workqueue: fix comment typo for __queue_work()
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
69 * create_worker() is in progress.
70 */
71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73 POOL_FREEZING = 1 << 3, /* freeze in progress */
74
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
106 HIGHPRI_NICE_LEVEL = -20,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
133 *
134 * WQ: wq->mutex protected.
135 *
136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
137 *
138 * MD: wq_mayday_lock protected.
139 */
140
141 /* struct worker is defined in workqueue_internal.h */
142
143 struct worker_pool {
144 spinlock_t lock; /* the pool lock */
145 int cpu; /* I: the associated cpu */
146 int node; /* I: the associated node ID */
147 int id; /* I: pool ID */
148 unsigned int flags; /* X: flags */
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
152
153 /* nr_idle includes the ones off idle_list for rebinding */
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
160 /* a workers is either on busy_hash or idle_list, or the manager */
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
164 /* see manage_workers() for details on the two manager mutexes */
165 struct mutex manager_arb; /* manager arbitration */
166 struct mutex manager_mutex; /* manager exclusion */
167 struct idr worker_idr; /* MG: worker IDs and iteration */
168
169 struct workqueue_attrs *attrs; /* I: worker attributes */
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
172
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
185 } ____cacheline_aligned_in_smp;
186
187 /*
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
192 */
193 struct pool_workqueue {
194 struct worker_pool *pool; /* I: the associated pool */
195 struct workqueue_struct *wq; /* I: the owning workqueue */
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
198 int refcnt; /* L: reference count */
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
201 int nr_active; /* L: nr of active works */
202 int max_active; /* L: max active works */
203 struct list_head delayed_works; /* L: delayed works */
204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
205 struct list_head mayday_node; /* MD: node on wq->maydays */
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
211 * determined without grabbing wq->mutex.
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216
217 /*
218 * Structure used to wait for workqueue flush.
219 */
220 struct wq_flusher {
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
223 struct completion done; /* flush completion */
224 };
225
226 struct wq_device;
227
228 /*
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
231 */
232 struct workqueue_struct {
233 struct list_head pwqs; /* WR: all pwqs of this wq */
234 struct list_head list; /* PL: list of all workqueues */
235
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
239 atomic_t nr_pwqs_to_flush; /* flush in progress */
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
243
244 struct list_head maydays; /* MD: pwqs requesting rescue */
245 struct worker *rescuer; /* I: rescue worker */
246
247 int nr_drainers; /* WQ: drain in progress */
248 int saved_max_active; /* WQ: saved pwq max_active */
249
250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
252
253 #ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 struct lockdep_map lockdep_map;
258 #endif
259 char name[WQ_NAME_LEN]; /* I: workqueue name */
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266
267 static struct kmem_cache *pwq_cache;
268
269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
292
293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294 static bool workqueue_freezing; /* PL: have wqs started freezing? */
295
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
301
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332
333 #define assert_rcu_or_pool_mutex() \
334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
337
338 #define assert_rcu_or_wq_mutex(wq) \
339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
340 lockdep_is_held(&wq->mutex), \
341 "sched RCU or wq->mutex should be held")
342
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool) \
345 WARN_ONCE(debug_locks && \
346 !lockdep_is_held(&(pool)->manager_mutex) && \
347 !lockdep_is_held(&(pool)->lock), \
348 "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool) do { } while (0)
351 #endif
352
353 #define for_each_cpu_worker_pool(pool, cpu) \
354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 (pool)++)
357
358 /**
359 * for_each_pool - iterate through all worker_pools in the system
360 * @pool: iteration cursor
361 * @pi: integer used for iteration
362 *
363 * This must be called either with wq_pool_mutex held or sched RCU read
364 * locked. If the pool needs to be used beyond the locking in effect, the
365 * caller is responsible for guaranteeing that the pool stays online.
366 *
367 * The if/else clause exists only for the lockdep assertion and can be
368 * ignored.
369 */
370 #define for_each_pool(pool, pi) \
371 idr_for_each_entry(&worker_pool_idr, pool, pi) \
372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
373 else
374
375 /**
376 * for_each_pool_worker - iterate through all workers of a worker_pool
377 * @worker: iteration cursor
378 * @wi: integer used for iteration
379 * @pool: worker_pool to iterate workers of
380 *
381 * This must be called with either @pool->manager_mutex or ->lock held.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386 #define for_each_pool_worker(worker, wi, pool) \
387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 else
390
391 /**
392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393 * @pwq: iteration cursor
394 * @wq: the target workqueue
395 *
396 * This must be called either with wq->mutex held or sched RCU read locked.
397 * If the pwq needs to be used beyond the locking in effect, the caller is
398 * responsible for guaranteeing that the pwq stays online.
399 *
400 * The if/else clause exists only for the lockdep assertion and can be
401 * ignored.
402 */
403 #define for_each_pwq(pwq, wq) \
404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
406 else
407
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409
410 static struct debug_obj_descr work_debug_descr;
411
412 static void *work_debug_hint(void *addr)
413 {
414 return ((struct work_struct *) addr)->func;
415 }
416
417 /*
418 * fixup_init is called when:
419 * - an active object is initialized
420 */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 struct work_struct *work = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 cancel_work_sync(work);
428 debug_object_init(work, &work_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433 }
434
435 /*
436 * fixup_activate is called when:
437 * - an active object is activated
438 * - an unknown object is activated (might be a statically initialized object)
439 */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 struct work_struct *work = addr;
443
444 switch (state) {
445
446 case ODEBUG_STATE_NOTAVAILABLE:
447 /*
448 * This is not really a fixup. The work struct was
449 * statically initialized. We just make sure that it
450 * is tracked in the object tracker.
451 */
452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 debug_object_init(work, &work_debug_descr);
454 debug_object_activate(work, &work_debug_descr);
455 return 0;
456 }
457 WARN_ON_ONCE(1);
458 return 0;
459
460 case ODEBUG_STATE_ACTIVE:
461 WARN_ON(1);
462
463 default:
464 return 0;
465 }
466 }
467
468 /*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484 }
485
486 static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
488 .debug_hint = work_debug_hint,
489 .fixup_init = work_fixup_init,
490 .fixup_activate = work_fixup_activate,
491 .fixup_free = work_fixup_free,
492 };
493
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 debug_object_activate(work, &work_debug_descr);
497 }
498
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 debug_object_deactivate(work, &work_debug_descr);
502 }
503
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523
524 /* allocate ID and assign it to @pool */
525 static int worker_pool_assign_id(struct worker_pool *pool)
526 {
527 int ret;
528
529 lockdep_assert_held(&wq_pool_mutex);
530
531 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
532 if (ret >= 0) {
533 pool->id = ret;
534 return 0;
535 }
536 return ret;
537 }
538
539 /**
540 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
541 * @wq: the target workqueue
542 * @node: the node ID
543 *
544 * This must be called either with pwq_lock held or sched RCU read locked.
545 * If the pwq needs to be used beyond the locking in effect, the caller is
546 * responsible for guaranteeing that the pwq stays online.
547 *
548 * Return: The unbound pool_workqueue for @node.
549 */
550 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
551 int node)
552 {
553 assert_rcu_or_wq_mutex(wq);
554 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
555 }
556
557 static unsigned int work_color_to_flags(int color)
558 {
559 return color << WORK_STRUCT_COLOR_SHIFT;
560 }
561
562 static int get_work_color(struct work_struct *work)
563 {
564 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
565 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
566 }
567
568 static int work_next_color(int color)
569 {
570 return (color + 1) % WORK_NR_COLORS;
571 }
572
573 /*
574 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
575 * contain the pointer to the queued pwq. Once execution starts, the flag
576 * is cleared and the high bits contain OFFQ flags and pool ID.
577 *
578 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
579 * and clear_work_data() can be used to set the pwq, pool or clear
580 * work->data. These functions should only be called while the work is
581 * owned - ie. while the PENDING bit is set.
582 *
583 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
584 * corresponding to a work. Pool is available once the work has been
585 * queued anywhere after initialization until it is sync canceled. pwq is
586 * available only while the work item is queued.
587 *
588 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
589 * canceled. While being canceled, a work item may have its PENDING set
590 * but stay off timer and worklist for arbitrarily long and nobody should
591 * try to steal the PENDING bit.
592 */
593 static inline void set_work_data(struct work_struct *work, unsigned long data,
594 unsigned long flags)
595 {
596 WARN_ON_ONCE(!work_pending(work));
597 atomic_long_set(&work->data, data | flags | work_static(work));
598 }
599
600 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
601 unsigned long extra_flags)
602 {
603 set_work_data(work, (unsigned long)pwq,
604 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
605 }
606
607 static void set_work_pool_and_keep_pending(struct work_struct *work,
608 int pool_id)
609 {
610 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
611 WORK_STRUCT_PENDING);
612 }
613
614 static void set_work_pool_and_clear_pending(struct work_struct *work,
615 int pool_id)
616 {
617 /*
618 * The following wmb is paired with the implied mb in
619 * test_and_set_bit(PENDING) and ensures all updates to @work made
620 * here are visible to and precede any updates by the next PENDING
621 * owner.
622 */
623 smp_wmb();
624 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
625 }
626
627 static void clear_work_data(struct work_struct *work)
628 {
629 smp_wmb(); /* see set_work_pool_and_clear_pending() */
630 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
631 }
632
633 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
634 {
635 unsigned long data = atomic_long_read(&work->data);
636
637 if (data & WORK_STRUCT_PWQ)
638 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
639 else
640 return NULL;
641 }
642
643 /**
644 * get_work_pool - return the worker_pool a given work was associated with
645 * @work: the work item of interest
646 *
647 * Pools are created and destroyed under wq_pool_mutex, and allows read
648 * access under sched-RCU read lock. As such, this function should be
649 * called under wq_pool_mutex or with preemption disabled.
650 *
651 * All fields of the returned pool are accessible as long as the above
652 * mentioned locking is in effect. If the returned pool needs to be used
653 * beyond the critical section, the caller is responsible for ensuring the
654 * returned pool is and stays online.
655 *
656 * Return: The worker_pool @work was last associated with. %NULL if none.
657 */
658 static struct worker_pool *get_work_pool(struct work_struct *work)
659 {
660 unsigned long data = atomic_long_read(&work->data);
661 int pool_id;
662
663 assert_rcu_or_pool_mutex();
664
665 if (data & WORK_STRUCT_PWQ)
666 return ((struct pool_workqueue *)
667 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
668
669 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
670 if (pool_id == WORK_OFFQ_POOL_NONE)
671 return NULL;
672
673 return idr_find(&worker_pool_idr, pool_id);
674 }
675
676 /**
677 * get_work_pool_id - return the worker pool ID a given work is associated with
678 * @work: the work item of interest
679 *
680 * Return: The worker_pool ID @work was last associated with.
681 * %WORK_OFFQ_POOL_NONE if none.
682 */
683 static int get_work_pool_id(struct work_struct *work)
684 {
685 unsigned long data = atomic_long_read(&work->data);
686
687 if (data & WORK_STRUCT_PWQ)
688 return ((struct pool_workqueue *)
689 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
690
691 return data >> WORK_OFFQ_POOL_SHIFT;
692 }
693
694 static void mark_work_canceling(struct work_struct *work)
695 {
696 unsigned long pool_id = get_work_pool_id(work);
697
698 pool_id <<= WORK_OFFQ_POOL_SHIFT;
699 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
700 }
701
702 static bool work_is_canceling(struct work_struct *work)
703 {
704 unsigned long data = atomic_long_read(&work->data);
705
706 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
707 }
708
709 /*
710 * Policy functions. These define the policies on how the global worker
711 * pools are managed. Unless noted otherwise, these functions assume that
712 * they're being called with pool->lock held.
713 */
714
715 static bool __need_more_worker(struct worker_pool *pool)
716 {
717 return !atomic_read(&pool->nr_running);
718 }
719
720 /*
721 * Need to wake up a worker? Called from anything but currently
722 * running workers.
723 *
724 * Note that, because unbound workers never contribute to nr_running, this
725 * function will always return %true for unbound pools as long as the
726 * worklist isn't empty.
727 */
728 static bool need_more_worker(struct worker_pool *pool)
729 {
730 return !list_empty(&pool->worklist) && __need_more_worker(pool);
731 }
732
733 /* Can I start working? Called from busy but !running workers. */
734 static bool may_start_working(struct worker_pool *pool)
735 {
736 return pool->nr_idle;
737 }
738
739 /* Do I need to keep working? Called from currently running workers. */
740 static bool keep_working(struct worker_pool *pool)
741 {
742 return !list_empty(&pool->worklist) &&
743 atomic_read(&pool->nr_running) <= 1;
744 }
745
746 /* Do we need a new worker? Called from manager. */
747 static bool need_to_create_worker(struct worker_pool *pool)
748 {
749 return need_more_worker(pool) && !may_start_working(pool);
750 }
751
752 /* Do I need to be the manager? */
753 static bool need_to_manage_workers(struct worker_pool *pool)
754 {
755 return need_to_create_worker(pool) ||
756 (pool->flags & POOL_MANAGE_WORKERS);
757 }
758
759 /* Do we have too many workers and should some go away? */
760 static bool too_many_workers(struct worker_pool *pool)
761 {
762 bool managing = mutex_is_locked(&pool->manager_arb);
763 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
764 int nr_busy = pool->nr_workers - nr_idle;
765
766 /*
767 * nr_idle and idle_list may disagree if idle rebinding is in
768 * progress. Never return %true if idle_list is empty.
769 */
770 if (list_empty(&pool->idle_list))
771 return false;
772
773 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
774 }
775
776 /*
777 * Wake up functions.
778 */
779
780 /* Return the first worker. Safe with preemption disabled */
781 static struct worker *first_worker(struct worker_pool *pool)
782 {
783 if (unlikely(list_empty(&pool->idle_list)))
784 return NULL;
785
786 return list_first_entry(&pool->idle_list, struct worker, entry);
787 }
788
789 /**
790 * wake_up_worker - wake up an idle worker
791 * @pool: worker pool to wake worker from
792 *
793 * Wake up the first idle worker of @pool.
794 *
795 * CONTEXT:
796 * spin_lock_irq(pool->lock).
797 */
798 static void wake_up_worker(struct worker_pool *pool)
799 {
800 struct worker *worker = first_worker(pool);
801
802 if (likely(worker))
803 wake_up_process(worker->task);
804 }
805
806 /**
807 * wq_worker_waking_up - a worker is waking up
808 * @task: task waking up
809 * @cpu: CPU @task is waking up to
810 *
811 * This function is called during try_to_wake_up() when a worker is
812 * being awoken.
813 *
814 * CONTEXT:
815 * spin_lock_irq(rq->lock)
816 */
817 void wq_worker_waking_up(struct task_struct *task, int cpu)
818 {
819 struct worker *worker = kthread_data(task);
820
821 if (!(worker->flags & WORKER_NOT_RUNNING)) {
822 WARN_ON_ONCE(worker->pool->cpu != cpu);
823 atomic_inc(&worker->pool->nr_running);
824 }
825 }
826
827 /**
828 * wq_worker_sleeping - a worker is going to sleep
829 * @task: task going to sleep
830 * @cpu: CPU in question, must be the current CPU number
831 *
832 * This function is called during schedule() when a busy worker is
833 * going to sleep. Worker on the same cpu can be woken up by
834 * returning pointer to its task.
835 *
836 * CONTEXT:
837 * spin_lock_irq(rq->lock)
838 *
839 * Return:
840 * Worker task on @cpu to wake up, %NULL if none.
841 */
842 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
843 {
844 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
845 struct worker_pool *pool;
846
847 /*
848 * Rescuers, which may not have all the fields set up like normal
849 * workers, also reach here, let's not access anything before
850 * checking NOT_RUNNING.
851 */
852 if (worker->flags & WORKER_NOT_RUNNING)
853 return NULL;
854
855 pool = worker->pool;
856
857 /* this can only happen on the local cpu */
858 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
859 return NULL;
860
861 /*
862 * The counterpart of the following dec_and_test, implied mb,
863 * worklist not empty test sequence is in insert_work().
864 * Please read comment there.
865 *
866 * NOT_RUNNING is clear. This means that we're bound to and
867 * running on the local cpu w/ rq lock held and preemption
868 * disabled, which in turn means that none else could be
869 * manipulating idle_list, so dereferencing idle_list without pool
870 * lock is safe.
871 */
872 if (atomic_dec_and_test(&pool->nr_running) &&
873 !list_empty(&pool->worklist))
874 to_wakeup = first_worker(pool);
875 return to_wakeup ? to_wakeup->task : NULL;
876 }
877
878 /**
879 * worker_set_flags - set worker flags and adjust nr_running accordingly
880 * @worker: self
881 * @flags: flags to set
882 * @wakeup: wakeup an idle worker if necessary
883 *
884 * Set @flags in @worker->flags and adjust nr_running accordingly. If
885 * nr_running becomes zero and @wakeup is %true, an idle worker is
886 * woken up.
887 *
888 * CONTEXT:
889 * spin_lock_irq(pool->lock)
890 */
891 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
892 bool wakeup)
893 {
894 struct worker_pool *pool = worker->pool;
895
896 WARN_ON_ONCE(worker->task != current);
897
898 /*
899 * If transitioning into NOT_RUNNING, adjust nr_running and
900 * wake up an idle worker as necessary if requested by
901 * @wakeup.
902 */
903 if ((flags & WORKER_NOT_RUNNING) &&
904 !(worker->flags & WORKER_NOT_RUNNING)) {
905 if (wakeup) {
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
908 wake_up_worker(pool);
909 } else
910 atomic_dec(&pool->nr_running);
911 }
912
913 worker->flags |= flags;
914 }
915
916 /**
917 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
918 * @worker: self
919 * @flags: flags to clear
920 *
921 * Clear @flags in @worker->flags and adjust nr_running accordingly.
922 *
923 * CONTEXT:
924 * spin_lock_irq(pool->lock)
925 */
926 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
927 {
928 struct worker_pool *pool = worker->pool;
929 unsigned int oflags = worker->flags;
930
931 WARN_ON_ONCE(worker->task != current);
932
933 worker->flags &= ~flags;
934
935 /*
936 * If transitioning out of NOT_RUNNING, increment nr_running. Note
937 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
938 * of multiple flags, not a single flag.
939 */
940 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
941 if (!(worker->flags & WORKER_NOT_RUNNING))
942 atomic_inc(&pool->nr_running);
943 }
944
945 /**
946 * find_worker_executing_work - find worker which is executing a work
947 * @pool: pool of interest
948 * @work: work to find worker for
949 *
950 * Find a worker which is executing @work on @pool by searching
951 * @pool->busy_hash which is keyed by the address of @work. For a worker
952 * to match, its current execution should match the address of @work and
953 * its work function. This is to avoid unwanted dependency between
954 * unrelated work executions through a work item being recycled while still
955 * being executed.
956 *
957 * This is a bit tricky. A work item may be freed once its execution
958 * starts and nothing prevents the freed area from being recycled for
959 * another work item. If the same work item address ends up being reused
960 * before the original execution finishes, workqueue will identify the
961 * recycled work item as currently executing and make it wait until the
962 * current execution finishes, introducing an unwanted dependency.
963 *
964 * This function checks the work item address and work function to avoid
965 * false positives. Note that this isn't complete as one may construct a
966 * work function which can introduce dependency onto itself through a
967 * recycled work item. Well, if somebody wants to shoot oneself in the
968 * foot that badly, there's only so much we can do, and if such deadlock
969 * actually occurs, it should be easy to locate the culprit work function.
970 *
971 * CONTEXT:
972 * spin_lock_irq(pool->lock).
973 *
974 * Return:
975 * Pointer to worker which is executing @work if found, %NULL
976 * otherwise.
977 */
978 static struct worker *find_worker_executing_work(struct worker_pool *pool,
979 struct work_struct *work)
980 {
981 struct worker *worker;
982
983 hash_for_each_possible(pool->busy_hash, worker, hentry,
984 (unsigned long)work)
985 if (worker->current_work == work &&
986 worker->current_func == work->func)
987 return worker;
988
989 return NULL;
990 }
991
992 /**
993 * move_linked_works - move linked works to a list
994 * @work: start of series of works to be scheduled
995 * @head: target list to append @work to
996 * @nextp: out paramter for nested worklist walking
997 *
998 * Schedule linked works starting from @work to @head. Work series to
999 * be scheduled starts at @work and includes any consecutive work with
1000 * WORK_STRUCT_LINKED set in its predecessor.
1001 *
1002 * If @nextp is not NULL, it's updated to point to the next work of
1003 * the last scheduled work. This allows move_linked_works() to be
1004 * nested inside outer list_for_each_entry_safe().
1005 *
1006 * CONTEXT:
1007 * spin_lock_irq(pool->lock).
1008 */
1009 static void move_linked_works(struct work_struct *work, struct list_head *head,
1010 struct work_struct **nextp)
1011 {
1012 struct work_struct *n;
1013
1014 /*
1015 * Linked worklist will always end before the end of the list,
1016 * use NULL for list head.
1017 */
1018 list_for_each_entry_safe_from(work, n, NULL, entry) {
1019 list_move_tail(&work->entry, head);
1020 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1021 break;
1022 }
1023
1024 /*
1025 * If we're already inside safe list traversal and have moved
1026 * multiple works to the scheduled queue, the next position
1027 * needs to be updated.
1028 */
1029 if (nextp)
1030 *nextp = n;
1031 }
1032
1033 /**
1034 * get_pwq - get an extra reference on the specified pool_workqueue
1035 * @pwq: pool_workqueue to get
1036 *
1037 * Obtain an extra reference on @pwq. The caller should guarantee that
1038 * @pwq has positive refcnt and be holding the matching pool->lock.
1039 */
1040 static void get_pwq(struct pool_workqueue *pwq)
1041 {
1042 lockdep_assert_held(&pwq->pool->lock);
1043 WARN_ON_ONCE(pwq->refcnt <= 0);
1044 pwq->refcnt++;
1045 }
1046
1047 /**
1048 * put_pwq - put a pool_workqueue reference
1049 * @pwq: pool_workqueue to put
1050 *
1051 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1052 * destruction. The caller should be holding the matching pool->lock.
1053 */
1054 static void put_pwq(struct pool_workqueue *pwq)
1055 {
1056 lockdep_assert_held(&pwq->pool->lock);
1057 if (likely(--pwq->refcnt))
1058 return;
1059 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1060 return;
1061 /*
1062 * @pwq can't be released under pool->lock, bounce to
1063 * pwq_unbound_release_workfn(). This never recurses on the same
1064 * pool->lock as this path is taken only for unbound workqueues and
1065 * the release work item is scheduled on a per-cpu workqueue. To
1066 * avoid lockdep warning, unbound pool->locks are given lockdep
1067 * subclass of 1 in get_unbound_pool().
1068 */
1069 schedule_work(&pwq->unbound_release_work);
1070 }
1071
1072 /**
1073 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1074 * @pwq: pool_workqueue to put (can be %NULL)
1075 *
1076 * put_pwq() with locking. This function also allows %NULL @pwq.
1077 */
1078 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1079 {
1080 if (pwq) {
1081 /*
1082 * As both pwqs and pools are sched-RCU protected, the
1083 * following lock operations are safe.
1084 */
1085 spin_lock_irq(&pwq->pool->lock);
1086 put_pwq(pwq);
1087 spin_unlock_irq(&pwq->pool->lock);
1088 }
1089 }
1090
1091 static void pwq_activate_delayed_work(struct work_struct *work)
1092 {
1093 struct pool_workqueue *pwq = get_work_pwq(work);
1094
1095 trace_workqueue_activate_work(work);
1096 move_linked_works(work, &pwq->pool->worklist, NULL);
1097 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1098 pwq->nr_active++;
1099 }
1100
1101 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1102 {
1103 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1104 struct work_struct, entry);
1105
1106 pwq_activate_delayed_work(work);
1107 }
1108
1109 /**
1110 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1111 * @pwq: pwq of interest
1112 * @color: color of work which left the queue
1113 *
1114 * A work either has completed or is removed from pending queue,
1115 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1116 *
1117 * CONTEXT:
1118 * spin_lock_irq(pool->lock).
1119 */
1120 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1121 {
1122 /* uncolored work items don't participate in flushing or nr_active */
1123 if (color == WORK_NO_COLOR)
1124 goto out_put;
1125
1126 pwq->nr_in_flight[color]--;
1127
1128 pwq->nr_active--;
1129 if (!list_empty(&pwq->delayed_works)) {
1130 /* one down, submit a delayed one */
1131 if (pwq->nr_active < pwq->max_active)
1132 pwq_activate_first_delayed(pwq);
1133 }
1134
1135 /* is flush in progress and are we at the flushing tip? */
1136 if (likely(pwq->flush_color != color))
1137 goto out_put;
1138
1139 /* are there still in-flight works? */
1140 if (pwq->nr_in_flight[color])
1141 goto out_put;
1142
1143 /* this pwq is done, clear flush_color */
1144 pwq->flush_color = -1;
1145
1146 /*
1147 * If this was the last pwq, wake up the first flusher. It
1148 * will handle the rest.
1149 */
1150 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1151 complete(&pwq->wq->first_flusher->done);
1152 out_put:
1153 put_pwq(pwq);
1154 }
1155
1156 /**
1157 * try_to_grab_pending - steal work item from worklist and disable irq
1158 * @work: work item to steal
1159 * @is_dwork: @work is a delayed_work
1160 * @flags: place to store irq state
1161 *
1162 * Try to grab PENDING bit of @work. This function can handle @work in any
1163 * stable state - idle, on timer or on worklist.
1164 *
1165 * Return:
1166 * 1 if @work was pending and we successfully stole PENDING
1167 * 0 if @work was idle and we claimed PENDING
1168 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1169 * -ENOENT if someone else is canceling @work, this state may persist
1170 * for arbitrarily long
1171 *
1172 * Note:
1173 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1174 * interrupted while holding PENDING and @work off queue, irq must be
1175 * disabled on entry. This, combined with delayed_work->timer being
1176 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1177 *
1178 * On successful return, >= 0, irq is disabled and the caller is
1179 * responsible for releasing it using local_irq_restore(*@flags).
1180 *
1181 * This function is safe to call from any context including IRQ handler.
1182 */
1183 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1184 unsigned long *flags)
1185 {
1186 struct worker_pool *pool;
1187 struct pool_workqueue *pwq;
1188
1189 local_irq_save(*flags);
1190
1191 /* try to steal the timer if it exists */
1192 if (is_dwork) {
1193 struct delayed_work *dwork = to_delayed_work(work);
1194
1195 /*
1196 * dwork->timer is irqsafe. If del_timer() fails, it's
1197 * guaranteed that the timer is not queued anywhere and not
1198 * running on the local CPU.
1199 */
1200 if (likely(del_timer(&dwork->timer)))
1201 return 1;
1202 }
1203
1204 /* try to claim PENDING the normal way */
1205 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1206 return 0;
1207
1208 /*
1209 * The queueing is in progress, or it is already queued. Try to
1210 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1211 */
1212 pool = get_work_pool(work);
1213 if (!pool)
1214 goto fail;
1215
1216 spin_lock(&pool->lock);
1217 /*
1218 * work->data is guaranteed to point to pwq only while the work
1219 * item is queued on pwq->wq, and both updating work->data to point
1220 * to pwq on queueing and to pool on dequeueing are done under
1221 * pwq->pool->lock. This in turn guarantees that, if work->data
1222 * points to pwq which is associated with a locked pool, the work
1223 * item is currently queued on that pool.
1224 */
1225 pwq = get_work_pwq(work);
1226 if (pwq && pwq->pool == pool) {
1227 debug_work_deactivate(work);
1228
1229 /*
1230 * A delayed work item cannot be grabbed directly because
1231 * it might have linked NO_COLOR work items which, if left
1232 * on the delayed_list, will confuse pwq->nr_active
1233 * management later on and cause stall. Make sure the work
1234 * item is activated before grabbing.
1235 */
1236 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1237 pwq_activate_delayed_work(work);
1238
1239 list_del_init(&work->entry);
1240 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1241
1242 /* work->data points to pwq iff queued, point to pool */
1243 set_work_pool_and_keep_pending(work, pool->id);
1244
1245 spin_unlock(&pool->lock);
1246 return 1;
1247 }
1248 spin_unlock(&pool->lock);
1249 fail:
1250 local_irq_restore(*flags);
1251 if (work_is_canceling(work))
1252 return -ENOENT;
1253 cpu_relax();
1254 return -EAGAIN;
1255 }
1256
1257 /**
1258 * insert_work - insert a work into a pool
1259 * @pwq: pwq @work belongs to
1260 * @work: work to insert
1261 * @head: insertion point
1262 * @extra_flags: extra WORK_STRUCT_* flags to set
1263 *
1264 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1265 * work_struct flags.
1266 *
1267 * CONTEXT:
1268 * spin_lock_irq(pool->lock).
1269 */
1270 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1271 struct list_head *head, unsigned int extra_flags)
1272 {
1273 struct worker_pool *pool = pwq->pool;
1274
1275 /* we own @work, set data and link */
1276 set_work_pwq(work, pwq, extra_flags);
1277 list_add_tail(&work->entry, head);
1278 get_pwq(pwq);
1279
1280 /*
1281 * Ensure either wq_worker_sleeping() sees the above
1282 * list_add_tail() or we see zero nr_running to avoid workers lying
1283 * around lazily while there are works to be processed.
1284 */
1285 smp_mb();
1286
1287 if (__need_more_worker(pool))
1288 wake_up_worker(pool);
1289 }
1290
1291 /*
1292 * Test whether @work is being queued from another work executing on the
1293 * same workqueue.
1294 */
1295 static bool is_chained_work(struct workqueue_struct *wq)
1296 {
1297 struct worker *worker;
1298
1299 worker = current_wq_worker();
1300 /*
1301 * Return %true iff I'm a worker execuing a work item on @wq. If
1302 * I'm @worker, it's safe to dereference it without locking.
1303 */
1304 return worker && worker->current_pwq->wq == wq;
1305 }
1306
1307 static void __queue_work(int cpu, struct workqueue_struct *wq,
1308 struct work_struct *work)
1309 {
1310 struct pool_workqueue *pwq;
1311 struct worker_pool *last_pool;
1312 struct list_head *worklist;
1313 unsigned int work_flags;
1314 unsigned int req_cpu = cpu;
1315
1316 /*
1317 * While a work item is PENDING && off queue, a task trying to
1318 * steal the PENDING will busy-loop waiting for it to either get
1319 * queued or lose PENDING. Grabbing PENDING and queueing should
1320 * happen with IRQ disabled.
1321 */
1322 WARN_ON_ONCE(!irqs_disabled());
1323
1324 debug_work_activate(work);
1325
1326 /* if draining, only works from the same workqueue are allowed */
1327 if (unlikely(wq->flags & __WQ_DRAINING) &&
1328 WARN_ON_ONCE(!is_chained_work(wq)))
1329 return;
1330 retry:
1331 if (req_cpu == WORK_CPU_UNBOUND)
1332 cpu = raw_smp_processor_id();
1333
1334 /* pwq which will be used unless @work is executing elsewhere */
1335 if (!(wq->flags & WQ_UNBOUND))
1336 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1337 else
1338 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1339
1340 /*
1341 * If @work was previously on a different pool, it might still be
1342 * running there, in which case the work needs to be queued on that
1343 * pool to guarantee non-reentrancy.
1344 */
1345 last_pool = get_work_pool(work);
1346 if (last_pool && last_pool != pwq->pool) {
1347 struct worker *worker;
1348
1349 spin_lock(&last_pool->lock);
1350
1351 worker = find_worker_executing_work(last_pool, work);
1352
1353 if (worker && worker->current_pwq->wq == wq) {
1354 pwq = worker->current_pwq;
1355 } else {
1356 /* meh... not running there, queue here */
1357 spin_unlock(&last_pool->lock);
1358 spin_lock(&pwq->pool->lock);
1359 }
1360 } else {
1361 spin_lock(&pwq->pool->lock);
1362 }
1363
1364 /*
1365 * pwq is determined and locked. For unbound pools, we could have
1366 * raced with pwq release and it could already be dead. If its
1367 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1368 * without another pwq replacing it in the numa_pwq_tbl or while
1369 * work items are executing on it, so the retrying is guaranteed to
1370 * make forward-progress.
1371 */
1372 if (unlikely(!pwq->refcnt)) {
1373 if (wq->flags & WQ_UNBOUND) {
1374 spin_unlock(&pwq->pool->lock);
1375 cpu_relax();
1376 goto retry;
1377 }
1378 /* oops */
1379 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1380 wq->name, cpu);
1381 }
1382
1383 /* pwq determined, queue */
1384 trace_workqueue_queue_work(req_cpu, pwq, work);
1385
1386 if (WARN_ON(!list_empty(&work->entry))) {
1387 spin_unlock(&pwq->pool->lock);
1388 return;
1389 }
1390
1391 pwq->nr_in_flight[pwq->work_color]++;
1392 work_flags = work_color_to_flags(pwq->work_color);
1393
1394 if (likely(pwq->nr_active < pwq->max_active)) {
1395 trace_workqueue_activate_work(work);
1396 pwq->nr_active++;
1397 worklist = &pwq->pool->worklist;
1398 } else {
1399 work_flags |= WORK_STRUCT_DELAYED;
1400 worklist = &pwq->delayed_works;
1401 }
1402
1403 insert_work(pwq, work, worklist, work_flags);
1404
1405 spin_unlock(&pwq->pool->lock);
1406 }
1407
1408 /**
1409 * queue_work_on - queue work on specific cpu
1410 * @cpu: CPU number to execute work on
1411 * @wq: workqueue to use
1412 * @work: work to queue
1413 *
1414 * We queue the work to a specific CPU, the caller must ensure it
1415 * can't go away.
1416 *
1417 * Return: %false if @work was already on a queue, %true otherwise.
1418 */
1419 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1420 struct work_struct *work)
1421 {
1422 bool ret = false;
1423 unsigned long flags;
1424
1425 local_irq_save(flags);
1426
1427 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1428 __queue_work(cpu, wq, work);
1429 ret = true;
1430 }
1431
1432 local_irq_restore(flags);
1433 return ret;
1434 }
1435 EXPORT_SYMBOL(queue_work_on);
1436
1437 void delayed_work_timer_fn(unsigned long __data)
1438 {
1439 struct delayed_work *dwork = (struct delayed_work *)__data;
1440
1441 /* should have been called from irqsafe timer with irq already off */
1442 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1443 }
1444 EXPORT_SYMBOL(delayed_work_timer_fn);
1445
1446 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1447 struct delayed_work *dwork, unsigned long delay)
1448 {
1449 struct timer_list *timer = &dwork->timer;
1450 struct work_struct *work = &dwork->work;
1451
1452 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1453 timer->data != (unsigned long)dwork);
1454 WARN_ON_ONCE(timer_pending(timer));
1455 WARN_ON_ONCE(!list_empty(&work->entry));
1456
1457 /*
1458 * If @delay is 0, queue @dwork->work immediately. This is for
1459 * both optimization and correctness. The earliest @timer can
1460 * expire is on the closest next tick and delayed_work users depend
1461 * on that there's no such delay when @delay is 0.
1462 */
1463 if (!delay) {
1464 __queue_work(cpu, wq, &dwork->work);
1465 return;
1466 }
1467
1468 timer_stats_timer_set_start_info(&dwork->timer);
1469
1470 dwork->wq = wq;
1471 dwork->cpu = cpu;
1472 timer->expires = jiffies + delay;
1473
1474 if (unlikely(cpu != WORK_CPU_UNBOUND))
1475 add_timer_on(timer, cpu);
1476 else
1477 add_timer(timer);
1478 }
1479
1480 /**
1481 * queue_delayed_work_on - queue work on specific CPU after delay
1482 * @cpu: CPU number to execute work on
1483 * @wq: workqueue to use
1484 * @dwork: work to queue
1485 * @delay: number of jiffies to wait before queueing
1486 *
1487 * Return: %false if @work was already on a queue, %true otherwise. If
1488 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1489 * execution.
1490 */
1491 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1492 struct delayed_work *dwork, unsigned long delay)
1493 {
1494 struct work_struct *work = &dwork->work;
1495 bool ret = false;
1496 unsigned long flags;
1497
1498 /* read the comment in __queue_work() */
1499 local_irq_save(flags);
1500
1501 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1502 __queue_delayed_work(cpu, wq, dwork, delay);
1503 ret = true;
1504 }
1505
1506 local_irq_restore(flags);
1507 return ret;
1508 }
1509 EXPORT_SYMBOL(queue_delayed_work_on);
1510
1511 /**
1512 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1513 * @cpu: CPU number to execute work on
1514 * @wq: workqueue to use
1515 * @dwork: work to queue
1516 * @delay: number of jiffies to wait before queueing
1517 *
1518 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1519 * modify @dwork's timer so that it expires after @delay. If @delay is
1520 * zero, @work is guaranteed to be scheduled immediately regardless of its
1521 * current state.
1522 *
1523 * Return: %false if @dwork was idle and queued, %true if @dwork was
1524 * pending and its timer was modified.
1525 *
1526 * This function is safe to call from any context including IRQ handler.
1527 * See try_to_grab_pending() for details.
1528 */
1529 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1530 struct delayed_work *dwork, unsigned long delay)
1531 {
1532 unsigned long flags;
1533 int ret;
1534
1535 do {
1536 ret = try_to_grab_pending(&dwork->work, true, &flags);
1537 } while (unlikely(ret == -EAGAIN));
1538
1539 if (likely(ret >= 0)) {
1540 __queue_delayed_work(cpu, wq, dwork, delay);
1541 local_irq_restore(flags);
1542 }
1543
1544 /* -ENOENT from try_to_grab_pending() becomes %true */
1545 return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1548
1549 /**
1550 * worker_enter_idle - enter idle state
1551 * @worker: worker which is entering idle state
1552 *
1553 * @worker is entering idle state. Update stats and idle timer if
1554 * necessary.
1555 *
1556 * LOCKING:
1557 * spin_lock_irq(pool->lock).
1558 */
1559 static void worker_enter_idle(struct worker *worker)
1560 {
1561 struct worker_pool *pool = worker->pool;
1562
1563 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1564 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1565 (worker->hentry.next || worker->hentry.pprev)))
1566 return;
1567
1568 /* can't use worker_set_flags(), also called from start_worker() */
1569 worker->flags |= WORKER_IDLE;
1570 pool->nr_idle++;
1571 worker->last_active = jiffies;
1572
1573 /* idle_list is LIFO */
1574 list_add(&worker->entry, &pool->idle_list);
1575
1576 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1577 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1578
1579 /*
1580 * Sanity check nr_running. Because wq_unbind_fn() releases
1581 * pool->lock between setting %WORKER_UNBOUND and zapping
1582 * nr_running, the warning may trigger spuriously. Check iff
1583 * unbind is not in progress.
1584 */
1585 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1586 pool->nr_workers == pool->nr_idle &&
1587 atomic_read(&pool->nr_running));
1588 }
1589
1590 /**
1591 * worker_leave_idle - leave idle state
1592 * @worker: worker which is leaving idle state
1593 *
1594 * @worker is leaving idle state. Update stats.
1595 *
1596 * LOCKING:
1597 * spin_lock_irq(pool->lock).
1598 */
1599 static void worker_leave_idle(struct worker *worker)
1600 {
1601 struct worker_pool *pool = worker->pool;
1602
1603 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1604 return;
1605 worker_clr_flags(worker, WORKER_IDLE);
1606 pool->nr_idle--;
1607 list_del_init(&worker->entry);
1608 }
1609
1610 /**
1611 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1612 * @pool: target worker_pool
1613 *
1614 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1615 *
1616 * Works which are scheduled while the cpu is online must at least be
1617 * scheduled to a worker which is bound to the cpu so that if they are
1618 * flushed from cpu callbacks while cpu is going down, they are
1619 * guaranteed to execute on the cpu.
1620 *
1621 * This function is to be used by unbound workers and rescuers to bind
1622 * themselves to the target cpu and may race with cpu going down or
1623 * coming online. kthread_bind() can't be used because it may put the
1624 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1625 * verbatim as it's best effort and blocking and pool may be
1626 * [dis]associated in the meantime.
1627 *
1628 * This function tries set_cpus_allowed() and locks pool and verifies the
1629 * binding against %POOL_DISASSOCIATED which is set during
1630 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1631 * enters idle state or fetches works without dropping lock, it can
1632 * guarantee the scheduling requirement described in the first paragraph.
1633 *
1634 * CONTEXT:
1635 * Might sleep. Called without any lock but returns with pool->lock
1636 * held.
1637 *
1638 * Return:
1639 * %true if the associated pool is online (@worker is successfully
1640 * bound), %false if offline.
1641 */
1642 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1643 __acquires(&pool->lock)
1644 {
1645 while (true) {
1646 /*
1647 * The following call may fail, succeed or succeed
1648 * without actually migrating the task to the cpu if
1649 * it races with cpu hotunplug operation. Verify
1650 * against POOL_DISASSOCIATED.
1651 */
1652 if (!(pool->flags & POOL_DISASSOCIATED))
1653 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1654
1655 spin_lock_irq(&pool->lock);
1656 if (pool->flags & POOL_DISASSOCIATED)
1657 return false;
1658 if (task_cpu(current) == pool->cpu &&
1659 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1660 return true;
1661 spin_unlock_irq(&pool->lock);
1662
1663 /*
1664 * We've raced with CPU hot[un]plug. Give it a breather
1665 * and retry migration. cond_resched() is required here;
1666 * otherwise, we might deadlock against cpu_stop trying to
1667 * bring down the CPU on non-preemptive kernel.
1668 */
1669 cpu_relax();
1670 cond_resched();
1671 }
1672 }
1673
1674 static struct worker *alloc_worker(void)
1675 {
1676 struct worker *worker;
1677
1678 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1679 if (worker) {
1680 INIT_LIST_HEAD(&worker->entry);
1681 INIT_LIST_HEAD(&worker->scheduled);
1682 /* on creation a worker is in !idle && prep state */
1683 worker->flags = WORKER_PREP;
1684 }
1685 return worker;
1686 }
1687
1688 /**
1689 * create_worker - create a new workqueue worker
1690 * @pool: pool the new worker will belong to
1691 *
1692 * Create a new worker which is bound to @pool. The returned worker
1693 * can be started by calling start_worker() or destroyed using
1694 * destroy_worker().
1695 *
1696 * CONTEXT:
1697 * Might sleep. Does GFP_KERNEL allocations.
1698 *
1699 * Return:
1700 * Pointer to the newly created worker.
1701 */
1702 static struct worker *create_worker(struct worker_pool *pool)
1703 {
1704 struct worker *worker = NULL;
1705 int id = -1;
1706 char id_buf[16];
1707
1708 lockdep_assert_held(&pool->manager_mutex);
1709
1710 /*
1711 * ID is needed to determine kthread name. Allocate ID first
1712 * without installing the pointer.
1713 */
1714 idr_preload(GFP_KERNEL);
1715 spin_lock_irq(&pool->lock);
1716
1717 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1718
1719 spin_unlock_irq(&pool->lock);
1720 idr_preload_end();
1721 if (id < 0)
1722 goto fail;
1723
1724 worker = alloc_worker();
1725 if (!worker)
1726 goto fail;
1727
1728 worker->pool = pool;
1729 worker->id = id;
1730
1731 if (pool->cpu >= 0)
1732 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1733 pool->attrs->nice < 0 ? "H" : "");
1734 else
1735 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1736
1737 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1738 "kworker/%s", id_buf);
1739 if (IS_ERR(worker->task))
1740 goto fail;
1741
1742 set_user_nice(worker->task, pool->attrs->nice);
1743
1744 /* prevent userland from meddling with cpumask of workqueue workers */
1745 worker->task->flags |= PF_NO_SETAFFINITY;
1746
1747 /*
1748 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1749 * online CPUs. It'll be re-applied when any of the CPUs come up.
1750 */
1751 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1752
1753 /*
1754 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1755 * remains stable across this function. See the comments above the
1756 * flag definition for details.
1757 */
1758 if (pool->flags & POOL_DISASSOCIATED)
1759 worker->flags |= WORKER_UNBOUND;
1760
1761 /* successful, commit the pointer to idr */
1762 spin_lock_irq(&pool->lock);
1763 idr_replace(&pool->worker_idr, worker, worker->id);
1764 spin_unlock_irq(&pool->lock);
1765
1766 return worker;
1767
1768 fail:
1769 if (id >= 0) {
1770 spin_lock_irq(&pool->lock);
1771 idr_remove(&pool->worker_idr, id);
1772 spin_unlock_irq(&pool->lock);
1773 }
1774 kfree(worker);
1775 return NULL;
1776 }
1777
1778 /**
1779 * start_worker - start a newly created worker
1780 * @worker: worker to start
1781 *
1782 * Make the pool aware of @worker and start it.
1783 *
1784 * CONTEXT:
1785 * spin_lock_irq(pool->lock).
1786 */
1787 static void start_worker(struct worker *worker)
1788 {
1789 worker->flags |= WORKER_STARTED;
1790 worker->pool->nr_workers++;
1791 worker_enter_idle(worker);
1792 wake_up_process(worker->task);
1793 }
1794
1795 /**
1796 * create_and_start_worker - create and start a worker for a pool
1797 * @pool: the target pool
1798 *
1799 * Grab the managership of @pool and create and start a new worker for it.
1800 *
1801 * Return: 0 on success. A negative error code otherwise.
1802 */
1803 static int create_and_start_worker(struct worker_pool *pool)
1804 {
1805 struct worker *worker;
1806
1807 mutex_lock(&pool->manager_mutex);
1808
1809 worker = create_worker(pool);
1810 if (worker) {
1811 spin_lock_irq(&pool->lock);
1812 start_worker(worker);
1813 spin_unlock_irq(&pool->lock);
1814 }
1815
1816 mutex_unlock(&pool->manager_mutex);
1817
1818 return worker ? 0 : -ENOMEM;
1819 }
1820
1821 /**
1822 * destroy_worker - destroy a workqueue worker
1823 * @worker: worker to be destroyed
1824 *
1825 * Destroy @worker and adjust @pool stats accordingly.
1826 *
1827 * CONTEXT:
1828 * spin_lock_irq(pool->lock) which is released and regrabbed.
1829 */
1830 static void destroy_worker(struct worker *worker)
1831 {
1832 struct worker_pool *pool = worker->pool;
1833
1834 lockdep_assert_held(&pool->manager_mutex);
1835 lockdep_assert_held(&pool->lock);
1836
1837 /* sanity check frenzy */
1838 if (WARN_ON(worker->current_work) ||
1839 WARN_ON(!list_empty(&worker->scheduled)))
1840 return;
1841
1842 if (worker->flags & WORKER_STARTED)
1843 pool->nr_workers--;
1844 if (worker->flags & WORKER_IDLE)
1845 pool->nr_idle--;
1846
1847 list_del_init(&worker->entry);
1848 worker->flags |= WORKER_DIE;
1849
1850 idr_remove(&pool->worker_idr, worker->id);
1851
1852 spin_unlock_irq(&pool->lock);
1853
1854 kthread_stop(worker->task);
1855 kfree(worker);
1856
1857 spin_lock_irq(&pool->lock);
1858 }
1859
1860 static void idle_worker_timeout(unsigned long __pool)
1861 {
1862 struct worker_pool *pool = (void *)__pool;
1863
1864 spin_lock_irq(&pool->lock);
1865
1866 if (too_many_workers(pool)) {
1867 struct worker *worker;
1868 unsigned long expires;
1869
1870 /* idle_list is kept in LIFO order, check the last one */
1871 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1873
1874 if (time_before(jiffies, expires))
1875 mod_timer(&pool->idle_timer, expires);
1876 else {
1877 /* it's been idle for too long, wake up manager */
1878 pool->flags |= POOL_MANAGE_WORKERS;
1879 wake_up_worker(pool);
1880 }
1881 }
1882
1883 spin_unlock_irq(&pool->lock);
1884 }
1885
1886 static void send_mayday(struct work_struct *work)
1887 {
1888 struct pool_workqueue *pwq = get_work_pwq(work);
1889 struct workqueue_struct *wq = pwq->wq;
1890
1891 lockdep_assert_held(&wq_mayday_lock);
1892
1893 if (!wq->rescuer)
1894 return;
1895
1896 /* mayday mayday mayday */
1897 if (list_empty(&pwq->mayday_node)) {
1898 list_add_tail(&pwq->mayday_node, &wq->maydays);
1899 wake_up_process(wq->rescuer->task);
1900 }
1901 }
1902
1903 static void pool_mayday_timeout(unsigned long __pool)
1904 {
1905 struct worker_pool *pool = (void *)__pool;
1906 struct work_struct *work;
1907
1908 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1909 spin_lock(&pool->lock);
1910
1911 if (need_to_create_worker(pool)) {
1912 /*
1913 * We've been trying to create a new worker but
1914 * haven't been successful. We might be hitting an
1915 * allocation deadlock. Send distress signals to
1916 * rescuers.
1917 */
1918 list_for_each_entry(work, &pool->worklist, entry)
1919 send_mayday(work);
1920 }
1921
1922 spin_unlock(&pool->lock);
1923 spin_unlock_irq(&wq_mayday_lock);
1924
1925 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1926 }
1927
1928 /**
1929 * maybe_create_worker - create a new worker if necessary
1930 * @pool: pool to create a new worker for
1931 *
1932 * Create a new worker for @pool if necessary. @pool is guaranteed to
1933 * have at least one idle worker on return from this function. If
1934 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1935 * sent to all rescuers with works scheduled on @pool to resolve
1936 * possible allocation deadlock.
1937 *
1938 * On return, need_to_create_worker() is guaranteed to be %false and
1939 * may_start_working() %true.
1940 *
1941 * LOCKING:
1942 * spin_lock_irq(pool->lock) which may be released and regrabbed
1943 * multiple times. Does GFP_KERNEL allocations. Called only from
1944 * manager.
1945 *
1946 * Return:
1947 * %false if no action was taken and pool->lock stayed locked, %true
1948 * otherwise.
1949 */
1950 static bool maybe_create_worker(struct worker_pool *pool)
1951 __releases(&pool->lock)
1952 __acquires(&pool->lock)
1953 {
1954 if (!need_to_create_worker(pool))
1955 return false;
1956 restart:
1957 spin_unlock_irq(&pool->lock);
1958
1959 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1960 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1961
1962 while (true) {
1963 struct worker *worker;
1964
1965 worker = create_worker(pool);
1966 if (worker) {
1967 del_timer_sync(&pool->mayday_timer);
1968 spin_lock_irq(&pool->lock);
1969 start_worker(worker);
1970 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1971 goto restart;
1972 return true;
1973 }
1974
1975 if (!need_to_create_worker(pool))
1976 break;
1977
1978 __set_current_state(TASK_INTERRUPTIBLE);
1979 schedule_timeout(CREATE_COOLDOWN);
1980
1981 if (!need_to_create_worker(pool))
1982 break;
1983 }
1984
1985 del_timer_sync(&pool->mayday_timer);
1986 spin_lock_irq(&pool->lock);
1987 if (need_to_create_worker(pool))
1988 goto restart;
1989 return true;
1990 }
1991
1992 /**
1993 * maybe_destroy_worker - destroy workers which have been idle for a while
1994 * @pool: pool to destroy workers for
1995 *
1996 * Destroy @pool workers which have been idle for longer than
1997 * IDLE_WORKER_TIMEOUT.
1998 *
1999 * LOCKING:
2000 * spin_lock_irq(pool->lock) which may be released and regrabbed
2001 * multiple times. Called only from manager.
2002 *
2003 * Return:
2004 * %false if no action was taken and pool->lock stayed locked, %true
2005 * otherwise.
2006 */
2007 static bool maybe_destroy_workers(struct worker_pool *pool)
2008 {
2009 bool ret = false;
2010
2011 while (too_many_workers(pool)) {
2012 struct worker *worker;
2013 unsigned long expires;
2014
2015 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2016 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2017
2018 if (time_before(jiffies, expires)) {
2019 mod_timer(&pool->idle_timer, expires);
2020 break;
2021 }
2022
2023 destroy_worker(worker);
2024 ret = true;
2025 }
2026
2027 return ret;
2028 }
2029
2030 /**
2031 * manage_workers - manage worker pool
2032 * @worker: self
2033 *
2034 * Assume the manager role and manage the worker pool @worker belongs
2035 * to. At any given time, there can be only zero or one manager per
2036 * pool. The exclusion is handled automatically by this function.
2037 *
2038 * The caller can safely start processing works on false return. On
2039 * true return, it's guaranteed that need_to_create_worker() is false
2040 * and may_start_working() is true.
2041 *
2042 * CONTEXT:
2043 * spin_lock_irq(pool->lock) which may be released and regrabbed
2044 * multiple times. Does GFP_KERNEL allocations.
2045 *
2046 * Return:
2047 * %false if the pool don't need management and the caller can safely start
2048 * processing works, %true indicates that the function released pool->lock
2049 * and reacquired it to perform some management function and that the
2050 * conditions that the caller verified while holding the lock before
2051 * calling the function might no longer be true.
2052 */
2053 static bool manage_workers(struct worker *worker)
2054 {
2055 struct worker_pool *pool = worker->pool;
2056 bool ret = false;
2057
2058 /*
2059 * Managership is governed by two mutexes - manager_arb and
2060 * manager_mutex. manager_arb handles arbitration of manager role.
2061 * Anyone who successfully grabs manager_arb wins the arbitration
2062 * and becomes the manager. mutex_trylock() on pool->manager_arb
2063 * failure while holding pool->lock reliably indicates that someone
2064 * else is managing the pool and the worker which failed trylock
2065 * can proceed to executing work items. This means that anyone
2066 * grabbing manager_arb is responsible for actually performing
2067 * manager duties. If manager_arb is grabbed and released without
2068 * actual management, the pool may stall indefinitely.
2069 *
2070 * manager_mutex is used for exclusion of actual management
2071 * operations. The holder of manager_mutex can be sure that none
2072 * of management operations, including creation and destruction of
2073 * workers, won't take place until the mutex is released. Because
2074 * manager_mutex doesn't interfere with manager role arbitration,
2075 * it is guaranteed that the pool's management, while may be
2076 * delayed, won't be disturbed by someone else grabbing
2077 * manager_mutex.
2078 */
2079 if (!mutex_trylock(&pool->manager_arb))
2080 return ret;
2081
2082 /*
2083 * With manager arbitration won, manager_mutex would be free in
2084 * most cases. trylock first without dropping @pool->lock.
2085 */
2086 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2087 spin_unlock_irq(&pool->lock);
2088 mutex_lock(&pool->manager_mutex);
2089 spin_lock_irq(&pool->lock);
2090 ret = true;
2091 }
2092
2093 pool->flags &= ~POOL_MANAGE_WORKERS;
2094
2095 /*
2096 * Destroy and then create so that may_start_working() is true
2097 * on return.
2098 */
2099 ret |= maybe_destroy_workers(pool);
2100 ret |= maybe_create_worker(pool);
2101
2102 mutex_unlock(&pool->manager_mutex);
2103 mutex_unlock(&pool->manager_arb);
2104 return ret;
2105 }
2106
2107 /**
2108 * process_one_work - process single work
2109 * @worker: self
2110 * @work: work to process
2111 *
2112 * Process @work. This function contains all the logics necessary to
2113 * process a single work including synchronization against and
2114 * interaction with other workers on the same cpu, queueing and
2115 * flushing. As long as context requirement is met, any worker can
2116 * call this function to process a work.
2117 *
2118 * CONTEXT:
2119 * spin_lock_irq(pool->lock) which is released and regrabbed.
2120 */
2121 static void process_one_work(struct worker *worker, struct work_struct *work)
2122 __releases(&pool->lock)
2123 __acquires(&pool->lock)
2124 {
2125 struct pool_workqueue *pwq = get_work_pwq(work);
2126 struct worker_pool *pool = worker->pool;
2127 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2128 int work_color;
2129 struct worker *collision;
2130 #ifdef CONFIG_LOCKDEP
2131 /*
2132 * It is permissible to free the struct work_struct from
2133 * inside the function that is called from it, this we need to
2134 * take into account for lockdep too. To avoid bogus "held
2135 * lock freed" warnings as well as problems when looking into
2136 * work->lockdep_map, make a copy and use that here.
2137 */
2138 struct lockdep_map lockdep_map;
2139
2140 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2141 #endif
2142 /*
2143 * Ensure we're on the correct CPU. DISASSOCIATED test is
2144 * necessary to avoid spurious warnings from rescuers servicing the
2145 * unbound or a disassociated pool.
2146 */
2147 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2148 !(pool->flags & POOL_DISASSOCIATED) &&
2149 raw_smp_processor_id() != pool->cpu);
2150
2151 /*
2152 * A single work shouldn't be executed concurrently by
2153 * multiple workers on a single cpu. Check whether anyone is
2154 * already processing the work. If so, defer the work to the
2155 * currently executing one.
2156 */
2157 collision = find_worker_executing_work(pool, work);
2158 if (unlikely(collision)) {
2159 move_linked_works(work, &collision->scheduled, NULL);
2160 return;
2161 }
2162
2163 /* claim and dequeue */
2164 debug_work_deactivate(work);
2165 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2166 worker->current_work = work;
2167 worker->current_func = work->func;
2168 worker->current_pwq = pwq;
2169 work_color = get_work_color(work);
2170
2171 list_del_init(&work->entry);
2172
2173 /*
2174 * CPU intensive works don't participate in concurrency
2175 * management. They're the scheduler's responsibility.
2176 */
2177 if (unlikely(cpu_intensive))
2178 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2179
2180 /*
2181 * Unbound pool isn't concurrency managed and work items should be
2182 * executed ASAP. Wake up another worker if necessary.
2183 */
2184 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2185 wake_up_worker(pool);
2186
2187 /*
2188 * Record the last pool and clear PENDING which should be the last
2189 * update to @work. Also, do this inside @pool->lock so that
2190 * PENDING and queued state changes happen together while IRQ is
2191 * disabled.
2192 */
2193 set_work_pool_and_clear_pending(work, pool->id);
2194
2195 spin_unlock_irq(&pool->lock);
2196
2197 lock_map_acquire_read(&pwq->wq->lockdep_map);
2198 lock_map_acquire(&lockdep_map);
2199 trace_workqueue_execute_start(work);
2200 worker->current_func(work);
2201 /*
2202 * While we must be careful to not use "work" after this, the trace
2203 * point will only record its address.
2204 */
2205 trace_workqueue_execute_end(work);
2206 lock_map_release(&lockdep_map);
2207 lock_map_release(&pwq->wq->lockdep_map);
2208
2209 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2210 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2211 " last function: %pf\n",
2212 current->comm, preempt_count(), task_pid_nr(current),
2213 worker->current_func);
2214 debug_show_held_locks(current);
2215 dump_stack();
2216 }
2217
2218 /*
2219 * The following prevents a kworker from hogging CPU on !PREEMPT
2220 * kernels, where a requeueing work item waiting for something to
2221 * happen could deadlock with stop_machine as such work item could
2222 * indefinitely requeue itself while all other CPUs are trapped in
2223 * stop_machine.
2224 */
2225 cond_resched();
2226
2227 spin_lock_irq(&pool->lock);
2228
2229 /* clear cpu intensive status */
2230 if (unlikely(cpu_intensive))
2231 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2232
2233 /* we're done with it, release */
2234 hash_del(&worker->hentry);
2235 worker->current_work = NULL;
2236 worker->current_func = NULL;
2237 worker->current_pwq = NULL;
2238 worker->desc_valid = false;
2239 pwq_dec_nr_in_flight(pwq, work_color);
2240 }
2241
2242 /**
2243 * process_scheduled_works - process scheduled works
2244 * @worker: self
2245 *
2246 * Process all scheduled works. Please note that the scheduled list
2247 * may change while processing a work, so this function repeatedly
2248 * fetches a work from the top and executes it.
2249 *
2250 * CONTEXT:
2251 * spin_lock_irq(pool->lock) which may be released and regrabbed
2252 * multiple times.
2253 */
2254 static void process_scheduled_works(struct worker *worker)
2255 {
2256 while (!list_empty(&worker->scheduled)) {
2257 struct work_struct *work = list_first_entry(&worker->scheduled,
2258 struct work_struct, entry);
2259 process_one_work(worker, work);
2260 }
2261 }
2262
2263 /**
2264 * worker_thread - the worker thread function
2265 * @__worker: self
2266 *
2267 * The worker thread function. All workers belong to a worker_pool -
2268 * either a per-cpu one or dynamic unbound one. These workers process all
2269 * work items regardless of their specific target workqueue. The only
2270 * exception is work items which belong to workqueues with a rescuer which
2271 * will be explained in rescuer_thread().
2272 *
2273 * Return: 0
2274 */
2275 static int worker_thread(void *__worker)
2276 {
2277 struct worker *worker = __worker;
2278 struct worker_pool *pool = worker->pool;
2279
2280 /* tell the scheduler that this is a workqueue worker */
2281 worker->task->flags |= PF_WQ_WORKER;
2282 woke_up:
2283 spin_lock_irq(&pool->lock);
2284
2285 /* am I supposed to die? */
2286 if (unlikely(worker->flags & WORKER_DIE)) {
2287 spin_unlock_irq(&pool->lock);
2288 WARN_ON_ONCE(!list_empty(&worker->entry));
2289 worker->task->flags &= ~PF_WQ_WORKER;
2290 return 0;
2291 }
2292
2293 worker_leave_idle(worker);
2294 recheck:
2295 /* no more worker necessary? */
2296 if (!need_more_worker(pool))
2297 goto sleep;
2298
2299 /* do we need to manage? */
2300 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2301 goto recheck;
2302
2303 /*
2304 * ->scheduled list can only be filled while a worker is
2305 * preparing to process a work or actually processing it.
2306 * Make sure nobody diddled with it while I was sleeping.
2307 */
2308 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2309
2310 /*
2311 * Finish PREP stage. We're guaranteed to have at least one idle
2312 * worker or that someone else has already assumed the manager
2313 * role. This is where @worker starts participating in concurrency
2314 * management if applicable and concurrency management is restored
2315 * after being rebound. See rebind_workers() for details.
2316 */
2317 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2318
2319 do {
2320 struct work_struct *work =
2321 list_first_entry(&pool->worklist,
2322 struct work_struct, entry);
2323
2324 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2325 /* optimization path, not strictly necessary */
2326 process_one_work(worker, work);
2327 if (unlikely(!list_empty(&worker->scheduled)))
2328 process_scheduled_works(worker);
2329 } else {
2330 move_linked_works(work, &worker->scheduled, NULL);
2331 process_scheduled_works(worker);
2332 }
2333 } while (keep_working(pool));
2334
2335 worker_set_flags(worker, WORKER_PREP, false);
2336 sleep:
2337 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2338 goto recheck;
2339
2340 /*
2341 * pool->lock is held and there's no work to process and no need to
2342 * manage, sleep. Workers are woken up only while holding
2343 * pool->lock or from local cpu, so setting the current state
2344 * before releasing pool->lock is enough to prevent losing any
2345 * event.
2346 */
2347 worker_enter_idle(worker);
2348 __set_current_state(TASK_INTERRUPTIBLE);
2349 spin_unlock_irq(&pool->lock);
2350 schedule();
2351 goto woke_up;
2352 }
2353
2354 /**
2355 * rescuer_thread - the rescuer thread function
2356 * @__rescuer: self
2357 *
2358 * Workqueue rescuer thread function. There's one rescuer for each
2359 * workqueue which has WQ_MEM_RECLAIM set.
2360 *
2361 * Regular work processing on a pool may block trying to create a new
2362 * worker which uses GFP_KERNEL allocation which has slight chance of
2363 * developing into deadlock if some works currently on the same queue
2364 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2365 * the problem rescuer solves.
2366 *
2367 * When such condition is possible, the pool summons rescuers of all
2368 * workqueues which have works queued on the pool and let them process
2369 * those works so that forward progress can be guaranteed.
2370 *
2371 * This should happen rarely.
2372 *
2373 * Return: 0
2374 */
2375 static int rescuer_thread(void *__rescuer)
2376 {
2377 struct worker *rescuer = __rescuer;
2378 struct workqueue_struct *wq = rescuer->rescue_wq;
2379 struct list_head *scheduled = &rescuer->scheduled;
2380
2381 set_user_nice(current, RESCUER_NICE_LEVEL);
2382
2383 /*
2384 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2385 * doesn't participate in concurrency management.
2386 */
2387 rescuer->task->flags |= PF_WQ_WORKER;
2388 repeat:
2389 set_current_state(TASK_INTERRUPTIBLE);
2390
2391 if (kthread_should_stop()) {
2392 __set_current_state(TASK_RUNNING);
2393 rescuer->task->flags &= ~PF_WQ_WORKER;
2394 return 0;
2395 }
2396
2397 /* see whether any pwq is asking for help */
2398 spin_lock_irq(&wq_mayday_lock);
2399
2400 while (!list_empty(&wq->maydays)) {
2401 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2402 struct pool_workqueue, mayday_node);
2403 struct worker_pool *pool = pwq->pool;
2404 struct work_struct *work, *n;
2405
2406 __set_current_state(TASK_RUNNING);
2407 list_del_init(&pwq->mayday_node);
2408
2409 spin_unlock_irq(&wq_mayday_lock);
2410
2411 /* migrate to the target cpu if possible */
2412 worker_maybe_bind_and_lock(pool);
2413 rescuer->pool = pool;
2414
2415 /*
2416 * Slurp in all works issued via this workqueue and
2417 * process'em.
2418 */
2419 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2420 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2421 if (get_work_pwq(work) == pwq)
2422 move_linked_works(work, scheduled, &n);
2423
2424 process_scheduled_works(rescuer);
2425
2426 /*
2427 * Leave this pool. If keep_working() is %true, notify a
2428 * regular worker; otherwise, we end up with 0 concurrency
2429 * and stalling the execution.
2430 */
2431 if (keep_working(pool))
2432 wake_up_worker(pool);
2433
2434 rescuer->pool = NULL;
2435 spin_unlock(&pool->lock);
2436 spin_lock(&wq_mayday_lock);
2437 }
2438
2439 spin_unlock_irq(&wq_mayday_lock);
2440
2441 /* rescuers should never participate in concurrency management */
2442 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2443 schedule();
2444 goto repeat;
2445 }
2446
2447 struct wq_barrier {
2448 struct work_struct work;
2449 struct completion done;
2450 };
2451
2452 static void wq_barrier_func(struct work_struct *work)
2453 {
2454 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2455 complete(&barr->done);
2456 }
2457
2458 /**
2459 * insert_wq_barrier - insert a barrier work
2460 * @pwq: pwq to insert barrier into
2461 * @barr: wq_barrier to insert
2462 * @target: target work to attach @barr to
2463 * @worker: worker currently executing @target, NULL if @target is not executing
2464 *
2465 * @barr is linked to @target such that @barr is completed only after
2466 * @target finishes execution. Please note that the ordering
2467 * guarantee is observed only with respect to @target and on the local
2468 * cpu.
2469 *
2470 * Currently, a queued barrier can't be canceled. This is because
2471 * try_to_grab_pending() can't determine whether the work to be
2472 * grabbed is at the head of the queue and thus can't clear LINKED
2473 * flag of the previous work while there must be a valid next work
2474 * after a work with LINKED flag set.
2475 *
2476 * Note that when @worker is non-NULL, @target may be modified
2477 * underneath us, so we can't reliably determine pwq from @target.
2478 *
2479 * CONTEXT:
2480 * spin_lock_irq(pool->lock).
2481 */
2482 static void insert_wq_barrier(struct pool_workqueue *pwq,
2483 struct wq_barrier *barr,
2484 struct work_struct *target, struct worker *worker)
2485 {
2486 struct list_head *head;
2487 unsigned int linked = 0;
2488
2489 /*
2490 * debugobject calls are safe here even with pool->lock locked
2491 * as we know for sure that this will not trigger any of the
2492 * checks and call back into the fixup functions where we
2493 * might deadlock.
2494 */
2495 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2496 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2497 init_completion(&barr->done);
2498
2499 /*
2500 * If @target is currently being executed, schedule the
2501 * barrier to the worker; otherwise, put it after @target.
2502 */
2503 if (worker)
2504 head = worker->scheduled.next;
2505 else {
2506 unsigned long *bits = work_data_bits(target);
2507
2508 head = target->entry.next;
2509 /* there can already be other linked works, inherit and set */
2510 linked = *bits & WORK_STRUCT_LINKED;
2511 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2512 }
2513
2514 debug_work_activate(&barr->work);
2515 insert_work(pwq, &barr->work, head,
2516 work_color_to_flags(WORK_NO_COLOR) | linked);
2517 }
2518
2519 /**
2520 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2521 * @wq: workqueue being flushed
2522 * @flush_color: new flush color, < 0 for no-op
2523 * @work_color: new work color, < 0 for no-op
2524 *
2525 * Prepare pwqs for workqueue flushing.
2526 *
2527 * If @flush_color is non-negative, flush_color on all pwqs should be
2528 * -1. If no pwq has in-flight commands at the specified color, all
2529 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2530 * has in flight commands, its pwq->flush_color is set to
2531 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2532 * wakeup logic is armed and %true is returned.
2533 *
2534 * The caller should have initialized @wq->first_flusher prior to
2535 * calling this function with non-negative @flush_color. If
2536 * @flush_color is negative, no flush color update is done and %false
2537 * is returned.
2538 *
2539 * If @work_color is non-negative, all pwqs should have the same
2540 * work_color which is previous to @work_color and all will be
2541 * advanced to @work_color.
2542 *
2543 * CONTEXT:
2544 * mutex_lock(wq->mutex).
2545 *
2546 * Return:
2547 * %true if @flush_color >= 0 and there's something to flush. %false
2548 * otherwise.
2549 */
2550 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2551 int flush_color, int work_color)
2552 {
2553 bool wait = false;
2554 struct pool_workqueue *pwq;
2555
2556 if (flush_color >= 0) {
2557 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2558 atomic_set(&wq->nr_pwqs_to_flush, 1);
2559 }
2560
2561 for_each_pwq(pwq, wq) {
2562 struct worker_pool *pool = pwq->pool;
2563
2564 spin_lock_irq(&pool->lock);
2565
2566 if (flush_color >= 0) {
2567 WARN_ON_ONCE(pwq->flush_color != -1);
2568
2569 if (pwq->nr_in_flight[flush_color]) {
2570 pwq->flush_color = flush_color;
2571 atomic_inc(&wq->nr_pwqs_to_flush);
2572 wait = true;
2573 }
2574 }
2575
2576 if (work_color >= 0) {
2577 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2578 pwq->work_color = work_color;
2579 }
2580
2581 spin_unlock_irq(&pool->lock);
2582 }
2583
2584 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2585 complete(&wq->first_flusher->done);
2586
2587 return wait;
2588 }
2589
2590 /**
2591 * flush_workqueue - ensure that any scheduled work has run to completion.
2592 * @wq: workqueue to flush
2593 *
2594 * This function sleeps until all work items which were queued on entry
2595 * have finished execution, but it is not livelocked by new incoming ones.
2596 */
2597 void flush_workqueue(struct workqueue_struct *wq)
2598 {
2599 struct wq_flusher this_flusher = {
2600 .list = LIST_HEAD_INIT(this_flusher.list),
2601 .flush_color = -1,
2602 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2603 };
2604 int next_color;
2605
2606 lock_map_acquire(&wq->lockdep_map);
2607 lock_map_release(&wq->lockdep_map);
2608
2609 mutex_lock(&wq->mutex);
2610
2611 /*
2612 * Start-to-wait phase
2613 */
2614 next_color = work_next_color(wq->work_color);
2615
2616 if (next_color != wq->flush_color) {
2617 /*
2618 * Color space is not full. The current work_color
2619 * becomes our flush_color and work_color is advanced
2620 * by one.
2621 */
2622 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2623 this_flusher.flush_color = wq->work_color;
2624 wq->work_color = next_color;
2625
2626 if (!wq->first_flusher) {
2627 /* no flush in progress, become the first flusher */
2628 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2629
2630 wq->first_flusher = &this_flusher;
2631
2632 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2633 wq->work_color)) {
2634 /* nothing to flush, done */
2635 wq->flush_color = next_color;
2636 wq->first_flusher = NULL;
2637 goto out_unlock;
2638 }
2639 } else {
2640 /* wait in queue */
2641 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2642 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2643 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2644 }
2645 } else {
2646 /*
2647 * Oops, color space is full, wait on overflow queue.
2648 * The next flush completion will assign us
2649 * flush_color and transfer to flusher_queue.
2650 */
2651 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2652 }
2653
2654 mutex_unlock(&wq->mutex);
2655
2656 wait_for_completion(&this_flusher.done);
2657
2658 /*
2659 * Wake-up-and-cascade phase
2660 *
2661 * First flushers are responsible for cascading flushes and
2662 * handling overflow. Non-first flushers can simply return.
2663 */
2664 if (wq->first_flusher != &this_flusher)
2665 return;
2666
2667 mutex_lock(&wq->mutex);
2668
2669 /* we might have raced, check again with mutex held */
2670 if (wq->first_flusher != &this_flusher)
2671 goto out_unlock;
2672
2673 wq->first_flusher = NULL;
2674
2675 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2676 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2677
2678 while (true) {
2679 struct wq_flusher *next, *tmp;
2680
2681 /* complete all the flushers sharing the current flush color */
2682 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2683 if (next->flush_color != wq->flush_color)
2684 break;
2685 list_del_init(&next->list);
2686 complete(&next->done);
2687 }
2688
2689 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2690 wq->flush_color != work_next_color(wq->work_color));
2691
2692 /* this flush_color is finished, advance by one */
2693 wq->flush_color = work_next_color(wq->flush_color);
2694
2695 /* one color has been freed, handle overflow queue */
2696 if (!list_empty(&wq->flusher_overflow)) {
2697 /*
2698 * Assign the same color to all overflowed
2699 * flushers, advance work_color and append to
2700 * flusher_queue. This is the start-to-wait
2701 * phase for these overflowed flushers.
2702 */
2703 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2704 tmp->flush_color = wq->work_color;
2705
2706 wq->work_color = work_next_color(wq->work_color);
2707
2708 list_splice_tail_init(&wq->flusher_overflow,
2709 &wq->flusher_queue);
2710 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2711 }
2712
2713 if (list_empty(&wq->flusher_queue)) {
2714 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2715 break;
2716 }
2717
2718 /*
2719 * Need to flush more colors. Make the next flusher
2720 * the new first flusher and arm pwqs.
2721 */
2722 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2723 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2724
2725 list_del_init(&next->list);
2726 wq->first_flusher = next;
2727
2728 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2729 break;
2730
2731 /*
2732 * Meh... this color is already done, clear first
2733 * flusher and repeat cascading.
2734 */
2735 wq->first_flusher = NULL;
2736 }
2737
2738 out_unlock:
2739 mutex_unlock(&wq->mutex);
2740 }
2741 EXPORT_SYMBOL_GPL(flush_workqueue);
2742
2743 /**
2744 * drain_workqueue - drain a workqueue
2745 * @wq: workqueue to drain
2746 *
2747 * Wait until the workqueue becomes empty. While draining is in progress,
2748 * only chain queueing is allowed. IOW, only currently pending or running
2749 * work items on @wq can queue further work items on it. @wq is flushed
2750 * repeatedly until it becomes empty. The number of flushing is detemined
2751 * by the depth of chaining and should be relatively short. Whine if it
2752 * takes too long.
2753 */
2754 void drain_workqueue(struct workqueue_struct *wq)
2755 {
2756 unsigned int flush_cnt = 0;
2757 struct pool_workqueue *pwq;
2758
2759 /*
2760 * __queue_work() needs to test whether there are drainers, is much
2761 * hotter than drain_workqueue() and already looks at @wq->flags.
2762 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2763 */
2764 mutex_lock(&wq->mutex);
2765 if (!wq->nr_drainers++)
2766 wq->flags |= __WQ_DRAINING;
2767 mutex_unlock(&wq->mutex);
2768 reflush:
2769 flush_workqueue(wq);
2770
2771 mutex_lock(&wq->mutex);
2772
2773 for_each_pwq(pwq, wq) {
2774 bool drained;
2775
2776 spin_lock_irq(&pwq->pool->lock);
2777 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2778 spin_unlock_irq(&pwq->pool->lock);
2779
2780 if (drained)
2781 continue;
2782
2783 if (++flush_cnt == 10 ||
2784 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2785 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2786 wq->name, flush_cnt);
2787
2788 mutex_unlock(&wq->mutex);
2789 goto reflush;
2790 }
2791
2792 if (!--wq->nr_drainers)
2793 wq->flags &= ~__WQ_DRAINING;
2794 mutex_unlock(&wq->mutex);
2795 }
2796 EXPORT_SYMBOL_GPL(drain_workqueue);
2797
2798 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2799 {
2800 struct worker *worker = NULL;
2801 struct worker_pool *pool;
2802 struct pool_workqueue *pwq;
2803
2804 might_sleep();
2805
2806 local_irq_disable();
2807 pool = get_work_pool(work);
2808 if (!pool) {
2809 local_irq_enable();
2810 return false;
2811 }
2812
2813 spin_lock(&pool->lock);
2814 /* see the comment in try_to_grab_pending() with the same code */
2815 pwq = get_work_pwq(work);
2816 if (pwq) {
2817 if (unlikely(pwq->pool != pool))
2818 goto already_gone;
2819 } else {
2820 worker = find_worker_executing_work(pool, work);
2821 if (!worker)
2822 goto already_gone;
2823 pwq = worker->current_pwq;
2824 }
2825
2826 insert_wq_barrier(pwq, barr, work, worker);
2827 spin_unlock_irq(&pool->lock);
2828
2829 /*
2830 * If @max_active is 1 or rescuer is in use, flushing another work
2831 * item on the same workqueue may lead to deadlock. Make sure the
2832 * flusher is not running on the same workqueue by verifying write
2833 * access.
2834 */
2835 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2836 lock_map_acquire(&pwq->wq->lockdep_map);
2837 else
2838 lock_map_acquire_read(&pwq->wq->lockdep_map);
2839 lock_map_release(&pwq->wq->lockdep_map);
2840
2841 return true;
2842 already_gone:
2843 spin_unlock_irq(&pool->lock);
2844 return false;
2845 }
2846
2847 static bool __flush_work(struct work_struct *work)
2848 {
2849 struct wq_barrier barr;
2850
2851 if (start_flush_work(work, &barr)) {
2852 wait_for_completion(&barr.done);
2853 destroy_work_on_stack(&barr.work);
2854 return true;
2855 } else {
2856 return false;
2857 }
2858 }
2859
2860 /**
2861 * flush_work - wait for a work to finish executing the last queueing instance
2862 * @work: the work to flush
2863 *
2864 * Wait until @work has finished execution. @work is guaranteed to be idle
2865 * on return if it hasn't been requeued since flush started.
2866 *
2867 * Return:
2868 * %true if flush_work() waited for the work to finish execution,
2869 * %false if it was already idle.
2870 */
2871 bool flush_work(struct work_struct *work)
2872 {
2873 lock_map_acquire(&work->lockdep_map);
2874 lock_map_release(&work->lockdep_map);
2875
2876 return __flush_work(work);
2877 }
2878 EXPORT_SYMBOL_GPL(flush_work);
2879
2880 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2881 {
2882 unsigned long flags;
2883 int ret;
2884
2885 do {
2886 ret = try_to_grab_pending(work, is_dwork, &flags);
2887 /*
2888 * If someone else is canceling, wait for the same event it
2889 * would be waiting for before retrying.
2890 */
2891 if (unlikely(ret == -ENOENT))
2892 flush_work(work);
2893 } while (unlikely(ret < 0));
2894
2895 /* tell other tasks trying to grab @work to back off */
2896 mark_work_canceling(work);
2897 local_irq_restore(flags);
2898
2899 flush_work(work);
2900 clear_work_data(work);
2901 return ret;
2902 }
2903
2904 /**
2905 * cancel_work_sync - cancel a work and wait for it to finish
2906 * @work: the work to cancel
2907 *
2908 * Cancel @work and wait for its execution to finish. This function
2909 * can be used even if the work re-queues itself or migrates to
2910 * another workqueue. On return from this function, @work is
2911 * guaranteed to be not pending or executing on any CPU.
2912 *
2913 * cancel_work_sync(&delayed_work->work) must not be used for
2914 * delayed_work's. Use cancel_delayed_work_sync() instead.
2915 *
2916 * The caller must ensure that the workqueue on which @work was last
2917 * queued can't be destroyed before this function returns.
2918 *
2919 * Return:
2920 * %true if @work was pending, %false otherwise.
2921 */
2922 bool cancel_work_sync(struct work_struct *work)
2923 {
2924 return __cancel_work_timer(work, false);
2925 }
2926 EXPORT_SYMBOL_GPL(cancel_work_sync);
2927
2928 /**
2929 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2930 * @dwork: the delayed work to flush
2931 *
2932 * Delayed timer is cancelled and the pending work is queued for
2933 * immediate execution. Like flush_work(), this function only
2934 * considers the last queueing instance of @dwork.
2935 *
2936 * Return:
2937 * %true if flush_work() waited for the work to finish execution,
2938 * %false if it was already idle.
2939 */
2940 bool flush_delayed_work(struct delayed_work *dwork)
2941 {
2942 local_irq_disable();
2943 if (del_timer_sync(&dwork->timer))
2944 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2945 local_irq_enable();
2946 return flush_work(&dwork->work);
2947 }
2948 EXPORT_SYMBOL(flush_delayed_work);
2949
2950 /**
2951 * cancel_delayed_work - cancel a delayed work
2952 * @dwork: delayed_work to cancel
2953 *
2954 * Kill off a pending delayed_work.
2955 *
2956 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2957 * pending.
2958 *
2959 * Note:
2960 * The work callback function may still be running on return, unless
2961 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2962 * use cancel_delayed_work_sync() to wait on it.
2963 *
2964 * This function is safe to call from any context including IRQ handler.
2965 */
2966 bool cancel_delayed_work(struct delayed_work *dwork)
2967 {
2968 unsigned long flags;
2969 int ret;
2970
2971 do {
2972 ret = try_to_grab_pending(&dwork->work, true, &flags);
2973 } while (unlikely(ret == -EAGAIN));
2974
2975 if (unlikely(ret < 0))
2976 return false;
2977
2978 set_work_pool_and_clear_pending(&dwork->work,
2979 get_work_pool_id(&dwork->work));
2980 local_irq_restore(flags);
2981 return ret;
2982 }
2983 EXPORT_SYMBOL(cancel_delayed_work);
2984
2985 /**
2986 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2987 * @dwork: the delayed work cancel
2988 *
2989 * This is cancel_work_sync() for delayed works.
2990 *
2991 * Return:
2992 * %true if @dwork was pending, %false otherwise.
2993 */
2994 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2995 {
2996 return __cancel_work_timer(&dwork->work, true);
2997 }
2998 EXPORT_SYMBOL(cancel_delayed_work_sync);
2999
3000 /**
3001 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3002 * @func: the function to call
3003 *
3004 * schedule_on_each_cpu() executes @func on each online CPU using the
3005 * system workqueue and blocks until all CPUs have completed.
3006 * schedule_on_each_cpu() is very slow.
3007 *
3008 * Return:
3009 * 0 on success, -errno on failure.
3010 */
3011 int schedule_on_each_cpu(work_func_t func)
3012 {
3013 int cpu;
3014 struct work_struct __percpu *works;
3015
3016 works = alloc_percpu(struct work_struct);
3017 if (!works)
3018 return -ENOMEM;
3019
3020 get_online_cpus();
3021
3022 for_each_online_cpu(cpu) {
3023 struct work_struct *work = per_cpu_ptr(works, cpu);
3024
3025 INIT_WORK(work, func);
3026 schedule_work_on(cpu, work);
3027 }
3028
3029 for_each_online_cpu(cpu)
3030 flush_work(per_cpu_ptr(works, cpu));
3031
3032 put_online_cpus();
3033 free_percpu(works);
3034 return 0;
3035 }
3036
3037 /**
3038 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3039 *
3040 * Forces execution of the kernel-global workqueue and blocks until its
3041 * completion.
3042 *
3043 * Think twice before calling this function! It's very easy to get into
3044 * trouble if you don't take great care. Either of the following situations
3045 * will lead to deadlock:
3046 *
3047 * One of the work items currently on the workqueue needs to acquire
3048 * a lock held by your code or its caller.
3049 *
3050 * Your code is running in the context of a work routine.
3051 *
3052 * They will be detected by lockdep when they occur, but the first might not
3053 * occur very often. It depends on what work items are on the workqueue and
3054 * what locks they need, which you have no control over.
3055 *
3056 * In most situations flushing the entire workqueue is overkill; you merely
3057 * need to know that a particular work item isn't queued and isn't running.
3058 * In such cases you should use cancel_delayed_work_sync() or
3059 * cancel_work_sync() instead.
3060 */
3061 void flush_scheduled_work(void)
3062 {
3063 flush_workqueue(system_wq);
3064 }
3065 EXPORT_SYMBOL(flush_scheduled_work);
3066
3067 /**
3068 * execute_in_process_context - reliably execute the routine with user context
3069 * @fn: the function to execute
3070 * @ew: guaranteed storage for the execute work structure (must
3071 * be available when the work executes)
3072 *
3073 * Executes the function immediately if process context is available,
3074 * otherwise schedules the function for delayed execution.
3075 *
3076 * Return: 0 - function was executed
3077 * 1 - function was scheduled for execution
3078 */
3079 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3080 {
3081 if (!in_interrupt()) {
3082 fn(&ew->work);
3083 return 0;
3084 }
3085
3086 INIT_WORK(&ew->work, fn);
3087 schedule_work(&ew->work);
3088
3089 return 1;
3090 }
3091 EXPORT_SYMBOL_GPL(execute_in_process_context);
3092
3093 #ifdef CONFIG_SYSFS
3094 /*
3095 * Workqueues with WQ_SYSFS flag set is visible to userland via
3096 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3097 * following attributes.
3098 *
3099 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3100 * max_active RW int : maximum number of in-flight work items
3101 *
3102 * Unbound workqueues have the following extra attributes.
3103 *
3104 * id RO int : the associated pool ID
3105 * nice RW int : nice value of the workers
3106 * cpumask RW mask : bitmask of allowed CPUs for the workers
3107 */
3108 struct wq_device {
3109 struct workqueue_struct *wq;
3110 struct device dev;
3111 };
3112
3113 static struct workqueue_struct *dev_to_wq(struct device *dev)
3114 {
3115 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3116
3117 return wq_dev->wq;
3118 }
3119
3120 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3121 char *buf)
3122 {
3123 struct workqueue_struct *wq = dev_to_wq(dev);
3124
3125 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3126 }
3127 static DEVICE_ATTR_RO(per_cpu);
3128
3129 static ssize_t max_active_show(struct device *dev,
3130 struct device_attribute *attr, char *buf)
3131 {
3132 struct workqueue_struct *wq = dev_to_wq(dev);
3133
3134 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3135 }
3136
3137 static ssize_t max_active_store(struct device *dev,
3138 struct device_attribute *attr, const char *buf,
3139 size_t count)
3140 {
3141 struct workqueue_struct *wq = dev_to_wq(dev);
3142 int val;
3143
3144 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3145 return -EINVAL;
3146
3147 workqueue_set_max_active(wq, val);
3148 return count;
3149 }
3150 static DEVICE_ATTR_RW(max_active);
3151
3152 static struct attribute *wq_sysfs_attrs[] = {
3153 &dev_attr_per_cpu.attr,
3154 &dev_attr_max_active.attr,
3155 NULL,
3156 };
3157 ATTRIBUTE_GROUPS(wq_sysfs);
3158
3159 static ssize_t wq_pool_ids_show(struct device *dev,
3160 struct device_attribute *attr, char *buf)
3161 {
3162 struct workqueue_struct *wq = dev_to_wq(dev);
3163 const char *delim = "";
3164 int node, written = 0;
3165
3166 rcu_read_lock_sched();
3167 for_each_node(node) {
3168 written += scnprintf(buf + written, PAGE_SIZE - written,
3169 "%s%d:%d", delim, node,
3170 unbound_pwq_by_node(wq, node)->pool->id);
3171 delim = " ";
3172 }
3173 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3174 rcu_read_unlock_sched();
3175
3176 return written;
3177 }
3178
3179 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3180 char *buf)
3181 {
3182 struct workqueue_struct *wq = dev_to_wq(dev);
3183 int written;
3184
3185 mutex_lock(&wq->mutex);
3186 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3187 mutex_unlock(&wq->mutex);
3188
3189 return written;
3190 }
3191
3192 /* prepare workqueue_attrs for sysfs store operations */
3193 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3194 {
3195 struct workqueue_attrs *attrs;
3196
3197 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3198 if (!attrs)
3199 return NULL;
3200
3201 mutex_lock(&wq->mutex);
3202 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3203 mutex_unlock(&wq->mutex);
3204 return attrs;
3205 }
3206
3207 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3208 const char *buf, size_t count)
3209 {
3210 struct workqueue_struct *wq = dev_to_wq(dev);
3211 struct workqueue_attrs *attrs;
3212 int ret;
3213
3214 attrs = wq_sysfs_prep_attrs(wq);
3215 if (!attrs)
3216 return -ENOMEM;
3217
3218 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3219 attrs->nice >= -20 && attrs->nice <= 19)
3220 ret = apply_workqueue_attrs(wq, attrs);
3221 else
3222 ret = -EINVAL;
3223
3224 free_workqueue_attrs(attrs);
3225 return ret ?: count;
3226 }
3227
3228 static ssize_t wq_cpumask_show(struct device *dev,
3229 struct device_attribute *attr, char *buf)
3230 {
3231 struct workqueue_struct *wq = dev_to_wq(dev);
3232 int written;
3233
3234 mutex_lock(&wq->mutex);
3235 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3236 mutex_unlock(&wq->mutex);
3237
3238 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3239 return written;
3240 }
3241
3242 static ssize_t wq_cpumask_store(struct device *dev,
3243 struct device_attribute *attr,
3244 const char *buf, size_t count)
3245 {
3246 struct workqueue_struct *wq = dev_to_wq(dev);
3247 struct workqueue_attrs *attrs;
3248 int ret;
3249
3250 attrs = wq_sysfs_prep_attrs(wq);
3251 if (!attrs)
3252 return -ENOMEM;
3253
3254 ret = cpumask_parse(buf, attrs->cpumask);
3255 if (!ret)
3256 ret = apply_workqueue_attrs(wq, attrs);
3257
3258 free_workqueue_attrs(attrs);
3259 return ret ?: count;
3260 }
3261
3262 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3263 char *buf)
3264 {
3265 struct workqueue_struct *wq = dev_to_wq(dev);
3266 int written;
3267
3268 mutex_lock(&wq->mutex);
3269 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3270 !wq->unbound_attrs->no_numa);
3271 mutex_unlock(&wq->mutex);
3272
3273 return written;
3274 }
3275
3276 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3277 const char *buf, size_t count)
3278 {
3279 struct workqueue_struct *wq = dev_to_wq(dev);
3280 struct workqueue_attrs *attrs;
3281 int v, ret;
3282
3283 attrs = wq_sysfs_prep_attrs(wq);
3284 if (!attrs)
3285 return -ENOMEM;
3286
3287 ret = -EINVAL;
3288 if (sscanf(buf, "%d", &v) == 1) {
3289 attrs->no_numa = !v;
3290 ret = apply_workqueue_attrs(wq, attrs);
3291 }
3292
3293 free_workqueue_attrs(attrs);
3294 return ret ?: count;
3295 }
3296
3297 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3298 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3299 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3300 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3301 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3302 __ATTR_NULL,
3303 };
3304
3305 static struct bus_type wq_subsys = {
3306 .name = "workqueue",
3307 .dev_groups = wq_sysfs_groups,
3308 };
3309
3310 static int __init wq_sysfs_init(void)
3311 {
3312 return subsys_virtual_register(&wq_subsys, NULL);
3313 }
3314 core_initcall(wq_sysfs_init);
3315
3316 static void wq_device_release(struct device *dev)
3317 {
3318 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3319
3320 kfree(wq_dev);
3321 }
3322
3323 /**
3324 * workqueue_sysfs_register - make a workqueue visible in sysfs
3325 * @wq: the workqueue to register
3326 *
3327 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3328 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3329 * which is the preferred method.
3330 *
3331 * Workqueue user should use this function directly iff it wants to apply
3332 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3333 * apply_workqueue_attrs() may race against userland updating the
3334 * attributes.
3335 *
3336 * Return: 0 on success, -errno on failure.
3337 */
3338 int workqueue_sysfs_register(struct workqueue_struct *wq)
3339 {
3340 struct wq_device *wq_dev;
3341 int ret;
3342
3343 /*
3344 * Adjusting max_active or creating new pwqs by applyting
3345 * attributes breaks ordering guarantee. Disallow exposing ordered
3346 * workqueues.
3347 */
3348 if (WARN_ON(wq->flags & __WQ_ORDERED))
3349 return -EINVAL;
3350
3351 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3352 if (!wq_dev)
3353 return -ENOMEM;
3354
3355 wq_dev->wq = wq;
3356 wq_dev->dev.bus = &wq_subsys;
3357 wq_dev->dev.init_name = wq->name;
3358 wq_dev->dev.release = wq_device_release;
3359
3360 /*
3361 * unbound_attrs are created separately. Suppress uevent until
3362 * everything is ready.
3363 */
3364 dev_set_uevent_suppress(&wq_dev->dev, true);
3365
3366 ret = device_register(&wq_dev->dev);
3367 if (ret) {
3368 kfree(wq_dev);
3369 wq->wq_dev = NULL;
3370 return ret;
3371 }
3372
3373 if (wq->flags & WQ_UNBOUND) {
3374 struct device_attribute *attr;
3375
3376 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3377 ret = device_create_file(&wq_dev->dev, attr);
3378 if (ret) {
3379 device_unregister(&wq_dev->dev);
3380 wq->wq_dev = NULL;
3381 return ret;
3382 }
3383 }
3384 }
3385
3386 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3387 return 0;
3388 }
3389
3390 /**
3391 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3392 * @wq: the workqueue to unregister
3393 *
3394 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3395 */
3396 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3397 {
3398 struct wq_device *wq_dev = wq->wq_dev;
3399
3400 if (!wq->wq_dev)
3401 return;
3402
3403 wq->wq_dev = NULL;
3404 device_unregister(&wq_dev->dev);
3405 }
3406 #else /* CONFIG_SYSFS */
3407 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3408 #endif /* CONFIG_SYSFS */
3409
3410 /**
3411 * free_workqueue_attrs - free a workqueue_attrs
3412 * @attrs: workqueue_attrs to free
3413 *
3414 * Undo alloc_workqueue_attrs().
3415 */
3416 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3417 {
3418 if (attrs) {
3419 free_cpumask_var(attrs->cpumask);
3420 kfree(attrs);
3421 }
3422 }
3423
3424 /**
3425 * alloc_workqueue_attrs - allocate a workqueue_attrs
3426 * @gfp_mask: allocation mask to use
3427 *
3428 * Allocate a new workqueue_attrs, initialize with default settings and
3429 * return it.
3430 *
3431 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3432 */
3433 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3434 {
3435 struct workqueue_attrs *attrs;
3436
3437 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3438 if (!attrs)
3439 goto fail;
3440 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3441 goto fail;
3442
3443 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3444 return attrs;
3445 fail:
3446 free_workqueue_attrs(attrs);
3447 return NULL;
3448 }
3449
3450 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3451 const struct workqueue_attrs *from)
3452 {
3453 to->nice = from->nice;
3454 cpumask_copy(to->cpumask, from->cpumask);
3455 /*
3456 * Unlike hash and equality test, this function doesn't ignore
3457 * ->no_numa as it is used for both pool and wq attrs. Instead,
3458 * get_unbound_pool() explicitly clears ->no_numa after copying.
3459 */
3460 to->no_numa = from->no_numa;
3461 }
3462
3463 /* hash value of the content of @attr */
3464 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3465 {
3466 u32 hash = 0;
3467
3468 hash = jhash_1word(attrs->nice, hash);
3469 hash = jhash(cpumask_bits(attrs->cpumask),
3470 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3471 return hash;
3472 }
3473
3474 /* content equality test */
3475 static bool wqattrs_equal(const struct workqueue_attrs *a,
3476 const struct workqueue_attrs *b)
3477 {
3478 if (a->nice != b->nice)
3479 return false;
3480 if (!cpumask_equal(a->cpumask, b->cpumask))
3481 return false;
3482 return true;
3483 }
3484
3485 /**
3486 * init_worker_pool - initialize a newly zalloc'd worker_pool
3487 * @pool: worker_pool to initialize
3488 *
3489 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3490 *
3491 * Return: 0 on success, -errno on failure. Even on failure, all fields
3492 * inside @pool proper are initialized and put_unbound_pool() can be called
3493 * on @pool safely to release it.
3494 */
3495 static int init_worker_pool(struct worker_pool *pool)
3496 {
3497 spin_lock_init(&pool->lock);
3498 pool->id = -1;
3499 pool->cpu = -1;
3500 pool->node = NUMA_NO_NODE;
3501 pool->flags |= POOL_DISASSOCIATED;
3502 INIT_LIST_HEAD(&pool->worklist);
3503 INIT_LIST_HEAD(&pool->idle_list);
3504 hash_init(pool->busy_hash);
3505
3506 init_timer_deferrable(&pool->idle_timer);
3507 pool->idle_timer.function = idle_worker_timeout;
3508 pool->idle_timer.data = (unsigned long)pool;
3509
3510 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3511 (unsigned long)pool);
3512
3513 mutex_init(&pool->manager_arb);
3514 mutex_init(&pool->manager_mutex);
3515 idr_init(&pool->worker_idr);
3516
3517 INIT_HLIST_NODE(&pool->hash_node);
3518 pool->refcnt = 1;
3519
3520 /* shouldn't fail above this point */
3521 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3522 if (!pool->attrs)
3523 return -ENOMEM;
3524 return 0;
3525 }
3526
3527 static void rcu_free_pool(struct rcu_head *rcu)
3528 {
3529 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3530
3531 idr_destroy(&pool->worker_idr);
3532 free_workqueue_attrs(pool->attrs);
3533 kfree(pool);
3534 }
3535
3536 /**
3537 * put_unbound_pool - put a worker_pool
3538 * @pool: worker_pool to put
3539 *
3540 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3541 * safe manner. get_unbound_pool() calls this function on its failure path
3542 * and this function should be able to release pools which went through,
3543 * successfully or not, init_worker_pool().
3544 *
3545 * Should be called with wq_pool_mutex held.
3546 */
3547 static void put_unbound_pool(struct worker_pool *pool)
3548 {
3549 struct worker *worker;
3550
3551 lockdep_assert_held(&wq_pool_mutex);
3552
3553 if (--pool->refcnt)
3554 return;
3555
3556 /* sanity checks */
3557 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3558 WARN_ON(!list_empty(&pool->worklist)))
3559 return;
3560
3561 /* release id and unhash */
3562 if (pool->id >= 0)
3563 idr_remove(&worker_pool_idr, pool->id);
3564 hash_del(&pool->hash_node);
3565
3566 /*
3567 * Become the manager and destroy all workers. Grabbing
3568 * manager_arb prevents @pool's workers from blocking on
3569 * manager_mutex.
3570 */
3571 mutex_lock(&pool->manager_arb);
3572 mutex_lock(&pool->manager_mutex);
3573 spin_lock_irq(&pool->lock);
3574
3575 while ((worker = first_worker(pool)))
3576 destroy_worker(worker);
3577 WARN_ON(pool->nr_workers || pool->nr_idle);
3578
3579 spin_unlock_irq(&pool->lock);
3580 mutex_unlock(&pool->manager_mutex);
3581 mutex_unlock(&pool->manager_arb);
3582
3583 /* shut down the timers */
3584 del_timer_sync(&pool->idle_timer);
3585 del_timer_sync(&pool->mayday_timer);
3586
3587 /* sched-RCU protected to allow dereferences from get_work_pool() */
3588 call_rcu_sched(&pool->rcu, rcu_free_pool);
3589 }
3590
3591 /**
3592 * get_unbound_pool - get a worker_pool with the specified attributes
3593 * @attrs: the attributes of the worker_pool to get
3594 *
3595 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3596 * reference count and return it. If there already is a matching
3597 * worker_pool, it will be used; otherwise, this function attempts to
3598 * create a new one.
3599 *
3600 * Should be called with wq_pool_mutex held.
3601 *
3602 * Return: On success, a worker_pool with the same attributes as @attrs.
3603 * On failure, %NULL.
3604 */
3605 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3606 {
3607 u32 hash = wqattrs_hash(attrs);
3608 struct worker_pool *pool;
3609 int node;
3610
3611 lockdep_assert_held(&wq_pool_mutex);
3612
3613 /* do we already have a matching pool? */
3614 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3615 if (wqattrs_equal(pool->attrs, attrs)) {
3616 pool->refcnt++;
3617 goto out_unlock;
3618 }
3619 }
3620
3621 /* nope, create a new one */
3622 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3623 if (!pool || init_worker_pool(pool) < 0)
3624 goto fail;
3625
3626 if (workqueue_freezing)
3627 pool->flags |= POOL_FREEZING;
3628
3629 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3630 copy_workqueue_attrs(pool->attrs, attrs);
3631
3632 /*
3633 * no_numa isn't a worker_pool attribute, always clear it. See
3634 * 'struct workqueue_attrs' comments for detail.
3635 */
3636 pool->attrs->no_numa = false;
3637
3638 /* if cpumask is contained inside a NUMA node, we belong to that node */
3639 if (wq_numa_enabled) {
3640 for_each_node(node) {
3641 if (cpumask_subset(pool->attrs->cpumask,
3642 wq_numa_possible_cpumask[node])) {
3643 pool->node = node;
3644 break;
3645 }
3646 }
3647 }
3648
3649 if (worker_pool_assign_id(pool) < 0)
3650 goto fail;
3651
3652 /* create and start the initial worker */
3653 if (create_and_start_worker(pool) < 0)
3654 goto fail;
3655
3656 /* install */
3657 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3658 out_unlock:
3659 return pool;
3660 fail:
3661 if (pool)
3662 put_unbound_pool(pool);
3663 return NULL;
3664 }
3665
3666 static void rcu_free_pwq(struct rcu_head *rcu)
3667 {
3668 kmem_cache_free(pwq_cache,
3669 container_of(rcu, struct pool_workqueue, rcu));
3670 }
3671
3672 /*
3673 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3674 * and needs to be destroyed.
3675 */
3676 static void pwq_unbound_release_workfn(struct work_struct *work)
3677 {
3678 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3679 unbound_release_work);
3680 struct workqueue_struct *wq = pwq->wq;
3681 struct worker_pool *pool = pwq->pool;
3682 bool is_last;
3683
3684 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3685 return;
3686
3687 /*
3688 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3689 * necessary on release but do it anyway. It's easier to verify
3690 * and consistent with the linking path.
3691 */
3692 mutex_lock(&wq->mutex);
3693 list_del_rcu(&pwq->pwqs_node);
3694 is_last = list_empty(&wq->pwqs);
3695 mutex_unlock(&wq->mutex);
3696
3697 mutex_lock(&wq_pool_mutex);
3698 put_unbound_pool(pool);
3699 mutex_unlock(&wq_pool_mutex);
3700
3701 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3702
3703 /*
3704 * If we're the last pwq going away, @wq is already dead and no one
3705 * is gonna access it anymore. Free it.
3706 */
3707 if (is_last) {
3708 free_workqueue_attrs(wq->unbound_attrs);
3709 kfree(wq);
3710 }
3711 }
3712
3713 /**
3714 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3715 * @pwq: target pool_workqueue
3716 *
3717 * If @pwq isn't freezing, set @pwq->max_active to the associated
3718 * workqueue's saved_max_active and activate delayed work items
3719 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3720 */
3721 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3722 {
3723 struct workqueue_struct *wq = pwq->wq;
3724 bool freezable = wq->flags & WQ_FREEZABLE;
3725
3726 /* for @wq->saved_max_active */
3727 lockdep_assert_held(&wq->mutex);
3728
3729 /* fast exit for non-freezable wqs */
3730 if (!freezable && pwq->max_active == wq->saved_max_active)
3731 return;
3732
3733 spin_lock_irq(&pwq->pool->lock);
3734
3735 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3736 pwq->max_active = wq->saved_max_active;
3737
3738 while (!list_empty(&pwq->delayed_works) &&
3739 pwq->nr_active < pwq->max_active)
3740 pwq_activate_first_delayed(pwq);
3741
3742 /*
3743 * Need to kick a worker after thawed or an unbound wq's
3744 * max_active is bumped. It's a slow path. Do it always.
3745 */
3746 wake_up_worker(pwq->pool);
3747 } else {
3748 pwq->max_active = 0;
3749 }
3750
3751 spin_unlock_irq(&pwq->pool->lock);
3752 }
3753
3754 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3755 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3756 struct worker_pool *pool)
3757 {
3758 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3759
3760 memset(pwq, 0, sizeof(*pwq));
3761
3762 pwq->pool = pool;
3763 pwq->wq = wq;
3764 pwq->flush_color = -1;
3765 pwq->refcnt = 1;
3766 INIT_LIST_HEAD(&pwq->delayed_works);
3767 INIT_LIST_HEAD(&pwq->pwqs_node);
3768 INIT_LIST_HEAD(&pwq->mayday_node);
3769 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3770 }
3771
3772 /* sync @pwq with the current state of its associated wq and link it */
3773 static void link_pwq(struct pool_workqueue *pwq)
3774 {
3775 struct workqueue_struct *wq = pwq->wq;
3776
3777 lockdep_assert_held(&wq->mutex);
3778
3779 /* may be called multiple times, ignore if already linked */
3780 if (!list_empty(&pwq->pwqs_node))
3781 return;
3782
3783 /*
3784 * Set the matching work_color. This is synchronized with
3785 * wq->mutex to avoid confusing flush_workqueue().
3786 */
3787 pwq->work_color = wq->work_color;
3788
3789 /* sync max_active to the current setting */
3790 pwq_adjust_max_active(pwq);
3791
3792 /* link in @pwq */
3793 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3794 }
3795
3796 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3797 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3798 const struct workqueue_attrs *attrs)
3799 {
3800 struct worker_pool *pool;
3801 struct pool_workqueue *pwq;
3802
3803 lockdep_assert_held(&wq_pool_mutex);
3804
3805 pool = get_unbound_pool(attrs);
3806 if (!pool)
3807 return NULL;
3808
3809 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3810 if (!pwq) {
3811 put_unbound_pool(pool);
3812 return NULL;
3813 }
3814
3815 init_pwq(pwq, wq, pool);
3816 return pwq;
3817 }
3818
3819 /* undo alloc_unbound_pwq(), used only in the error path */
3820 static void free_unbound_pwq(struct pool_workqueue *pwq)
3821 {
3822 lockdep_assert_held(&wq_pool_mutex);
3823
3824 if (pwq) {
3825 put_unbound_pool(pwq->pool);
3826 kmem_cache_free(pwq_cache, pwq);
3827 }
3828 }
3829
3830 /**
3831 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3832 * @attrs: the wq_attrs of interest
3833 * @node: the target NUMA node
3834 * @cpu_going_down: if >= 0, the CPU to consider as offline
3835 * @cpumask: outarg, the resulting cpumask
3836 *
3837 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3838 * @cpu_going_down is >= 0, that cpu is considered offline during
3839 * calculation. The result is stored in @cpumask.
3840 *
3841 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3842 * enabled and @node has online CPUs requested by @attrs, the returned
3843 * cpumask is the intersection of the possible CPUs of @node and
3844 * @attrs->cpumask.
3845 *
3846 * The caller is responsible for ensuring that the cpumask of @node stays
3847 * stable.
3848 *
3849 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3850 * %false if equal.
3851 */
3852 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3853 int cpu_going_down, cpumask_t *cpumask)
3854 {
3855 if (!wq_numa_enabled || attrs->no_numa)
3856 goto use_dfl;
3857
3858 /* does @node have any online CPUs @attrs wants? */
3859 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3860 if (cpu_going_down >= 0)
3861 cpumask_clear_cpu(cpu_going_down, cpumask);
3862
3863 if (cpumask_empty(cpumask))
3864 goto use_dfl;
3865
3866 /* yeap, return possible CPUs in @node that @attrs wants */
3867 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3868 return !cpumask_equal(cpumask, attrs->cpumask);
3869
3870 use_dfl:
3871 cpumask_copy(cpumask, attrs->cpumask);
3872 return false;
3873 }
3874
3875 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3876 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3877 int node,
3878 struct pool_workqueue *pwq)
3879 {
3880 struct pool_workqueue *old_pwq;
3881
3882 lockdep_assert_held(&wq->mutex);
3883
3884 /* link_pwq() can handle duplicate calls */
3885 link_pwq(pwq);
3886
3887 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3888 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3889 return old_pwq;
3890 }
3891
3892 /**
3893 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3894 * @wq: the target workqueue
3895 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3896 *
3897 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3898 * machines, this function maps a separate pwq to each NUMA node with
3899 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3900 * NUMA node it was issued on. Older pwqs are released as in-flight work
3901 * items finish. Note that a work item which repeatedly requeues itself
3902 * back-to-back will stay on its current pwq.
3903 *
3904 * Performs GFP_KERNEL allocations.
3905 *
3906 * Return: 0 on success and -errno on failure.
3907 */
3908 int apply_workqueue_attrs(struct workqueue_struct *wq,
3909 const struct workqueue_attrs *attrs)
3910 {
3911 struct workqueue_attrs *new_attrs, *tmp_attrs;
3912 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3913 int node, ret;
3914
3915 /* only unbound workqueues can change attributes */
3916 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3917 return -EINVAL;
3918
3919 /* creating multiple pwqs breaks ordering guarantee */
3920 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3921 return -EINVAL;
3922
3923 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3924 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3925 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3926 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3927 goto enomem;
3928
3929 /* make a copy of @attrs and sanitize it */
3930 copy_workqueue_attrs(new_attrs, attrs);
3931 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3932
3933 /*
3934 * We may create multiple pwqs with differing cpumasks. Make a
3935 * copy of @new_attrs which will be modified and used to obtain
3936 * pools.
3937 */
3938 copy_workqueue_attrs(tmp_attrs, new_attrs);
3939
3940 /*
3941 * CPUs should stay stable across pwq creations and installations.
3942 * Pin CPUs, determine the target cpumask for each node and create
3943 * pwqs accordingly.
3944 */
3945 get_online_cpus();
3946
3947 mutex_lock(&wq_pool_mutex);
3948
3949 /*
3950 * If something goes wrong during CPU up/down, we'll fall back to
3951 * the default pwq covering whole @attrs->cpumask. Always create
3952 * it even if we don't use it immediately.
3953 */
3954 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3955 if (!dfl_pwq)
3956 goto enomem_pwq;
3957
3958 for_each_node(node) {
3959 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3960 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3961 if (!pwq_tbl[node])
3962 goto enomem_pwq;
3963 } else {
3964 dfl_pwq->refcnt++;
3965 pwq_tbl[node] = dfl_pwq;
3966 }
3967 }
3968
3969 mutex_unlock(&wq_pool_mutex);
3970
3971 /* all pwqs have been created successfully, let's install'em */
3972 mutex_lock(&wq->mutex);
3973
3974 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3975
3976 /* save the previous pwq and install the new one */
3977 for_each_node(node)
3978 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3979
3980 /* @dfl_pwq might not have been used, ensure it's linked */
3981 link_pwq(dfl_pwq);
3982 swap(wq->dfl_pwq, dfl_pwq);
3983
3984 mutex_unlock(&wq->mutex);
3985
3986 /* put the old pwqs */
3987 for_each_node(node)
3988 put_pwq_unlocked(pwq_tbl[node]);
3989 put_pwq_unlocked(dfl_pwq);
3990
3991 put_online_cpus();
3992 ret = 0;
3993 /* fall through */
3994 out_free:
3995 free_workqueue_attrs(tmp_attrs);
3996 free_workqueue_attrs(new_attrs);
3997 kfree(pwq_tbl);
3998 return ret;
3999
4000 enomem_pwq:
4001 free_unbound_pwq(dfl_pwq);
4002 for_each_node(node)
4003 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4004 free_unbound_pwq(pwq_tbl[node]);
4005 mutex_unlock(&wq_pool_mutex);
4006 put_online_cpus();
4007 enomem:
4008 ret = -ENOMEM;
4009 goto out_free;
4010 }
4011
4012 /**
4013 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4014 * @wq: the target workqueue
4015 * @cpu: the CPU coming up or going down
4016 * @online: whether @cpu is coming up or going down
4017 *
4018 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4019 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4020 * @wq accordingly.
4021 *
4022 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4023 * falls back to @wq->dfl_pwq which may not be optimal but is always
4024 * correct.
4025 *
4026 * Note that when the last allowed CPU of a NUMA node goes offline for a
4027 * workqueue with a cpumask spanning multiple nodes, the workers which were
4028 * already executing the work items for the workqueue will lose their CPU
4029 * affinity and may execute on any CPU. This is similar to how per-cpu
4030 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4031 * affinity, it's the user's responsibility to flush the work item from
4032 * CPU_DOWN_PREPARE.
4033 */
4034 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4035 bool online)
4036 {
4037 int node = cpu_to_node(cpu);
4038 int cpu_off = online ? -1 : cpu;
4039 struct pool_workqueue *old_pwq = NULL, *pwq;
4040 struct workqueue_attrs *target_attrs;
4041 cpumask_t *cpumask;
4042
4043 lockdep_assert_held(&wq_pool_mutex);
4044
4045 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4046 return;
4047
4048 /*
4049 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4050 * Let's use a preallocated one. The following buf is protected by
4051 * CPU hotplug exclusion.
4052 */
4053 target_attrs = wq_update_unbound_numa_attrs_buf;
4054 cpumask = target_attrs->cpumask;
4055
4056 mutex_lock(&wq->mutex);
4057 if (wq->unbound_attrs->no_numa)
4058 goto out_unlock;
4059
4060 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4061 pwq = unbound_pwq_by_node(wq, node);
4062
4063 /*
4064 * Let's determine what needs to be done. If the target cpumask is
4065 * different from wq's, we need to compare it to @pwq's and create
4066 * a new one if they don't match. If the target cpumask equals
4067 * wq's, the default pwq should be used. If @pwq is already the
4068 * default one, nothing to do; otherwise, install the default one.
4069 */
4070 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4071 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4072 goto out_unlock;
4073 } else {
4074 if (pwq == wq->dfl_pwq)
4075 goto out_unlock;
4076 else
4077 goto use_dfl_pwq;
4078 }
4079
4080 mutex_unlock(&wq->mutex);
4081
4082 /* create a new pwq */
4083 pwq = alloc_unbound_pwq(wq, target_attrs);
4084 if (!pwq) {
4085 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4086 wq->name);
4087 goto out_unlock;
4088 }
4089
4090 /*
4091 * Install the new pwq. As this function is called only from CPU
4092 * hotplug callbacks and applying a new attrs is wrapped with
4093 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4094 * inbetween.
4095 */
4096 mutex_lock(&wq->mutex);
4097 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4098 goto out_unlock;
4099
4100 use_dfl_pwq:
4101 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4102 get_pwq(wq->dfl_pwq);
4103 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4104 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4105 out_unlock:
4106 mutex_unlock(&wq->mutex);
4107 put_pwq_unlocked(old_pwq);
4108 }
4109
4110 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4111 {
4112 bool highpri = wq->flags & WQ_HIGHPRI;
4113 int cpu, ret;
4114
4115 if (!(wq->flags & WQ_UNBOUND)) {
4116 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4117 if (!wq->cpu_pwqs)
4118 return -ENOMEM;
4119
4120 for_each_possible_cpu(cpu) {
4121 struct pool_workqueue *pwq =
4122 per_cpu_ptr(wq->cpu_pwqs, cpu);
4123 struct worker_pool *cpu_pools =
4124 per_cpu(cpu_worker_pools, cpu);
4125
4126 init_pwq(pwq, wq, &cpu_pools[highpri]);
4127
4128 mutex_lock(&wq->mutex);
4129 link_pwq(pwq);
4130 mutex_unlock(&wq->mutex);
4131 }
4132 return 0;
4133 } else if (wq->flags & __WQ_ORDERED) {
4134 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4135 /* there should only be single pwq for ordering guarantee */
4136 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4137 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4138 "ordering guarantee broken for workqueue %s\n", wq->name);
4139 return ret;
4140 } else {
4141 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4142 }
4143 }
4144
4145 static int wq_clamp_max_active(int max_active, unsigned int flags,
4146 const char *name)
4147 {
4148 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4149
4150 if (max_active < 1 || max_active > lim)
4151 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4152 max_active, name, 1, lim);
4153
4154 return clamp_val(max_active, 1, lim);
4155 }
4156
4157 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4158 unsigned int flags,
4159 int max_active,
4160 struct lock_class_key *key,
4161 const char *lock_name, ...)
4162 {
4163 size_t tbl_size = 0;
4164 va_list args;
4165 struct workqueue_struct *wq;
4166 struct pool_workqueue *pwq;
4167
4168 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4169 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4170 flags |= WQ_UNBOUND;
4171
4172 /* allocate wq and format name */
4173 if (flags & WQ_UNBOUND)
4174 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4175
4176 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4177 if (!wq)
4178 return NULL;
4179
4180 if (flags & WQ_UNBOUND) {
4181 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4182 if (!wq->unbound_attrs)
4183 goto err_free_wq;
4184 }
4185
4186 va_start(args, lock_name);
4187 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4188 va_end(args);
4189
4190 max_active = max_active ?: WQ_DFL_ACTIVE;
4191 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4192
4193 /* init wq */
4194 wq->flags = flags;
4195 wq->saved_max_active = max_active;
4196 mutex_init(&wq->mutex);
4197 atomic_set(&wq->nr_pwqs_to_flush, 0);
4198 INIT_LIST_HEAD(&wq->pwqs);
4199 INIT_LIST_HEAD(&wq->flusher_queue);
4200 INIT_LIST_HEAD(&wq->flusher_overflow);
4201 INIT_LIST_HEAD(&wq->maydays);
4202
4203 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4204 INIT_LIST_HEAD(&wq->list);
4205
4206 if (alloc_and_link_pwqs(wq) < 0)
4207 goto err_free_wq;
4208
4209 /*
4210 * Workqueues which may be used during memory reclaim should
4211 * have a rescuer to guarantee forward progress.
4212 */
4213 if (flags & WQ_MEM_RECLAIM) {
4214 struct worker *rescuer;
4215
4216 rescuer = alloc_worker();
4217 if (!rescuer)
4218 goto err_destroy;
4219
4220 rescuer->rescue_wq = wq;
4221 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4222 wq->name);
4223 if (IS_ERR(rescuer->task)) {
4224 kfree(rescuer);
4225 goto err_destroy;
4226 }
4227
4228 wq->rescuer = rescuer;
4229 rescuer->task->flags |= PF_NO_SETAFFINITY;
4230 wake_up_process(rescuer->task);
4231 }
4232
4233 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4234 goto err_destroy;
4235
4236 /*
4237 * wq_pool_mutex protects global freeze state and workqueues list.
4238 * Grab it, adjust max_active and add the new @wq to workqueues
4239 * list.
4240 */
4241 mutex_lock(&wq_pool_mutex);
4242
4243 mutex_lock(&wq->mutex);
4244 for_each_pwq(pwq, wq)
4245 pwq_adjust_max_active(pwq);
4246 mutex_unlock(&wq->mutex);
4247
4248 list_add(&wq->list, &workqueues);
4249
4250 mutex_unlock(&wq_pool_mutex);
4251
4252 return wq;
4253
4254 err_free_wq:
4255 free_workqueue_attrs(wq->unbound_attrs);
4256 kfree(wq);
4257 return NULL;
4258 err_destroy:
4259 destroy_workqueue(wq);
4260 return NULL;
4261 }
4262 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4263
4264 /**
4265 * destroy_workqueue - safely terminate a workqueue
4266 * @wq: target workqueue
4267 *
4268 * Safely destroy a workqueue. All work currently pending will be done first.
4269 */
4270 void destroy_workqueue(struct workqueue_struct *wq)
4271 {
4272 struct pool_workqueue *pwq;
4273 int node;
4274
4275 /* drain it before proceeding with destruction */
4276 drain_workqueue(wq);
4277
4278 /* sanity checks */
4279 mutex_lock(&wq->mutex);
4280 for_each_pwq(pwq, wq) {
4281 int i;
4282
4283 for (i = 0; i < WORK_NR_COLORS; i++) {
4284 if (WARN_ON(pwq->nr_in_flight[i])) {
4285 mutex_unlock(&wq->mutex);
4286 return;
4287 }
4288 }
4289
4290 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4291 WARN_ON(pwq->nr_active) ||
4292 WARN_ON(!list_empty(&pwq->delayed_works))) {
4293 mutex_unlock(&wq->mutex);
4294 return;
4295 }
4296 }
4297 mutex_unlock(&wq->mutex);
4298
4299 /*
4300 * wq list is used to freeze wq, remove from list after
4301 * flushing is complete in case freeze races us.
4302 */
4303 mutex_lock(&wq_pool_mutex);
4304 list_del_init(&wq->list);
4305 mutex_unlock(&wq_pool_mutex);
4306
4307 workqueue_sysfs_unregister(wq);
4308
4309 if (wq->rescuer) {
4310 kthread_stop(wq->rescuer->task);
4311 kfree(wq->rescuer);
4312 wq->rescuer = NULL;
4313 }
4314
4315 if (!(wq->flags & WQ_UNBOUND)) {
4316 /*
4317 * The base ref is never dropped on per-cpu pwqs. Directly
4318 * free the pwqs and wq.
4319 */
4320 free_percpu(wq->cpu_pwqs);
4321 kfree(wq);
4322 } else {
4323 /*
4324 * We're the sole accessor of @wq at this point. Directly
4325 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4326 * @wq will be freed when the last pwq is released.
4327 */
4328 for_each_node(node) {
4329 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4330 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4331 put_pwq_unlocked(pwq);
4332 }
4333
4334 /*
4335 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4336 * put. Don't access it afterwards.
4337 */
4338 pwq = wq->dfl_pwq;
4339 wq->dfl_pwq = NULL;
4340 put_pwq_unlocked(pwq);
4341 }
4342 }
4343 EXPORT_SYMBOL_GPL(destroy_workqueue);
4344
4345 /**
4346 * workqueue_set_max_active - adjust max_active of a workqueue
4347 * @wq: target workqueue
4348 * @max_active: new max_active value.
4349 *
4350 * Set max_active of @wq to @max_active.
4351 *
4352 * CONTEXT:
4353 * Don't call from IRQ context.
4354 */
4355 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4356 {
4357 struct pool_workqueue *pwq;
4358
4359 /* disallow meddling with max_active for ordered workqueues */
4360 if (WARN_ON(wq->flags & __WQ_ORDERED))
4361 return;
4362
4363 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4364
4365 mutex_lock(&wq->mutex);
4366
4367 wq->saved_max_active = max_active;
4368
4369 for_each_pwq(pwq, wq)
4370 pwq_adjust_max_active(pwq);
4371
4372 mutex_unlock(&wq->mutex);
4373 }
4374 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4375
4376 /**
4377 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4378 *
4379 * Determine whether %current is a workqueue rescuer. Can be used from
4380 * work functions to determine whether it's being run off the rescuer task.
4381 *
4382 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4383 */
4384 bool current_is_workqueue_rescuer(void)
4385 {
4386 struct worker *worker = current_wq_worker();
4387
4388 return worker && worker->rescue_wq;
4389 }
4390
4391 /**
4392 * workqueue_congested - test whether a workqueue is congested
4393 * @cpu: CPU in question
4394 * @wq: target workqueue
4395 *
4396 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4397 * no synchronization around this function and the test result is
4398 * unreliable and only useful as advisory hints or for debugging.
4399 *
4400 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4401 * Note that both per-cpu and unbound workqueues may be associated with
4402 * multiple pool_workqueues which have separate congested states. A
4403 * workqueue being congested on one CPU doesn't mean the workqueue is also
4404 * contested on other CPUs / NUMA nodes.
4405 *
4406 * Return:
4407 * %true if congested, %false otherwise.
4408 */
4409 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4410 {
4411 struct pool_workqueue *pwq;
4412 bool ret;
4413
4414 rcu_read_lock_sched();
4415
4416 if (cpu == WORK_CPU_UNBOUND)
4417 cpu = smp_processor_id();
4418
4419 if (!(wq->flags & WQ_UNBOUND))
4420 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4421 else
4422 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4423
4424 ret = !list_empty(&pwq->delayed_works);
4425 rcu_read_unlock_sched();
4426
4427 return ret;
4428 }
4429 EXPORT_SYMBOL_GPL(workqueue_congested);
4430
4431 /**
4432 * work_busy - test whether a work is currently pending or running
4433 * @work: the work to be tested
4434 *
4435 * Test whether @work is currently pending or running. There is no
4436 * synchronization around this function and the test result is
4437 * unreliable and only useful as advisory hints or for debugging.
4438 *
4439 * Return:
4440 * OR'd bitmask of WORK_BUSY_* bits.
4441 */
4442 unsigned int work_busy(struct work_struct *work)
4443 {
4444 struct worker_pool *pool;
4445 unsigned long flags;
4446 unsigned int ret = 0;
4447
4448 if (work_pending(work))
4449 ret |= WORK_BUSY_PENDING;
4450
4451 local_irq_save(flags);
4452 pool = get_work_pool(work);
4453 if (pool) {
4454 spin_lock(&pool->lock);
4455 if (find_worker_executing_work(pool, work))
4456 ret |= WORK_BUSY_RUNNING;
4457 spin_unlock(&pool->lock);
4458 }
4459 local_irq_restore(flags);
4460
4461 return ret;
4462 }
4463 EXPORT_SYMBOL_GPL(work_busy);
4464
4465 /**
4466 * set_worker_desc - set description for the current work item
4467 * @fmt: printf-style format string
4468 * @...: arguments for the format string
4469 *
4470 * This function can be called by a running work function to describe what
4471 * the work item is about. If the worker task gets dumped, this
4472 * information will be printed out together to help debugging. The
4473 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4474 */
4475 void set_worker_desc(const char *fmt, ...)
4476 {
4477 struct worker *worker = current_wq_worker();
4478 va_list args;
4479
4480 if (worker) {
4481 va_start(args, fmt);
4482 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4483 va_end(args);
4484 worker->desc_valid = true;
4485 }
4486 }
4487
4488 /**
4489 * print_worker_info - print out worker information and description
4490 * @log_lvl: the log level to use when printing
4491 * @task: target task
4492 *
4493 * If @task is a worker and currently executing a work item, print out the
4494 * name of the workqueue being serviced and worker description set with
4495 * set_worker_desc() by the currently executing work item.
4496 *
4497 * This function can be safely called on any task as long as the
4498 * task_struct itself is accessible. While safe, this function isn't
4499 * synchronized and may print out mixups or garbages of limited length.
4500 */
4501 void print_worker_info(const char *log_lvl, struct task_struct *task)
4502 {
4503 work_func_t *fn = NULL;
4504 char name[WQ_NAME_LEN] = { };
4505 char desc[WORKER_DESC_LEN] = { };
4506 struct pool_workqueue *pwq = NULL;
4507 struct workqueue_struct *wq = NULL;
4508 bool desc_valid = false;
4509 struct worker *worker;
4510
4511 if (!(task->flags & PF_WQ_WORKER))
4512 return;
4513
4514 /*
4515 * This function is called without any synchronization and @task
4516 * could be in any state. Be careful with dereferences.
4517 */
4518 worker = probe_kthread_data(task);
4519
4520 /*
4521 * Carefully copy the associated workqueue's workfn and name. Keep
4522 * the original last '\0' in case the original contains garbage.
4523 */
4524 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4525 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4526 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4527 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4528
4529 /* copy worker description */
4530 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4531 if (desc_valid)
4532 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4533
4534 if (fn || name[0] || desc[0]) {
4535 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4536 if (desc[0])
4537 pr_cont(" (%s)", desc);
4538 pr_cont("\n");
4539 }
4540 }
4541
4542 /*
4543 * CPU hotplug.
4544 *
4545 * There are two challenges in supporting CPU hotplug. Firstly, there
4546 * are a lot of assumptions on strong associations among work, pwq and
4547 * pool which make migrating pending and scheduled works very
4548 * difficult to implement without impacting hot paths. Secondly,
4549 * worker pools serve mix of short, long and very long running works making
4550 * blocked draining impractical.
4551 *
4552 * This is solved by allowing the pools to be disassociated from the CPU
4553 * running as an unbound one and allowing it to be reattached later if the
4554 * cpu comes back online.
4555 */
4556
4557 static void wq_unbind_fn(struct work_struct *work)
4558 {
4559 int cpu = smp_processor_id();
4560 struct worker_pool *pool;
4561 struct worker *worker;
4562 int wi;
4563
4564 for_each_cpu_worker_pool(pool, cpu) {
4565 WARN_ON_ONCE(cpu != smp_processor_id());
4566
4567 mutex_lock(&pool->manager_mutex);
4568 spin_lock_irq(&pool->lock);
4569
4570 /*
4571 * We've blocked all manager operations. Make all workers
4572 * unbound and set DISASSOCIATED. Before this, all workers
4573 * except for the ones which are still executing works from
4574 * before the last CPU down must be on the cpu. After
4575 * this, they may become diasporas.
4576 */
4577 for_each_pool_worker(worker, wi, pool)
4578 worker->flags |= WORKER_UNBOUND;
4579
4580 pool->flags |= POOL_DISASSOCIATED;
4581
4582 spin_unlock_irq(&pool->lock);
4583 mutex_unlock(&pool->manager_mutex);
4584
4585 /*
4586 * Call schedule() so that we cross rq->lock and thus can
4587 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4588 * This is necessary as scheduler callbacks may be invoked
4589 * from other cpus.
4590 */
4591 schedule();
4592
4593 /*
4594 * Sched callbacks are disabled now. Zap nr_running.
4595 * After this, nr_running stays zero and need_more_worker()
4596 * and keep_working() are always true as long as the
4597 * worklist is not empty. This pool now behaves as an
4598 * unbound (in terms of concurrency management) pool which
4599 * are served by workers tied to the pool.
4600 */
4601 atomic_set(&pool->nr_running, 0);
4602
4603 /*
4604 * With concurrency management just turned off, a busy
4605 * worker blocking could lead to lengthy stalls. Kick off
4606 * unbound chain execution of currently pending work items.
4607 */
4608 spin_lock_irq(&pool->lock);
4609 wake_up_worker(pool);
4610 spin_unlock_irq(&pool->lock);
4611 }
4612 }
4613
4614 /**
4615 * rebind_workers - rebind all workers of a pool to the associated CPU
4616 * @pool: pool of interest
4617 *
4618 * @pool->cpu is coming online. Rebind all workers to the CPU.
4619 */
4620 static void rebind_workers(struct worker_pool *pool)
4621 {
4622 struct worker *worker;
4623 int wi;
4624
4625 lockdep_assert_held(&pool->manager_mutex);
4626
4627 /*
4628 * Restore CPU affinity of all workers. As all idle workers should
4629 * be on the run-queue of the associated CPU before any local
4630 * wake-ups for concurrency management happen, restore CPU affinty
4631 * of all workers first and then clear UNBOUND. As we're called
4632 * from CPU_ONLINE, the following shouldn't fail.
4633 */
4634 for_each_pool_worker(worker, wi, pool)
4635 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4636 pool->attrs->cpumask) < 0);
4637
4638 spin_lock_irq(&pool->lock);
4639
4640 for_each_pool_worker(worker, wi, pool) {
4641 unsigned int worker_flags = worker->flags;
4642
4643 /*
4644 * A bound idle worker should actually be on the runqueue
4645 * of the associated CPU for local wake-ups targeting it to
4646 * work. Kick all idle workers so that they migrate to the
4647 * associated CPU. Doing this in the same loop as
4648 * replacing UNBOUND with REBOUND is safe as no worker will
4649 * be bound before @pool->lock is released.
4650 */
4651 if (worker_flags & WORKER_IDLE)
4652 wake_up_process(worker->task);
4653
4654 /*
4655 * We want to clear UNBOUND but can't directly call
4656 * worker_clr_flags() or adjust nr_running. Atomically
4657 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4658 * @worker will clear REBOUND using worker_clr_flags() when
4659 * it initiates the next execution cycle thus restoring
4660 * concurrency management. Note that when or whether
4661 * @worker clears REBOUND doesn't affect correctness.
4662 *
4663 * ACCESS_ONCE() is necessary because @worker->flags may be
4664 * tested without holding any lock in
4665 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4666 * fail incorrectly leading to premature concurrency
4667 * management operations.
4668 */
4669 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4670 worker_flags |= WORKER_REBOUND;
4671 worker_flags &= ~WORKER_UNBOUND;
4672 ACCESS_ONCE(worker->flags) = worker_flags;
4673 }
4674
4675 spin_unlock_irq(&pool->lock);
4676 }
4677
4678 /**
4679 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4680 * @pool: unbound pool of interest
4681 * @cpu: the CPU which is coming up
4682 *
4683 * An unbound pool may end up with a cpumask which doesn't have any online
4684 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4685 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4686 * online CPU before, cpus_allowed of all its workers should be restored.
4687 */
4688 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4689 {
4690 static cpumask_t cpumask;
4691 struct worker *worker;
4692 int wi;
4693
4694 lockdep_assert_held(&pool->manager_mutex);
4695
4696 /* is @cpu allowed for @pool? */
4697 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4698 return;
4699
4700 /* is @cpu the only online CPU? */
4701 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4702 if (cpumask_weight(&cpumask) != 1)
4703 return;
4704
4705 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4706 for_each_pool_worker(worker, wi, pool)
4707 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4708 pool->attrs->cpumask) < 0);
4709 }
4710
4711 /*
4712 * Workqueues should be brought up before normal priority CPU notifiers.
4713 * This will be registered high priority CPU notifier.
4714 */
4715 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4716 unsigned long action,
4717 void *hcpu)
4718 {
4719 int cpu = (unsigned long)hcpu;
4720 struct worker_pool *pool;
4721 struct workqueue_struct *wq;
4722 int pi;
4723
4724 switch (action & ~CPU_TASKS_FROZEN) {
4725 case CPU_UP_PREPARE:
4726 for_each_cpu_worker_pool(pool, cpu) {
4727 if (pool->nr_workers)
4728 continue;
4729 if (create_and_start_worker(pool) < 0)
4730 return NOTIFY_BAD;
4731 }
4732 break;
4733
4734 case CPU_DOWN_FAILED:
4735 case CPU_ONLINE:
4736 mutex_lock(&wq_pool_mutex);
4737
4738 for_each_pool(pool, pi) {
4739 mutex_lock(&pool->manager_mutex);
4740
4741 if (pool->cpu == cpu) {
4742 spin_lock_irq(&pool->lock);
4743 pool->flags &= ~POOL_DISASSOCIATED;
4744 spin_unlock_irq(&pool->lock);
4745
4746 rebind_workers(pool);
4747 } else if (pool->cpu < 0) {
4748 restore_unbound_workers_cpumask(pool, cpu);
4749 }
4750
4751 mutex_unlock(&pool->manager_mutex);
4752 }
4753
4754 /* update NUMA affinity of unbound workqueues */
4755 list_for_each_entry(wq, &workqueues, list)
4756 wq_update_unbound_numa(wq, cpu, true);
4757
4758 mutex_unlock(&wq_pool_mutex);
4759 break;
4760 }
4761 return NOTIFY_OK;
4762 }
4763
4764 /*
4765 * Workqueues should be brought down after normal priority CPU notifiers.
4766 * This will be registered as low priority CPU notifier.
4767 */
4768 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4769 unsigned long action,
4770 void *hcpu)
4771 {
4772 int cpu = (unsigned long)hcpu;
4773 struct work_struct unbind_work;
4774 struct workqueue_struct *wq;
4775
4776 switch (action & ~CPU_TASKS_FROZEN) {
4777 case CPU_DOWN_PREPARE:
4778 /* unbinding per-cpu workers should happen on the local CPU */
4779 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4780 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4781
4782 /* update NUMA affinity of unbound workqueues */
4783 mutex_lock(&wq_pool_mutex);
4784 list_for_each_entry(wq, &workqueues, list)
4785 wq_update_unbound_numa(wq, cpu, false);
4786 mutex_unlock(&wq_pool_mutex);
4787
4788 /* wait for per-cpu unbinding to finish */
4789 flush_work(&unbind_work);
4790 break;
4791 }
4792 return NOTIFY_OK;
4793 }
4794
4795 #ifdef CONFIG_SMP
4796
4797 struct work_for_cpu {
4798 struct work_struct work;
4799 long (*fn)(void *);
4800 void *arg;
4801 long ret;
4802 };
4803
4804 static void work_for_cpu_fn(struct work_struct *work)
4805 {
4806 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4807
4808 wfc->ret = wfc->fn(wfc->arg);
4809 }
4810
4811 /**
4812 * work_on_cpu - run a function in user context on a particular cpu
4813 * @cpu: the cpu to run on
4814 * @fn: the function to run
4815 * @arg: the function arg
4816 *
4817 * It is up to the caller to ensure that the cpu doesn't go offline.
4818 * The caller must not hold any locks which would prevent @fn from completing.
4819 *
4820 * Return: The value @fn returns.
4821 */
4822 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4823 {
4824 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4825
4826 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4827 schedule_work_on(cpu, &wfc.work);
4828
4829 /*
4830 * The work item is on-stack and can't lead to deadlock through
4831 * flushing. Use __flush_work() to avoid spurious lockdep warnings
4832 * when work_on_cpu()s are nested.
4833 */
4834 __flush_work(&wfc.work);
4835
4836 return wfc.ret;
4837 }
4838 EXPORT_SYMBOL_GPL(work_on_cpu);
4839 #endif /* CONFIG_SMP */
4840
4841 #ifdef CONFIG_FREEZER
4842
4843 /**
4844 * freeze_workqueues_begin - begin freezing workqueues
4845 *
4846 * Start freezing workqueues. After this function returns, all freezable
4847 * workqueues will queue new works to their delayed_works list instead of
4848 * pool->worklist.
4849 *
4850 * CONTEXT:
4851 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4852 */
4853 void freeze_workqueues_begin(void)
4854 {
4855 struct worker_pool *pool;
4856 struct workqueue_struct *wq;
4857 struct pool_workqueue *pwq;
4858 int pi;
4859
4860 mutex_lock(&wq_pool_mutex);
4861
4862 WARN_ON_ONCE(workqueue_freezing);
4863 workqueue_freezing = true;
4864
4865 /* set FREEZING */
4866 for_each_pool(pool, pi) {
4867 spin_lock_irq(&pool->lock);
4868 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4869 pool->flags |= POOL_FREEZING;
4870 spin_unlock_irq(&pool->lock);
4871 }
4872
4873 list_for_each_entry(wq, &workqueues, list) {
4874 mutex_lock(&wq->mutex);
4875 for_each_pwq(pwq, wq)
4876 pwq_adjust_max_active(pwq);
4877 mutex_unlock(&wq->mutex);
4878 }
4879
4880 mutex_unlock(&wq_pool_mutex);
4881 }
4882
4883 /**
4884 * freeze_workqueues_busy - are freezable workqueues still busy?
4885 *
4886 * Check whether freezing is complete. This function must be called
4887 * between freeze_workqueues_begin() and thaw_workqueues().
4888 *
4889 * CONTEXT:
4890 * Grabs and releases wq_pool_mutex.
4891 *
4892 * Return:
4893 * %true if some freezable workqueues are still busy. %false if freezing
4894 * is complete.
4895 */
4896 bool freeze_workqueues_busy(void)
4897 {
4898 bool busy = false;
4899 struct workqueue_struct *wq;
4900 struct pool_workqueue *pwq;
4901
4902 mutex_lock(&wq_pool_mutex);
4903
4904 WARN_ON_ONCE(!workqueue_freezing);
4905
4906 list_for_each_entry(wq, &workqueues, list) {
4907 if (!(wq->flags & WQ_FREEZABLE))
4908 continue;
4909 /*
4910 * nr_active is monotonically decreasing. It's safe
4911 * to peek without lock.
4912 */
4913 rcu_read_lock_sched();
4914 for_each_pwq(pwq, wq) {
4915 WARN_ON_ONCE(pwq->nr_active < 0);
4916 if (pwq->nr_active) {
4917 busy = true;
4918 rcu_read_unlock_sched();
4919 goto out_unlock;
4920 }
4921 }
4922 rcu_read_unlock_sched();
4923 }
4924 out_unlock:
4925 mutex_unlock(&wq_pool_mutex);
4926 return busy;
4927 }
4928
4929 /**
4930 * thaw_workqueues - thaw workqueues
4931 *
4932 * Thaw workqueues. Normal queueing is restored and all collected
4933 * frozen works are transferred to their respective pool worklists.
4934 *
4935 * CONTEXT:
4936 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4937 */
4938 void thaw_workqueues(void)
4939 {
4940 struct workqueue_struct *wq;
4941 struct pool_workqueue *pwq;
4942 struct worker_pool *pool;
4943 int pi;
4944
4945 mutex_lock(&wq_pool_mutex);
4946
4947 if (!workqueue_freezing)
4948 goto out_unlock;
4949
4950 /* clear FREEZING */
4951 for_each_pool(pool, pi) {
4952 spin_lock_irq(&pool->lock);
4953 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4954 pool->flags &= ~POOL_FREEZING;
4955 spin_unlock_irq(&pool->lock);
4956 }
4957
4958 /* restore max_active and repopulate worklist */
4959 list_for_each_entry(wq, &workqueues, list) {
4960 mutex_lock(&wq->mutex);
4961 for_each_pwq(pwq, wq)
4962 pwq_adjust_max_active(pwq);
4963 mutex_unlock(&wq->mutex);
4964 }
4965
4966 workqueue_freezing = false;
4967 out_unlock:
4968 mutex_unlock(&wq_pool_mutex);
4969 }
4970 #endif /* CONFIG_FREEZER */
4971
4972 static void __init wq_numa_init(void)
4973 {
4974 cpumask_var_t *tbl;
4975 int node, cpu;
4976
4977 /* determine NUMA pwq table len - highest node id + 1 */
4978 for_each_node(node)
4979 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4980
4981 if (num_possible_nodes() <= 1)
4982 return;
4983
4984 if (wq_disable_numa) {
4985 pr_info("workqueue: NUMA affinity support disabled\n");
4986 return;
4987 }
4988
4989 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4990 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4991
4992 /*
4993 * We want masks of possible CPUs of each node which isn't readily
4994 * available. Build one from cpu_to_node() which should have been
4995 * fully initialized by now.
4996 */
4997 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4998 BUG_ON(!tbl);
4999
5000 for_each_node(node)
5001 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5002 node_online(node) ? node : NUMA_NO_NODE));
5003
5004 for_each_possible_cpu(cpu) {
5005 node = cpu_to_node(cpu);
5006 if (WARN_ON(node == NUMA_NO_NODE)) {
5007 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5008 /* happens iff arch is bonkers, let's just proceed */
5009 return;
5010 }
5011 cpumask_set_cpu(cpu, tbl[node]);
5012 }
5013
5014 wq_numa_possible_cpumask = tbl;
5015 wq_numa_enabled = true;
5016 }
5017
5018 static int __init init_workqueues(void)
5019 {
5020 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5021 int i, cpu;
5022
5023 /* make sure we have enough bits for OFFQ pool ID */
5024 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5025 WORK_CPU_END * NR_STD_WORKER_POOLS);
5026
5027 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5028
5029 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5030
5031 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5032 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5033
5034 wq_numa_init();
5035
5036 /* initialize CPU pools */
5037 for_each_possible_cpu(cpu) {
5038 struct worker_pool *pool;
5039
5040 i = 0;
5041 for_each_cpu_worker_pool(pool, cpu) {
5042 BUG_ON(init_worker_pool(pool));
5043 pool->cpu = cpu;
5044 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5045 pool->attrs->nice = std_nice[i++];
5046 pool->node = cpu_to_node(cpu);
5047
5048 /* alloc pool ID */
5049 mutex_lock(&wq_pool_mutex);
5050 BUG_ON(worker_pool_assign_id(pool));
5051 mutex_unlock(&wq_pool_mutex);
5052 }
5053 }
5054
5055 /* create the initial worker */
5056 for_each_online_cpu(cpu) {
5057 struct worker_pool *pool;
5058
5059 for_each_cpu_worker_pool(pool, cpu) {
5060 pool->flags &= ~POOL_DISASSOCIATED;
5061 BUG_ON(create_and_start_worker(pool) < 0);
5062 }
5063 }
5064
5065 /* create default unbound and ordered wq attrs */
5066 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5067 struct workqueue_attrs *attrs;
5068
5069 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5070 attrs->nice = std_nice[i];
5071 unbound_std_wq_attrs[i] = attrs;
5072
5073 /*
5074 * An ordered wq should have only one pwq as ordering is
5075 * guaranteed by max_active which is enforced by pwqs.
5076 * Turn off NUMA so that dfl_pwq is used for all nodes.
5077 */
5078 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5079 attrs->nice = std_nice[i];
5080 attrs->no_numa = true;
5081 ordered_wq_attrs[i] = attrs;
5082 }
5083
5084 system_wq = alloc_workqueue("events", 0, 0);
5085 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5086 system_long_wq = alloc_workqueue("events_long", 0, 0);
5087 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5088 WQ_UNBOUND_MAX_ACTIVE);
5089 system_freezable_wq = alloc_workqueue("events_freezable",
5090 WQ_FREEZABLE, 0);
5091 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5092 WQ_POWER_EFFICIENT, 0);
5093 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5094 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5095 0);
5096 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5097 !system_unbound_wq || !system_freezable_wq ||
5098 !system_power_efficient_wq ||
5099 !system_freezable_power_efficient_wq);
5100 return 0;
5101 }
5102 early_initcall(init_workqueues);
This page took 2.66124 seconds and 5 git commands to generate.