->flags &= ~POOL_FREEZING;
3773 }
3774
3775 list_for_each_entry(wq, &workqueues, list) {
3776 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3777
3778 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3779 continue;
3780
3781 /* restore max_active and repopulate worklist */
3782 cwq_set_max_active(cwq, wq->saved_max_active);
3783 }
3784
3785 for_each_worker_pool(pool, gcwq)
3786 wake_up_worker(pool);
3787
3788 spin_unlock_irq(&gcwq->lock);
3789 }
3790
3791 workqueue_freezing = false;
3792 out_unlock:
3793 spin_unlock(&workqueue_lock);
3794 }
3795 #endif /* CONFIG_FREEZER */
3796
3797 static int __init init_workqueues(void)
3798 {
3799 unsigned int cpu;
3800
3801 /* make sure we have enough bits for OFFQ CPU number */
3802 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3803 WORK_CPU_LAST);
3804
3805 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3806 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3807
3808 /* initialize gcwqs */
3809 for_each_gcwq_cpu(cpu) {
3810 struct global_cwq *gcwq = get_gcwq(cpu);
3811 struct worker_pool *pool;
3812
3813 spin_lock_init(&gcwq->lock);
3814 gcwq->cpu = cpu;
3815
3816 hash_init(gcwq->busy_hash);
3817
3818 for_each_worker_pool(pool, gcwq) {
3819 pool->gcwq = gcwq;
3820 pool->flags |= POOL_DISASSOCIATED;
3821 INIT_LIST_HEAD(&pool->worklist);
3822 INIT_LIST_HEAD(&pool->idle_list);
3823
3824 init_timer_deferrable(&pool->idle_timer);
3825 pool->idle_timer.function = idle_worker_timeout;
3826 pool->idle_timer.data = (unsigned long)pool;
3827
3828 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3829 (unsigned long)pool);
3830
3831 mutex_init(&pool->assoc_mutex);
3832 ida_init(&pool->worker_ida);
3833 }
3834 }
3835
3836 /* create the initial worker */
3837 for_each_online_gcwq_cpu(cpu) {
3838 struct global_cwq *gcwq = get_gcwq(cpu);
3839 struct worker_pool *pool;
3840
3841 for_each_worker_pool(pool, gcwq) {
3842 struct worker *worker;
3843
3844 if (cpu != WORK_CPU_UNBOUND)
3845 pool->flags &= ~POOL_DISASSOCIATED;
3846
3847 worker = create_worker(pool);
3848 BUG_ON(!worker);
3849 spin_lock_irq(&gcwq->lock);
3850 start_worker(worker);
3851 spin_unlock_irq(&gcwq->lock);
3852 }
3853 }
3854
3855 system_wq = alloc_workqueue("events", 0, 0);
3856 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3857 system_long_wq = alloc_workqueue("events_long", 0, 0);
3858 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3859 WQ_UNBOUND_MAX_ACTIVE);
3860 system_freezable_wq = alloc_workqueue("events_freezable",
3861 WQ_FREEZABLE, 0);
3862 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3863 !system_unbound_wq || !system_freezable_wq);
3864 return 0;
3865 }
3866 early_initcall(init_workqueues);
This page took 0.110892 seconds and 5 git commands to generate.