20d6237d7498bf389d5c9a9d95dd728d69c7781b
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <linux/idr.h>
37
38 #include "workqueue_sched.h"
39
40 enum {
41 /* global_cwq flags */
42 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
43 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
44 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
45 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
46 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
47
48 /* worker flags */
49 WORKER_STARTED = 1 << 0, /* started */
50 WORKER_DIE = 1 << 1, /* die die die */
51 WORKER_IDLE = 1 << 2, /* is idle */
52 WORKER_PREP = 1 << 3, /* preparing to run works */
53 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
54 WORKER_REBIND = 1 << 5, /* mom is home, come back */
55 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
56 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
57
58 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
59 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
60
61 /* gcwq->trustee_state */
62 TRUSTEE_START = 0, /* start */
63 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
64 TRUSTEE_BUTCHER = 2, /* butcher workers */
65 TRUSTEE_RELEASE = 3, /* release workers */
66 TRUSTEE_DONE = 4, /* trustee is done */
67
68 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
69 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
70 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
71
72 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
73 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
74
75 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
76 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
77 CREATE_COOLDOWN = HZ, /* time to breath after fail */
78 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
79
80 /*
81 * Rescue workers are used only on emergencies and shared by
82 * all cpus. Give -20.
83 */
84 RESCUER_NICE_LEVEL = -20,
85 };
86
87 /*
88 * Structure fields follow one of the following exclusion rules.
89 *
90 * I: Set during initialization and read-only afterwards.
91 *
92 * P: Preemption protected. Disabling preemption is enough and should
93 * only be modified and accessed from the local cpu.
94 *
95 * L: gcwq->lock protected. Access with gcwq->lock held.
96 *
97 * X: During normal operation, modification requires gcwq->lock and
98 * should be done only from local cpu. Either disabling preemption
99 * on local cpu or grabbing gcwq->lock is enough for read access.
100 * If GCWQ_DISASSOCIATED is set, it's identical to L.
101 *
102 * F: wq->flush_mutex protected.
103 *
104 * W: workqueue_lock protected.
105 */
106
107 struct global_cwq;
108
109 /*
110 * The poor guys doing the actual heavy lifting. All on-duty workers
111 * are either serving the manager role, on idle list or on busy hash.
112 */
113 struct worker {
114 /* on idle list while idle, on busy hash table while busy */
115 union {
116 struct list_head entry; /* L: while idle */
117 struct hlist_node hentry; /* L: while busy */
118 };
119
120 struct work_struct *current_work; /* L: work being processed */
121 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
122 struct list_head scheduled; /* L: scheduled works */
123 struct task_struct *task; /* I: worker task */
124 struct global_cwq *gcwq; /* I: the associated gcwq */
125 /* 64 bytes boundary on 64bit, 32 on 32bit */
126 unsigned long last_active; /* L: last active timestamp */
127 unsigned int flags; /* X: flags */
128 int id; /* I: worker id */
129 struct work_struct rebind_work; /* L: rebind worker to cpu */
130 };
131
132 /*
133 * Global per-cpu workqueue. There's one and only one for each cpu
134 * and all works are queued and processed here regardless of their
135 * target workqueues.
136 */
137 struct global_cwq {
138 spinlock_t lock; /* the gcwq lock */
139 struct list_head worklist; /* L: list of pending works */
140 unsigned int cpu; /* I: the associated cpu */
141 unsigned int flags; /* L: GCWQ_* flags */
142
143 int nr_workers; /* L: total number of workers */
144 int nr_idle; /* L: currently idle ones */
145
146 /* workers are chained either in the idle_list or busy_hash */
147 struct list_head idle_list; /* X: list of idle workers */
148 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
149 /* L: hash of busy workers */
150
151 struct timer_list idle_timer; /* L: worker idle timeout */
152 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
153
154 struct ida worker_ida; /* L: for worker IDs */
155
156 struct task_struct *trustee; /* L: for gcwq shutdown */
157 unsigned int trustee_state; /* L: trustee state */
158 wait_queue_head_t trustee_wait; /* trustee wait */
159 struct worker *first_idle; /* L: first idle worker */
160 } ____cacheline_aligned_in_smp;
161
162 /*
163 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
164 * work_struct->data are used for flags and thus cwqs need to be
165 * aligned at two's power of the number of flag bits.
166 */
167 struct cpu_workqueue_struct {
168 struct global_cwq *gcwq; /* I: the associated gcwq */
169 struct workqueue_struct *wq; /* I: the owning workqueue */
170 int work_color; /* L: current color */
171 int flush_color; /* L: flushing color */
172 int nr_in_flight[WORK_NR_COLORS];
173 /* L: nr of in_flight works */
174 int nr_active; /* L: nr of active works */
175 int max_active; /* L: max active works */
176 struct list_head delayed_works; /* L: delayed works */
177 };
178
179 /*
180 * Structure used to wait for workqueue flush.
181 */
182 struct wq_flusher {
183 struct list_head list; /* F: list of flushers */
184 int flush_color; /* F: flush color waiting for */
185 struct completion done; /* flush completion */
186 };
187
188 /*
189 * The externally visible workqueue abstraction is an array of
190 * per-CPU workqueues:
191 */
192 struct workqueue_struct {
193 unsigned int flags; /* I: WQ_* flags */
194 union {
195 struct cpu_workqueue_struct __percpu *pcpu;
196 struct cpu_workqueue_struct *single;
197 unsigned long v;
198 } cpu_wq; /* I: cwq's */
199 struct list_head list; /* W: list of all workqueues */
200
201 struct mutex flush_mutex; /* protects wq flushing */
202 int work_color; /* F: current work color */
203 int flush_color; /* F: current flush color */
204 atomic_t nr_cwqs_to_flush; /* flush in progress */
205 struct wq_flusher *first_flusher; /* F: first flusher */
206 struct list_head flusher_queue; /* F: flush waiters */
207 struct list_head flusher_overflow; /* F: flush overflow list */
208
209 cpumask_var_t mayday_mask; /* cpus requesting rescue */
210 struct worker *rescuer; /* I: rescue worker */
211
212 int saved_max_active; /* W: saved cwq max_active */
213 const char *name; /* I: workqueue name */
214 #ifdef CONFIG_LOCKDEP
215 struct lockdep_map lockdep_map;
216 #endif
217 };
218
219 struct workqueue_struct *system_wq __read_mostly;
220 struct workqueue_struct *system_long_wq __read_mostly;
221 struct workqueue_struct *system_nrt_wq __read_mostly;
222 struct workqueue_struct *system_unbound_wq __read_mostly;
223 EXPORT_SYMBOL_GPL(system_wq);
224 EXPORT_SYMBOL_GPL(system_long_wq);
225 EXPORT_SYMBOL_GPL(system_nrt_wq);
226 EXPORT_SYMBOL_GPL(system_unbound_wq);
227
228 #define for_each_busy_worker(worker, i, pos, gcwq) \
229 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
230 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
231
232 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
233 unsigned int sw)
234 {
235 if (cpu < nr_cpu_ids) {
236 if (sw & 1) {
237 cpu = cpumask_next(cpu, mask);
238 if (cpu < nr_cpu_ids)
239 return cpu;
240 }
241 if (sw & 2)
242 return WORK_CPU_UNBOUND;
243 }
244 return WORK_CPU_NONE;
245 }
246
247 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
248 struct workqueue_struct *wq)
249 {
250 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
251 }
252
253 #define for_each_gcwq_cpu(cpu) \
254 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
255 (cpu) < WORK_CPU_NONE; \
256 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
257
258 #define for_each_online_gcwq_cpu(cpu) \
259 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
260 (cpu) < WORK_CPU_NONE; \
261 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
262
263 #define for_each_cwq_cpu(cpu, wq) \
264 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
265 (cpu) < WORK_CPU_NONE; \
266 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
267
268 #ifdef CONFIG_DEBUG_OBJECTS_WORK
269
270 static struct debug_obj_descr work_debug_descr;
271
272 /*
273 * fixup_init is called when:
274 * - an active object is initialized
275 */
276 static int work_fixup_init(void *addr, enum debug_obj_state state)
277 {
278 struct work_struct *work = addr;
279
280 switch (state) {
281 case ODEBUG_STATE_ACTIVE:
282 cancel_work_sync(work);
283 debug_object_init(work, &work_debug_descr);
284 return 1;
285 default:
286 return 0;
287 }
288 }
289
290 /*
291 * fixup_activate is called when:
292 * - an active object is activated
293 * - an unknown object is activated (might be a statically initialized object)
294 */
295 static int work_fixup_activate(void *addr, enum debug_obj_state state)
296 {
297 struct work_struct *work = addr;
298
299 switch (state) {
300
301 case ODEBUG_STATE_NOTAVAILABLE:
302 /*
303 * This is not really a fixup. The work struct was
304 * statically initialized. We just make sure that it
305 * is tracked in the object tracker.
306 */
307 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
308 debug_object_init(work, &work_debug_descr);
309 debug_object_activate(work, &work_debug_descr);
310 return 0;
311 }
312 WARN_ON_ONCE(1);
313 return 0;
314
315 case ODEBUG_STATE_ACTIVE:
316 WARN_ON(1);
317
318 default:
319 return 0;
320 }
321 }
322
323 /*
324 * fixup_free is called when:
325 * - an active object is freed
326 */
327 static int work_fixup_free(void *addr, enum debug_obj_state state)
328 {
329 struct work_struct *work = addr;
330
331 switch (state) {
332 case ODEBUG_STATE_ACTIVE:
333 cancel_work_sync(work);
334 debug_object_free(work, &work_debug_descr);
335 return 1;
336 default:
337 return 0;
338 }
339 }
340
341 static struct debug_obj_descr work_debug_descr = {
342 .name = "work_struct",
343 .fixup_init = work_fixup_init,
344 .fixup_activate = work_fixup_activate,
345 .fixup_free = work_fixup_free,
346 };
347
348 static inline void debug_work_activate(struct work_struct *work)
349 {
350 debug_object_activate(work, &work_debug_descr);
351 }
352
353 static inline void debug_work_deactivate(struct work_struct *work)
354 {
355 debug_object_deactivate(work, &work_debug_descr);
356 }
357
358 void __init_work(struct work_struct *work, int onstack)
359 {
360 if (onstack)
361 debug_object_init_on_stack(work, &work_debug_descr);
362 else
363 debug_object_init(work, &work_debug_descr);
364 }
365 EXPORT_SYMBOL_GPL(__init_work);
366
367 void destroy_work_on_stack(struct work_struct *work)
368 {
369 debug_object_free(work, &work_debug_descr);
370 }
371 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
372
373 #else
374 static inline void debug_work_activate(struct work_struct *work) { }
375 static inline void debug_work_deactivate(struct work_struct *work) { }
376 #endif
377
378 /* Serializes the accesses to the list of workqueues. */
379 static DEFINE_SPINLOCK(workqueue_lock);
380 static LIST_HEAD(workqueues);
381 static bool workqueue_freezing; /* W: have wqs started freezing? */
382
383 /*
384 * The almighty global cpu workqueues. nr_running is the only field
385 * which is expected to be used frequently by other cpus via
386 * try_to_wake_up(). Put it in a separate cacheline.
387 */
388 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
389 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
390
391 /*
392 * Global cpu workqueue and nr_running counter for unbound gcwq. The
393 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
394 * workers have WORKER_UNBOUND set.
395 */
396 static struct global_cwq unbound_global_cwq;
397 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
398
399 static int worker_thread(void *__worker);
400
401 static struct global_cwq *get_gcwq(unsigned int cpu)
402 {
403 if (cpu != WORK_CPU_UNBOUND)
404 return &per_cpu(global_cwq, cpu);
405 else
406 return &unbound_global_cwq;
407 }
408
409 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
410 {
411 if (cpu != WORK_CPU_UNBOUND)
412 return &per_cpu(gcwq_nr_running, cpu);
413 else
414 return &unbound_gcwq_nr_running;
415 }
416
417 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
418 struct workqueue_struct *wq)
419 {
420 if (!(wq->flags & WQ_UNBOUND)) {
421 if (likely(cpu < nr_cpu_ids)) {
422 #ifdef CONFIG_SMP
423 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
424 #else
425 return wq->cpu_wq.single;
426 #endif
427 }
428 } else if (likely(cpu == WORK_CPU_UNBOUND))
429 return wq->cpu_wq.single;
430 return NULL;
431 }
432
433 static unsigned int work_color_to_flags(int color)
434 {
435 return color << WORK_STRUCT_COLOR_SHIFT;
436 }
437
438 static int get_work_color(struct work_struct *work)
439 {
440 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
441 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
442 }
443
444 static int work_next_color(int color)
445 {
446 return (color + 1) % WORK_NR_COLORS;
447 }
448
449 /*
450 * Work data points to the cwq while a work is on queue. Once
451 * execution starts, it points to the cpu the work was last on. This
452 * can be distinguished by comparing the data value against
453 * PAGE_OFFSET.
454 *
455 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
456 * cwq, cpu or clear work->data. These functions should only be
457 * called while the work is owned - ie. while the PENDING bit is set.
458 *
459 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
460 * corresponding to a work. gcwq is available once the work has been
461 * queued anywhere after initialization. cwq is available only from
462 * queueing until execution starts.
463 */
464 static inline void set_work_data(struct work_struct *work, unsigned long data,
465 unsigned long flags)
466 {
467 BUG_ON(!work_pending(work));
468 atomic_long_set(&work->data, data | flags | work_static(work));
469 }
470
471 static void set_work_cwq(struct work_struct *work,
472 struct cpu_workqueue_struct *cwq,
473 unsigned long extra_flags)
474 {
475 set_work_data(work, (unsigned long)cwq,
476 WORK_STRUCT_PENDING | extra_flags);
477 }
478
479 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
480 {
481 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
482 }
483
484 static void clear_work_data(struct work_struct *work)
485 {
486 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
487 }
488
489 static inline unsigned long get_work_data(struct work_struct *work)
490 {
491 return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
492 }
493
494 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
495 {
496 unsigned long data = get_work_data(work);
497
498 return data >= PAGE_OFFSET ? (void *)data : NULL;
499 }
500
501 static struct global_cwq *get_work_gcwq(struct work_struct *work)
502 {
503 unsigned long data = get_work_data(work);
504 unsigned int cpu;
505
506 if (data >= PAGE_OFFSET)
507 return ((struct cpu_workqueue_struct *)data)->gcwq;
508
509 cpu = data >> WORK_STRUCT_FLAG_BITS;
510 if (cpu == WORK_CPU_NONE)
511 return NULL;
512
513 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
514 return get_gcwq(cpu);
515 }
516
517 /*
518 * Policy functions. These define the policies on how the global
519 * worker pool is managed. Unless noted otherwise, these functions
520 * assume that they're being called with gcwq->lock held.
521 */
522
523 static bool __need_more_worker(struct global_cwq *gcwq)
524 {
525 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
526 gcwq->flags & GCWQ_HIGHPRI_PENDING;
527 }
528
529 /*
530 * Need to wake up a worker? Called from anything but currently
531 * running workers.
532 */
533 static bool need_more_worker(struct global_cwq *gcwq)
534 {
535 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
536 }
537
538 /* Can I start working? Called from busy but !running workers. */
539 static bool may_start_working(struct global_cwq *gcwq)
540 {
541 return gcwq->nr_idle;
542 }
543
544 /* Do I need to keep working? Called from currently running workers. */
545 static bool keep_working(struct global_cwq *gcwq)
546 {
547 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
548
549 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
550 }
551
552 /* Do we need a new worker? Called from manager. */
553 static bool need_to_create_worker(struct global_cwq *gcwq)
554 {
555 return need_more_worker(gcwq) && !may_start_working(gcwq);
556 }
557
558 /* Do I need to be the manager? */
559 static bool need_to_manage_workers(struct global_cwq *gcwq)
560 {
561 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
562 }
563
564 /* Do we have too many workers and should some go away? */
565 static bool too_many_workers(struct global_cwq *gcwq)
566 {
567 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
568 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
569 int nr_busy = gcwq->nr_workers - nr_idle;
570
571 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
572 }
573
574 /*
575 * Wake up functions.
576 */
577
578 /* Return the first worker. Safe with preemption disabled */
579 static struct worker *first_worker(struct global_cwq *gcwq)
580 {
581 if (unlikely(list_empty(&gcwq->idle_list)))
582 return NULL;
583
584 return list_first_entry(&gcwq->idle_list, struct worker, entry);
585 }
586
587 /**
588 * wake_up_worker - wake up an idle worker
589 * @gcwq: gcwq to wake worker for
590 *
591 * Wake up the first idle worker of @gcwq.
592 *
593 * CONTEXT:
594 * spin_lock_irq(gcwq->lock).
595 */
596 static void wake_up_worker(struct global_cwq *gcwq)
597 {
598 struct worker *worker = first_worker(gcwq);
599
600 if (likely(worker))
601 wake_up_process(worker->task);
602 }
603
604 /**
605 * wq_worker_waking_up - a worker is waking up
606 * @task: task waking up
607 * @cpu: CPU @task is waking up to
608 *
609 * This function is called during try_to_wake_up() when a worker is
610 * being awoken.
611 *
612 * CONTEXT:
613 * spin_lock_irq(rq->lock)
614 */
615 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
616 {
617 struct worker *worker = kthread_data(task);
618
619 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
620 atomic_inc(get_gcwq_nr_running(cpu));
621 }
622
623 /**
624 * wq_worker_sleeping - a worker is going to sleep
625 * @task: task going to sleep
626 * @cpu: CPU in question, must be the current CPU number
627 *
628 * This function is called during schedule() when a busy worker is
629 * going to sleep. Worker on the same cpu can be woken up by
630 * returning pointer to its task.
631 *
632 * CONTEXT:
633 * spin_lock_irq(rq->lock)
634 *
635 * RETURNS:
636 * Worker task on @cpu to wake up, %NULL if none.
637 */
638 struct task_struct *wq_worker_sleeping(struct task_struct *task,
639 unsigned int cpu)
640 {
641 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
642 struct global_cwq *gcwq = get_gcwq(cpu);
643 atomic_t *nr_running = get_gcwq_nr_running(cpu);
644
645 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
646 return NULL;
647
648 /* this can only happen on the local cpu */
649 BUG_ON(cpu != raw_smp_processor_id());
650
651 /*
652 * The counterpart of the following dec_and_test, implied mb,
653 * worklist not empty test sequence is in insert_work().
654 * Please read comment there.
655 *
656 * NOT_RUNNING is clear. This means that trustee is not in
657 * charge and we're running on the local cpu w/ rq lock held
658 * and preemption disabled, which in turn means that none else
659 * could be manipulating idle_list, so dereferencing idle_list
660 * without gcwq lock is safe.
661 */
662 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
663 to_wakeup = first_worker(gcwq);
664 return to_wakeup ? to_wakeup->task : NULL;
665 }
666
667 /**
668 * worker_set_flags - set worker flags and adjust nr_running accordingly
669 * @worker: self
670 * @flags: flags to set
671 * @wakeup: wakeup an idle worker if necessary
672 *
673 * Set @flags in @worker->flags and adjust nr_running accordingly. If
674 * nr_running becomes zero and @wakeup is %true, an idle worker is
675 * woken up.
676 *
677 * CONTEXT:
678 * spin_lock_irq(gcwq->lock)
679 */
680 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
681 bool wakeup)
682 {
683 struct global_cwq *gcwq = worker->gcwq;
684
685 WARN_ON_ONCE(worker->task != current);
686
687 /*
688 * If transitioning into NOT_RUNNING, adjust nr_running and
689 * wake up an idle worker as necessary if requested by
690 * @wakeup.
691 */
692 if ((flags & WORKER_NOT_RUNNING) &&
693 !(worker->flags & WORKER_NOT_RUNNING)) {
694 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
695
696 if (wakeup) {
697 if (atomic_dec_and_test(nr_running) &&
698 !list_empty(&gcwq->worklist))
699 wake_up_worker(gcwq);
700 } else
701 atomic_dec(nr_running);
702 }
703
704 worker->flags |= flags;
705 }
706
707 /**
708 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
709 * @worker: self
710 * @flags: flags to clear
711 *
712 * Clear @flags in @worker->flags and adjust nr_running accordingly.
713 *
714 * CONTEXT:
715 * spin_lock_irq(gcwq->lock)
716 */
717 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
718 {
719 struct global_cwq *gcwq = worker->gcwq;
720 unsigned int oflags = worker->flags;
721
722 WARN_ON_ONCE(worker->task != current);
723
724 worker->flags &= ~flags;
725
726 /* if transitioning out of NOT_RUNNING, increment nr_running */
727 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
728 if (!(worker->flags & WORKER_NOT_RUNNING))
729 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
730 }
731
732 /**
733 * busy_worker_head - return the busy hash head for a work
734 * @gcwq: gcwq of interest
735 * @work: work to be hashed
736 *
737 * Return hash head of @gcwq for @work.
738 *
739 * CONTEXT:
740 * spin_lock_irq(gcwq->lock).
741 *
742 * RETURNS:
743 * Pointer to the hash head.
744 */
745 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
746 struct work_struct *work)
747 {
748 const int base_shift = ilog2(sizeof(struct work_struct));
749 unsigned long v = (unsigned long)work;
750
751 /* simple shift and fold hash, do we need something better? */
752 v >>= base_shift;
753 v += v >> BUSY_WORKER_HASH_ORDER;
754 v &= BUSY_WORKER_HASH_MASK;
755
756 return &gcwq->busy_hash[v];
757 }
758
759 /**
760 * __find_worker_executing_work - find worker which is executing a work
761 * @gcwq: gcwq of interest
762 * @bwh: hash head as returned by busy_worker_head()
763 * @work: work to find worker for
764 *
765 * Find a worker which is executing @work on @gcwq. @bwh should be
766 * the hash head obtained by calling busy_worker_head() with the same
767 * work.
768 *
769 * CONTEXT:
770 * spin_lock_irq(gcwq->lock).
771 *
772 * RETURNS:
773 * Pointer to worker which is executing @work if found, NULL
774 * otherwise.
775 */
776 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
777 struct hlist_head *bwh,
778 struct work_struct *work)
779 {
780 struct worker *worker;
781 struct hlist_node *tmp;
782
783 hlist_for_each_entry(worker, tmp, bwh, hentry)
784 if (worker->current_work == work)
785 return worker;
786 return NULL;
787 }
788
789 /**
790 * find_worker_executing_work - find worker which is executing a work
791 * @gcwq: gcwq of interest
792 * @work: work to find worker for
793 *
794 * Find a worker which is executing @work on @gcwq. This function is
795 * identical to __find_worker_executing_work() except that this
796 * function calculates @bwh itself.
797 *
798 * CONTEXT:
799 * spin_lock_irq(gcwq->lock).
800 *
801 * RETURNS:
802 * Pointer to worker which is executing @work if found, NULL
803 * otherwise.
804 */
805 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
806 struct work_struct *work)
807 {
808 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
809 work);
810 }
811
812 /**
813 * gcwq_determine_ins_pos - find insertion position
814 * @gcwq: gcwq of interest
815 * @cwq: cwq a work is being queued for
816 *
817 * A work for @cwq is about to be queued on @gcwq, determine insertion
818 * position for the work. If @cwq is for HIGHPRI wq, the work is
819 * queued at the head of the queue but in FIFO order with respect to
820 * other HIGHPRI works; otherwise, at the end of the queue. This
821 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
822 * there are HIGHPRI works pending.
823 *
824 * CONTEXT:
825 * spin_lock_irq(gcwq->lock).
826 *
827 * RETURNS:
828 * Pointer to inserstion position.
829 */
830 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
831 struct cpu_workqueue_struct *cwq)
832 {
833 struct work_struct *twork;
834
835 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
836 return &gcwq->worklist;
837
838 list_for_each_entry(twork, &gcwq->worklist, entry) {
839 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
840
841 if (!(tcwq->wq->flags & WQ_HIGHPRI))
842 break;
843 }
844
845 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
846 return &twork->entry;
847 }
848
849 /**
850 * insert_work - insert a work into gcwq
851 * @cwq: cwq @work belongs to
852 * @work: work to insert
853 * @head: insertion point
854 * @extra_flags: extra WORK_STRUCT_* flags to set
855 *
856 * Insert @work which belongs to @cwq into @gcwq after @head.
857 * @extra_flags is or'd to work_struct flags.
858 *
859 * CONTEXT:
860 * spin_lock_irq(gcwq->lock).
861 */
862 static void insert_work(struct cpu_workqueue_struct *cwq,
863 struct work_struct *work, struct list_head *head,
864 unsigned int extra_flags)
865 {
866 struct global_cwq *gcwq = cwq->gcwq;
867
868 /* we own @work, set data and link */
869 set_work_cwq(work, cwq, extra_flags);
870
871 /*
872 * Ensure that we get the right work->data if we see the
873 * result of list_add() below, see try_to_grab_pending().
874 */
875 smp_wmb();
876
877 list_add_tail(&work->entry, head);
878
879 /*
880 * Ensure either worker_sched_deactivated() sees the above
881 * list_add_tail() or we see zero nr_running to avoid workers
882 * lying around lazily while there are works to be processed.
883 */
884 smp_mb();
885
886 if (__need_more_worker(gcwq))
887 wake_up_worker(gcwq);
888 }
889
890 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
891 struct work_struct *work)
892 {
893 struct global_cwq *gcwq;
894 struct cpu_workqueue_struct *cwq;
895 struct list_head *worklist;
896 unsigned long flags;
897
898 debug_work_activate(work);
899
900 /* determine gcwq to use */
901 if (!(wq->flags & WQ_UNBOUND)) {
902 struct global_cwq *last_gcwq;
903
904 if (unlikely(cpu == WORK_CPU_UNBOUND))
905 cpu = raw_smp_processor_id();
906
907 /*
908 * It's multi cpu. If @wq is non-reentrant and @work
909 * was previously on a different cpu, it might still
910 * be running there, in which case the work needs to
911 * be queued on that cpu to guarantee non-reentrance.
912 */
913 gcwq = get_gcwq(cpu);
914 if (wq->flags & WQ_NON_REENTRANT &&
915 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
916 struct worker *worker;
917
918 spin_lock_irqsave(&last_gcwq->lock, flags);
919
920 worker = find_worker_executing_work(last_gcwq, work);
921
922 if (worker && worker->current_cwq->wq == wq)
923 gcwq = last_gcwq;
924 else {
925 /* meh... not running there, queue here */
926 spin_unlock_irqrestore(&last_gcwq->lock, flags);
927 spin_lock_irqsave(&gcwq->lock, flags);
928 }
929 } else
930 spin_lock_irqsave(&gcwq->lock, flags);
931 } else {
932 gcwq = get_gcwq(WORK_CPU_UNBOUND);
933 spin_lock_irqsave(&gcwq->lock, flags);
934 }
935
936 /* gcwq determined, get cwq and queue */
937 cwq = get_cwq(gcwq->cpu, wq);
938
939 BUG_ON(!list_empty(&work->entry));
940
941 cwq->nr_in_flight[cwq->work_color]++;
942
943 if (likely(cwq->nr_active < cwq->max_active)) {
944 cwq->nr_active++;
945 worklist = gcwq_determine_ins_pos(gcwq, cwq);
946 } else
947 worklist = &cwq->delayed_works;
948
949 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
950
951 spin_unlock_irqrestore(&gcwq->lock, flags);
952 }
953
954 /**
955 * queue_work - queue work on a workqueue
956 * @wq: workqueue to use
957 * @work: work to queue
958 *
959 * Returns 0 if @work was already on a queue, non-zero otherwise.
960 *
961 * We queue the work to the CPU on which it was submitted, but if the CPU dies
962 * it can be processed by another CPU.
963 */
964 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
965 {
966 int ret;
967
968 ret = queue_work_on(get_cpu(), wq, work);
969 put_cpu();
970
971 return ret;
972 }
973 EXPORT_SYMBOL_GPL(queue_work);
974
975 /**
976 * queue_work_on - queue work on specific cpu
977 * @cpu: CPU number to execute work on
978 * @wq: workqueue to use
979 * @work: work to queue
980 *
981 * Returns 0 if @work was already on a queue, non-zero otherwise.
982 *
983 * We queue the work to a specific CPU, the caller must ensure it
984 * can't go away.
985 */
986 int
987 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
988 {
989 int ret = 0;
990
991 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
992 __queue_work(cpu, wq, work);
993 ret = 1;
994 }
995 return ret;
996 }
997 EXPORT_SYMBOL_GPL(queue_work_on);
998
999 static void delayed_work_timer_fn(unsigned long __data)
1000 {
1001 struct delayed_work *dwork = (struct delayed_work *)__data;
1002 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1003
1004 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1005 }
1006
1007 /**
1008 * queue_delayed_work - queue work on a workqueue after delay
1009 * @wq: workqueue to use
1010 * @dwork: delayable work to queue
1011 * @delay: number of jiffies to wait before queueing
1012 *
1013 * Returns 0 if @work was already on a queue, non-zero otherwise.
1014 */
1015 int queue_delayed_work(struct workqueue_struct *wq,
1016 struct delayed_work *dwork, unsigned long delay)
1017 {
1018 if (delay == 0)
1019 return queue_work(wq, &dwork->work);
1020
1021 return queue_delayed_work_on(-1, wq, dwork, delay);
1022 }
1023 EXPORT_SYMBOL_GPL(queue_delayed_work);
1024
1025 /**
1026 * queue_delayed_work_on - queue work on specific CPU after delay
1027 * @cpu: CPU number to execute work on
1028 * @wq: workqueue to use
1029 * @dwork: work to queue
1030 * @delay: number of jiffies to wait before queueing
1031 *
1032 * Returns 0 if @work was already on a queue, non-zero otherwise.
1033 */
1034 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1035 struct delayed_work *dwork, unsigned long delay)
1036 {
1037 int ret = 0;
1038 struct timer_list *timer = &dwork->timer;
1039 struct work_struct *work = &dwork->work;
1040
1041 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1042 unsigned int lcpu;
1043
1044 BUG_ON(timer_pending(timer));
1045 BUG_ON(!list_empty(&work->entry));
1046
1047 timer_stats_timer_set_start_info(&dwork->timer);
1048
1049 /*
1050 * This stores cwq for the moment, for the timer_fn.
1051 * Note that the work's gcwq is preserved to allow
1052 * reentrance detection for delayed works.
1053 */
1054 if (!(wq->flags & WQ_UNBOUND)) {
1055 struct global_cwq *gcwq = get_work_gcwq(work);
1056
1057 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1058 lcpu = gcwq->cpu;
1059 else
1060 lcpu = raw_smp_processor_id();
1061 } else
1062 lcpu = WORK_CPU_UNBOUND;
1063
1064 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1065
1066 timer->expires = jiffies + delay;
1067 timer->data = (unsigned long)dwork;
1068 timer->function = delayed_work_timer_fn;
1069
1070 if (unlikely(cpu >= 0))
1071 add_timer_on(timer, cpu);
1072 else
1073 add_timer(timer);
1074 ret = 1;
1075 }
1076 return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1079
1080 /**
1081 * worker_enter_idle - enter idle state
1082 * @worker: worker which is entering idle state
1083 *
1084 * @worker is entering idle state. Update stats and idle timer if
1085 * necessary.
1086 *
1087 * LOCKING:
1088 * spin_lock_irq(gcwq->lock).
1089 */
1090 static void worker_enter_idle(struct worker *worker)
1091 {
1092 struct global_cwq *gcwq = worker->gcwq;
1093
1094 BUG_ON(worker->flags & WORKER_IDLE);
1095 BUG_ON(!list_empty(&worker->entry) &&
1096 (worker->hentry.next || worker->hentry.pprev));
1097
1098 /* can't use worker_set_flags(), also called from start_worker() */
1099 worker->flags |= WORKER_IDLE;
1100 gcwq->nr_idle++;
1101 worker->last_active = jiffies;
1102
1103 /* idle_list is LIFO */
1104 list_add(&worker->entry, &gcwq->idle_list);
1105
1106 if (likely(!(worker->flags & WORKER_ROGUE))) {
1107 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1108 mod_timer(&gcwq->idle_timer,
1109 jiffies + IDLE_WORKER_TIMEOUT);
1110 } else
1111 wake_up_all(&gcwq->trustee_wait);
1112
1113 /* sanity check nr_running */
1114 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1115 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1116 }
1117
1118 /**
1119 * worker_leave_idle - leave idle state
1120 * @worker: worker which is leaving idle state
1121 *
1122 * @worker is leaving idle state. Update stats.
1123 *
1124 * LOCKING:
1125 * spin_lock_irq(gcwq->lock).
1126 */
1127 static void worker_leave_idle(struct worker *worker)
1128 {
1129 struct global_cwq *gcwq = worker->gcwq;
1130
1131 BUG_ON(!(worker->flags & WORKER_IDLE));
1132 worker_clr_flags(worker, WORKER_IDLE);
1133 gcwq->nr_idle--;
1134 list_del_init(&worker->entry);
1135 }
1136
1137 /**
1138 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1139 * @worker: self
1140 *
1141 * Works which are scheduled while the cpu is online must at least be
1142 * scheduled to a worker which is bound to the cpu so that if they are
1143 * flushed from cpu callbacks while cpu is going down, they are
1144 * guaranteed to execute on the cpu.
1145 *
1146 * This function is to be used by rogue workers and rescuers to bind
1147 * themselves to the target cpu and may race with cpu going down or
1148 * coming online. kthread_bind() can't be used because it may put the
1149 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1150 * verbatim as it's best effort and blocking and gcwq may be
1151 * [dis]associated in the meantime.
1152 *
1153 * This function tries set_cpus_allowed() and locks gcwq and verifies
1154 * the binding against GCWQ_DISASSOCIATED which is set during
1155 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1156 * idle state or fetches works without dropping lock, it can guarantee
1157 * the scheduling requirement described in the first paragraph.
1158 *
1159 * CONTEXT:
1160 * Might sleep. Called without any lock but returns with gcwq->lock
1161 * held.
1162 *
1163 * RETURNS:
1164 * %true if the associated gcwq is online (@worker is successfully
1165 * bound), %false if offline.
1166 */
1167 static bool worker_maybe_bind_and_lock(struct worker *worker)
1168 {
1169 struct global_cwq *gcwq = worker->gcwq;
1170 struct task_struct *task = worker->task;
1171
1172 while (true) {
1173 /*
1174 * The following call may fail, succeed or succeed
1175 * without actually migrating the task to the cpu if
1176 * it races with cpu hotunplug operation. Verify
1177 * against GCWQ_DISASSOCIATED.
1178 */
1179 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1180 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1181
1182 spin_lock_irq(&gcwq->lock);
1183 if (gcwq->flags & GCWQ_DISASSOCIATED)
1184 return false;
1185 if (task_cpu(task) == gcwq->cpu &&
1186 cpumask_equal(&current->cpus_allowed,
1187 get_cpu_mask(gcwq->cpu)))
1188 return true;
1189 spin_unlock_irq(&gcwq->lock);
1190
1191 /* CPU has come up inbetween, retry migration */
1192 cpu_relax();
1193 }
1194 }
1195
1196 /*
1197 * Function for worker->rebind_work used to rebind rogue busy workers
1198 * to the associated cpu which is coming back online. This is
1199 * scheduled by cpu up but can race with other cpu hotplug operations
1200 * and may be executed twice without intervening cpu down.
1201 */
1202 static void worker_rebind_fn(struct work_struct *work)
1203 {
1204 struct worker *worker = container_of(work, struct worker, rebind_work);
1205 struct global_cwq *gcwq = worker->gcwq;
1206
1207 if (worker_maybe_bind_and_lock(worker))
1208 worker_clr_flags(worker, WORKER_REBIND);
1209
1210 spin_unlock_irq(&gcwq->lock);
1211 }
1212
1213 static struct worker *alloc_worker(void)
1214 {
1215 struct worker *worker;
1216
1217 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1218 if (worker) {
1219 INIT_LIST_HEAD(&worker->entry);
1220 INIT_LIST_HEAD(&worker->scheduled);
1221 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1222 /* on creation a worker is in !idle && prep state */
1223 worker->flags = WORKER_PREP;
1224 }
1225 return worker;
1226 }
1227
1228 /**
1229 * create_worker - create a new workqueue worker
1230 * @gcwq: gcwq the new worker will belong to
1231 * @bind: whether to set affinity to @cpu or not
1232 *
1233 * Create a new worker which is bound to @gcwq. The returned worker
1234 * can be started by calling start_worker() or destroyed using
1235 * destroy_worker().
1236 *
1237 * CONTEXT:
1238 * Might sleep. Does GFP_KERNEL allocations.
1239 *
1240 * RETURNS:
1241 * Pointer to the newly created worker.
1242 */
1243 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1244 {
1245 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1246 struct worker *worker = NULL;
1247 int id = -1;
1248
1249 spin_lock_irq(&gcwq->lock);
1250 while (ida_get_new(&gcwq->worker_ida, &id)) {
1251 spin_unlock_irq(&gcwq->lock);
1252 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1253 goto fail;
1254 spin_lock_irq(&gcwq->lock);
1255 }
1256 spin_unlock_irq(&gcwq->lock);
1257
1258 worker = alloc_worker();
1259 if (!worker)
1260 goto fail;
1261
1262 worker->gcwq = gcwq;
1263 worker->id = id;
1264
1265 if (!on_unbound_cpu)
1266 worker->task = kthread_create(worker_thread, worker,
1267 "kworker/%u:%d", gcwq->cpu, id);
1268 else
1269 worker->task = kthread_create(worker_thread, worker,
1270 "kworker/u:%d", id);
1271 if (IS_ERR(worker->task))
1272 goto fail;
1273
1274 /*
1275 * A rogue worker will become a regular one if CPU comes
1276 * online later on. Make sure every worker has
1277 * PF_THREAD_BOUND set.
1278 */
1279 if (bind && !on_unbound_cpu)
1280 kthread_bind(worker->task, gcwq->cpu);
1281 else {
1282 worker->task->flags |= PF_THREAD_BOUND;
1283 if (on_unbound_cpu)
1284 worker->flags |= WORKER_UNBOUND;
1285 }
1286
1287 return worker;
1288 fail:
1289 if (id >= 0) {
1290 spin_lock_irq(&gcwq->lock);
1291 ida_remove(&gcwq->worker_ida, id);
1292 spin_unlock_irq(&gcwq->lock);
1293 }
1294 kfree(worker);
1295 return NULL;
1296 }
1297
1298 /**
1299 * start_worker - start a newly created worker
1300 * @worker: worker to start
1301 *
1302 * Make the gcwq aware of @worker and start it.
1303 *
1304 * CONTEXT:
1305 * spin_lock_irq(gcwq->lock).
1306 */
1307 static void start_worker(struct worker *worker)
1308 {
1309 worker->flags |= WORKER_STARTED;
1310 worker->gcwq->nr_workers++;
1311 worker_enter_idle(worker);
1312 wake_up_process(worker->task);
1313 }
1314
1315 /**
1316 * destroy_worker - destroy a workqueue worker
1317 * @worker: worker to be destroyed
1318 *
1319 * Destroy @worker and adjust @gcwq stats accordingly.
1320 *
1321 * CONTEXT:
1322 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1323 */
1324 static void destroy_worker(struct worker *worker)
1325 {
1326 struct global_cwq *gcwq = worker->gcwq;
1327 int id = worker->id;
1328
1329 /* sanity check frenzy */
1330 BUG_ON(worker->current_work);
1331 BUG_ON(!list_empty(&worker->scheduled));
1332
1333 if (worker->flags & WORKER_STARTED)
1334 gcwq->nr_workers--;
1335 if (worker->flags & WORKER_IDLE)
1336 gcwq->nr_idle--;
1337
1338 list_del_init(&worker->entry);
1339 worker->flags |= WORKER_DIE;
1340
1341 spin_unlock_irq(&gcwq->lock);
1342
1343 kthread_stop(worker->task);
1344 kfree(worker);
1345
1346 spin_lock_irq(&gcwq->lock);
1347 ida_remove(&gcwq->worker_ida, id);
1348 }
1349
1350 static void idle_worker_timeout(unsigned long __gcwq)
1351 {
1352 struct global_cwq *gcwq = (void *)__gcwq;
1353
1354 spin_lock_irq(&gcwq->lock);
1355
1356 if (too_many_workers(gcwq)) {
1357 struct worker *worker;
1358 unsigned long expires;
1359
1360 /* idle_list is kept in LIFO order, check the last one */
1361 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1362 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1363
1364 if (time_before(jiffies, expires))
1365 mod_timer(&gcwq->idle_timer, expires);
1366 else {
1367 /* it's been idle for too long, wake up manager */
1368 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1369 wake_up_worker(gcwq);
1370 }
1371 }
1372
1373 spin_unlock_irq(&gcwq->lock);
1374 }
1375
1376 static bool send_mayday(struct work_struct *work)
1377 {
1378 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1379 struct workqueue_struct *wq = cwq->wq;
1380 unsigned int cpu;
1381
1382 if (!(wq->flags & WQ_RESCUER))
1383 return false;
1384
1385 /* mayday mayday mayday */
1386 cpu = cwq->gcwq->cpu;
1387 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1388 if (cpu == WORK_CPU_UNBOUND)
1389 cpu = 0;
1390 if (!cpumask_test_and_set_cpu(cpu, wq->mayday_mask))
1391 wake_up_process(wq->rescuer->task);
1392 return true;
1393 }
1394
1395 static void gcwq_mayday_timeout(unsigned long __gcwq)
1396 {
1397 struct global_cwq *gcwq = (void *)__gcwq;
1398 struct work_struct *work;
1399
1400 spin_lock_irq(&gcwq->lock);
1401
1402 if (need_to_create_worker(gcwq)) {
1403 /*
1404 * We've been trying to create a new worker but
1405 * haven't been successful. We might be hitting an
1406 * allocation deadlock. Send distress signals to
1407 * rescuers.
1408 */
1409 list_for_each_entry(work, &gcwq->worklist, entry)
1410 send_mayday(work);
1411 }
1412
1413 spin_unlock_irq(&gcwq->lock);
1414
1415 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1416 }
1417
1418 /**
1419 * maybe_create_worker - create a new worker if necessary
1420 * @gcwq: gcwq to create a new worker for
1421 *
1422 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1423 * have at least one idle worker on return from this function. If
1424 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1425 * sent to all rescuers with works scheduled on @gcwq to resolve
1426 * possible allocation deadlock.
1427 *
1428 * On return, need_to_create_worker() is guaranteed to be false and
1429 * may_start_working() true.
1430 *
1431 * LOCKING:
1432 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1433 * multiple times. Does GFP_KERNEL allocations. Called only from
1434 * manager.
1435 *
1436 * RETURNS:
1437 * false if no action was taken and gcwq->lock stayed locked, true
1438 * otherwise.
1439 */
1440 static bool maybe_create_worker(struct global_cwq *gcwq)
1441 {
1442 if (!need_to_create_worker(gcwq))
1443 return false;
1444 restart:
1445 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1446 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1447
1448 while (true) {
1449 struct worker *worker;
1450
1451 spin_unlock_irq(&gcwq->lock);
1452
1453 worker = create_worker(gcwq, true);
1454 if (worker) {
1455 del_timer_sync(&gcwq->mayday_timer);
1456 spin_lock_irq(&gcwq->lock);
1457 start_worker(worker);
1458 BUG_ON(need_to_create_worker(gcwq));
1459 return true;
1460 }
1461
1462 if (!need_to_create_worker(gcwq))
1463 break;
1464
1465 spin_unlock_irq(&gcwq->lock);
1466 __set_current_state(TASK_INTERRUPTIBLE);
1467 schedule_timeout(CREATE_COOLDOWN);
1468 spin_lock_irq(&gcwq->lock);
1469 if (!need_to_create_worker(gcwq))
1470 break;
1471 }
1472
1473 spin_unlock_irq(&gcwq->lock);
1474 del_timer_sync(&gcwq->mayday_timer);
1475 spin_lock_irq(&gcwq->lock);
1476 if (need_to_create_worker(gcwq))
1477 goto restart;
1478 return true;
1479 }
1480
1481 /**
1482 * maybe_destroy_worker - destroy workers which have been idle for a while
1483 * @gcwq: gcwq to destroy workers for
1484 *
1485 * Destroy @gcwq workers which have been idle for longer than
1486 * IDLE_WORKER_TIMEOUT.
1487 *
1488 * LOCKING:
1489 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1490 * multiple times. Called only from manager.
1491 *
1492 * RETURNS:
1493 * false if no action was taken and gcwq->lock stayed locked, true
1494 * otherwise.
1495 */
1496 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1497 {
1498 bool ret = false;
1499
1500 while (too_many_workers(gcwq)) {
1501 struct worker *worker;
1502 unsigned long expires;
1503
1504 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1505 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1506
1507 if (time_before(jiffies, expires)) {
1508 mod_timer(&gcwq->idle_timer, expires);
1509 break;
1510 }
1511
1512 destroy_worker(worker);
1513 ret = true;
1514 }
1515
1516 return ret;
1517 }
1518
1519 /**
1520 * manage_workers - manage worker pool
1521 * @worker: self
1522 *
1523 * Assume the manager role and manage gcwq worker pool @worker belongs
1524 * to. At any given time, there can be only zero or one manager per
1525 * gcwq. The exclusion is handled automatically by this function.
1526 *
1527 * The caller can safely start processing works on false return. On
1528 * true return, it's guaranteed that need_to_create_worker() is false
1529 * and may_start_working() is true.
1530 *
1531 * CONTEXT:
1532 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1533 * multiple times. Does GFP_KERNEL allocations.
1534 *
1535 * RETURNS:
1536 * false if no action was taken and gcwq->lock stayed locked, true if
1537 * some action was taken.
1538 */
1539 static bool manage_workers(struct worker *worker)
1540 {
1541 struct global_cwq *gcwq = worker->gcwq;
1542 bool ret = false;
1543
1544 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1545 return ret;
1546
1547 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1548 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1549
1550 /*
1551 * Destroy and then create so that may_start_working() is true
1552 * on return.
1553 */
1554 ret |= maybe_destroy_workers(gcwq);
1555 ret |= maybe_create_worker(gcwq);
1556
1557 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1558
1559 /*
1560 * The trustee might be waiting to take over the manager
1561 * position, tell it we're done.
1562 */
1563 if (unlikely(gcwq->trustee))
1564 wake_up_all(&gcwq->trustee_wait);
1565
1566 return ret;
1567 }
1568
1569 /**
1570 * move_linked_works - move linked works to a list
1571 * @work: start of series of works to be scheduled
1572 * @head: target list to append @work to
1573 * @nextp: out paramter for nested worklist walking
1574 *
1575 * Schedule linked works starting from @work to @head. Work series to
1576 * be scheduled starts at @work and includes any consecutive work with
1577 * WORK_STRUCT_LINKED set in its predecessor.
1578 *
1579 * If @nextp is not NULL, it's updated to point to the next work of
1580 * the last scheduled work. This allows move_linked_works() to be
1581 * nested inside outer list_for_each_entry_safe().
1582 *
1583 * CONTEXT:
1584 * spin_lock_irq(gcwq->lock).
1585 */
1586 static void move_linked_works(struct work_struct *work, struct list_head *head,
1587 struct work_struct **nextp)
1588 {
1589 struct work_struct *n;
1590
1591 /*
1592 * Linked worklist will always end before the end of the list,
1593 * use NULL for list head.
1594 */
1595 list_for_each_entry_safe_from(work, n, NULL, entry) {
1596 list_move_tail(&work->entry, head);
1597 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1598 break;
1599 }
1600
1601 /*
1602 * If we're already inside safe list traversal and have moved
1603 * multiple works to the scheduled queue, the next position
1604 * needs to be updated.
1605 */
1606 if (nextp)
1607 *nextp = n;
1608 }
1609
1610 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1611 {
1612 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1613 struct work_struct, entry);
1614 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1615
1616 move_linked_works(work, pos, NULL);
1617 cwq->nr_active++;
1618 }
1619
1620 /**
1621 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1622 * @cwq: cwq of interest
1623 * @color: color of work which left the queue
1624 *
1625 * A work either has completed or is removed from pending queue,
1626 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1627 *
1628 * CONTEXT:
1629 * spin_lock_irq(gcwq->lock).
1630 */
1631 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1632 {
1633 /* ignore uncolored works */
1634 if (color == WORK_NO_COLOR)
1635 return;
1636
1637 cwq->nr_in_flight[color]--;
1638 cwq->nr_active--;
1639
1640 if (!list_empty(&cwq->delayed_works)) {
1641 /* one down, submit a delayed one */
1642 if (cwq->nr_active < cwq->max_active)
1643 cwq_activate_first_delayed(cwq);
1644 }
1645
1646 /* is flush in progress and are we at the flushing tip? */
1647 if (likely(cwq->flush_color != color))
1648 return;
1649
1650 /* are there still in-flight works? */
1651 if (cwq->nr_in_flight[color])
1652 return;
1653
1654 /* this cwq is done, clear flush_color */
1655 cwq->flush_color = -1;
1656
1657 /*
1658 * If this was the last cwq, wake up the first flusher. It
1659 * will handle the rest.
1660 */
1661 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1662 complete(&cwq->wq->first_flusher->done);
1663 }
1664
1665 /**
1666 * process_one_work - process single work
1667 * @worker: self
1668 * @work: work to process
1669 *
1670 * Process @work. This function contains all the logics necessary to
1671 * process a single work including synchronization against and
1672 * interaction with other workers on the same cpu, queueing and
1673 * flushing. As long as context requirement is met, any worker can
1674 * call this function to process a work.
1675 *
1676 * CONTEXT:
1677 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1678 */
1679 static void process_one_work(struct worker *worker, struct work_struct *work)
1680 {
1681 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1682 struct global_cwq *gcwq = cwq->gcwq;
1683 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1684 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1685 work_func_t f = work->func;
1686 int work_color;
1687 struct worker *collision;
1688 #ifdef CONFIG_LOCKDEP
1689 /*
1690 * It is permissible to free the struct work_struct from
1691 * inside the function that is called from it, this we need to
1692 * take into account for lockdep too. To avoid bogus "held
1693 * lock freed" warnings as well as problems when looking into
1694 * work->lockdep_map, make a copy and use that here.
1695 */
1696 struct lockdep_map lockdep_map = work->lockdep_map;
1697 #endif
1698 /*
1699 * A single work shouldn't be executed concurrently by
1700 * multiple workers on a single cpu. Check whether anyone is
1701 * already processing the work. If so, defer the work to the
1702 * currently executing one.
1703 */
1704 collision = __find_worker_executing_work(gcwq, bwh, work);
1705 if (unlikely(collision)) {
1706 move_linked_works(work, &collision->scheduled, NULL);
1707 return;
1708 }
1709
1710 /* claim and process */
1711 debug_work_deactivate(work);
1712 hlist_add_head(&worker->hentry, bwh);
1713 worker->current_work = work;
1714 worker->current_cwq = cwq;
1715 work_color = get_work_color(work);
1716
1717 /* record the current cpu number in the work data and dequeue */
1718 set_work_cpu(work, gcwq->cpu);
1719 list_del_init(&work->entry);
1720
1721 /*
1722 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1723 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1724 */
1725 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1726 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1727 struct work_struct, entry);
1728
1729 if (!list_empty(&gcwq->worklist) &&
1730 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1731 wake_up_worker(gcwq);
1732 else
1733 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1734 }
1735
1736 /*
1737 * CPU intensive works don't participate in concurrency
1738 * management. They're the scheduler's responsibility.
1739 */
1740 if (unlikely(cpu_intensive))
1741 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1742
1743 spin_unlock_irq(&gcwq->lock);
1744
1745 work_clear_pending(work);
1746 lock_map_acquire(&cwq->wq->lockdep_map);
1747 lock_map_acquire(&lockdep_map);
1748 f(work);
1749 lock_map_release(&lockdep_map);
1750 lock_map_release(&cwq->wq->lockdep_map);
1751
1752 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1753 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1754 "%s/0x%08x/%d\n",
1755 current->comm, preempt_count(), task_pid_nr(current));
1756 printk(KERN_ERR " last function: ");
1757 print_symbol("%s\n", (unsigned long)f);
1758 debug_show_held_locks(current);
1759 dump_stack();
1760 }
1761
1762 spin_lock_irq(&gcwq->lock);
1763
1764 /* clear cpu intensive status */
1765 if (unlikely(cpu_intensive))
1766 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1767
1768 /* we're done with it, release */
1769 hlist_del_init(&worker->hentry);
1770 worker->current_work = NULL;
1771 worker->current_cwq = NULL;
1772 cwq_dec_nr_in_flight(cwq, work_color);
1773 }
1774
1775 /**
1776 * process_scheduled_works - process scheduled works
1777 * @worker: self
1778 *
1779 * Process all scheduled works. Please note that the scheduled list
1780 * may change while processing a work, so this function repeatedly
1781 * fetches a work from the top and executes it.
1782 *
1783 * CONTEXT:
1784 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1785 * multiple times.
1786 */
1787 static void process_scheduled_works(struct worker *worker)
1788 {
1789 while (!list_empty(&worker->scheduled)) {
1790 struct work_struct *work = list_first_entry(&worker->scheduled,
1791 struct work_struct, entry);
1792 process_one_work(worker, work);
1793 }
1794 }
1795
1796 /**
1797 * worker_thread - the worker thread function
1798 * @__worker: self
1799 *
1800 * The gcwq worker thread function. There's a single dynamic pool of
1801 * these per each cpu. These workers process all works regardless of
1802 * their specific target workqueue. The only exception is works which
1803 * belong to workqueues with a rescuer which will be explained in
1804 * rescuer_thread().
1805 */
1806 static int worker_thread(void *__worker)
1807 {
1808 struct worker *worker = __worker;
1809 struct global_cwq *gcwq = worker->gcwq;
1810
1811 /* tell the scheduler that this is a workqueue worker */
1812 worker->task->flags |= PF_WQ_WORKER;
1813 woke_up:
1814 spin_lock_irq(&gcwq->lock);
1815
1816 /* DIE can be set only while we're idle, checking here is enough */
1817 if (worker->flags & WORKER_DIE) {
1818 spin_unlock_irq(&gcwq->lock);
1819 worker->task->flags &= ~PF_WQ_WORKER;
1820 return 0;
1821 }
1822
1823 worker_leave_idle(worker);
1824 recheck:
1825 /* no more worker necessary? */
1826 if (!need_more_worker(gcwq))
1827 goto sleep;
1828
1829 /* do we need to manage? */
1830 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1831 goto recheck;
1832
1833 /*
1834 * ->scheduled list can only be filled while a worker is
1835 * preparing to process a work or actually processing it.
1836 * Make sure nobody diddled with it while I was sleeping.
1837 */
1838 BUG_ON(!list_empty(&worker->scheduled));
1839
1840 /*
1841 * When control reaches this point, we're guaranteed to have
1842 * at least one idle worker or that someone else has already
1843 * assumed the manager role.
1844 */
1845 worker_clr_flags(worker, WORKER_PREP);
1846
1847 do {
1848 struct work_struct *work =
1849 list_first_entry(&gcwq->worklist,
1850 struct work_struct, entry);
1851
1852 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1853 /* optimization path, not strictly necessary */
1854 process_one_work(worker, work);
1855 if (unlikely(!list_empty(&worker->scheduled)))
1856 process_scheduled_works(worker);
1857 } else {
1858 move_linked_works(work, &worker->scheduled, NULL);
1859 process_scheduled_works(worker);
1860 }
1861 } while (keep_working(gcwq));
1862
1863 worker_set_flags(worker, WORKER_PREP, false);
1864 sleep:
1865 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1866 goto recheck;
1867
1868 /*
1869 * gcwq->lock is held and there's no work to process and no
1870 * need to manage, sleep. Workers are woken up only while
1871 * holding gcwq->lock or from local cpu, so setting the
1872 * current state before releasing gcwq->lock is enough to
1873 * prevent losing any event.
1874 */
1875 worker_enter_idle(worker);
1876 __set_current_state(TASK_INTERRUPTIBLE);
1877 spin_unlock_irq(&gcwq->lock);
1878 schedule();
1879 goto woke_up;
1880 }
1881
1882 /**
1883 * rescuer_thread - the rescuer thread function
1884 * @__wq: the associated workqueue
1885 *
1886 * Workqueue rescuer thread function. There's one rescuer for each
1887 * workqueue which has WQ_RESCUER set.
1888 *
1889 * Regular work processing on a gcwq may block trying to create a new
1890 * worker which uses GFP_KERNEL allocation which has slight chance of
1891 * developing into deadlock if some works currently on the same queue
1892 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1893 * the problem rescuer solves.
1894 *
1895 * When such condition is possible, the gcwq summons rescuers of all
1896 * workqueues which have works queued on the gcwq and let them process
1897 * those works so that forward progress can be guaranteed.
1898 *
1899 * This should happen rarely.
1900 */
1901 static int rescuer_thread(void *__wq)
1902 {
1903 struct workqueue_struct *wq = __wq;
1904 struct worker *rescuer = wq->rescuer;
1905 struct list_head *scheduled = &rescuer->scheduled;
1906 bool is_unbound = wq->flags & WQ_UNBOUND;
1907 unsigned int cpu;
1908
1909 set_user_nice(current, RESCUER_NICE_LEVEL);
1910 repeat:
1911 set_current_state(TASK_INTERRUPTIBLE);
1912
1913 if (kthread_should_stop())
1914 return 0;
1915
1916 /*
1917 * See whether any cpu is asking for help. Unbounded
1918 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1919 */
1920 for_each_cpu(cpu, wq->mayday_mask) {
1921 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
1922 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
1923 struct global_cwq *gcwq = cwq->gcwq;
1924 struct work_struct *work, *n;
1925
1926 __set_current_state(TASK_RUNNING);
1927 cpumask_clear_cpu(cpu, wq->mayday_mask);
1928
1929 /* migrate to the target cpu if possible */
1930 rescuer->gcwq = gcwq;
1931 worker_maybe_bind_and_lock(rescuer);
1932
1933 /*
1934 * Slurp in all works issued via this workqueue and
1935 * process'em.
1936 */
1937 BUG_ON(!list_empty(&rescuer->scheduled));
1938 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
1939 if (get_work_cwq(work) == cwq)
1940 move_linked_works(work, scheduled, &n);
1941
1942 process_scheduled_works(rescuer);
1943 spin_unlock_irq(&gcwq->lock);
1944 }
1945
1946 schedule();
1947 goto repeat;
1948 }
1949
1950 struct wq_barrier {
1951 struct work_struct work;
1952 struct completion done;
1953 };
1954
1955 static void wq_barrier_func(struct work_struct *work)
1956 {
1957 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1958 complete(&barr->done);
1959 }
1960
1961 /**
1962 * insert_wq_barrier - insert a barrier work
1963 * @cwq: cwq to insert barrier into
1964 * @barr: wq_barrier to insert
1965 * @target: target work to attach @barr to
1966 * @worker: worker currently executing @target, NULL if @target is not executing
1967 *
1968 * @barr is linked to @target such that @barr is completed only after
1969 * @target finishes execution. Please note that the ordering
1970 * guarantee is observed only with respect to @target and on the local
1971 * cpu.
1972 *
1973 * Currently, a queued barrier can't be canceled. This is because
1974 * try_to_grab_pending() can't determine whether the work to be
1975 * grabbed is at the head of the queue and thus can't clear LINKED
1976 * flag of the previous work while there must be a valid next work
1977 * after a work with LINKED flag set.
1978 *
1979 * Note that when @worker is non-NULL, @target may be modified
1980 * underneath us, so we can't reliably determine cwq from @target.
1981 *
1982 * CONTEXT:
1983 * spin_lock_irq(gcwq->lock).
1984 */
1985 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
1986 struct wq_barrier *barr,
1987 struct work_struct *target, struct worker *worker)
1988 {
1989 struct list_head *head;
1990 unsigned int linked = 0;
1991
1992 /*
1993 * debugobject calls are safe here even with gcwq->lock locked
1994 * as we know for sure that this will not trigger any of the
1995 * checks and call back into the fixup functions where we
1996 * might deadlock.
1997 */
1998 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
1999 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2000 init_completion(&barr->done);
2001
2002 /*
2003 * If @target is currently being executed, schedule the
2004 * barrier to the worker; otherwise, put it after @target.
2005 */
2006 if (worker)
2007 head = worker->scheduled.next;
2008 else {
2009 unsigned long *bits = work_data_bits(target);
2010
2011 head = target->entry.next;
2012 /* there can already be other linked works, inherit and set */
2013 linked = *bits & WORK_STRUCT_LINKED;
2014 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2015 }
2016
2017 debug_work_activate(&barr->work);
2018 insert_work(cwq, &barr->work, head,
2019 work_color_to_flags(WORK_NO_COLOR) | linked);
2020 }
2021
2022 /**
2023 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2024 * @wq: workqueue being flushed
2025 * @flush_color: new flush color, < 0 for no-op
2026 * @work_color: new work color, < 0 for no-op
2027 *
2028 * Prepare cwqs for workqueue flushing.
2029 *
2030 * If @flush_color is non-negative, flush_color on all cwqs should be
2031 * -1. If no cwq has in-flight commands at the specified color, all
2032 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2033 * has in flight commands, its cwq->flush_color is set to
2034 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2035 * wakeup logic is armed and %true is returned.
2036 *
2037 * The caller should have initialized @wq->first_flusher prior to
2038 * calling this function with non-negative @flush_color. If
2039 * @flush_color is negative, no flush color update is done and %false
2040 * is returned.
2041 *
2042 * If @work_color is non-negative, all cwqs should have the same
2043 * work_color which is previous to @work_color and all will be
2044 * advanced to @work_color.
2045 *
2046 * CONTEXT:
2047 * mutex_lock(wq->flush_mutex).
2048 *
2049 * RETURNS:
2050 * %true if @flush_color >= 0 and there's something to flush. %false
2051 * otherwise.
2052 */
2053 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2054 int flush_color, int work_color)
2055 {
2056 bool wait = false;
2057 unsigned int cpu;
2058
2059 if (flush_color >= 0) {
2060 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2061 atomic_set(&wq->nr_cwqs_to_flush, 1);
2062 }
2063
2064 for_each_cwq_cpu(cpu, wq) {
2065 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2066 struct global_cwq *gcwq = cwq->gcwq;
2067
2068 spin_lock_irq(&gcwq->lock);
2069
2070 if (flush_color >= 0) {
2071 BUG_ON(cwq->flush_color != -1);
2072
2073 if (cwq->nr_in_flight[flush_color]) {
2074 cwq->flush_color = flush_color;
2075 atomic_inc(&wq->nr_cwqs_to_flush);
2076 wait = true;
2077 }
2078 }
2079
2080 if (work_color >= 0) {
2081 BUG_ON(work_color != work_next_color(cwq->work_color));
2082 cwq->work_color = work_color;
2083 }
2084
2085 spin_unlock_irq(&gcwq->lock);
2086 }
2087
2088 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2089 complete(&wq->first_flusher->done);
2090
2091 return wait;
2092 }
2093
2094 /**
2095 * flush_workqueue - ensure that any scheduled work has run to completion.
2096 * @wq: workqueue to flush
2097 *
2098 * Forces execution of the workqueue and blocks until its completion.
2099 * This is typically used in driver shutdown handlers.
2100 *
2101 * We sleep until all works which were queued on entry have been handled,
2102 * but we are not livelocked by new incoming ones.
2103 */
2104 void flush_workqueue(struct workqueue_struct *wq)
2105 {
2106 struct wq_flusher this_flusher = {
2107 .list = LIST_HEAD_INIT(this_flusher.list),
2108 .flush_color = -1,
2109 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2110 };
2111 int next_color;
2112
2113 lock_map_acquire(&wq->lockdep_map);
2114 lock_map_release(&wq->lockdep_map);
2115
2116 mutex_lock(&wq->flush_mutex);
2117
2118 /*
2119 * Start-to-wait phase
2120 */
2121 next_color = work_next_color(wq->work_color);
2122
2123 if (next_color != wq->flush_color) {
2124 /*
2125 * Color space is not full. The current work_color
2126 * becomes our flush_color and work_color is advanced
2127 * by one.
2128 */
2129 BUG_ON(!list_empty(&wq->flusher_overflow));
2130 this_flusher.flush_color = wq->work_color;
2131 wq->work_color = next_color;
2132
2133 if (!wq->first_flusher) {
2134 /* no flush in progress, become the first flusher */
2135 BUG_ON(wq->flush_color != this_flusher.flush_color);
2136
2137 wq->first_flusher = &this_flusher;
2138
2139 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2140 wq->work_color)) {
2141 /* nothing to flush, done */
2142 wq->flush_color = next_color;
2143 wq->first_flusher = NULL;
2144 goto out_unlock;
2145 }
2146 } else {
2147 /* wait in queue */
2148 BUG_ON(wq->flush_color == this_flusher.flush_color);
2149 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2150 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2151 }
2152 } else {
2153 /*
2154 * Oops, color space is full, wait on overflow queue.
2155 * The next flush completion will assign us
2156 * flush_color and transfer to flusher_queue.
2157 */
2158 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2159 }
2160
2161 mutex_unlock(&wq->flush_mutex);
2162
2163 wait_for_completion(&this_flusher.done);
2164
2165 /*
2166 * Wake-up-and-cascade phase
2167 *
2168 * First flushers are responsible for cascading flushes and
2169 * handling overflow. Non-first flushers can simply return.
2170 */
2171 if (wq->first_flusher != &this_flusher)
2172 return;
2173
2174 mutex_lock(&wq->flush_mutex);
2175
2176 /* we might have raced, check again with mutex held */
2177 if (wq->first_flusher != &this_flusher)
2178 goto out_unlock;
2179
2180 wq->first_flusher = NULL;
2181
2182 BUG_ON(!list_empty(&this_flusher.list));
2183 BUG_ON(wq->flush_color != this_flusher.flush_color);
2184
2185 while (true) {
2186 struct wq_flusher *next, *tmp;
2187
2188 /* complete all the flushers sharing the current flush color */
2189 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2190 if (next->flush_color != wq->flush_color)
2191 break;
2192 list_del_init(&next->list);
2193 complete(&next->done);
2194 }
2195
2196 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2197 wq->flush_color != work_next_color(wq->work_color));
2198
2199 /* this flush_color is finished, advance by one */
2200 wq->flush_color = work_next_color(wq->flush_color);
2201
2202 /* one color has been freed, handle overflow queue */
2203 if (!list_empty(&wq->flusher_overflow)) {
2204 /*
2205 * Assign the same color to all overflowed
2206 * flushers, advance work_color and append to
2207 * flusher_queue. This is the start-to-wait
2208 * phase for these overflowed flushers.
2209 */
2210 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2211 tmp->flush_color = wq->work_color;
2212
2213 wq->work_color = work_next_color(wq->work_color);
2214
2215 list_splice_tail_init(&wq->flusher_overflow,
2216 &wq->flusher_queue);
2217 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2218 }
2219
2220 if (list_empty(&wq->flusher_queue)) {
2221 BUG_ON(wq->flush_color != wq->work_color);
2222 break;
2223 }
2224
2225 /*
2226 * Need to flush more colors. Make the next flusher
2227 * the new first flusher and arm cwqs.
2228 */
2229 BUG_ON(wq->flush_color == wq->work_color);
2230 BUG_ON(wq->flush_color != next->flush_color);
2231
2232 list_del_init(&next->list);
2233 wq->first_flusher = next;
2234
2235 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2236 break;
2237
2238 /*
2239 * Meh... this color is already done, clear first
2240 * flusher and repeat cascading.
2241 */
2242 wq->first_flusher = NULL;
2243 }
2244
2245 out_unlock:
2246 mutex_unlock(&wq->flush_mutex);
2247 }
2248 EXPORT_SYMBOL_GPL(flush_workqueue);
2249
2250 /**
2251 * flush_work - block until a work_struct's callback has terminated
2252 * @work: the work which is to be flushed
2253 *
2254 * Returns false if @work has already terminated.
2255 *
2256 * It is expected that, prior to calling flush_work(), the caller has
2257 * arranged for the work to not be requeued, otherwise it doesn't make
2258 * sense to use this function.
2259 */
2260 int flush_work(struct work_struct *work)
2261 {
2262 struct worker *worker = NULL;
2263 struct global_cwq *gcwq;
2264 struct cpu_workqueue_struct *cwq;
2265 struct wq_barrier barr;
2266
2267 might_sleep();
2268 gcwq = get_work_gcwq(work);
2269 if (!gcwq)
2270 return 0;
2271
2272 spin_lock_irq(&gcwq->lock);
2273 if (!list_empty(&work->entry)) {
2274 /*
2275 * See the comment near try_to_grab_pending()->smp_rmb().
2276 * If it was re-queued to a different gcwq under us, we
2277 * are not going to wait.
2278 */
2279 smp_rmb();
2280 cwq = get_work_cwq(work);
2281 if (unlikely(!cwq || gcwq != cwq->gcwq))
2282 goto already_gone;
2283 } else {
2284 worker = find_worker_executing_work(gcwq, work);
2285 if (!worker)
2286 goto already_gone;
2287 cwq = worker->current_cwq;
2288 }
2289
2290 insert_wq_barrier(cwq, &barr, work, worker);
2291 spin_unlock_irq(&gcwq->lock);
2292
2293 lock_map_acquire(&cwq->wq->lockdep_map);
2294 lock_map_release(&cwq->wq->lockdep_map);
2295
2296 wait_for_completion(&barr.done);
2297 destroy_work_on_stack(&barr.work);
2298 return 1;
2299 already_gone:
2300 spin_unlock_irq(&gcwq->lock);
2301 return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(flush_work);
2304
2305 /*
2306 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2307 * so this work can't be re-armed in any way.
2308 */
2309 static int try_to_grab_pending(struct work_struct *work)
2310 {
2311 struct global_cwq *gcwq;
2312 int ret = -1;
2313
2314 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2315 return 0;
2316
2317 /*
2318 * The queueing is in progress, or it is already queued. Try to
2319 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2320 */
2321 gcwq = get_work_gcwq(work);
2322 if (!gcwq)
2323 return ret;
2324
2325 spin_lock_irq(&gcwq->lock);
2326 if (!list_empty(&work->entry)) {
2327 /*
2328 * This work is queued, but perhaps we locked the wrong gcwq.
2329 * In that case we must see the new value after rmb(), see
2330 * insert_work()->wmb().
2331 */
2332 smp_rmb();
2333 if (gcwq == get_work_gcwq(work)) {
2334 debug_work_deactivate(work);
2335 list_del_init(&work->entry);
2336 cwq_dec_nr_in_flight(get_work_cwq(work),
2337 get_work_color(work));
2338 ret = 1;
2339 }
2340 }
2341 spin_unlock_irq(&gcwq->lock);
2342
2343 return ret;
2344 }
2345
2346 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2347 {
2348 struct wq_barrier barr;
2349 struct worker *worker;
2350
2351 spin_lock_irq(&gcwq->lock);
2352
2353 worker = find_worker_executing_work(gcwq, work);
2354 if (unlikely(worker))
2355 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2356
2357 spin_unlock_irq(&gcwq->lock);
2358
2359 if (unlikely(worker)) {
2360 wait_for_completion(&barr.done);
2361 destroy_work_on_stack(&barr.work);
2362 }
2363 }
2364
2365 static void wait_on_work(struct work_struct *work)
2366 {
2367 int cpu;
2368
2369 might_sleep();
2370
2371 lock_map_acquire(&work->lockdep_map);
2372 lock_map_release(&work->lockdep_map);
2373
2374 for_each_gcwq_cpu(cpu)
2375 wait_on_cpu_work(get_gcwq(cpu), work);
2376 }
2377
2378 static int __cancel_work_timer(struct work_struct *work,
2379 struct timer_list* timer)
2380 {
2381 int ret;
2382
2383 do {
2384 ret = (timer && likely(del_timer(timer)));
2385 if (!ret)
2386 ret = try_to_grab_pending(work);
2387 wait_on_work(work);
2388 } while (unlikely(ret < 0));
2389
2390 clear_work_data(work);
2391 return ret;
2392 }
2393
2394 /**
2395 * cancel_work_sync - block until a work_struct's callback has terminated
2396 * @work: the work which is to be flushed
2397 *
2398 * Returns true if @work was pending.
2399 *
2400 * cancel_work_sync() will cancel the work if it is queued. If the work's
2401 * callback appears to be running, cancel_work_sync() will block until it
2402 * has completed.
2403 *
2404 * It is possible to use this function if the work re-queues itself. It can
2405 * cancel the work even if it migrates to another workqueue, however in that
2406 * case it only guarantees that work->func() has completed on the last queued
2407 * workqueue.
2408 *
2409 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
2410 * pending, otherwise it goes into a busy-wait loop until the timer expires.
2411 *
2412 * The caller must ensure that workqueue_struct on which this work was last
2413 * queued can't be destroyed before this function returns.
2414 */
2415 int cancel_work_sync(struct work_struct *work)
2416 {
2417 return __cancel_work_timer(work, NULL);
2418 }
2419 EXPORT_SYMBOL_GPL(cancel_work_sync);
2420
2421 /**
2422 * cancel_delayed_work_sync - reliably kill off a delayed work.
2423 * @dwork: the delayed work struct
2424 *
2425 * Returns true if @dwork was pending.
2426 *
2427 * It is possible to use this function if @dwork rearms itself via queue_work()
2428 * or queue_delayed_work(). See also the comment for cancel_work_sync().
2429 */
2430 int cancel_delayed_work_sync(struct delayed_work *dwork)
2431 {
2432 return __cancel_work_timer(&dwork->work, &dwork->timer);
2433 }
2434 EXPORT_SYMBOL(cancel_delayed_work_sync);
2435
2436 /**
2437 * schedule_work - put work task in global workqueue
2438 * @work: job to be done
2439 *
2440 * Returns zero if @work was already on the kernel-global workqueue and
2441 * non-zero otherwise.
2442 *
2443 * This puts a job in the kernel-global workqueue if it was not already
2444 * queued and leaves it in the same position on the kernel-global
2445 * workqueue otherwise.
2446 */
2447 int schedule_work(struct work_struct *work)
2448 {
2449 return queue_work(system_wq, work);
2450 }
2451 EXPORT_SYMBOL(schedule_work);
2452
2453 /*
2454 * schedule_work_on - put work task on a specific cpu
2455 * @cpu: cpu to put the work task on
2456 * @work: job to be done
2457 *
2458 * This puts a job on a specific cpu
2459 */
2460 int schedule_work_on(int cpu, struct work_struct *work)
2461 {
2462 return queue_work_on(cpu, system_wq, work);
2463 }
2464 EXPORT_SYMBOL(schedule_work_on);
2465
2466 /**
2467 * schedule_delayed_work - put work task in global workqueue after delay
2468 * @dwork: job to be done
2469 * @delay: number of jiffies to wait or 0 for immediate execution
2470 *
2471 * After waiting for a given time this puts a job in the kernel-global
2472 * workqueue.
2473 */
2474 int schedule_delayed_work(struct delayed_work *dwork,
2475 unsigned long delay)
2476 {
2477 return queue_delayed_work(system_wq, dwork, delay);
2478 }
2479 EXPORT_SYMBOL(schedule_delayed_work);
2480
2481 /**
2482 * flush_delayed_work - block until a dwork_struct's callback has terminated
2483 * @dwork: the delayed work which is to be flushed
2484 *
2485 * Any timeout is cancelled, and any pending work is run immediately.
2486 */
2487 void flush_delayed_work(struct delayed_work *dwork)
2488 {
2489 if (del_timer_sync(&dwork->timer)) {
2490 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
2491 &dwork->work);
2492 put_cpu();
2493 }
2494 flush_work(&dwork->work);
2495 }
2496 EXPORT_SYMBOL(flush_delayed_work);
2497
2498 /**
2499 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2500 * @cpu: cpu to use
2501 * @dwork: job to be done
2502 * @delay: number of jiffies to wait
2503 *
2504 * After waiting for a given time this puts a job in the kernel-global
2505 * workqueue on the specified CPU.
2506 */
2507 int schedule_delayed_work_on(int cpu,
2508 struct delayed_work *dwork, unsigned long delay)
2509 {
2510 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2511 }
2512 EXPORT_SYMBOL(schedule_delayed_work_on);
2513
2514 /**
2515 * schedule_on_each_cpu - call a function on each online CPU from keventd
2516 * @func: the function to call
2517 *
2518 * Returns zero on success.
2519 * Returns -ve errno on failure.
2520 *
2521 * schedule_on_each_cpu() is very slow.
2522 */
2523 int schedule_on_each_cpu(work_func_t func)
2524 {
2525 int cpu;
2526 struct work_struct *works;
2527
2528 works = alloc_percpu(struct work_struct);
2529 if (!works)
2530 return -ENOMEM;
2531
2532 get_online_cpus();
2533
2534 for_each_online_cpu(cpu) {
2535 struct work_struct *work = per_cpu_ptr(works, cpu);
2536
2537 INIT_WORK(work, func);
2538 schedule_work_on(cpu, work);
2539 }
2540
2541 for_each_online_cpu(cpu)
2542 flush_work(per_cpu_ptr(works, cpu));
2543
2544 put_online_cpus();
2545 free_percpu(works);
2546 return 0;
2547 }
2548
2549 /**
2550 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2551 *
2552 * Forces execution of the kernel-global workqueue and blocks until its
2553 * completion.
2554 *
2555 * Think twice before calling this function! It's very easy to get into
2556 * trouble if you don't take great care. Either of the following situations
2557 * will lead to deadlock:
2558 *
2559 * One of the work items currently on the workqueue needs to acquire
2560 * a lock held by your code or its caller.
2561 *
2562 * Your code is running in the context of a work routine.
2563 *
2564 * They will be detected by lockdep when they occur, but the first might not
2565 * occur very often. It depends on what work items are on the workqueue and
2566 * what locks they need, which you have no control over.
2567 *
2568 * In most situations flushing the entire workqueue is overkill; you merely
2569 * need to know that a particular work item isn't queued and isn't running.
2570 * In such cases you should use cancel_delayed_work_sync() or
2571 * cancel_work_sync() instead.
2572 */
2573 void flush_scheduled_work(void)
2574 {
2575 flush_workqueue(system_wq);
2576 }
2577 EXPORT_SYMBOL(flush_scheduled_work);
2578
2579 /**
2580 * execute_in_process_context - reliably execute the routine with user context
2581 * @fn: the function to execute
2582 * @ew: guaranteed storage for the execute work structure (must
2583 * be available when the work executes)
2584 *
2585 * Executes the function immediately if process context is available,
2586 * otherwise schedules the function for delayed execution.
2587 *
2588 * Returns: 0 - function was executed
2589 * 1 - function was scheduled for execution
2590 */
2591 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2592 {
2593 if (!in_interrupt()) {
2594 fn(&ew->work);
2595 return 0;
2596 }
2597
2598 INIT_WORK(&ew->work, fn);
2599 schedule_work(&ew->work);
2600
2601 return 1;
2602 }
2603 EXPORT_SYMBOL_GPL(execute_in_process_context);
2604
2605 int keventd_up(void)
2606 {
2607 return system_wq != NULL;
2608 }
2609
2610 static int alloc_cwqs(struct workqueue_struct *wq)
2611 {
2612 /*
2613 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2614 * Make sure that the alignment isn't lower than that of
2615 * unsigned long long.
2616 */
2617 const size_t size = sizeof(struct cpu_workqueue_struct);
2618 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2619 __alignof__(unsigned long long));
2620
2621 if (CONFIG_SMP && !(wq->flags & WQ_UNBOUND)) {
2622 /* on SMP, percpu allocator can align itself */
2623 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2624 } else {
2625 void *ptr;
2626
2627 /*
2628 * Allocate enough room to align cwq and put an extra
2629 * pointer at the end pointing back to the originally
2630 * allocated pointer which will be used for free.
2631 */
2632 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2633 if (ptr) {
2634 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2635 *(void **)(wq->cpu_wq.single + 1) = ptr;
2636 }
2637 }
2638
2639 /* just in case, make sure it's actually aligned */
2640 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2641 return wq->cpu_wq.v ? 0 : -ENOMEM;
2642 }
2643
2644 static void free_cwqs(struct workqueue_struct *wq)
2645 {
2646 if (CONFIG_SMP && !(wq->flags & WQ_UNBOUND))
2647 free_percpu(wq->cpu_wq.pcpu);
2648 else if (wq->cpu_wq.single) {
2649 /* the pointer to free is stored right after the cwq */
2650 kfree(*(void **)(wq->cpu_wq.single + 1));
2651 }
2652 }
2653
2654 static int wq_clamp_max_active(int max_active, unsigned int flags,
2655 const char *name)
2656 {
2657 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2658
2659 if (max_active < 1 || max_active > lim)
2660 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2661 "is out of range, clamping between %d and %d\n",
2662 max_active, name, 1, lim);
2663
2664 return clamp_val(max_active, 1, lim);
2665 }
2666
2667 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2668 unsigned int flags,
2669 int max_active,
2670 struct lock_class_key *key,
2671 const char *lock_name)
2672 {
2673 struct workqueue_struct *wq;
2674 unsigned int cpu;
2675
2676 /*
2677 * Unbound workqueues aren't concurrency managed and should be
2678 * dispatched to workers immediately.
2679 */
2680 if (flags & WQ_UNBOUND)
2681 flags |= WQ_HIGHPRI;
2682
2683 max_active = max_active ?: WQ_DFL_ACTIVE;
2684 max_active = wq_clamp_max_active(max_active, flags, name);
2685
2686 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2687 if (!wq)
2688 goto err;
2689
2690 wq->flags = flags;
2691 wq->saved_max_active = max_active;
2692 mutex_init(&wq->flush_mutex);
2693 atomic_set(&wq->nr_cwqs_to_flush, 0);
2694 INIT_LIST_HEAD(&wq->flusher_queue);
2695 INIT_LIST_HEAD(&wq->flusher_overflow);
2696
2697 wq->name = name;
2698 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2699 INIT_LIST_HEAD(&wq->list);
2700
2701 if (alloc_cwqs(wq) < 0)
2702 goto err;
2703
2704 for_each_cwq_cpu(cpu, wq) {
2705 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2706 struct global_cwq *gcwq = get_gcwq(cpu);
2707
2708 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2709 cwq->gcwq = gcwq;
2710 cwq->wq = wq;
2711 cwq->flush_color = -1;
2712 cwq->max_active = max_active;
2713 INIT_LIST_HEAD(&cwq->delayed_works);
2714 }
2715
2716 if (flags & WQ_RESCUER) {
2717 struct worker *rescuer;
2718
2719 if (!alloc_cpumask_var(&wq->mayday_mask, GFP_KERNEL))
2720 goto err;
2721
2722 wq->rescuer = rescuer = alloc_worker();
2723 if (!rescuer)
2724 goto err;
2725
2726 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2727 if (IS_ERR(rescuer->task))
2728 goto err;
2729
2730 wq->rescuer = rescuer;
2731 rescuer->task->flags |= PF_THREAD_BOUND;
2732 wake_up_process(rescuer->task);
2733 }
2734
2735 /*
2736 * workqueue_lock protects global freeze state and workqueues
2737 * list. Grab it, set max_active accordingly and add the new
2738 * workqueue to workqueues list.
2739 */
2740 spin_lock(&workqueue_lock);
2741
2742 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2743 for_each_cwq_cpu(cpu, wq)
2744 get_cwq(cpu, wq)->max_active = 0;
2745
2746 list_add(&wq->list, &workqueues);
2747
2748 spin_unlock(&workqueue_lock);
2749
2750 return wq;
2751 err:
2752 if (wq) {
2753 free_cwqs(wq);
2754 free_cpumask_var(wq->mayday_mask);
2755 kfree(wq->rescuer);
2756 kfree(wq);
2757 }
2758 return NULL;
2759 }
2760 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2761
2762 /**
2763 * destroy_workqueue - safely terminate a workqueue
2764 * @wq: target workqueue
2765 *
2766 * Safely destroy a workqueue. All work currently pending will be done first.
2767 */
2768 void destroy_workqueue(struct workqueue_struct *wq)
2769 {
2770 unsigned int cpu;
2771
2772 flush_workqueue(wq);
2773
2774 /*
2775 * wq list is used to freeze wq, remove from list after
2776 * flushing is complete in case freeze races us.
2777 */
2778 spin_lock(&workqueue_lock);
2779 list_del(&wq->list);
2780 spin_unlock(&workqueue_lock);
2781
2782 /* sanity check */
2783 for_each_cwq_cpu(cpu, wq) {
2784 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2785 int i;
2786
2787 for (i = 0; i < WORK_NR_COLORS; i++)
2788 BUG_ON(cwq->nr_in_flight[i]);
2789 BUG_ON(cwq->nr_active);
2790 BUG_ON(!list_empty(&cwq->delayed_works));
2791 }
2792
2793 if (wq->flags & WQ_RESCUER) {
2794 kthread_stop(wq->rescuer->task);
2795 free_cpumask_var(wq->mayday_mask);
2796 }
2797
2798 free_cwqs(wq);
2799 kfree(wq);
2800 }
2801 EXPORT_SYMBOL_GPL(destroy_workqueue);
2802
2803 /**
2804 * workqueue_set_max_active - adjust max_active of a workqueue
2805 * @wq: target workqueue
2806 * @max_active: new max_active value.
2807 *
2808 * Set max_active of @wq to @max_active.
2809 *
2810 * CONTEXT:
2811 * Don't call from IRQ context.
2812 */
2813 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2814 {
2815 unsigned int cpu;
2816
2817 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2818
2819 spin_lock(&workqueue_lock);
2820
2821 wq->saved_max_active = max_active;
2822
2823 for_each_cwq_cpu(cpu, wq) {
2824 struct global_cwq *gcwq = get_gcwq(cpu);
2825
2826 spin_lock_irq(&gcwq->lock);
2827
2828 if (!(wq->flags & WQ_FREEZEABLE) ||
2829 !(gcwq->flags & GCWQ_FREEZING))
2830 get_cwq(gcwq->cpu, wq)->max_active = max_active;
2831
2832 spin_unlock_irq(&gcwq->lock);
2833 }
2834
2835 spin_unlock(&workqueue_lock);
2836 }
2837 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
2838
2839 /**
2840 * workqueue_congested - test whether a workqueue is congested
2841 * @cpu: CPU in question
2842 * @wq: target workqueue
2843 *
2844 * Test whether @wq's cpu workqueue for @cpu is congested. There is
2845 * no synchronization around this function and the test result is
2846 * unreliable and only useful as advisory hints or for debugging.
2847 *
2848 * RETURNS:
2849 * %true if congested, %false otherwise.
2850 */
2851 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
2852 {
2853 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2854
2855 return !list_empty(&cwq->delayed_works);
2856 }
2857 EXPORT_SYMBOL_GPL(workqueue_congested);
2858
2859 /**
2860 * work_cpu - return the last known associated cpu for @work
2861 * @work: the work of interest
2862 *
2863 * RETURNS:
2864 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
2865 */
2866 unsigned int work_cpu(struct work_struct *work)
2867 {
2868 struct global_cwq *gcwq = get_work_gcwq(work);
2869
2870 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
2871 }
2872 EXPORT_SYMBOL_GPL(work_cpu);
2873
2874 /**
2875 * work_busy - test whether a work is currently pending or running
2876 * @work: the work to be tested
2877 *
2878 * Test whether @work is currently pending or running. There is no
2879 * synchronization around this function and the test result is
2880 * unreliable and only useful as advisory hints or for debugging.
2881 * Especially for reentrant wqs, the pending state might hide the
2882 * running state.
2883 *
2884 * RETURNS:
2885 * OR'd bitmask of WORK_BUSY_* bits.
2886 */
2887 unsigned int work_busy(struct work_struct *work)
2888 {
2889 struct global_cwq *gcwq = get_work_gcwq(work);
2890 unsigned long flags;
2891 unsigned int ret = 0;
2892
2893 if (!gcwq)
2894 return false;
2895
2896 spin_lock_irqsave(&gcwq->lock, flags);
2897
2898 if (work_pending(work))
2899 ret |= WORK_BUSY_PENDING;
2900 if (find_worker_executing_work(gcwq, work))
2901 ret |= WORK_BUSY_RUNNING;
2902
2903 spin_unlock_irqrestore(&gcwq->lock, flags);
2904
2905 return ret;
2906 }
2907 EXPORT_SYMBOL_GPL(work_busy);
2908
2909 /*
2910 * CPU hotplug.
2911 *
2912 * There are two challenges in supporting CPU hotplug. Firstly, there
2913 * are a lot of assumptions on strong associations among work, cwq and
2914 * gcwq which make migrating pending and scheduled works very
2915 * difficult to implement without impacting hot paths. Secondly,
2916 * gcwqs serve mix of short, long and very long running works making
2917 * blocked draining impractical.
2918 *
2919 * This is solved by allowing a gcwq to be detached from CPU, running
2920 * it with unbound (rogue) workers and allowing it to be reattached
2921 * later if the cpu comes back online. A separate thread is created
2922 * to govern a gcwq in such state and is called the trustee of the
2923 * gcwq.
2924 *
2925 * Trustee states and their descriptions.
2926 *
2927 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2928 * new trustee is started with this state.
2929 *
2930 * IN_CHARGE Once started, trustee will enter this state after
2931 * assuming the manager role and making all existing
2932 * workers rogue. DOWN_PREPARE waits for trustee to
2933 * enter this state. After reaching IN_CHARGE, trustee
2934 * tries to execute the pending worklist until it's empty
2935 * and the state is set to BUTCHER, or the state is set
2936 * to RELEASE.
2937 *
2938 * BUTCHER Command state which is set by the cpu callback after
2939 * the cpu has went down. Once this state is set trustee
2940 * knows that there will be no new works on the worklist
2941 * and once the worklist is empty it can proceed to
2942 * killing idle workers.
2943 *
2944 * RELEASE Command state which is set by the cpu callback if the
2945 * cpu down has been canceled or it has come online
2946 * again. After recognizing this state, trustee stops
2947 * trying to drain or butcher and clears ROGUE, rebinds
2948 * all remaining workers back to the cpu and releases
2949 * manager role.
2950 *
2951 * DONE Trustee will enter this state after BUTCHER or RELEASE
2952 * is complete.
2953 *
2954 * trustee CPU draining
2955 * took over down complete
2956 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2957 * | | ^
2958 * | CPU is back online v return workers |
2959 * ----------------> RELEASE --------------
2960 */
2961
2962 /**
2963 * trustee_wait_event_timeout - timed event wait for trustee
2964 * @cond: condition to wait for
2965 * @timeout: timeout in jiffies
2966 *
2967 * wait_event_timeout() for trustee to use. Handles locking and
2968 * checks for RELEASE request.
2969 *
2970 * CONTEXT:
2971 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2972 * multiple times. To be used by trustee.
2973 *
2974 * RETURNS:
2975 * Positive indicating left time if @cond is satisfied, 0 if timed
2976 * out, -1 if canceled.
2977 */
2978 #define trustee_wait_event_timeout(cond, timeout) ({ \
2979 long __ret = (timeout); \
2980 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
2981 __ret) { \
2982 spin_unlock_irq(&gcwq->lock); \
2983 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
2984 (gcwq->trustee_state == TRUSTEE_RELEASE), \
2985 __ret); \
2986 spin_lock_irq(&gcwq->lock); \
2987 } \
2988 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
2989 })
2990
2991 /**
2992 * trustee_wait_event - event wait for trustee
2993 * @cond: condition to wait for
2994 *
2995 * wait_event() for trustee to use. Automatically handles locking and
2996 * checks for CANCEL request.
2997 *
2998 * CONTEXT:
2999 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3000 * multiple times. To be used by trustee.
3001 *
3002 * RETURNS:
3003 * 0 if @cond is satisfied, -1 if canceled.
3004 */
3005 #define trustee_wait_event(cond) ({ \
3006 long __ret1; \
3007 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3008 __ret1 < 0 ? -1 : 0; \
3009 })
3010
3011 static int __cpuinit trustee_thread(void *__gcwq)
3012 {
3013 struct global_cwq *gcwq = __gcwq;
3014 struct worker *worker;
3015 struct work_struct *work;
3016 struct hlist_node *pos;
3017 long rc;
3018 int i;
3019
3020 BUG_ON(gcwq->cpu != smp_processor_id());
3021
3022 spin_lock_irq(&gcwq->lock);
3023 /*
3024 * Claim the manager position and make all workers rogue.
3025 * Trustee must be bound to the target cpu and can't be
3026 * cancelled.
3027 */
3028 BUG_ON(gcwq->cpu != smp_processor_id());
3029 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3030 BUG_ON(rc < 0);
3031
3032 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3033
3034 list_for_each_entry(worker, &gcwq->idle_list, entry)
3035 worker->flags |= WORKER_ROGUE;
3036
3037 for_each_busy_worker(worker, i, pos, gcwq)
3038 worker->flags |= WORKER_ROGUE;
3039
3040 /*
3041 * Call schedule() so that we cross rq->lock and thus can
3042 * guarantee sched callbacks see the rogue flag. This is
3043 * necessary as scheduler callbacks may be invoked from other
3044 * cpus.
3045 */
3046 spin_unlock_irq(&gcwq->lock);
3047 schedule();
3048 spin_lock_irq(&gcwq->lock);
3049
3050 /*
3051 * Sched callbacks are disabled now. Zap nr_running. After
3052 * this, nr_running stays zero and need_more_worker() and
3053 * keep_working() are always true as long as the worklist is
3054 * not empty.
3055 */
3056 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3057
3058 spin_unlock_irq(&gcwq->lock);
3059 del_timer_sync(&gcwq->idle_timer);
3060 spin_lock_irq(&gcwq->lock);
3061
3062 /*
3063 * We're now in charge. Notify and proceed to drain. We need
3064 * to keep the gcwq running during the whole CPU down
3065 * procedure as other cpu hotunplug callbacks may need to
3066 * flush currently running tasks.
3067 */
3068 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3069 wake_up_all(&gcwq->trustee_wait);
3070
3071 /*
3072 * The original cpu is in the process of dying and may go away
3073 * anytime now. When that happens, we and all workers would
3074 * be migrated to other cpus. Try draining any left work. We
3075 * want to get it over with ASAP - spam rescuers, wake up as
3076 * many idlers as necessary and create new ones till the
3077 * worklist is empty. Note that if the gcwq is frozen, there
3078 * may be frozen works in freezeable cwqs. Don't declare
3079 * completion while frozen.
3080 */
3081 while (gcwq->nr_workers != gcwq->nr_idle ||
3082 gcwq->flags & GCWQ_FREEZING ||
3083 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3084 int nr_works = 0;
3085
3086 list_for_each_entry(work, &gcwq->worklist, entry) {
3087 send_mayday(work);
3088 nr_works++;
3089 }
3090
3091 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3092 if (!nr_works--)
3093 break;
3094 wake_up_process(worker->task);
3095 }
3096
3097 if (need_to_create_worker(gcwq)) {
3098 spin_unlock_irq(&gcwq->lock);
3099 worker = create_worker(gcwq, false);
3100 spin_lock_irq(&gcwq->lock);
3101 if (worker) {
3102 worker->flags |= WORKER_ROGUE;
3103 start_worker(worker);
3104 }
3105 }
3106
3107 /* give a breather */
3108 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3109 break;
3110 }
3111
3112 /*
3113 * Either all works have been scheduled and cpu is down, or
3114 * cpu down has already been canceled. Wait for and butcher
3115 * all workers till we're canceled.
3116 */
3117 do {
3118 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3119 while (!list_empty(&gcwq->idle_list))
3120 destroy_worker(list_first_entry(&gcwq->idle_list,
3121 struct worker, entry));
3122 } while (gcwq->nr_workers && rc >= 0);
3123
3124 /*
3125 * At this point, either draining has completed and no worker
3126 * is left, or cpu down has been canceled or the cpu is being
3127 * brought back up. There shouldn't be any idle one left.
3128 * Tell the remaining busy ones to rebind once it finishes the
3129 * currently scheduled works by scheduling the rebind_work.
3130 */
3131 WARN_ON(!list_empty(&gcwq->idle_list));
3132
3133 for_each_busy_worker(worker, i, pos, gcwq) {
3134 struct work_struct *rebind_work = &worker->rebind_work;
3135
3136 /*
3137 * Rebind_work may race with future cpu hotplug
3138 * operations. Use a separate flag to mark that
3139 * rebinding is scheduled.
3140 */
3141 worker->flags |= WORKER_REBIND;
3142 worker->flags &= ~WORKER_ROGUE;
3143
3144 /* queue rebind_work, wq doesn't matter, use the default one */
3145 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3146 work_data_bits(rebind_work)))
3147 continue;
3148
3149 debug_work_activate(rebind_work);
3150 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3151 worker->scheduled.next,
3152 work_color_to_flags(WORK_NO_COLOR));
3153 }
3154
3155 /* relinquish manager role */
3156 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3157
3158 /* notify completion */
3159 gcwq->trustee = NULL;
3160 gcwq->trustee_state = TRUSTEE_DONE;
3161 wake_up_all(&gcwq->trustee_wait);
3162 spin_unlock_irq(&gcwq->lock);
3163 return 0;
3164 }
3165
3166 /**
3167 * wait_trustee_state - wait for trustee to enter the specified state
3168 * @gcwq: gcwq the trustee of interest belongs to
3169 * @state: target state to wait for
3170 *
3171 * Wait for the trustee to reach @state. DONE is already matched.
3172 *
3173 * CONTEXT:
3174 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3175 * multiple times. To be used by cpu_callback.
3176 */
3177 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3178 {
3179 if (!(gcwq->trustee_state == state ||
3180 gcwq->trustee_state == TRUSTEE_DONE)) {
3181 spin_unlock_irq(&gcwq->lock);
3182 __wait_event(gcwq->trustee_wait,
3183 gcwq->trustee_state == state ||
3184 gcwq->trustee_state == TRUSTEE_DONE);
3185 spin_lock_irq(&gcwq->lock);
3186 }
3187 }
3188
3189 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3190 unsigned long action,
3191 void *hcpu)
3192 {
3193 unsigned int cpu = (unsigned long)hcpu;
3194 struct global_cwq *gcwq = get_gcwq(cpu);
3195 struct task_struct *new_trustee = NULL;
3196 struct worker *uninitialized_var(new_worker);
3197 unsigned long flags;
3198
3199 action &= ~CPU_TASKS_FROZEN;
3200
3201 switch (action) {
3202 case CPU_DOWN_PREPARE:
3203 new_trustee = kthread_create(trustee_thread, gcwq,
3204 "workqueue_trustee/%d\n", cpu);
3205 if (IS_ERR(new_trustee))
3206 return notifier_from_errno(PTR_ERR(new_trustee));
3207 kthread_bind(new_trustee, cpu);
3208 /* fall through */
3209 case CPU_UP_PREPARE:
3210 BUG_ON(gcwq->first_idle);
3211 new_worker = create_worker(gcwq, false);
3212 if (!new_worker) {
3213 if (new_trustee)
3214 kthread_stop(new_trustee);
3215 return NOTIFY_BAD;
3216 }
3217 }
3218
3219 /* some are called w/ irq disabled, don't disturb irq status */
3220 spin_lock_irqsave(&gcwq->lock, flags);
3221
3222 switch (action) {
3223 case CPU_DOWN_PREPARE:
3224 /* initialize trustee and tell it to acquire the gcwq */
3225 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3226 gcwq->trustee = new_trustee;
3227 gcwq->trustee_state = TRUSTEE_START;
3228 wake_up_process(gcwq->trustee);
3229 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3230 /* fall through */
3231 case CPU_UP_PREPARE:
3232 BUG_ON(gcwq->first_idle);
3233 gcwq->first_idle = new_worker;
3234 break;
3235
3236 case CPU_DYING:
3237 /*
3238 * Before this, the trustee and all workers except for
3239 * the ones which are still executing works from
3240 * before the last CPU down must be on the cpu. After
3241 * this, they'll all be diasporas.
3242 */
3243 gcwq->flags |= GCWQ_DISASSOCIATED;
3244 break;
3245
3246 case CPU_POST_DEAD:
3247 gcwq->trustee_state = TRUSTEE_BUTCHER;
3248 /* fall through */
3249 case CPU_UP_CANCELED:
3250 destroy_worker(gcwq->first_idle);
3251 gcwq->first_idle = NULL;
3252 break;
3253
3254 case CPU_DOWN_FAILED:
3255 case CPU_ONLINE:
3256 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3257 if (gcwq->trustee_state != TRUSTEE_DONE) {
3258 gcwq->trustee_state = TRUSTEE_RELEASE;
3259 wake_up_process(gcwq->trustee);
3260 wait_trustee_state(gcwq, TRUSTEE_DONE);
3261 }
3262
3263 /*
3264 * Trustee is done and there might be no worker left.
3265 * Put the first_idle in and request a real manager to
3266 * take a look.
3267 */
3268 spin_unlock_irq(&gcwq->lock);
3269 kthread_bind(gcwq->first_idle->task, cpu);
3270 spin_lock_irq(&gcwq->lock);
3271 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3272 start_worker(gcwq->first_idle);
3273 gcwq->first_idle = NULL;
3274 break;
3275 }
3276
3277 spin_unlock_irqrestore(&gcwq->lock, flags);
3278
3279 return notifier_from_errno(0);
3280 }
3281
3282 #ifdef CONFIG_SMP
3283
3284 struct work_for_cpu {
3285 struct completion completion;
3286 long (*fn)(void *);
3287 void *arg;
3288 long ret;
3289 };
3290
3291 static int do_work_for_cpu(void *_wfc)
3292 {
3293 struct work_for_cpu *wfc = _wfc;
3294 wfc->ret = wfc->fn(wfc->arg);
3295 complete(&wfc->completion);
3296 return 0;
3297 }
3298
3299 /**
3300 * work_on_cpu - run a function in user context on a particular cpu
3301 * @cpu: the cpu to run on
3302 * @fn: the function to run
3303 * @arg: the function arg
3304 *
3305 * This will return the value @fn returns.
3306 * It is up to the caller to ensure that the cpu doesn't go offline.
3307 * The caller must not hold any locks which would prevent @fn from completing.
3308 */
3309 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3310 {
3311 struct task_struct *sub_thread;
3312 struct work_for_cpu wfc = {
3313 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3314 .fn = fn,
3315 .arg = arg,
3316 };
3317
3318 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3319 if (IS_ERR(sub_thread))
3320 return PTR_ERR(sub_thread);
3321 kthread_bind(sub_thread, cpu);
3322 wake_up_process(sub_thread);
3323 wait_for_completion(&wfc.completion);
3324 return wfc.ret;
3325 }
3326 EXPORT_SYMBOL_GPL(work_on_cpu);
3327 #endif /* CONFIG_SMP */
3328
3329 #ifdef CONFIG_FREEZER
3330
3331 /**
3332 * freeze_workqueues_begin - begin freezing workqueues
3333 *
3334 * Start freezing workqueues. After this function returns, all
3335 * freezeable workqueues will queue new works to their frozen_works
3336 * list instead of gcwq->worklist.
3337 *
3338 * CONTEXT:
3339 * Grabs and releases workqueue_lock and gcwq->lock's.
3340 */
3341 void freeze_workqueues_begin(void)
3342 {
3343 unsigned int cpu;
3344
3345 spin_lock(&workqueue_lock);
3346
3347 BUG_ON(workqueue_freezing);
3348 workqueue_freezing = true;
3349
3350 for_each_gcwq_cpu(cpu) {
3351 struct global_cwq *gcwq = get_gcwq(cpu);
3352 struct workqueue_struct *wq;
3353
3354 spin_lock_irq(&gcwq->lock);
3355
3356 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3357 gcwq->flags |= GCWQ_FREEZING;
3358
3359 list_for_each_entry(wq, &workqueues, list) {
3360 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3361
3362 if (cwq && wq->flags & WQ_FREEZEABLE)
3363 cwq->max_active = 0;
3364 }
3365
3366 spin_unlock_irq(&gcwq->lock);
3367 }
3368
3369 spin_unlock(&workqueue_lock);
3370 }
3371
3372 /**
3373 * freeze_workqueues_busy - are freezeable workqueues still busy?
3374 *
3375 * Check whether freezing is complete. This function must be called
3376 * between freeze_workqueues_begin() and thaw_workqueues().
3377 *
3378 * CONTEXT:
3379 * Grabs and releases workqueue_lock.
3380 *
3381 * RETURNS:
3382 * %true if some freezeable workqueues are still busy. %false if
3383 * freezing is complete.
3384 */
3385 bool freeze_workqueues_busy(void)
3386 {
3387 unsigned int cpu;
3388 bool busy = false;
3389
3390 spin_lock(&workqueue_lock);
3391
3392 BUG_ON(!workqueue_freezing);
3393
3394 for_each_gcwq_cpu(cpu) {
3395 struct workqueue_struct *wq;
3396 /*
3397 * nr_active is monotonically decreasing. It's safe
3398 * to peek without lock.
3399 */
3400 list_for_each_entry(wq, &workqueues, list) {
3401 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3402
3403 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3404 continue;
3405
3406 BUG_ON(cwq->nr_active < 0);
3407 if (cwq->nr_active) {
3408 busy = true;
3409 goto out_unlock;
3410 }
3411 }
3412 }
3413 out_unlock:
3414 spin_unlock(&workqueue_lock);
3415 return busy;
3416 }
3417
3418 /**
3419 * thaw_workqueues - thaw workqueues
3420 *
3421 * Thaw workqueues. Normal queueing is restored and all collected
3422 * frozen works are transferred to their respective gcwq worklists.
3423 *
3424 * CONTEXT:
3425 * Grabs and releases workqueue_lock and gcwq->lock's.
3426 */
3427 void thaw_workqueues(void)
3428 {
3429 unsigned int cpu;
3430
3431 spin_lock(&workqueue_lock);
3432
3433 if (!workqueue_freezing)
3434 goto out_unlock;
3435
3436 for_each_gcwq_cpu(cpu) {
3437 struct global_cwq *gcwq = get_gcwq(cpu);
3438 struct workqueue_struct *wq;
3439
3440 spin_lock_irq(&gcwq->lock);
3441
3442 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3443 gcwq->flags &= ~GCWQ_FREEZING;
3444
3445 list_for_each_entry(wq, &workqueues, list) {
3446 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3447
3448 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3449 continue;
3450
3451 /* restore max_active and repopulate worklist */
3452 cwq->max_active = wq->saved_max_active;
3453
3454 while (!list_empty(&cwq->delayed_works) &&
3455 cwq->nr_active < cwq->max_active)
3456 cwq_activate_first_delayed(cwq);
3457 }
3458
3459 wake_up_worker(gcwq);
3460
3461 spin_unlock_irq(&gcwq->lock);
3462 }
3463
3464 workqueue_freezing = false;
3465 out_unlock:
3466 spin_unlock(&workqueue_lock);
3467 }
3468 #endif /* CONFIG_FREEZER */
3469
3470 void __init init_workqueues(void)
3471 {
3472 unsigned int cpu;
3473 int i;
3474
3475 /*
3476 * The pointer part of work->data is either pointing to the
3477 * cwq or contains the cpu number the work ran last on. Make
3478 * sure cpu number won't overflow into kernel pointer area so
3479 * that they can be distinguished.
3480 */
3481 BUILD_BUG_ON(WORK_CPU_LAST << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
3482
3483 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3484
3485 /* initialize gcwqs */
3486 for_each_gcwq_cpu(cpu) {
3487 struct global_cwq *gcwq = get_gcwq(cpu);
3488
3489 spin_lock_init(&gcwq->lock);
3490 INIT_LIST_HEAD(&gcwq->worklist);
3491 gcwq->cpu = cpu;
3492 if (cpu == WORK_CPU_UNBOUND)
3493 gcwq->flags |= GCWQ_DISASSOCIATED;
3494
3495 INIT_LIST_HEAD(&gcwq->idle_list);
3496 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3497 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3498
3499 init_timer_deferrable(&gcwq->idle_timer);
3500 gcwq->idle_timer.function = idle_worker_timeout;
3501 gcwq->idle_timer.data = (unsigned long)gcwq;
3502
3503 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3504 (unsigned long)gcwq);
3505
3506 ida_init(&gcwq->worker_ida);
3507
3508 gcwq->trustee_state = TRUSTEE_DONE;
3509 init_waitqueue_head(&gcwq->trustee_wait);
3510 }
3511
3512 /* create the initial worker */
3513 for_each_online_gcwq_cpu(cpu) {
3514 struct global_cwq *gcwq = get_gcwq(cpu);
3515 struct worker *worker;
3516
3517 worker = create_worker(gcwq, true);
3518 BUG_ON(!worker);
3519 spin_lock_irq(&gcwq->lock);
3520 start_worker(worker);
3521 spin_unlock_irq(&gcwq->lock);
3522 }
3523
3524 system_wq = alloc_workqueue("events", 0, 0);
3525 system_long_wq = alloc_workqueue("events_long", 0, 0);
3526 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3527 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3528 WQ_UNBOUND_MAX_ACTIVE);
3529 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
3530 }
This page took 0.137088 seconds and 5 git commands to generate.