workqueue: remove unbound_std_worker_pools[] and related helpers
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47
48 #include "workqueue_internal.h"
49
50 enum {
51 /*
52 * worker_pool flags
53 *
54 * A bound pool is either associated or disassociated with its CPU.
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
61 * be executing on any CPU. The pool behaves as an unbound one.
62 *
63 * Note that DISASSOCIATED can be flipped only while holding
64 * assoc_mutex to avoid changing binding state while
65 * create_worker() is in progress.
66 */
67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
69 POOL_FREEZING = 1 << 3, /* freeze in progress */
70
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
83
84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
86
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
101 HIGHPRI_NICE_LEVEL = -20,
102 };
103
104 /*
105 * Structure fields follow one of the following exclusion rules.
106 *
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
109 *
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
113 * L: pool->lock protected. Access with pool->lock held.
114 *
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
119 *
120 * F: wq->flush_mutex protected.
121 *
122 * W: workqueue_lock protected.
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
125 */
126
127 /* struct worker is defined in workqueue_internal.h */
128
129 struct worker_pool {
130 spinlock_t lock; /* the pool lock */
131 int cpu; /* I: the associated cpu */
132 int id; /* I: pool ID */
133 unsigned int flags; /* X: flags */
134
135 struct list_head worklist; /* L: list of pending works */
136 int nr_workers; /* L: total number of workers */
137
138 /* nr_idle includes the ones off idle_list for rebinding */
139 int nr_idle; /* L: currently idle ones */
140
141 struct list_head idle_list; /* X: list of idle workers */
142 struct timer_list idle_timer; /* L: worker idle timeout */
143 struct timer_list mayday_timer; /* L: SOS timer for workers */
144
145 /* workers are chained either in busy_hash or idle_list */
146 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
147 /* L: hash of busy workers */
148
149 struct mutex manager_arb; /* manager arbitration */
150 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
151 struct ida worker_ida; /* L: for worker IDs */
152
153 struct workqueue_attrs *attrs; /* I: worker attributes */
154 struct hlist_node hash_node; /* R: unbound_pool_hash node */
155 int refcnt; /* refcnt for unbound pools */
156
157 /*
158 * The current concurrency level. As it's likely to be accessed
159 * from other CPUs during try_to_wake_up(), put it in a separate
160 * cacheline.
161 */
162 atomic_t nr_running ____cacheline_aligned_in_smp;
163
164 /*
165 * Destruction of pool is sched-RCU protected to allow dereferences
166 * from get_work_pool().
167 */
168 struct rcu_head rcu;
169 } ____cacheline_aligned_in_smp;
170
171 /*
172 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
173 * of work_struct->data are used for flags and the remaining high bits
174 * point to the pwq; thus, pwqs need to be aligned at two's power of the
175 * number of flag bits.
176 */
177 struct pool_workqueue {
178 struct worker_pool *pool; /* I: the associated pool */
179 struct workqueue_struct *wq; /* I: the owning workqueue */
180 int work_color; /* L: current color */
181 int flush_color; /* L: flushing color */
182 int nr_in_flight[WORK_NR_COLORS];
183 /* L: nr of in_flight works */
184 int nr_active; /* L: nr of active works */
185 int max_active; /* L: max active works */
186 struct list_head delayed_works; /* L: delayed works */
187 struct list_head pwqs_node; /* R: node on wq->pwqs */
188 struct list_head mayday_node; /* W: node on wq->maydays */
189 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
190
191 /*
192 * Structure used to wait for workqueue flush.
193 */
194 struct wq_flusher {
195 struct list_head list; /* F: list of flushers */
196 int flush_color; /* F: flush color waiting for */
197 struct completion done; /* flush completion */
198 };
199
200 /*
201 * The externally visible workqueue abstraction is an array of
202 * per-CPU workqueues:
203 */
204 struct workqueue_struct {
205 unsigned int flags; /* W: WQ_* flags */
206 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
207 struct list_head pwqs; /* R: all pwqs of this wq */
208 struct list_head list; /* W: list of all workqueues */
209
210 struct mutex flush_mutex; /* protects wq flushing */
211 int work_color; /* F: current work color */
212 int flush_color; /* F: current flush color */
213 atomic_t nr_pwqs_to_flush; /* flush in progress */
214 struct wq_flusher *first_flusher; /* F: first flusher */
215 struct list_head flusher_queue; /* F: flush waiters */
216 struct list_head flusher_overflow; /* F: flush overflow list */
217
218 struct list_head maydays; /* W: pwqs requesting rescue */
219 struct worker *rescuer; /* I: rescue worker */
220
221 int nr_drainers; /* W: drain in progress */
222 int saved_max_active; /* W: saved pwq max_active */
223 #ifdef CONFIG_LOCKDEP
224 struct lockdep_map lockdep_map;
225 #endif
226 char name[]; /* I: workqueue name */
227 };
228
229 static struct kmem_cache *pwq_cache;
230
231 /* hash of all unbound pools keyed by pool->attrs */
232 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
233
234 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
235
236 struct workqueue_struct *system_wq __read_mostly;
237 EXPORT_SYMBOL_GPL(system_wq);
238 struct workqueue_struct *system_highpri_wq __read_mostly;
239 EXPORT_SYMBOL_GPL(system_highpri_wq);
240 struct workqueue_struct *system_long_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_long_wq);
242 struct workqueue_struct *system_unbound_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_unbound_wq);
244 struct workqueue_struct *system_freezable_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_freezable_wq);
246
247 #define CREATE_TRACE_POINTS
248 #include <trace/events/workqueue.h>
249
250 #define assert_rcu_or_wq_lock() \
251 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
252 lockdep_is_held(&workqueue_lock), \
253 "sched RCU or workqueue lock should be held")
254
255 #define for_each_std_worker_pool(pool, cpu) \
256 for ((pool) = &per_cpu(cpu_std_worker_pools, cpu)[0]; \
257 (pool) < &per_cpu(cpu_std_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
258 (pool)++)
259
260 #define for_each_busy_worker(worker, i, pool) \
261 hash_for_each(pool->busy_hash, i, worker, hentry)
262
263 /**
264 * for_each_pool - iterate through all worker_pools in the system
265 * @pool: iteration cursor
266 * @id: integer used for iteration
267 *
268 * This must be called either with workqueue_lock held or sched RCU read
269 * locked. If the pool needs to be used beyond the locking in effect, the
270 * caller is responsible for guaranteeing that the pool stays online.
271 *
272 * The if/else clause exists only for the lockdep assertion and can be
273 * ignored.
274 */
275 #define for_each_pool(pool, id) \
276 idr_for_each_entry(&worker_pool_idr, pool, id) \
277 if (({ assert_rcu_or_wq_lock(); false; })) { } \
278 else
279
280 /**
281 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
282 * @pwq: iteration cursor
283 * @wq: the target workqueue
284 *
285 * This must be called either with workqueue_lock held or sched RCU read
286 * locked. If the pwq needs to be used beyond the locking in effect, the
287 * caller is responsible for guaranteeing that the pwq stays online.
288 *
289 * The if/else clause exists only for the lockdep assertion and can be
290 * ignored.
291 */
292 #define for_each_pwq(pwq, wq) \
293 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
294 if (({ assert_rcu_or_wq_lock(); false; })) { } \
295 else
296
297 #ifdef CONFIG_DEBUG_OBJECTS_WORK
298
299 static struct debug_obj_descr work_debug_descr;
300
301 static void *work_debug_hint(void *addr)
302 {
303 return ((struct work_struct *) addr)->func;
304 }
305
306 /*
307 * fixup_init is called when:
308 * - an active object is initialized
309 */
310 static int work_fixup_init(void *addr, enum debug_obj_state state)
311 {
312 struct work_struct *work = addr;
313
314 switch (state) {
315 case ODEBUG_STATE_ACTIVE:
316 cancel_work_sync(work);
317 debug_object_init(work, &work_debug_descr);
318 return 1;
319 default:
320 return 0;
321 }
322 }
323
324 /*
325 * fixup_activate is called when:
326 * - an active object is activated
327 * - an unknown object is activated (might be a statically initialized object)
328 */
329 static int work_fixup_activate(void *addr, enum debug_obj_state state)
330 {
331 struct work_struct *work = addr;
332
333 switch (state) {
334
335 case ODEBUG_STATE_NOTAVAILABLE:
336 /*
337 * This is not really a fixup. The work struct was
338 * statically initialized. We just make sure that it
339 * is tracked in the object tracker.
340 */
341 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
342 debug_object_init(work, &work_debug_descr);
343 debug_object_activate(work, &work_debug_descr);
344 return 0;
345 }
346 WARN_ON_ONCE(1);
347 return 0;
348
349 case ODEBUG_STATE_ACTIVE:
350 WARN_ON(1);
351
352 default:
353 return 0;
354 }
355 }
356
357 /*
358 * fixup_free is called when:
359 * - an active object is freed
360 */
361 static int work_fixup_free(void *addr, enum debug_obj_state state)
362 {
363 struct work_struct *work = addr;
364
365 switch (state) {
366 case ODEBUG_STATE_ACTIVE:
367 cancel_work_sync(work);
368 debug_object_free(work, &work_debug_descr);
369 return 1;
370 default:
371 return 0;
372 }
373 }
374
375 static struct debug_obj_descr work_debug_descr = {
376 .name = "work_struct",
377 .debug_hint = work_debug_hint,
378 .fixup_init = work_fixup_init,
379 .fixup_activate = work_fixup_activate,
380 .fixup_free = work_fixup_free,
381 };
382
383 static inline void debug_work_activate(struct work_struct *work)
384 {
385 debug_object_activate(work, &work_debug_descr);
386 }
387
388 static inline void debug_work_deactivate(struct work_struct *work)
389 {
390 debug_object_deactivate(work, &work_debug_descr);
391 }
392
393 void __init_work(struct work_struct *work, int onstack)
394 {
395 if (onstack)
396 debug_object_init_on_stack(work, &work_debug_descr);
397 else
398 debug_object_init(work, &work_debug_descr);
399 }
400 EXPORT_SYMBOL_GPL(__init_work);
401
402 void destroy_work_on_stack(struct work_struct *work)
403 {
404 debug_object_free(work, &work_debug_descr);
405 }
406 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
407
408 #else
409 static inline void debug_work_activate(struct work_struct *work) { }
410 static inline void debug_work_deactivate(struct work_struct *work) { }
411 #endif
412
413 /* Serializes the accesses to the list of workqueues. */
414 static DEFINE_SPINLOCK(workqueue_lock);
415 static LIST_HEAD(workqueues);
416 static bool workqueue_freezing; /* W: have wqs started freezing? */
417
418 /*
419 * The CPU and unbound standard worker pools. The unbound ones have
420 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
421 */
422 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
423 cpu_std_worker_pools);
424
425 /*
426 * idr of all pools. Modifications are protected by workqueue_lock. Read
427 * accesses are protected by sched-RCU protected.
428 */
429 static DEFINE_IDR(worker_pool_idr);
430
431 static int worker_thread(void *__worker);
432
433 /* allocate ID and assign it to @pool */
434 static int worker_pool_assign_id(struct worker_pool *pool)
435 {
436 int ret;
437
438 do {
439 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
440 return -ENOMEM;
441
442 spin_lock_irq(&workqueue_lock);
443 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
444 spin_unlock_irq(&workqueue_lock);
445 } while (ret == -EAGAIN);
446
447 return ret;
448 }
449
450 /**
451 * first_pwq - return the first pool_workqueue of the specified workqueue
452 * @wq: the target workqueue
453 *
454 * This must be called either with workqueue_lock held or sched RCU read
455 * locked. If the pwq needs to be used beyond the locking in effect, the
456 * caller is responsible for guaranteeing that the pwq stays online.
457 */
458 static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
459 {
460 assert_rcu_or_wq_lock();
461 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
462 pwqs_node);
463 }
464
465 static unsigned int work_color_to_flags(int color)
466 {
467 return color << WORK_STRUCT_COLOR_SHIFT;
468 }
469
470 static int get_work_color(struct work_struct *work)
471 {
472 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
473 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
474 }
475
476 static int work_next_color(int color)
477 {
478 return (color + 1) % WORK_NR_COLORS;
479 }
480
481 /*
482 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
483 * contain the pointer to the queued pwq. Once execution starts, the flag
484 * is cleared and the high bits contain OFFQ flags and pool ID.
485 *
486 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
487 * and clear_work_data() can be used to set the pwq, pool or clear
488 * work->data. These functions should only be called while the work is
489 * owned - ie. while the PENDING bit is set.
490 *
491 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
492 * corresponding to a work. Pool is available once the work has been
493 * queued anywhere after initialization until it is sync canceled. pwq is
494 * available only while the work item is queued.
495 *
496 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
497 * canceled. While being canceled, a work item may have its PENDING set
498 * but stay off timer and worklist for arbitrarily long and nobody should
499 * try to steal the PENDING bit.
500 */
501 static inline void set_work_data(struct work_struct *work, unsigned long data,
502 unsigned long flags)
503 {
504 WARN_ON_ONCE(!work_pending(work));
505 atomic_long_set(&work->data, data | flags | work_static(work));
506 }
507
508 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
509 unsigned long extra_flags)
510 {
511 set_work_data(work, (unsigned long)pwq,
512 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
513 }
514
515 static void set_work_pool_and_keep_pending(struct work_struct *work,
516 int pool_id)
517 {
518 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
519 WORK_STRUCT_PENDING);
520 }
521
522 static void set_work_pool_and_clear_pending(struct work_struct *work,
523 int pool_id)
524 {
525 /*
526 * The following wmb is paired with the implied mb in
527 * test_and_set_bit(PENDING) and ensures all updates to @work made
528 * here are visible to and precede any updates by the next PENDING
529 * owner.
530 */
531 smp_wmb();
532 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
533 }
534
535 static void clear_work_data(struct work_struct *work)
536 {
537 smp_wmb(); /* see set_work_pool_and_clear_pending() */
538 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
539 }
540
541 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
542 {
543 unsigned long data = atomic_long_read(&work->data);
544
545 if (data & WORK_STRUCT_PWQ)
546 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
547 else
548 return NULL;
549 }
550
551 /**
552 * get_work_pool - return the worker_pool a given work was associated with
553 * @work: the work item of interest
554 *
555 * Return the worker_pool @work was last associated with. %NULL if none.
556 *
557 * Pools are created and destroyed under workqueue_lock, and allows read
558 * access under sched-RCU read lock. As such, this function should be
559 * called under workqueue_lock or with preemption disabled.
560 *
561 * All fields of the returned pool are accessible as long as the above
562 * mentioned locking is in effect. If the returned pool needs to be used
563 * beyond the critical section, the caller is responsible for ensuring the
564 * returned pool is and stays online.
565 */
566 static struct worker_pool *get_work_pool(struct work_struct *work)
567 {
568 unsigned long data = atomic_long_read(&work->data);
569 int pool_id;
570
571 assert_rcu_or_wq_lock();
572
573 if (data & WORK_STRUCT_PWQ)
574 return ((struct pool_workqueue *)
575 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
576
577 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
578 if (pool_id == WORK_OFFQ_POOL_NONE)
579 return NULL;
580
581 return idr_find(&worker_pool_idr, pool_id);
582 }
583
584 /**
585 * get_work_pool_id - return the worker pool ID a given work is associated with
586 * @work: the work item of interest
587 *
588 * Return the worker_pool ID @work was last associated with.
589 * %WORK_OFFQ_POOL_NONE if none.
590 */
591 static int get_work_pool_id(struct work_struct *work)
592 {
593 unsigned long data = atomic_long_read(&work->data);
594
595 if (data & WORK_STRUCT_PWQ)
596 return ((struct pool_workqueue *)
597 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
598
599 return data >> WORK_OFFQ_POOL_SHIFT;
600 }
601
602 static void mark_work_canceling(struct work_struct *work)
603 {
604 unsigned long pool_id = get_work_pool_id(work);
605
606 pool_id <<= WORK_OFFQ_POOL_SHIFT;
607 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
608 }
609
610 static bool work_is_canceling(struct work_struct *work)
611 {
612 unsigned long data = atomic_long_read(&work->data);
613
614 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
615 }
616
617 /*
618 * Policy functions. These define the policies on how the global worker
619 * pools are managed. Unless noted otherwise, these functions assume that
620 * they're being called with pool->lock held.
621 */
622
623 static bool __need_more_worker(struct worker_pool *pool)
624 {
625 return !atomic_read(&pool->nr_running);
626 }
627
628 /*
629 * Need to wake up a worker? Called from anything but currently
630 * running workers.
631 *
632 * Note that, because unbound workers never contribute to nr_running, this
633 * function will always return %true for unbound pools as long as the
634 * worklist isn't empty.
635 */
636 static bool need_more_worker(struct worker_pool *pool)
637 {
638 return !list_empty(&pool->worklist) && __need_more_worker(pool);
639 }
640
641 /* Can I start working? Called from busy but !running workers. */
642 static bool may_start_working(struct worker_pool *pool)
643 {
644 return pool->nr_idle;
645 }
646
647 /* Do I need to keep working? Called from currently running workers. */
648 static bool keep_working(struct worker_pool *pool)
649 {
650 return !list_empty(&pool->worklist) &&
651 atomic_read(&pool->nr_running) <= 1;
652 }
653
654 /* Do we need a new worker? Called from manager. */
655 static bool need_to_create_worker(struct worker_pool *pool)
656 {
657 return need_more_worker(pool) && !may_start_working(pool);
658 }
659
660 /* Do I need to be the manager? */
661 static bool need_to_manage_workers(struct worker_pool *pool)
662 {
663 return need_to_create_worker(pool) ||
664 (pool->flags & POOL_MANAGE_WORKERS);
665 }
666
667 /* Do we have too many workers and should some go away? */
668 static bool too_many_workers(struct worker_pool *pool)
669 {
670 bool managing = mutex_is_locked(&pool->manager_arb);
671 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
672 int nr_busy = pool->nr_workers - nr_idle;
673
674 /*
675 * nr_idle and idle_list may disagree if idle rebinding is in
676 * progress. Never return %true if idle_list is empty.
677 */
678 if (list_empty(&pool->idle_list))
679 return false;
680
681 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
682 }
683
684 /*
685 * Wake up functions.
686 */
687
688 /* Return the first worker. Safe with preemption disabled */
689 static struct worker *first_worker(struct worker_pool *pool)
690 {
691 if (unlikely(list_empty(&pool->idle_list)))
692 return NULL;
693
694 return list_first_entry(&pool->idle_list, struct worker, entry);
695 }
696
697 /**
698 * wake_up_worker - wake up an idle worker
699 * @pool: worker pool to wake worker from
700 *
701 * Wake up the first idle worker of @pool.
702 *
703 * CONTEXT:
704 * spin_lock_irq(pool->lock).
705 */
706 static void wake_up_worker(struct worker_pool *pool)
707 {
708 struct worker *worker = first_worker(pool);
709
710 if (likely(worker))
711 wake_up_process(worker->task);
712 }
713
714 /**
715 * wq_worker_waking_up - a worker is waking up
716 * @task: task waking up
717 * @cpu: CPU @task is waking up to
718 *
719 * This function is called during try_to_wake_up() when a worker is
720 * being awoken.
721 *
722 * CONTEXT:
723 * spin_lock_irq(rq->lock)
724 */
725 void wq_worker_waking_up(struct task_struct *task, int cpu)
726 {
727 struct worker *worker = kthread_data(task);
728
729 if (!(worker->flags & WORKER_NOT_RUNNING)) {
730 WARN_ON_ONCE(worker->pool->cpu != cpu);
731 atomic_inc(&worker->pool->nr_running);
732 }
733 }
734
735 /**
736 * wq_worker_sleeping - a worker is going to sleep
737 * @task: task going to sleep
738 * @cpu: CPU in question, must be the current CPU number
739 *
740 * This function is called during schedule() when a busy worker is
741 * going to sleep. Worker on the same cpu can be woken up by
742 * returning pointer to its task.
743 *
744 * CONTEXT:
745 * spin_lock_irq(rq->lock)
746 *
747 * RETURNS:
748 * Worker task on @cpu to wake up, %NULL if none.
749 */
750 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
751 {
752 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
753 struct worker_pool *pool;
754
755 /*
756 * Rescuers, which may not have all the fields set up like normal
757 * workers, also reach here, let's not access anything before
758 * checking NOT_RUNNING.
759 */
760 if (worker->flags & WORKER_NOT_RUNNING)
761 return NULL;
762
763 pool = worker->pool;
764
765 /* this can only happen on the local cpu */
766 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
767 return NULL;
768
769 /*
770 * The counterpart of the following dec_and_test, implied mb,
771 * worklist not empty test sequence is in insert_work().
772 * Please read comment there.
773 *
774 * NOT_RUNNING is clear. This means that we're bound to and
775 * running on the local cpu w/ rq lock held and preemption
776 * disabled, which in turn means that none else could be
777 * manipulating idle_list, so dereferencing idle_list without pool
778 * lock is safe.
779 */
780 if (atomic_dec_and_test(&pool->nr_running) &&
781 !list_empty(&pool->worklist))
782 to_wakeup = first_worker(pool);
783 return to_wakeup ? to_wakeup->task : NULL;
784 }
785
786 /**
787 * worker_set_flags - set worker flags and adjust nr_running accordingly
788 * @worker: self
789 * @flags: flags to set
790 * @wakeup: wakeup an idle worker if necessary
791 *
792 * Set @flags in @worker->flags and adjust nr_running accordingly. If
793 * nr_running becomes zero and @wakeup is %true, an idle worker is
794 * woken up.
795 *
796 * CONTEXT:
797 * spin_lock_irq(pool->lock)
798 */
799 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
800 bool wakeup)
801 {
802 struct worker_pool *pool = worker->pool;
803
804 WARN_ON_ONCE(worker->task != current);
805
806 /*
807 * If transitioning into NOT_RUNNING, adjust nr_running and
808 * wake up an idle worker as necessary if requested by
809 * @wakeup.
810 */
811 if ((flags & WORKER_NOT_RUNNING) &&
812 !(worker->flags & WORKER_NOT_RUNNING)) {
813 if (wakeup) {
814 if (atomic_dec_and_test(&pool->nr_running) &&
815 !list_empty(&pool->worklist))
816 wake_up_worker(pool);
817 } else
818 atomic_dec(&pool->nr_running);
819 }
820
821 worker->flags |= flags;
822 }
823
824 /**
825 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
826 * @worker: self
827 * @flags: flags to clear
828 *
829 * Clear @flags in @worker->flags and adjust nr_running accordingly.
830 *
831 * CONTEXT:
832 * spin_lock_irq(pool->lock)
833 */
834 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
835 {
836 struct worker_pool *pool = worker->pool;
837 unsigned int oflags = worker->flags;
838
839 WARN_ON_ONCE(worker->task != current);
840
841 worker->flags &= ~flags;
842
843 /*
844 * If transitioning out of NOT_RUNNING, increment nr_running. Note
845 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
846 * of multiple flags, not a single flag.
847 */
848 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
849 if (!(worker->flags & WORKER_NOT_RUNNING))
850 atomic_inc(&pool->nr_running);
851 }
852
853 /**
854 * find_worker_executing_work - find worker which is executing a work
855 * @pool: pool of interest
856 * @work: work to find worker for
857 *
858 * Find a worker which is executing @work on @pool by searching
859 * @pool->busy_hash which is keyed by the address of @work. For a worker
860 * to match, its current execution should match the address of @work and
861 * its work function. This is to avoid unwanted dependency between
862 * unrelated work executions through a work item being recycled while still
863 * being executed.
864 *
865 * This is a bit tricky. A work item may be freed once its execution
866 * starts and nothing prevents the freed area from being recycled for
867 * another work item. If the same work item address ends up being reused
868 * before the original execution finishes, workqueue will identify the
869 * recycled work item as currently executing and make it wait until the
870 * current execution finishes, introducing an unwanted dependency.
871 *
872 * This function checks the work item address, work function and workqueue
873 * to avoid false positives. Note that this isn't complete as one may
874 * construct a work function which can introduce dependency onto itself
875 * through a recycled work item. Well, if somebody wants to shoot oneself
876 * in the foot that badly, there's only so much we can do, and if such
877 * deadlock actually occurs, it should be easy to locate the culprit work
878 * function.
879 *
880 * CONTEXT:
881 * spin_lock_irq(pool->lock).
882 *
883 * RETURNS:
884 * Pointer to worker which is executing @work if found, NULL
885 * otherwise.
886 */
887 static struct worker *find_worker_executing_work(struct worker_pool *pool,
888 struct work_struct *work)
889 {
890 struct worker *worker;
891
892 hash_for_each_possible(pool->busy_hash, worker, hentry,
893 (unsigned long)work)
894 if (worker->current_work == work &&
895 worker->current_func == work->func)
896 return worker;
897
898 return NULL;
899 }
900
901 /**
902 * move_linked_works - move linked works to a list
903 * @work: start of series of works to be scheduled
904 * @head: target list to append @work to
905 * @nextp: out paramter for nested worklist walking
906 *
907 * Schedule linked works starting from @work to @head. Work series to
908 * be scheduled starts at @work and includes any consecutive work with
909 * WORK_STRUCT_LINKED set in its predecessor.
910 *
911 * If @nextp is not NULL, it's updated to point to the next work of
912 * the last scheduled work. This allows move_linked_works() to be
913 * nested inside outer list_for_each_entry_safe().
914 *
915 * CONTEXT:
916 * spin_lock_irq(pool->lock).
917 */
918 static void move_linked_works(struct work_struct *work, struct list_head *head,
919 struct work_struct **nextp)
920 {
921 struct work_struct *n;
922
923 /*
924 * Linked worklist will always end before the end of the list,
925 * use NULL for list head.
926 */
927 list_for_each_entry_safe_from(work, n, NULL, entry) {
928 list_move_tail(&work->entry, head);
929 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
930 break;
931 }
932
933 /*
934 * If we're already inside safe list traversal and have moved
935 * multiple works to the scheduled queue, the next position
936 * needs to be updated.
937 */
938 if (nextp)
939 *nextp = n;
940 }
941
942 static void pwq_activate_delayed_work(struct work_struct *work)
943 {
944 struct pool_workqueue *pwq = get_work_pwq(work);
945
946 trace_workqueue_activate_work(work);
947 move_linked_works(work, &pwq->pool->worklist, NULL);
948 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
949 pwq->nr_active++;
950 }
951
952 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
953 {
954 struct work_struct *work = list_first_entry(&pwq->delayed_works,
955 struct work_struct, entry);
956
957 pwq_activate_delayed_work(work);
958 }
959
960 /**
961 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
962 * @pwq: pwq of interest
963 * @color: color of work which left the queue
964 *
965 * A work either has completed or is removed from pending queue,
966 * decrement nr_in_flight of its pwq and handle workqueue flushing.
967 *
968 * CONTEXT:
969 * spin_lock_irq(pool->lock).
970 */
971 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
972 {
973 /* ignore uncolored works */
974 if (color == WORK_NO_COLOR)
975 return;
976
977 pwq->nr_in_flight[color]--;
978
979 pwq->nr_active--;
980 if (!list_empty(&pwq->delayed_works)) {
981 /* one down, submit a delayed one */
982 if (pwq->nr_active < pwq->max_active)
983 pwq_activate_first_delayed(pwq);
984 }
985
986 /* is flush in progress and are we at the flushing tip? */
987 if (likely(pwq->flush_color != color))
988 return;
989
990 /* are there still in-flight works? */
991 if (pwq->nr_in_flight[color])
992 return;
993
994 /* this pwq is done, clear flush_color */
995 pwq->flush_color = -1;
996
997 /*
998 * If this was the last pwq, wake up the first flusher. It
999 * will handle the rest.
1000 */
1001 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1002 complete(&pwq->wq->first_flusher->done);
1003 }
1004
1005 /**
1006 * try_to_grab_pending - steal work item from worklist and disable irq
1007 * @work: work item to steal
1008 * @is_dwork: @work is a delayed_work
1009 * @flags: place to store irq state
1010 *
1011 * Try to grab PENDING bit of @work. This function can handle @work in any
1012 * stable state - idle, on timer or on worklist. Return values are
1013 *
1014 * 1 if @work was pending and we successfully stole PENDING
1015 * 0 if @work was idle and we claimed PENDING
1016 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1017 * -ENOENT if someone else is canceling @work, this state may persist
1018 * for arbitrarily long
1019 *
1020 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1021 * interrupted while holding PENDING and @work off queue, irq must be
1022 * disabled on entry. This, combined with delayed_work->timer being
1023 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1024 *
1025 * On successful return, >= 0, irq is disabled and the caller is
1026 * responsible for releasing it using local_irq_restore(*@flags).
1027 *
1028 * This function is safe to call from any context including IRQ handler.
1029 */
1030 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1031 unsigned long *flags)
1032 {
1033 struct worker_pool *pool;
1034 struct pool_workqueue *pwq;
1035
1036 local_irq_save(*flags);
1037
1038 /* try to steal the timer if it exists */
1039 if (is_dwork) {
1040 struct delayed_work *dwork = to_delayed_work(work);
1041
1042 /*
1043 * dwork->timer is irqsafe. If del_timer() fails, it's
1044 * guaranteed that the timer is not queued anywhere and not
1045 * running on the local CPU.
1046 */
1047 if (likely(del_timer(&dwork->timer)))
1048 return 1;
1049 }
1050
1051 /* try to claim PENDING the normal way */
1052 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1053 return 0;
1054
1055 /*
1056 * The queueing is in progress, or it is already queued. Try to
1057 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1058 */
1059 pool = get_work_pool(work);
1060 if (!pool)
1061 goto fail;
1062
1063 spin_lock(&pool->lock);
1064 /*
1065 * work->data is guaranteed to point to pwq only while the work
1066 * item is queued on pwq->wq, and both updating work->data to point
1067 * to pwq on queueing and to pool on dequeueing are done under
1068 * pwq->pool->lock. This in turn guarantees that, if work->data
1069 * points to pwq which is associated with a locked pool, the work
1070 * item is currently queued on that pool.
1071 */
1072 pwq = get_work_pwq(work);
1073 if (pwq && pwq->pool == pool) {
1074 debug_work_deactivate(work);
1075
1076 /*
1077 * A delayed work item cannot be grabbed directly because
1078 * it might have linked NO_COLOR work items which, if left
1079 * on the delayed_list, will confuse pwq->nr_active
1080 * management later on and cause stall. Make sure the work
1081 * item is activated before grabbing.
1082 */
1083 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1084 pwq_activate_delayed_work(work);
1085
1086 list_del_init(&work->entry);
1087 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1088
1089 /* work->data points to pwq iff queued, point to pool */
1090 set_work_pool_and_keep_pending(work, pool->id);
1091
1092 spin_unlock(&pool->lock);
1093 return 1;
1094 }
1095 spin_unlock(&pool->lock);
1096 fail:
1097 local_irq_restore(*flags);
1098 if (work_is_canceling(work))
1099 return -ENOENT;
1100 cpu_relax();
1101 return -EAGAIN;
1102 }
1103
1104 /**
1105 * insert_work - insert a work into a pool
1106 * @pwq: pwq @work belongs to
1107 * @work: work to insert
1108 * @head: insertion point
1109 * @extra_flags: extra WORK_STRUCT_* flags to set
1110 *
1111 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1112 * work_struct flags.
1113 *
1114 * CONTEXT:
1115 * spin_lock_irq(pool->lock).
1116 */
1117 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1118 struct list_head *head, unsigned int extra_flags)
1119 {
1120 struct worker_pool *pool = pwq->pool;
1121
1122 /* we own @work, set data and link */
1123 set_work_pwq(work, pwq, extra_flags);
1124 list_add_tail(&work->entry, head);
1125
1126 /*
1127 * Ensure either worker_sched_deactivated() sees the above
1128 * list_add_tail() or we see zero nr_running to avoid workers
1129 * lying around lazily while there are works to be processed.
1130 */
1131 smp_mb();
1132
1133 if (__need_more_worker(pool))
1134 wake_up_worker(pool);
1135 }
1136
1137 /*
1138 * Test whether @work is being queued from another work executing on the
1139 * same workqueue.
1140 */
1141 static bool is_chained_work(struct workqueue_struct *wq)
1142 {
1143 struct worker *worker;
1144
1145 worker = current_wq_worker();
1146 /*
1147 * Return %true iff I'm a worker execuing a work item on @wq. If
1148 * I'm @worker, it's safe to dereference it without locking.
1149 */
1150 return worker && worker->current_pwq->wq == wq;
1151 }
1152
1153 static void __queue_work(int cpu, struct workqueue_struct *wq,
1154 struct work_struct *work)
1155 {
1156 struct pool_workqueue *pwq;
1157 struct list_head *worklist;
1158 unsigned int work_flags;
1159 unsigned int req_cpu = cpu;
1160
1161 /*
1162 * While a work item is PENDING && off queue, a task trying to
1163 * steal the PENDING will busy-loop waiting for it to either get
1164 * queued or lose PENDING. Grabbing PENDING and queueing should
1165 * happen with IRQ disabled.
1166 */
1167 WARN_ON_ONCE(!irqs_disabled());
1168
1169 debug_work_activate(work);
1170
1171 /* if dying, only works from the same workqueue are allowed */
1172 if (unlikely(wq->flags & WQ_DRAINING) &&
1173 WARN_ON_ONCE(!is_chained_work(wq)))
1174 return;
1175
1176 /* determine the pwq to use */
1177 if (!(wq->flags & WQ_UNBOUND)) {
1178 struct worker_pool *last_pool;
1179
1180 if (cpu == WORK_CPU_UNBOUND)
1181 cpu = raw_smp_processor_id();
1182
1183 /*
1184 * It's multi cpu. If @work was previously on a different
1185 * cpu, it might still be running there, in which case the
1186 * work needs to be queued on that cpu to guarantee
1187 * non-reentrancy.
1188 */
1189 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1190 last_pool = get_work_pool(work);
1191
1192 if (last_pool && last_pool != pwq->pool) {
1193 struct worker *worker;
1194
1195 spin_lock(&last_pool->lock);
1196
1197 worker = find_worker_executing_work(last_pool, work);
1198
1199 if (worker && worker->current_pwq->wq == wq) {
1200 pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1201 } else {
1202 /* meh... not running there, queue here */
1203 spin_unlock(&last_pool->lock);
1204 spin_lock(&pwq->pool->lock);
1205 }
1206 } else {
1207 spin_lock(&pwq->pool->lock);
1208 }
1209 } else {
1210 pwq = first_pwq(wq);
1211 spin_lock(&pwq->pool->lock);
1212 }
1213
1214 /* pwq determined, queue */
1215 trace_workqueue_queue_work(req_cpu, pwq, work);
1216
1217 if (WARN_ON(!list_empty(&work->entry))) {
1218 spin_unlock(&pwq->pool->lock);
1219 return;
1220 }
1221
1222 pwq->nr_in_flight[pwq->work_color]++;
1223 work_flags = work_color_to_flags(pwq->work_color);
1224
1225 if (likely(pwq->nr_active < pwq->max_active)) {
1226 trace_workqueue_activate_work(work);
1227 pwq->nr_active++;
1228 worklist = &pwq->pool->worklist;
1229 } else {
1230 work_flags |= WORK_STRUCT_DELAYED;
1231 worklist = &pwq->delayed_works;
1232 }
1233
1234 insert_work(pwq, work, worklist, work_flags);
1235
1236 spin_unlock(&pwq->pool->lock);
1237 }
1238
1239 /**
1240 * queue_work_on - queue work on specific cpu
1241 * @cpu: CPU number to execute work on
1242 * @wq: workqueue to use
1243 * @work: work to queue
1244 *
1245 * Returns %false if @work was already on a queue, %true otherwise.
1246 *
1247 * We queue the work to a specific CPU, the caller must ensure it
1248 * can't go away.
1249 */
1250 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1251 struct work_struct *work)
1252 {
1253 bool ret = false;
1254 unsigned long flags;
1255
1256 local_irq_save(flags);
1257
1258 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1259 __queue_work(cpu, wq, work);
1260 ret = true;
1261 }
1262
1263 local_irq_restore(flags);
1264 return ret;
1265 }
1266 EXPORT_SYMBOL_GPL(queue_work_on);
1267
1268 /**
1269 * queue_work - queue work on a workqueue
1270 * @wq: workqueue to use
1271 * @work: work to queue
1272 *
1273 * Returns %false if @work was already on a queue, %true otherwise.
1274 *
1275 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1276 * it can be processed by another CPU.
1277 */
1278 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1279 {
1280 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1281 }
1282 EXPORT_SYMBOL_GPL(queue_work);
1283
1284 void delayed_work_timer_fn(unsigned long __data)
1285 {
1286 struct delayed_work *dwork = (struct delayed_work *)__data;
1287
1288 /* should have been called from irqsafe timer with irq already off */
1289 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1290 }
1291 EXPORT_SYMBOL(delayed_work_timer_fn);
1292
1293 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1294 struct delayed_work *dwork, unsigned long delay)
1295 {
1296 struct timer_list *timer = &dwork->timer;
1297 struct work_struct *work = &dwork->work;
1298
1299 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1300 timer->data != (unsigned long)dwork);
1301 WARN_ON_ONCE(timer_pending(timer));
1302 WARN_ON_ONCE(!list_empty(&work->entry));
1303
1304 /*
1305 * If @delay is 0, queue @dwork->work immediately. This is for
1306 * both optimization and correctness. The earliest @timer can
1307 * expire is on the closest next tick and delayed_work users depend
1308 * on that there's no such delay when @delay is 0.
1309 */
1310 if (!delay) {
1311 __queue_work(cpu, wq, &dwork->work);
1312 return;
1313 }
1314
1315 timer_stats_timer_set_start_info(&dwork->timer);
1316
1317 dwork->wq = wq;
1318 dwork->cpu = cpu;
1319 timer->expires = jiffies + delay;
1320
1321 if (unlikely(cpu != WORK_CPU_UNBOUND))
1322 add_timer_on(timer, cpu);
1323 else
1324 add_timer(timer);
1325 }
1326
1327 /**
1328 * queue_delayed_work_on - queue work on specific CPU after delay
1329 * @cpu: CPU number to execute work on
1330 * @wq: workqueue to use
1331 * @dwork: work to queue
1332 * @delay: number of jiffies to wait before queueing
1333 *
1334 * Returns %false if @work was already on a queue, %true otherwise. If
1335 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1336 * execution.
1337 */
1338 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1339 struct delayed_work *dwork, unsigned long delay)
1340 {
1341 struct work_struct *work = &dwork->work;
1342 bool ret = false;
1343 unsigned long flags;
1344
1345 /* read the comment in __queue_work() */
1346 local_irq_save(flags);
1347
1348 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1349 __queue_delayed_work(cpu, wq, dwork, delay);
1350 ret = true;
1351 }
1352
1353 local_irq_restore(flags);
1354 return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1357
1358 /**
1359 * queue_delayed_work - queue work on a workqueue after delay
1360 * @wq: workqueue to use
1361 * @dwork: delayable work to queue
1362 * @delay: number of jiffies to wait before queueing
1363 *
1364 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1365 */
1366 bool queue_delayed_work(struct workqueue_struct *wq,
1367 struct delayed_work *dwork, unsigned long delay)
1368 {
1369 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1370 }
1371 EXPORT_SYMBOL_GPL(queue_delayed_work);
1372
1373 /**
1374 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1375 * @cpu: CPU number to execute work on
1376 * @wq: workqueue to use
1377 * @dwork: work to queue
1378 * @delay: number of jiffies to wait before queueing
1379 *
1380 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1381 * modify @dwork's timer so that it expires after @delay. If @delay is
1382 * zero, @work is guaranteed to be scheduled immediately regardless of its
1383 * current state.
1384 *
1385 * Returns %false if @dwork was idle and queued, %true if @dwork was
1386 * pending and its timer was modified.
1387 *
1388 * This function is safe to call from any context including IRQ handler.
1389 * See try_to_grab_pending() for details.
1390 */
1391 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1392 struct delayed_work *dwork, unsigned long delay)
1393 {
1394 unsigned long flags;
1395 int ret;
1396
1397 do {
1398 ret = try_to_grab_pending(&dwork->work, true, &flags);
1399 } while (unlikely(ret == -EAGAIN));
1400
1401 if (likely(ret >= 0)) {
1402 __queue_delayed_work(cpu, wq, dwork, delay);
1403 local_irq_restore(flags);
1404 }
1405
1406 /* -ENOENT from try_to_grab_pending() becomes %true */
1407 return ret;
1408 }
1409 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1410
1411 /**
1412 * mod_delayed_work - modify delay of or queue a delayed work
1413 * @wq: workqueue to use
1414 * @dwork: work to queue
1415 * @delay: number of jiffies to wait before queueing
1416 *
1417 * mod_delayed_work_on() on local CPU.
1418 */
1419 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1420 unsigned long delay)
1421 {
1422 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1423 }
1424 EXPORT_SYMBOL_GPL(mod_delayed_work);
1425
1426 /**
1427 * worker_enter_idle - enter idle state
1428 * @worker: worker which is entering idle state
1429 *
1430 * @worker is entering idle state. Update stats and idle timer if
1431 * necessary.
1432 *
1433 * LOCKING:
1434 * spin_lock_irq(pool->lock).
1435 */
1436 static void worker_enter_idle(struct worker *worker)
1437 {
1438 struct worker_pool *pool = worker->pool;
1439
1440 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1441 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1442 (worker->hentry.next || worker->hentry.pprev)))
1443 return;
1444
1445 /* can't use worker_set_flags(), also called from start_worker() */
1446 worker->flags |= WORKER_IDLE;
1447 pool->nr_idle++;
1448 worker->last_active = jiffies;
1449
1450 /* idle_list is LIFO */
1451 list_add(&worker->entry, &pool->idle_list);
1452
1453 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1454 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1455
1456 /*
1457 * Sanity check nr_running. Because wq_unbind_fn() releases
1458 * pool->lock between setting %WORKER_UNBOUND and zapping
1459 * nr_running, the warning may trigger spuriously. Check iff
1460 * unbind is not in progress.
1461 */
1462 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1463 pool->nr_workers == pool->nr_idle &&
1464 atomic_read(&pool->nr_running));
1465 }
1466
1467 /**
1468 * worker_leave_idle - leave idle state
1469 * @worker: worker which is leaving idle state
1470 *
1471 * @worker is leaving idle state. Update stats.
1472 *
1473 * LOCKING:
1474 * spin_lock_irq(pool->lock).
1475 */
1476 static void worker_leave_idle(struct worker *worker)
1477 {
1478 struct worker_pool *pool = worker->pool;
1479
1480 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1481 return;
1482 worker_clr_flags(worker, WORKER_IDLE);
1483 pool->nr_idle--;
1484 list_del_init(&worker->entry);
1485 }
1486
1487 /**
1488 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1489 * @pool: target worker_pool
1490 *
1491 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1492 *
1493 * Works which are scheduled while the cpu is online must at least be
1494 * scheduled to a worker which is bound to the cpu so that if they are
1495 * flushed from cpu callbacks while cpu is going down, they are
1496 * guaranteed to execute on the cpu.
1497 *
1498 * This function is to be used by unbound workers and rescuers to bind
1499 * themselves to the target cpu and may race with cpu going down or
1500 * coming online. kthread_bind() can't be used because it may put the
1501 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1502 * verbatim as it's best effort and blocking and pool may be
1503 * [dis]associated in the meantime.
1504 *
1505 * This function tries set_cpus_allowed() and locks pool and verifies the
1506 * binding against %POOL_DISASSOCIATED which is set during
1507 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1508 * enters idle state or fetches works without dropping lock, it can
1509 * guarantee the scheduling requirement described in the first paragraph.
1510 *
1511 * CONTEXT:
1512 * Might sleep. Called without any lock but returns with pool->lock
1513 * held.
1514 *
1515 * RETURNS:
1516 * %true if the associated pool is online (@worker is successfully
1517 * bound), %false if offline.
1518 */
1519 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1520 __acquires(&pool->lock)
1521 {
1522 while (true) {
1523 /*
1524 * The following call may fail, succeed or succeed
1525 * without actually migrating the task to the cpu if
1526 * it races with cpu hotunplug operation. Verify
1527 * against POOL_DISASSOCIATED.
1528 */
1529 if (!(pool->flags & POOL_DISASSOCIATED))
1530 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1531
1532 spin_lock_irq(&pool->lock);
1533 if (pool->flags & POOL_DISASSOCIATED)
1534 return false;
1535 if (task_cpu(current) == pool->cpu &&
1536 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1537 return true;
1538 spin_unlock_irq(&pool->lock);
1539
1540 /*
1541 * We've raced with CPU hot[un]plug. Give it a breather
1542 * and retry migration. cond_resched() is required here;
1543 * otherwise, we might deadlock against cpu_stop trying to
1544 * bring down the CPU on non-preemptive kernel.
1545 */
1546 cpu_relax();
1547 cond_resched();
1548 }
1549 }
1550
1551 /*
1552 * Rebind an idle @worker to its CPU. worker_thread() will test
1553 * list_empty(@worker->entry) before leaving idle and call this function.
1554 */
1555 static void idle_worker_rebind(struct worker *worker)
1556 {
1557 /* CPU may go down again inbetween, clear UNBOUND only on success */
1558 if (worker_maybe_bind_and_lock(worker->pool))
1559 worker_clr_flags(worker, WORKER_UNBOUND);
1560
1561 /* rebind complete, become available again */
1562 list_add(&worker->entry, &worker->pool->idle_list);
1563 spin_unlock_irq(&worker->pool->lock);
1564 }
1565
1566 /*
1567 * Function for @worker->rebind.work used to rebind unbound busy workers to
1568 * the associated cpu which is coming back online. This is scheduled by
1569 * cpu up but can race with other cpu hotplug operations and may be
1570 * executed twice without intervening cpu down.
1571 */
1572 static void busy_worker_rebind_fn(struct work_struct *work)
1573 {
1574 struct worker *worker = container_of(work, struct worker, rebind_work);
1575
1576 if (worker_maybe_bind_and_lock(worker->pool))
1577 worker_clr_flags(worker, WORKER_UNBOUND);
1578
1579 spin_unlock_irq(&worker->pool->lock);
1580 }
1581
1582 /**
1583 * rebind_workers - rebind all workers of a pool to the associated CPU
1584 * @pool: pool of interest
1585 *
1586 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1587 * is different for idle and busy ones.
1588 *
1589 * Idle ones will be removed from the idle_list and woken up. They will
1590 * add themselves back after completing rebind. This ensures that the
1591 * idle_list doesn't contain any unbound workers when re-bound busy workers
1592 * try to perform local wake-ups for concurrency management.
1593 *
1594 * Busy workers can rebind after they finish their current work items.
1595 * Queueing the rebind work item at the head of the scheduled list is
1596 * enough. Note that nr_running will be properly bumped as busy workers
1597 * rebind.
1598 *
1599 * On return, all non-manager workers are scheduled for rebind - see
1600 * manage_workers() for the manager special case. Any idle worker
1601 * including the manager will not appear on @idle_list until rebind is
1602 * complete, making local wake-ups safe.
1603 */
1604 static void rebind_workers(struct worker_pool *pool)
1605 {
1606 struct worker *worker, *n;
1607 int i;
1608
1609 lockdep_assert_held(&pool->assoc_mutex);
1610 lockdep_assert_held(&pool->lock);
1611
1612 /* dequeue and kick idle ones */
1613 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1614 /*
1615 * idle workers should be off @pool->idle_list until rebind
1616 * is complete to avoid receiving premature local wake-ups.
1617 */
1618 list_del_init(&worker->entry);
1619
1620 /*
1621 * worker_thread() will see the above dequeuing and call
1622 * idle_worker_rebind().
1623 */
1624 wake_up_process(worker->task);
1625 }
1626
1627 /* rebind busy workers */
1628 for_each_busy_worker(worker, i, pool) {
1629 struct work_struct *rebind_work = &worker->rebind_work;
1630 struct workqueue_struct *wq;
1631
1632 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1633 work_data_bits(rebind_work)))
1634 continue;
1635
1636 debug_work_activate(rebind_work);
1637
1638 /*
1639 * wq doesn't really matter but let's keep @worker->pool
1640 * and @pwq->pool consistent for sanity.
1641 */
1642 if (worker->pool->attrs->nice < 0)
1643 wq = system_highpri_wq;
1644 else
1645 wq = system_wq;
1646
1647 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1648 worker->scheduled.next,
1649 work_color_to_flags(WORK_NO_COLOR));
1650 }
1651 }
1652
1653 static struct worker *alloc_worker(void)
1654 {
1655 struct worker *worker;
1656
1657 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1658 if (worker) {
1659 INIT_LIST_HEAD(&worker->entry);
1660 INIT_LIST_HEAD(&worker->scheduled);
1661 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1662 /* on creation a worker is in !idle && prep state */
1663 worker->flags = WORKER_PREP;
1664 }
1665 return worker;
1666 }
1667
1668 /**
1669 * create_worker - create a new workqueue worker
1670 * @pool: pool the new worker will belong to
1671 *
1672 * Create a new worker which is bound to @pool. The returned worker
1673 * can be started by calling start_worker() or destroyed using
1674 * destroy_worker().
1675 *
1676 * CONTEXT:
1677 * Might sleep. Does GFP_KERNEL allocations.
1678 *
1679 * RETURNS:
1680 * Pointer to the newly created worker.
1681 */
1682 static struct worker *create_worker(struct worker_pool *pool)
1683 {
1684 const char *pri = pool->attrs->nice < 0 ? "H" : "";
1685 struct worker *worker = NULL;
1686 int id = -1;
1687
1688 spin_lock_irq(&pool->lock);
1689 while (ida_get_new(&pool->worker_ida, &id)) {
1690 spin_unlock_irq(&pool->lock);
1691 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1692 goto fail;
1693 spin_lock_irq(&pool->lock);
1694 }
1695 spin_unlock_irq(&pool->lock);
1696
1697 worker = alloc_worker();
1698 if (!worker)
1699 goto fail;
1700
1701 worker->pool = pool;
1702 worker->id = id;
1703
1704 if (pool->cpu >= 0)
1705 worker->task = kthread_create_on_node(worker_thread,
1706 worker, cpu_to_node(pool->cpu),
1707 "kworker/%d:%d%s", pool->cpu, id, pri);
1708 else
1709 worker->task = kthread_create(worker_thread, worker,
1710 "kworker/u:%d%s", id, pri);
1711 if (IS_ERR(worker->task))
1712 goto fail;
1713
1714 set_user_nice(worker->task, pool->attrs->nice);
1715 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1716
1717 /*
1718 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1719 * cpumask of workqueue workers. This is an abuse. We need
1720 * %PF_NO_SETAFFINITY.
1721 */
1722 worker->task->flags |= PF_THREAD_BOUND;
1723
1724 /*
1725 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1726 * remains stable across this function. See the comments above the
1727 * flag definition for details.
1728 */
1729 if (pool->flags & POOL_DISASSOCIATED)
1730 worker->flags |= WORKER_UNBOUND;
1731
1732 return worker;
1733 fail:
1734 if (id >= 0) {
1735 spin_lock_irq(&pool->lock);
1736 ida_remove(&pool->worker_ida, id);
1737 spin_unlock_irq(&pool->lock);
1738 }
1739 kfree(worker);
1740 return NULL;
1741 }
1742
1743 /**
1744 * start_worker - start a newly created worker
1745 * @worker: worker to start
1746 *
1747 * Make the pool aware of @worker and start it.
1748 *
1749 * CONTEXT:
1750 * spin_lock_irq(pool->lock).
1751 */
1752 static void start_worker(struct worker *worker)
1753 {
1754 worker->flags |= WORKER_STARTED;
1755 worker->pool->nr_workers++;
1756 worker_enter_idle(worker);
1757 wake_up_process(worker->task);
1758 }
1759
1760 /**
1761 * destroy_worker - destroy a workqueue worker
1762 * @worker: worker to be destroyed
1763 *
1764 * Destroy @worker and adjust @pool stats accordingly.
1765 *
1766 * CONTEXT:
1767 * spin_lock_irq(pool->lock) which is released and regrabbed.
1768 */
1769 static void destroy_worker(struct worker *worker)
1770 {
1771 struct worker_pool *pool = worker->pool;
1772 int id = worker->id;
1773
1774 /* sanity check frenzy */
1775 if (WARN_ON(worker->current_work) ||
1776 WARN_ON(!list_empty(&worker->scheduled)))
1777 return;
1778
1779 if (worker->flags & WORKER_STARTED)
1780 pool->nr_workers--;
1781 if (worker->flags & WORKER_IDLE)
1782 pool->nr_idle--;
1783
1784 list_del_init(&worker->entry);
1785 worker->flags |= WORKER_DIE;
1786
1787 spin_unlock_irq(&pool->lock);
1788
1789 kthread_stop(worker->task);
1790 kfree(worker);
1791
1792 spin_lock_irq(&pool->lock);
1793 ida_remove(&pool->worker_ida, id);
1794 }
1795
1796 static void idle_worker_timeout(unsigned long __pool)
1797 {
1798 struct worker_pool *pool = (void *)__pool;
1799
1800 spin_lock_irq(&pool->lock);
1801
1802 if (too_many_workers(pool)) {
1803 struct worker *worker;
1804 unsigned long expires;
1805
1806 /* idle_list is kept in LIFO order, check the last one */
1807 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1808 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1809
1810 if (time_before(jiffies, expires))
1811 mod_timer(&pool->idle_timer, expires);
1812 else {
1813 /* it's been idle for too long, wake up manager */
1814 pool->flags |= POOL_MANAGE_WORKERS;
1815 wake_up_worker(pool);
1816 }
1817 }
1818
1819 spin_unlock_irq(&pool->lock);
1820 }
1821
1822 static void send_mayday(struct work_struct *work)
1823 {
1824 struct pool_workqueue *pwq = get_work_pwq(work);
1825 struct workqueue_struct *wq = pwq->wq;
1826
1827 lockdep_assert_held(&workqueue_lock);
1828
1829 if (!(wq->flags & WQ_RESCUER))
1830 return;
1831
1832 /* mayday mayday mayday */
1833 if (list_empty(&pwq->mayday_node)) {
1834 list_add_tail(&pwq->mayday_node, &wq->maydays);
1835 wake_up_process(wq->rescuer->task);
1836 }
1837 }
1838
1839 static void pool_mayday_timeout(unsigned long __pool)
1840 {
1841 struct worker_pool *pool = (void *)__pool;
1842 struct work_struct *work;
1843
1844 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1845 spin_lock(&pool->lock);
1846
1847 if (need_to_create_worker(pool)) {
1848 /*
1849 * We've been trying to create a new worker but
1850 * haven't been successful. We might be hitting an
1851 * allocation deadlock. Send distress signals to
1852 * rescuers.
1853 */
1854 list_for_each_entry(work, &pool->worklist, entry)
1855 send_mayday(work);
1856 }
1857
1858 spin_unlock(&pool->lock);
1859 spin_unlock_irq(&workqueue_lock);
1860
1861 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1862 }
1863
1864 /**
1865 * maybe_create_worker - create a new worker if necessary
1866 * @pool: pool to create a new worker for
1867 *
1868 * Create a new worker for @pool if necessary. @pool is guaranteed to
1869 * have at least one idle worker on return from this function. If
1870 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1871 * sent to all rescuers with works scheduled on @pool to resolve
1872 * possible allocation deadlock.
1873 *
1874 * On return, need_to_create_worker() is guaranteed to be false and
1875 * may_start_working() true.
1876 *
1877 * LOCKING:
1878 * spin_lock_irq(pool->lock) which may be released and regrabbed
1879 * multiple times. Does GFP_KERNEL allocations. Called only from
1880 * manager.
1881 *
1882 * RETURNS:
1883 * false if no action was taken and pool->lock stayed locked, true
1884 * otherwise.
1885 */
1886 static bool maybe_create_worker(struct worker_pool *pool)
1887 __releases(&pool->lock)
1888 __acquires(&pool->lock)
1889 {
1890 if (!need_to_create_worker(pool))
1891 return false;
1892 restart:
1893 spin_unlock_irq(&pool->lock);
1894
1895 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1896 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1897
1898 while (true) {
1899 struct worker *worker;
1900
1901 worker = create_worker(pool);
1902 if (worker) {
1903 del_timer_sync(&pool->mayday_timer);
1904 spin_lock_irq(&pool->lock);
1905 start_worker(worker);
1906 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1907 goto restart;
1908 return true;
1909 }
1910
1911 if (!need_to_create_worker(pool))
1912 break;
1913
1914 __set_current_state(TASK_INTERRUPTIBLE);
1915 schedule_timeout(CREATE_COOLDOWN);
1916
1917 if (!need_to_create_worker(pool))
1918 break;
1919 }
1920
1921 del_timer_sync(&pool->mayday_timer);
1922 spin_lock_irq(&pool->lock);
1923 if (need_to_create_worker(pool))
1924 goto restart;
1925 return true;
1926 }
1927
1928 /**
1929 * maybe_destroy_worker - destroy workers which have been idle for a while
1930 * @pool: pool to destroy workers for
1931 *
1932 * Destroy @pool workers which have been idle for longer than
1933 * IDLE_WORKER_TIMEOUT.
1934 *
1935 * LOCKING:
1936 * spin_lock_irq(pool->lock) which may be released and regrabbed
1937 * multiple times. Called only from manager.
1938 *
1939 * RETURNS:
1940 * false if no action was taken and pool->lock stayed locked, true
1941 * otherwise.
1942 */
1943 static bool maybe_destroy_workers(struct worker_pool *pool)
1944 {
1945 bool ret = false;
1946
1947 while (too_many_workers(pool)) {
1948 struct worker *worker;
1949 unsigned long expires;
1950
1951 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1952 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1953
1954 if (time_before(jiffies, expires)) {
1955 mod_timer(&pool->idle_timer, expires);
1956 break;
1957 }
1958
1959 destroy_worker(worker);
1960 ret = true;
1961 }
1962
1963 return ret;
1964 }
1965
1966 /**
1967 * manage_workers - manage worker pool
1968 * @worker: self
1969 *
1970 * Assume the manager role and manage the worker pool @worker belongs
1971 * to. At any given time, there can be only zero or one manager per
1972 * pool. The exclusion is handled automatically by this function.
1973 *
1974 * The caller can safely start processing works on false return. On
1975 * true return, it's guaranteed that need_to_create_worker() is false
1976 * and may_start_working() is true.
1977 *
1978 * CONTEXT:
1979 * spin_lock_irq(pool->lock) which may be released and regrabbed
1980 * multiple times. Does GFP_KERNEL allocations.
1981 *
1982 * RETURNS:
1983 * spin_lock_irq(pool->lock) which may be released and regrabbed
1984 * multiple times. Does GFP_KERNEL allocations.
1985 */
1986 static bool manage_workers(struct worker *worker)
1987 {
1988 struct worker_pool *pool = worker->pool;
1989 bool ret = false;
1990
1991 if (!mutex_trylock(&pool->manager_arb))
1992 return ret;
1993
1994 /*
1995 * To simplify both worker management and CPU hotplug, hold off
1996 * management while hotplug is in progress. CPU hotplug path can't
1997 * grab @pool->manager_arb to achieve this because that can lead to
1998 * idle worker depletion (all become busy thinking someone else is
1999 * managing) which in turn can result in deadlock under extreme
2000 * circumstances. Use @pool->assoc_mutex to synchronize manager
2001 * against CPU hotplug.
2002 *
2003 * assoc_mutex would always be free unless CPU hotplug is in
2004 * progress. trylock first without dropping @pool->lock.
2005 */
2006 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2007 spin_unlock_irq(&pool->lock);
2008 mutex_lock(&pool->assoc_mutex);
2009 /*
2010 * CPU hotplug could have happened while we were waiting
2011 * for assoc_mutex. Hotplug itself can't handle us
2012 * because manager isn't either on idle or busy list, and
2013 * @pool's state and ours could have deviated.
2014 *
2015 * As hotplug is now excluded via assoc_mutex, we can
2016 * simply try to bind. It will succeed or fail depending
2017 * on @pool's current state. Try it and adjust
2018 * %WORKER_UNBOUND accordingly.
2019 */
2020 if (worker_maybe_bind_and_lock(pool))
2021 worker->flags &= ~WORKER_UNBOUND;
2022 else
2023 worker->flags |= WORKER_UNBOUND;
2024
2025 ret = true;
2026 }
2027
2028 pool->flags &= ~POOL_MANAGE_WORKERS;
2029
2030 /*
2031 * Destroy and then create so that may_start_working() is true
2032 * on return.
2033 */
2034 ret |= maybe_destroy_workers(pool);
2035 ret |= maybe_create_worker(pool);
2036
2037 mutex_unlock(&pool->assoc_mutex);
2038 mutex_unlock(&pool->manager_arb);
2039 return ret;
2040 }
2041
2042 /**
2043 * process_one_work - process single work
2044 * @worker: self
2045 * @work: work to process
2046 *
2047 * Process @work. This function contains all the logics necessary to
2048 * process a single work including synchronization against and
2049 * interaction with other workers on the same cpu, queueing and
2050 * flushing. As long as context requirement is met, any worker can
2051 * call this function to process a work.
2052 *
2053 * CONTEXT:
2054 * spin_lock_irq(pool->lock) which is released and regrabbed.
2055 */
2056 static void process_one_work(struct worker *worker, struct work_struct *work)
2057 __releases(&pool->lock)
2058 __acquires(&pool->lock)
2059 {
2060 struct pool_workqueue *pwq = get_work_pwq(work);
2061 struct worker_pool *pool = worker->pool;
2062 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2063 int work_color;
2064 struct worker *collision;
2065 #ifdef CONFIG_LOCKDEP
2066 /*
2067 * It is permissible to free the struct work_struct from
2068 * inside the function that is called from it, this we need to
2069 * take into account for lockdep too. To avoid bogus "held
2070 * lock freed" warnings as well as problems when looking into
2071 * work->lockdep_map, make a copy and use that here.
2072 */
2073 struct lockdep_map lockdep_map;
2074
2075 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2076 #endif
2077 /*
2078 * Ensure we're on the correct CPU. DISASSOCIATED test is
2079 * necessary to avoid spurious warnings from rescuers servicing the
2080 * unbound or a disassociated pool.
2081 */
2082 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2083 !(pool->flags & POOL_DISASSOCIATED) &&
2084 raw_smp_processor_id() != pool->cpu);
2085
2086 /*
2087 * A single work shouldn't be executed concurrently by
2088 * multiple workers on a single cpu. Check whether anyone is
2089 * already processing the work. If so, defer the work to the
2090 * currently executing one.
2091 */
2092 collision = find_worker_executing_work(pool, work);
2093 if (unlikely(collision)) {
2094 move_linked_works(work, &collision->scheduled, NULL);
2095 return;
2096 }
2097
2098 /* claim and dequeue */
2099 debug_work_deactivate(work);
2100 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2101 worker->current_work = work;
2102 worker->current_func = work->func;
2103 worker->current_pwq = pwq;
2104 work_color = get_work_color(work);
2105
2106 list_del_init(&work->entry);
2107
2108 /*
2109 * CPU intensive works don't participate in concurrency
2110 * management. They're the scheduler's responsibility.
2111 */
2112 if (unlikely(cpu_intensive))
2113 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2114
2115 /*
2116 * Unbound pool isn't concurrency managed and work items should be
2117 * executed ASAP. Wake up another worker if necessary.
2118 */
2119 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2120 wake_up_worker(pool);
2121
2122 /*
2123 * Record the last pool and clear PENDING which should be the last
2124 * update to @work. Also, do this inside @pool->lock so that
2125 * PENDING and queued state changes happen together while IRQ is
2126 * disabled.
2127 */
2128 set_work_pool_and_clear_pending(work, pool->id);
2129
2130 spin_unlock_irq(&pool->lock);
2131
2132 lock_map_acquire_read(&pwq->wq->lockdep_map);
2133 lock_map_acquire(&lockdep_map);
2134 trace_workqueue_execute_start(work);
2135 worker->current_func(work);
2136 /*
2137 * While we must be careful to not use "work" after this, the trace
2138 * point will only record its address.
2139 */
2140 trace_workqueue_execute_end(work);
2141 lock_map_release(&lockdep_map);
2142 lock_map_release(&pwq->wq->lockdep_map);
2143
2144 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2145 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2146 " last function: %pf\n",
2147 current->comm, preempt_count(), task_pid_nr(current),
2148 worker->current_func);
2149 debug_show_held_locks(current);
2150 dump_stack();
2151 }
2152
2153 spin_lock_irq(&pool->lock);
2154
2155 /* clear cpu intensive status */
2156 if (unlikely(cpu_intensive))
2157 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2158
2159 /* we're done with it, release */
2160 hash_del(&worker->hentry);
2161 worker->current_work = NULL;
2162 worker->current_func = NULL;
2163 worker->current_pwq = NULL;
2164 pwq_dec_nr_in_flight(pwq, work_color);
2165 }
2166
2167 /**
2168 * process_scheduled_works - process scheduled works
2169 * @worker: self
2170 *
2171 * Process all scheduled works. Please note that the scheduled list
2172 * may change while processing a work, so this function repeatedly
2173 * fetches a work from the top and executes it.
2174 *
2175 * CONTEXT:
2176 * spin_lock_irq(pool->lock) which may be released and regrabbed
2177 * multiple times.
2178 */
2179 static void process_scheduled_works(struct worker *worker)
2180 {
2181 while (!list_empty(&worker->scheduled)) {
2182 struct work_struct *work = list_first_entry(&worker->scheduled,
2183 struct work_struct, entry);
2184 process_one_work(worker, work);
2185 }
2186 }
2187
2188 /**
2189 * worker_thread - the worker thread function
2190 * @__worker: self
2191 *
2192 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2193 * of these per each cpu. These workers process all works regardless of
2194 * their specific target workqueue. The only exception is works which
2195 * belong to workqueues with a rescuer which will be explained in
2196 * rescuer_thread().
2197 */
2198 static int worker_thread(void *__worker)
2199 {
2200 struct worker *worker = __worker;
2201 struct worker_pool *pool = worker->pool;
2202
2203 /* tell the scheduler that this is a workqueue worker */
2204 worker->task->flags |= PF_WQ_WORKER;
2205 woke_up:
2206 spin_lock_irq(&pool->lock);
2207
2208 /* we are off idle list if destruction or rebind is requested */
2209 if (unlikely(list_empty(&worker->entry))) {
2210 spin_unlock_irq(&pool->lock);
2211
2212 /* if DIE is set, destruction is requested */
2213 if (worker->flags & WORKER_DIE) {
2214 worker->task->flags &= ~PF_WQ_WORKER;
2215 return 0;
2216 }
2217
2218 /* otherwise, rebind */
2219 idle_worker_rebind(worker);
2220 goto woke_up;
2221 }
2222
2223 worker_leave_idle(worker);
2224 recheck:
2225 /* no more worker necessary? */
2226 if (!need_more_worker(pool))
2227 goto sleep;
2228
2229 /* do we need to manage? */
2230 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2231 goto recheck;
2232
2233 /*
2234 * ->scheduled list can only be filled while a worker is
2235 * preparing to process a work or actually processing it.
2236 * Make sure nobody diddled with it while I was sleeping.
2237 */
2238 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2239
2240 /*
2241 * When control reaches this point, we're guaranteed to have
2242 * at least one idle worker or that someone else has already
2243 * assumed the manager role.
2244 */
2245 worker_clr_flags(worker, WORKER_PREP);
2246
2247 do {
2248 struct work_struct *work =
2249 list_first_entry(&pool->worklist,
2250 struct work_struct, entry);
2251
2252 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2253 /* optimization path, not strictly necessary */
2254 process_one_work(worker, work);
2255 if (unlikely(!list_empty(&worker->scheduled)))
2256 process_scheduled_works(worker);
2257 } else {
2258 move_linked_works(work, &worker->scheduled, NULL);
2259 process_scheduled_works(worker);
2260 }
2261 } while (keep_working(pool));
2262
2263 worker_set_flags(worker, WORKER_PREP, false);
2264 sleep:
2265 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2266 goto recheck;
2267
2268 /*
2269 * pool->lock is held and there's no work to process and no need to
2270 * manage, sleep. Workers are woken up only while holding
2271 * pool->lock or from local cpu, so setting the current state
2272 * before releasing pool->lock is enough to prevent losing any
2273 * event.
2274 */
2275 worker_enter_idle(worker);
2276 __set_current_state(TASK_INTERRUPTIBLE);
2277 spin_unlock_irq(&pool->lock);
2278 schedule();
2279 goto woke_up;
2280 }
2281
2282 /**
2283 * rescuer_thread - the rescuer thread function
2284 * @__rescuer: self
2285 *
2286 * Workqueue rescuer thread function. There's one rescuer for each
2287 * workqueue which has WQ_RESCUER set.
2288 *
2289 * Regular work processing on a pool may block trying to create a new
2290 * worker which uses GFP_KERNEL allocation which has slight chance of
2291 * developing into deadlock if some works currently on the same queue
2292 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2293 * the problem rescuer solves.
2294 *
2295 * When such condition is possible, the pool summons rescuers of all
2296 * workqueues which have works queued on the pool and let them process
2297 * those works so that forward progress can be guaranteed.
2298 *
2299 * This should happen rarely.
2300 */
2301 static int rescuer_thread(void *__rescuer)
2302 {
2303 struct worker *rescuer = __rescuer;
2304 struct workqueue_struct *wq = rescuer->rescue_wq;
2305 struct list_head *scheduled = &rescuer->scheduled;
2306
2307 set_user_nice(current, RESCUER_NICE_LEVEL);
2308
2309 /*
2310 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2311 * doesn't participate in concurrency management.
2312 */
2313 rescuer->task->flags |= PF_WQ_WORKER;
2314 repeat:
2315 set_current_state(TASK_INTERRUPTIBLE);
2316
2317 if (kthread_should_stop()) {
2318 __set_current_state(TASK_RUNNING);
2319 rescuer->task->flags &= ~PF_WQ_WORKER;
2320 return 0;
2321 }
2322
2323 /* see whether any pwq is asking for help */
2324 spin_lock_irq(&workqueue_lock);
2325
2326 while (!list_empty(&wq->maydays)) {
2327 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2328 struct pool_workqueue, mayday_node);
2329 struct worker_pool *pool = pwq->pool;
2330 struct work_struct *work, *n;
2331
2332 __set_current_state(TASK_RUNNING);
2333 list_del_init(&pwq->mayday_node);
2334
2335 spin_unlock_irq(&workqueue_lock);
2336
2337 /* migrate to the target cpu if possible */
2338 worker_maybe_bind_and_lock(pool);
2339 rescuer->pool = pool;
2340
2341 /*
2342 * Slurp in all works issued via this workqueue and
2343 * process'em.
2344 */
2345 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2346 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2347 if (get_work_pwq(work) == pwq)
2348 move_linked_works(work, scheduled, &n);
2349
2350 process_scheduled_works(rescuer);
2351
2352 /*
2353 * Leave this pool. If keep_working() is %true, notify a
2354 * regular worker; otherwise, we end up with 0 concurrency
2355 * and stalling the execution.
2356 */
2357 if (keep_working(pool))
2358 wake_up_worker(pool);
2359
2360 rescuer->pool = NULL;
2361 spin_unlock(&pool->lock);
2362 spin_lock(&workqueue_lock);
2363 }
2364
2365 spin_unlock_irq(&workqueue_lock);
2366
2367 /* rescuers should never participate in concurrency management */
2368 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2369 schedule();
2370 goto repeat;
2371 }
2372
2373 struct wq_barrier {
2374 struct work_struct work;
2375 struct completion done;
2376 };
2377
2378 static void wq_barrier_func(struct work_struct *work)
2379 {
2380 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2381 complete(&barr->done);
2382 }
2383
2384 /**
2385 * insert_wq_barrier - insert a barrier work
2386 * @pwq: pwq to insert barrier into
2387 * @barr: wq_barrier to insert
2388 * @target: target work to attach @barr to
2389 * @worker: worker currently executing @target, NULL if @target is not executing
2390 *
2391 * @barr is linked to @target such that @barr is completed only after
2392 * @target finishes execution. Please note that the ordering
2393 * guarantee is observed only with respect to @target and on the local
2394 * cpu.
2395 *
2396 * Currently, a queued barrier can't be canceled. This is because
2397 * try_to_grab_pending() can't determine whether the work to be
2398 * grabbed is at the head of the queue and thus can't clear LINKED
2399 * flag of the previous work while there must be a valid next work
2400 * after a work with LINKED flag set.
2401 *
2402 * Note that when @worker is non-NULL, @target may be modified
2403 * underneath us, so we can't reliably determine pwq from @target.
2404 *
2405 * CONTEXT:
2406 * spin_lock_irq(pool->lock).
2407 */
2408 static void insert_wq_barrier(struct pool_workqueue *pwq,
2409 struct wq_barrier *barr,
2410 struct work_struct *target, struct worker *worker)
2411 {
2412 struct list_head *head;
2413 unsigned int linked = 0;
2414
2415 /*
2416 * debugobject calls are safe here even with pool->lock locked
2417 * as we know for sure that this will not trigger any of the
2418 * checks and call back into the fixup functions where we
2419 * might deadlock.
2420 */
2421 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2422 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2423 init_completion(&barr->done);
2424
2425 /*
2426 * If @target is currently being executed, schedule the
2427 * barrier to the worker; otherwise, put it after @target.
2428 */
2429 if (worker)
2430 head = worker->scheduled.next;
2431 else {
2432 unsigned long *bits = work_data_bits(target);
2433
2434 head = target->entry.next;
2435 /* there can already be other linked works, inherit and set */
2436 linked = *bits & WORK_STRUCT_LINKED;
2437 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2438 }
2439
2440 debug_work_activate(&barr->work);
2441 insert_work(pwq, &barr->work, head,
2442 work_color_to_flags(WORK_NO_COLOR) | linked);
2443 }
2444
2445 /**
2446 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2447 * @wq: workqueue being flushed
2448 * @flush_color: new flush color, < 0 for no-op
2449 * @work_color: new work color, < 0 for no-op
2450 *
2451 * Prepare pwqs for workqueue flushing.
2452 *
2453 * If @flush_color is non-negative, flush_color on all pwqs should be
2454 * -1. If no pwq has in-flight commands at the specified color, all
2455 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2456 * has in flight commands, its pwq->flush_color is set to
2457 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2458 * wakeup logic is armed and %true is returned.
2459 *
2460 * The caller should have initialized @wq->first_flusher prior to
2461 * calling this function with non-negative @flush_color. If
2462 * @flush_color is negative, no flush color update is done and %false
2463 * is returned.
2464 *
2465 * If @work_color is non-negative, all pwqs should have the same
2466 * work_color which is previous to @work_color and all will be
2467 * advanced to @work_color.
2468 *
2469 * CONTEXT:
2470 * mutex_lock(wq->flush_mutex).
2471 *
2472 * RETURNS:
2473 * %true if @flush_color >= 0 and there's something to flush. %false
2474 * otherwise.
2475 */
2476 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2477 int flush_color, int work_color)
2478 {
2479 bool wait = false;
2480 struct pool_workqueue *pwq;
2481
2482 if (flush_color >= 0) {
2483 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2484 atomic_set(&wq->nr_pwqs_to_flush, 1);
2485 }
2486
2487 local_irq_disable();
2488
2489 for_each_pwq(pwq, wq) {
2490 struct worker_pool *pool = pwq->pool;
2491
2492 spin_lock(&pool->lock);
2493
2494 if (flush_color >= 0) {
2495 WARN_ON_ONCE(pwq->flush_color != -1);
2496
2497 if (pwq->nr_in_flight[flush_color]) {
2498 pwq->flush_color = flush_color;
2499 atomic_inc(&wq->nr_pwqs_to_flush);
2500 wait = true;
2501 }
2502 }
2503
2504 if (work_color >= 0) {
2505 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2506 pwq->work_color = work_color;
2507 }
2508
2509 spin_unlock(&pool->lock);
2510 }
2511
2512 local_irq_enable();
2513
2514 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2515 complete(&wq->first_flusher->done);
2516
2517 return wait;
2518 }
2519
2520 /**
2521 * flush_workqueue - ensure that any scheduled work has run to completion.
2522 * @wq: workqueue to flush
2523 *
2524 * Forces execution of the workqueue and blocks until its completion.
2525 * This is typically used in driver shutdown handlers.
2526 *
2527 * We sleep until all works which were queued on entry have been handled,
2528 * but we are not livelocked by new incoming ones.
2529 */
2530 void flush_workqueue(struct workqueue_struct *wq)
2531 {
2532 struct wq_flusher this_flusher = {
2533 .list = LIST_HEAD_INIT(this_flusher.list),
2534 .flush_color = -1,
2535 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2536 };
2537 int next_color;
2538
2539 lock_map_acquire(&wq->lockdep_map);
2540 lock_map_release(&wq->lockdep_map);
2541
2542 mutex_lock(&wq->flush_mutex);
2543
2544 /*
2545 * Start-to-wait phase
2546 */
2547 next_color = work_next_color(wq->work_color);
2548
2549 if (next_color != wq->flush_color) {
2550 /*
2551 * Color space is not full. The current work_color
2552 * becomes our flush_color and work_color is advanced
2553 * by one.
2554 */
2555 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2556 this_flusher.flush_color = wq->work_color;
2557 wq->work_color = next_color;
2558
2559 if (!wq->first_flusher) {
2560 /* no flush in progress, become the first flusher */
2561 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2562
2563 wq->first_flusher = &this_flusher;
2564
2565 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2566 wq->work_color)) {
2567 /* nothing to flush, done */
2568 wq->flush_color = next_color;
2569 wq->first_flusher = NULL;
2570 goto out_unlock;
2571 }
2572 } else {
2573 /* wait in queue */
2574 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2575 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2576 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2577 }
2578 } else {
2579 /*
2580 * Oops, color space is full, wait on overflow queue.
2581 * The next flush completion will assign us
2582 * flush_color and transfer to flusher_queue.
2583 */
2584 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2585 }
2586
2587 mutex_unlock(&wq->flush_mutex);
2588
2589 wait_for_completion(&this_flusher.done);
2590
2591 /*
2592 * Wake-up-and-cascade phase
2593 *
2594 * First flushers are responsible for cascading flushes and
2595 * handling overflow. Non-first flushers can simply return.
2596 */
2597 if (wq->first_flusher != &this_flusher)
2598 return;
2599
2600 mutex_lock(&wq->flush_mutex);
2601
2602 /* we might have raced, check again with mutex held */
2603 if (wq->first_flusher != &this_flusher)
2604 goto out_unlock;
2605
2606 wq->first_flusher = NULL;
2607
2608 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2609 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2610
2611 while (true) {
2612 struct wq_flusher *next, *tmp;
2613
2614 /* complete all the flushers sharing the current flush color */
2615 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2616 if (next->flush_color != wq->flush_color)
2617 break;
2618 list_del_init(&next->list);
2619 complete(&next->done);
2620 }
2621
2622 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2623 wq->flush_color != work_next_color(wq->work_color));
2624
2625 /* this flush_color is finished, advance by one */
2626 wq->flush_color = work_next_color(wq->flush_color);
2627
2628 /* one color has been freed, handle overflow queue */
2629 if (!list_empty(&wq->flusher_overflow)) {
2630 /*
2631 * Assign the same color to all overflowed
2632 * flushers, advance work_color and append to
2633 * flusher_queue. This is the start-to-wait
2634 * phase for these overflowed flushers.
2635 */
2636 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2637 tmp->flush_color = wq->work_color;
2638
2639 wq->work_color = work_next_color(wq->work_color);
2640
2641 list_splice_tail_init(&wq->flusher_overflow,
2642 &wq->flusher_queue);
2643 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2644 }
2645
2646 if (list_empty(&wq->flusher_queue)) {
2647 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2648 break;
2649 }
2650
2651 /*
2652 * Need to flush more colors. Make the next flusher
2653 * the new first flusher and arm pwqs.
2654 */
2655 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2656 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2657
2658 list_del_init(&next->list);
2659 wq->first_flusher = next;
2660
2661 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2662 break;
2663
2664 /*
2665 * Meh... this color is already done, clear first
2666 * flusher and repeat cascading.
2667 */
2668 wq->first_flusher = NULL;
2669 }
2670
2671 out_unlock:
2672 mutex_unlock(&wq->flush_mutex);
2673 }
2674 EXPORT_SYMBOL_GPL(flush_workqueue);
2675
2676 /**
2677 * drain_workqueue - drain a workqueue
2678 * @wq: workqueue to drain
2679 *
2680 * Wait until the workqueue becomes empty. While draining is in progress,
2681 * only chain queueing is allowed. IOW, only currently pending or running
2682 * work items on @wq can queue further work items on it. @wq is flushed
2683 * repeatedly until it becomes empty. The number of flushing is detemined
2684 * by the depth of chaining and should be relatively short. Whine if it
2685 * takes too long.
2686 */
2687 void drain_workqueue(struct workqueue_struct *wq)
2688 {
2689 unsigned int flush_cnt = 0;
2690 struct pool_workqueue *pwq;
2691
2692 /*
2693 * __queue_work() needs to test whether there are drainers, is much
2694 * hotter than drain_workqueue() and already looks at @wq->flags.
2695 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2696 */
2697 spin_lock_irq(&workqueue_lock);
2698 if (!wq->nr_drainers++)
2699 wq->flags |= WQ_DRAINING;
2700 spin_unlock_irq(&workqueue_lock);
2701 reflush:
2702 flush_workqueue(wq);
2703
2704 local_irq_disable();
2705
2706 for_each_pwq(pwq, wq) {
2707 bool drained;
2708
2709 spin_lock(&pwq->pool->lock);
2710 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2711 spin_unlock(&pwq->pool->lock);
2712
2713 if (drained)
2714 continue;
2715
2716 if (++flush_cnt == 10 ||
2717 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2718 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2719 wq->name, flush_cnt);
2720
2721 local_irq_enable();
2722 goto reflush;
2723 }
2724
2725 spin_lock(&workqueue_lock);
2726 if (!--wq->nr_drainers)
2727 wq->flags &= ~WQ_DRAINING;
2728 spin_unlock(&workqueue_lock);
2729
2730 local_irq_enable();
2731 }
2732 EXPORT_SYMBOL_GPL(drain_workqueue);
2733
2734 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2735 {
2736 struct worker *worker = NULL;
2737 struct worker_pool *pool;
2738 struct pool_workqueue *pwq;
2739
2740 might_sleep();
2741
2742 local_irq_disable();
2743 pool = get_work_pool(work);
2744 if (!pool) {
2745 local_irq_enable();
2746 return false;
2747 }
2748
2749 spin_lock(&pool->lock);
2750 /* see the comment in try_to_grab_pending() with the same code */
2751 pwq = get_work_pwq(work);
2752 if (pwq) {
2753 if (unlikely(pwq->pool != pool))
2754 goto already_gone;
2755 } else {
2756 worker = find_worker_executing_work(pool, work);
2757 if (!worker)
2758 goto already_gone;
2759 pwq = worker->current_pwq;
2760 }
2761
2762 insert_wq_barrier(pwq, barr, work, worker);
2763 spin_unlock_irq(&pool->lock);
2764
2765 /*
2766 * If @max_active is 1 or rescuer is in use, flushing another work
2767 * item on the same workqueue may lead to deadlock. Make sure the
2768 * flusher is not running on the same workqueue by verifying write
2769 * access.
2770 */
2771 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2772 lock_map_acquire(&pwq->wq->lockdep_map);
2773 else
2774 lock_map_acquire_read(&pwq->wq->lockdep_map);
2775 lock_map_release(&pwq->wq->lockdep_map);
2776
2777 return true;
2778 already_gone:
2779 spin_unlock_irq(&pool->lock);
2780 return false;
2781 }
2782
2783 /**
2784 * flush_work - wait for a work to finish executing the last queueing instance
2785 * @work: the work to flush
2786 *
2787 * Wait until @work has finished execution. @work is guaranteed to be idle
2788 * on return if it hasn't been requeued since flush started.
2789 *
2790 * RETURNS:
2791 * %true if flush_work() waited for the work to finish execution,
2792 * %false if it was already idle.
2793 */
2794 bool flush_work(struct work_struct *work)
2795 {
2796 struct wq_barrier barr;
2797
2798 lock_map_acquire(&work->lockdep_map);
2799 lock_map_release(&work->lockdep_map);
2800
2801 if (start_flush_work(work, &barr)) {
2802 wait_for_completion(&barr.done);
2803 destroy_work_on_stack(&barr.work);
2804 return true;
2805 } else {
2806 return false;
2807 }
2808 }
2809 EXPORT_SYMBOL_GPL(flush_work);
2810
2811 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2812 {
2813 unsigned long flags;
2814 int ret;
2815
2816 do {
2817 ret = try_to_grab_pending(work, is_dwork, &flags);
2818 /*
2819 * If someone else is canceling, wait for the same event it
2820 * would be waiting for before retrying.
2821 */
2822 if (unlikely(ret == -ENOENT))
2823 flush_work(work);
2824 } while (unlikely(ret < 0));
2825
2826 /* tell other tasks trying to grab @work to back off */
2827 mark_work_canceling(work);
2828 local_irq_restore(flags);
2829
2830 flush_work(work);
2831 clear_work_data(work);
2832 return ret;
2833 }
2834
2835 /**
2836 * cancel_work_sync - cancel a work and wait for it to finish
2837 * @work: the work to cancel
2838 *
2839 * Cancel @work and wait for its execution to finish. This function
2840 * can be used even if the work re-queues itself or migrates to
2841 * another workqueue. On return from this function, @work is
2842 * guaranteed to be not pending or executing on any CPU.
2843 *
2844 * cancel_work_sync(&delayed_work->work) must not be used for
2845 * delayed_work's. Use cancel_delayed_work_sync() instead.
2846 *
2847 * The caller must ensure that the workqueue on which @work was last
2848 * queued can't be destroyed before this function returns.
2849 *
2850 * RETURNS:
2851 * %true if @work was pending, %false otherwise.
2852 */
2853 bool cancel_work_sync(struct work_struct *work)
2854 {
2855 return __cancel_work_timer(work, false);
2856 }
2857 EXPORT_SYMBOL_GPL(cancel_work_sync);
2858
2859 /**
2860 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2861 * @dwork: the delayed work to flush
2862 *
2863 * Delayed timer is cancelled and the pending work is queued for
2864 * immediate execution. Like flush_work(), this function only
2865 * considers the last queueing instance of @dwork.
2866 *
2867 * RETURNS:
2868 * %true if flush_work() waited for the work to finish execution,
2869 * %false if it was already idle.
2870 */
2871 bool flush_delayed_work(struct delayed_work *dwork)
2872 {
2873 local_irq_disable();
2874 if (del_timer_sync(&dwork->timer))
2875 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2876 local_irq_enable();
2877 return flush_work(&dwork->work);
2878 }
2879 EXPORT_SYMBOL(flush_delayed_work);
2880
2881 /**
2882 * cancel_delayed_work - cancel a delayed work
2883 * @dwork: delayed_work to cancel
2884 *
2885 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2886 * and canceled; %false if wasn't pending. Note that the work callback
2887 * function may still be running on return, unless it returns %true and the
2888 * work doesn't re-arm itself. Explicitly flush or use
2889 * cancel_delayed_work_sync() to wait on it.
2890 *
2891 * This function is safe to call from any context including IRQ handler.
2892 */
2893 bool cancel_delayed_work(struct delayed_work *dwork)
2894 {
2895 unsigned long flags;
2896 int ret;
2897
2898 do {
2899 ret = try_to_grab_pending(&dwork->work, true, &flags);
2900 } while (unlikely(ret == -EAGAIN));
2901
2902 if (unlikely(ret < 0))
2903 return false;
2904
2905 set_work_pool_and_clear_pending(&dwork->work,
2906 get_work_pool_id(&dwork->work));
2907 local_irq_restore(flags);
2908 return ret;
2909 }
2910 EXPORT_SYMBOL(cancel_delayed_work);
2911
2912 /**
2913 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2914 * @dwork: the delayed work cancel
2915 *
2916 * This is cancel_work_sync() for delayed works.
2917 *
2918 * RETURNS:
2919 * %true if @dwork was pending, %false otherwise.
2920 */
2921 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2922 {
2923 return __cancel_work_timer(&dwork->work, true);
2924 }
2925 EXPORT_SYMBOL(cancel_delayed_work_sync);
2926
2927 /**
2928 * schedule_work_on - put work task on a specific cpu
2929 * @cpu: cpu to put the work task on
2930 * @work: job to be done
2931 *
2932 * This puts a job on a specific cpu
2933 */
2934 bool schedule_work_on(int cpu, struct work_struct *work)
2935 {
2936 return queue_work_on(cpu, system_wq, work);
2937 }
2938 EXPORT_SYMBOL(schedule_work_on);
2939
2940 /**
2941 * schedule_work - put work task in global workqueue
2942 * @work: job to be done
2943 *
2944 * Returns %false if @work was already on the kernel-global workqueue and
2945 * %true otherwise.
2946 *
2947 * This puts a job in the kernel-global workqueue if it was not already
2948 * queued and leaves it in the same position on the kernel-global
2949 * workqueue otherwise.
2950 */
2951 bool schedule_work(struct work_struct *work)
2952 {
2953 return queue_work(system_wq, work);
2954 }
2955 EXPORT_SYMBOL(schedule_work);
2956
2957 /**
2958 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2959 * @cpu: cpu to use
2960 * @dwork: job to be done
2961 * @delay: number of jiffies to wait
2962 *
2963 * After waiting for a given time this puts a job in the kernel-global
2964 * workqueue on the specified CPU.
2965 */
2966 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2967 unsigned long delay)
2968 {
2969 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2970 }
2971 EXPORT_SYMBOL(schedule_delayed_work_on);
2972
2973 /**
2974 * schedule_delayed_work - put work task in global workqueue after delay
2975 * @dwork: job to be done
2976 * @delay: number of jiffies to wait or 0 for immediate execution
2977 *
2978 * After waiting for a given time this puts a job in the kernel-global
2979 * workqueue.
2980 */
2981 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2982 {
2983 return queue_delayed_work(system_wq, dwork, delay);
2984 }
2985 EXPORT_SYMBOL(schedule_delayed_work);
2986
2987 /**
2988 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2989 * @func: the function to call
2990 *
2991 * schedule_on_each_cpu() executes @func on each online CPU using the
2992 * system workqueue and blocks until all CPUs have completed.
2993 * schedule_on_each_cpu() is very slow.
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno on failure.
2997 */
2998 int schedule_on_each_cpu(work_func_t func)
2999 {
3000 int cpu;
3001 struct work_struct __percpu *works;
3002
3003 works = alloc_percpu(struct work_struct);
3004 if (!works)
3005 return -ENOMEM;
3006
3007 get_online_cpus();
3008
3009 for_each_online_cpu(cpu) {
3010 struct work_struct *work = per_cpu_ptr(works, cpu);
3011
3012 INIT_WORK(work, func);
3013 schedule_work_on(cpu, work);
3014 }
3015
3016 for_each_online_cpu(cpu)
3017 flush_work(per_cpu_ptr(works, cpu));
3018
3019 put_online_cpus();
3020 free_percpu(works);
3021 return 0;
3022 }
3023
3024 /**
3025 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3026 *
3027 * Forces execution of the kernel-global workqueue and blocks until its
3028 * completion.
3029 *
3030 * Think twice before calling this function! It's very easy to get into
3031 * trouble if you don't take great care. Either of the following situations
3032 * will lead to deadlock:
3033 *
3034 * One of the work items currently on the workqueue needs to acquire
3035 * a lock held by your code or its caller.
3036 *
3037 * Your code is running in the context of a work routine.
3038 *
3039 * They will be detected by lockdep when they occur, but the first might not
3040 * occur very often. It depends on what work items are on the workqueue and
3041 * what locks they need, which you have no control over.
3042 *
3043 * In most situations flushing the entire workqueue is overkill; you merely
3044 * need to know that a particular work item isn't queued and isn't running.
3045 * In such cases you should use cancel_delayed_work_sync() or
3046 * cancel_work_sync() instead.
3047 */
3048 void flush_scheduled_work(void)
3049 {
3050 flush_workqueue(system_wq);
3051 }
3052 EXPORT_SYMBOL(flush_scheduled_work);
3053
3054 /**
3055 * execute_in_process_context - reliably execute the routine with user context
3056 * @fn: the function to execute
3057 * @ew: guaranteed storage for the execute work structure (must
3058 * be available when the work executes)
3059 *
3060 * Executes the function immediately if process context is available,
3061 * otherwise schedules the function for delayed execution.
3062 *
3063 * Returns: 0 - function was executed
3064 * 1 - function was scheduled for execution
3065 */
3066 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3067 {
3068 if (!in_interrupt()) {
3069 fn(&ew->work);
3070 return 0;
3071 }
3072
3073 INIT_WORK(&ew->work, fn);
3074 schedule_work(&ew->work);
3075
3076 return 1;
3077 }
3078 EXPORT_SYMBOL_GPL(execute_in_process_context);
3079
3080 int keventd_up(void)
3081 {
3082 return system_wq != NULL;
3083 }
3084
3085 /**
3086 * free_workqueue_attrs - free a workqueue_attrs
3087 * @attrs: workqueue_attrs to free
3088 *
3089 * Undo alloc_workqueue_attrs().
3090 */
3091 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3092 {
3093 if (attrs) {
3094 free_cpumask_var(attrs->cpumask);
3095 kfree(attrs);
3096 }
3097 }
3098
3099 /**
3100 * alloc_workqueue_attrs - allocate a workqueue_attrs
3101 * @gfp_mask: allocation mask to use
3102 *
3103 * Allocate a new workqueue_attrs, initialize with default settings and
3104 * return it. Returns NULL on failure.
3105 */
3106 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3107 {
3108 struct workqueue_attrs *attrs;
3109
3110 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3111 if (!attrs)
3112 goto fail;
3113 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3114 goto fail;
3115
3116 cpumask_setall(attrs->cpumask);
3117 return attrs;
3118 fail:
3119 free_workqueue_attrs(attrs);
3120 return NULL;
3121 }
3122
3123 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3124 const struct workqueue_attrs *from)
3125 {
3126 to->nice = from->nice;
3127 cpumask_copy(to->cpumask, from->cpumask);
3128 }
3129
3130 /*
3131 * Hacky implementation of jhash of bitmaps which only considers the
3132 * specified number of bits. We probably want a proper implementation in
3133 * include/linux/jhash.h.
3134 */
3135 static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3136 {
3137 int nr_longs = bits / BITS_PER_LONG;
3138 int nr_leftover = bits % BITS_PER_LONG;
3139 unsigned long leftover = 0;
3140
3141 if (nr_longs)
3142 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3143 if (nr_leftover) {
3144 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3145 hash = jhash(&leftover, sizeof(long), hash);
3146 }
3147 return hash;
3148 }
3149
3150 /* hash value of the content of @attr */
3151 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3152 {
3153 u32 hash = 0;
3154
3155 hash = jhash_1word(attrs->nice, hash);
3156 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3157 return hash;
3158 }
3159
3160 /* content equality test */
3161 static bool wqattrs_equal(const struct workqueue_attrs *a,
3162 const struct workqueue_attrs *b)
3163 {
3164 if (a->nice != b->nice)
3165 return false;
3166 if (!cpumask_equal(a->cpumask, b->cpumask))
3167 return false;
3168 return true;
3169 }
3170
3171 /**
3172 * init_worker_pool - initialize a newly zalloc'd worker_pool
3173 * @pool: worker_pool to initialize
3174 *
3175 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3176 * Returns 0 on success, -errno on failure. Even on failure, all fields
3177 * inside @pool proper are initialized and put_unbound_pool() can be called
3178 * on @pool safely to release it.
3179 */
3180 static int init_worker_pool(struct worker_pool *pool)
3181 {
3182 spin_lock_init(&pool->lock);
3183 pool->id = -1;
3184 pool->cpu = -1;
3185 pool->flags |= POOL_DISASSOCIATED;
3186 INIT_LIST_HEAD(&pool->worklist);
3187 INIT_LIST_HEAD(&pool->idle_list);
3188 hash_init(pool->busy_hash);
3189
3190 init_timer_deferrable(&pool->idle_timer);
3191 pool->idle_timer.function = idle_worker_timeout;
3192 pool->idle_timer.data = (unsigned long)pool;
3193
3194 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3195 (unsigned long)pool);
3196
3197 mutex_init(&pool->manager_arb);
3198 mutex_init(&pool->assoc_mutex);
3199 ida_init(&pool->worker_ida);
3200
3201 INIT_HLIST_NODE(&pool->hash_node);
3202 pool->refcnt = 1;
3203
3204 /* shouldn't fail above this point */
3205 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3206 if (!pool->attrs)
3207 return -ENOMEM;
3208 return 0;
3209 }
3210
3211 static void rcu_free_pool(struct rcu_head *rcu)
3212 {
3213 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3214
3215 ida_destroy(&pool->worker_ida);
3216 free_workqueue_attrs(pool->attrs);
3217 kfree(pool);
3218 }
3219
3220 /**
3221 * put_unbound_pool - put a worker_pool
3222 * @pool: worker_pool to put
3223 *
3224 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3225 * safe manner.
3226 */
3227 static void put_unbound_pool(struct worker_pool *pool)
3228 {
3229 struct worker *worker;
3230
3231 spin_lock_irq(&workqueue_lock);
3232 if (--pool->refcnt) {
3233 spin_unlock_irq(&workqueue_lock);
3234 return;
3235 }
3236
3237 /* sanity checks */
3238 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3239 WARN_ON(!list_empty(&pool->worklist))) {
3240 spin_unlock_irq(&workqueue_lock);
3241 return;
3242 }
3243
3244 /* release id and unhash */
3245 if (pool->id >= 0)
3246 idr_remove(&worker_pool_idr, pool->id);
3247 hash_del(&pool->hash_node);
3248
3249 spin_unlock_irq(&workqueue_lock);
3250
3251 /* lock out manager and destroy all workers */
3252 mutex_lock(&pool->manager_arb);
3253 spin_lock_irq(&pool->lock);
3254
3255 while ((worker = first_worker(pool)))
3256 destroy_worker(worker);
3257 WARN_ON(pool->nr_workers || pool->nr_idle);
3258
3259 spin_unlock_irq(&pool->lock);
3260 mutex_unlock(&pool->manager_arb);
3261
3262 /* shut down the timers */
3263 del_timer_sync(&pool->idle_timer);
3264 del_timer_sync(&pool->mayday_timer);
3265
3266 /* sched-RCU protected to allow dereferences from get_work_pool() */
3267 call_rcu_sched(&pool->rcu, rcu_free_pool);
3268 }
3269
3270 /**
3271 * get_unbound_pool - get a worker_pool with the specified attributes
3272 * @attrs: the attributes of the worker_pool to get
3273 *
3274 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3275 * reference count and return it. If there already is a matching
3276 * worker_pool, it will be used; otherwise, this function attempts to
3277 * create a new one. On failure, returns NULL.
3278 */
3279 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3280 {
3281 static DEFINE_MUTEX(create_mutex);
3282 u32 hash = wqattrs_hash(attrs);
3283 struct worker_pool *pool;
3284 struct worker *worker;
3285
3286 mutex_lock(&create_mutex);
3287
3288 /* do we already have a matching pool? */
3289 spin_lock_irq(&workqueue_lock);
3290 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3291 if (wqattrs_equal(pool->attrs, attrs)) {
3292 pool->refcnt++;
3293 goto out_unlock;
3294 }
3295 }
3296 spin_unlock_irq(&workqueue_lock);
3297
3298 /* nope, create a new one */
3299 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3300 if (!pool || init_worker_pool(pool) < 0)
3301 goto fail;
3302
3303 copy_workqueue_attrs(pool->attrs, attrs);
3304
3305 if (worker_pool_assign_id(pool) < 0)
3306 goto fail;
3307
3308 /* create and start the initial worker */
3309 worker = create_worker(pool);
3310 if (!worker)
3311 goto fail;
3312
3313 spin_lock_irq(&pool->lock);
3314 start_worker(worker);
3315 spin_unlock_irq(&pool->lock);
3316
3317 /* install */
3318 spin_lock_irq(&workqueue_lock);
3319 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3320 out_unlock:
3321 spin_unlock_irq(&workqueue_lock);
3322 mutex_unlock(&create_mutex);
3323 return pool;
3324 fail:
3325 mutex_unlock(&create_mutex);
3326 if (pool)
3327 put_unbound_pool(pool);
3328 return NULL;
3329 }
3330
3331 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3332 {
3333 bool highpri = wq->flags & WQ_HIGHPRI;
3334 int cpu;
3335
3336 if (!(wq->flags & WQ_UNBOUND)) {
3337 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3338 if (!wq->cpu_pwqs)
3339 return -ENOMEM;
3340
3341 for_each_possible_cpu(cpu) {
3342 struct pool_workqueue *pwq =
3343 per_cpu_ptr(wq->cpu_pwqs, cpu);
3344 struct worker_pool *cpu_pools =
3345 per_cpu(cpu_std_worker_pools, cpu);
3346
3347 pwq->pool = &cpu_pools[highpri];
3348 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3349 }
3350 } else {
3351 struct pool_workqueue *pwq;
3352
3353 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3354 if (!pwq)
3355 return -ENOMEM;
3356
3357 pwq->pool = get_unbound_pool(unbound_std_wq_attrs[highpri]);
3358 if (!pwq->pool) {
3359 kmem_cache_free(pwq_cache, pwq);
3360 return -ENOMEM;
3361 }
3362
3363 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3364 }
3365
3366 return 0;
3367 }
3368
3369 static void free_pwqs(struct workqueue_struct *wq)
3370 {
3371 if (!(wq->flags & WQ_UNBOUND))
3372 free_percpu(wq->cpu_pwqs);
3373 else if (!list_empty(&wq->pwqs))
3374 kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
3375 struct pool_workqueue, pwqs_node));
3376 }
3377
3378 static int wq_clamp_max_active(int max_active, unsigned int flags,
3379 const char *name)
3380 {
3381 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3382
3383 if (max_active < 1 || max_active > lim)
3384 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3385 max_active, name, 1, lim);
3386
3387 return clamp_val(max_active, 1, lim);
3388 }
3389
3390 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3391 unsigned int flags,
3392 int max_active,
3393 struct lock_class_key *key,
3394 const char *lock_name, ...)
3395 {
3396 va_list args, args1;
3397 struct workqueue_struct *wq;
3398 struct pool_workqueue *pwq;
3399 size_t namelen;
3400
3401 /* determine namelen, allocate wq and format name */
3402 va_start(args, lock_name);
3403 va_copy(args1, args);
3404 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3405
3406 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3407 if (!wq)
3408 goto err;
3409
3410 vsnprintf(wq->name, namelen, fmt, args1);
3411 va_end(args);
3412 va_end(args1);
3413
3414 /*
3415 * Workqueues which may be used during memory reclaim should
3416 * have a rescuer to guarantee forward progress.
3417 */
3418 if (flags & WQ_MEM_RECLAIM)
3419 flags |= WQ_RESCUER;
3420
3421 max_active = max_active ?: WQ_DFL_ACTIVE;
3422 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3423
3424 /* init wq */
3425 wq->flags = flags;
3426 wq->saved_max_active = max_active;
3427 mutex_init(&wq->flush_mutex);
3428 atomic_set(&wq->nr_pwqs_to_flush, 0);
3429 INIT_LIST_HEAD(&wq->pwqs);
3430 INIT_LIST_HEAD(&wq->flusher_queue);
3431 INIT_LIST_HEAD(&wq->flusher_overflow);
3432 INIT_LIST_HEAD(&wq->maydays);
3433
3434 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3435 INIT_LIST_HEAD(&wq->list);
3436
3437 if (alloc_and_link_pwqs(wq) < 0)
3438 goto err;
3439
3440 local_irq_disable();
3441 for_each_pwq(pwq, wq) {
3442 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3443 pwq->wq = wq;
3444 pwq->flush_color = -1;
3445 pwq->max_active = max_active;
3446 INIT_LIST_HEAD(&pwq->delayed_works);
3447 INIT_LIST_HEAD(&pwq->mayday_node);
3448 }
3449 local_irq_enable();
3450
3451 if (flags & WQ_RESCUER) {
3452 struct worker *rescuer;
3453
3454 wq->rescuer = rescuer = alloc_worker();
3455 if (!rescuer)
3456 goto err;
3457
3458 rescuer->rescue_wq = wq;
3459 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3460 wq->name);
3461 if (IS_ERR(rescuer->task))
3462 goto err;
3463
3464 rescuer->task->flags |= PF_THREAD_BOUND;
3465 wake_up_process(rescuer->task);
3466 }
3467
3468 /*
3469 * workqueue_lock protects global freeze state and workqueues
3470 * list. Grab it, set max_active accordingly and add the new
3471 * workqueue to workqueues list.
3472 */
3473 spin_lock_irq(&workqueue_lock);
3474
3475 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3476 for_each_pwq(pwq, wq)
3477 pwq->max_active = 0;
3478
3479 list_add(&wq->list, &workqueues);
3480
3481 spin_unlock_irq(&workqueue_lock);
3482
3483 return wq;
3484 err:
3485 if (wq) {
3486 free_pwqs(wq);
3487 kfree(wq->rescuer);
3488 kfree(wq);
3489 }
3490 return NULL;
3491 }
3492 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3493
3494 /**
3495 * destroy_workqueue - safely terminate a workqueue
3496 * @wq: target workqueue
3497 *
3498 * Safely destroy a workqueue. All work currently pending will be done first.
3499 */
3500 void destroy_workqueue(struct workqueue_struct *wq)
3501 {
3502 struct pool_workqueue *pwq;
3503
3504 /* drain it before proceeding with destruction */
3505 drain_workqueue(wq);
3506
3507 spin_lock_irq(&workqueue_lock);
3508
3509 /* sanity checks */
3510 for_each_pwq(pwq, wq) {
3511 int i;
3512
3513 for (i = 0; i < WORK_NR_COLORS; i++) {
3514 if (WARN_ON(pwq->nr_in_flight[i])) {
3515 spin_unlock_irq(&workqueue_lock);
3516 return;
3517 }
3518 }
3519
3520 if (WARN_ON(pwq->nr_active) ||
3521 WARN_ON(!list_empty(&pwq->delayed_works))) {
3522 spin_unlock_irq(&workqueue_lock);
3523 return;
3524 }
3525 }
3526
3527 /*
3528 * wq list is used to freeze wq, remove from list after
3529 * flushing is complete in case freeze races us.
3530 */
3531 list_del(&wq->list);
3532
3533 spin_unlock_irq(&workqueue_lock);
3534
3535 if (wq->flags & WQ_RESCUER) {
3536 kthread_stop(wq->rescuer->task);
3537 kfree(wq->rescuer);
3538 }
3539
3540 /*
3541 * We're the sole accessor of @wq at this point. Directly access
3542 * the first pwq and put its pool.
3543 */
3544 if (wq->flags & WQ_UNBOUND) {
3545 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3546 pwqs_node);
3547 put_unbound_pool(pwq->pool);
3548 }
3549 free_pwqs(wq);
3550 kfree(wq);
3551 }
3552 EXPORT_SYMBOL_GPL(destroy_workqueue);
3553
3554 /**
3555 * pwq_set_max_active - adjust max_active of a pwq
3556 * @pwq: target pool_workqueue
3557 * @max_active: new max_active value.
3558 *
3559 * Set @pwq->max_active to @max_active and activate delayed works if
3560 * increased.
3561 *
3562 * CONTEXT:
3563 * spin_lock_irq(pool->lock).
3564 */
3565 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3566 {
3567 pwq->max_active = max_active;
3568
3569 while (!list_empty(&pwq->delayed_works) &&
3570 pwq->nr_active < pwq->max_active)
3571 pwq_activate_first_delayed(pwq);
3572 }
3573
3574 /**
3575 * workqueue_set_max_active - adjust max_active of a workqueue
3576 * @wq: target workqueue
3577 * @max_active: new max_active value.
3578 *
3579 * Set max_active of @wq to @max_active.
3580 *
3581 * CONTEXT:
3582 * Don't call from IRQ context.
3583 */
3584 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3585 {
3586 struct pool_workqueue *pwq;
3587
3588 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3589
3590 spin_lock_irq(&workqueue_lock);
3591
3592 wq->saved_max_active = max_active;
3593
3594 for_each_pwq(pwq, wq) {
3595 struct worker_pool *pool = pwq->pool;
3596
3597 spin_lock(&pool->lock);
3598
3599 if (!(wq->flags & WQ_FREEZABLE) ||
3600 !(pool->flags & POOL_FREEZING))
3601 pwq_set_max_active(pwq, max_active);
3602
3603 spin_unlock(&pool->lock);
3604 }
3605
3606 spin_unlock_irq(&workqueue_lock);
3607 }
3608 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3609
3610 /**
3611 * workqueue_congested - test whether a workqueue is congested
3612 * @cpu: CPU in question
3613 * @wq: target workqueue
3614 *
3615 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3616 * no synchronization around this function and the test result is
3617 * unreliable and only useful as advisory hints or for debugging.
3618 *
3619 * RETURNS:
3620 * %true if congested, %false otherwise.
3621 */
3622 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
3623 {
3624 struct pool_workqueue *pwq;
3625 bool ret;
3626
3627 preempt_disable();
3628
3629 if (!(wq->flags & WQ_UNBOUND))
3630 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3631 else
3632 pwq = first_pwq(wq);
3633
3634 ret = !list_empty(&pwq->delayed_works);
3635 preempt_enable();
3636
3637 return ret;
3638 }
3639 EXPORT_SYMBOL_GPL(workqueue_congested);
3640
3641 /**
3642 * work_busy - test whether a work is currently pending or running
3643 * @work: the work to be tested
3644 *
3645 * Test whether @work is currently pending or running. There is no
3646 * synchronization around this function and the test result is
3647 * unreliable and only useful as advisory hints or for debugging.
3648 *
3649 * RETURNS:
3650 * OR'd bitmask of WORK_BUSY_* bits.
3651 */
3652 unsigned int work_busy(struct work_struct *work)
3653 {
3654 struct worker_pool *pool;
3655 unsigned long flags;
3656 unsigned int ret = 0;
3657
3658 if (work_pending(work))
3659 ret |= WORK_BUSY_PENDING;
3660
3661 local_irq_save(flags);
3662 pool = get_work_pool(work);
3663 if (pool) {
3664 spin_lock(&pool->lock);
3665 if (find_worker_executing_work(pool, work))
3666 ret |= WORK_BUSY_RUNNING;
3667 spin_unlock(&pool->lock);
3668 }
3669 local_irq_restore(flags);
3670
3671 return ret;
3672 }
3673 EXPORT_SYMBOL_GPL(work_busy);
3674
3675 /*
3676 * CPU hotplug.
3677 *
3678 * There are two challenges in supporting CPU hotplug. Firstly, there
3679 * are a lot of assumptions on strong associations among work, pwq and
3680 * pool which make migrating pending and scheduled works very
3681 * difficult to implement without impacting hot paths. Secondly,
3682 * worker pools serve mix of short, long and very long running works making
3683 * blocked draining impractical.
3684 *
3685 * This is solved by allowing the pools to be disassociated from the CPU
3686 * running as an unbound one and allowing it to be reattached later if the
3687 * cpu comes back online.
3688 */
3689
3690 static void wq_unbind_fn(struct work_struct *work)
3691 {
3692 int cpu = smp_processor_id();
3693 struct worker_pool *pool;
3694 struct worker *worker;
3695 int i;
3696
3697 for_each_std_worker_pool(pool, cpu) {
3698 WARN_ON_ONCE(cpu != smp_processor_id());
3699
3700 mutex_lock(&pool->assoc_mutex);
3701 spin_lock_irq(&pool->lock);
3702
3703 /*
3704 * We've claimed all manager positions. Make all workers
3705 * unbound and set DISASSOCIATED. Before this, all workers
3706 * except for the ones which are still executing works from
3707 * before the last CPU down must be on the cpu. After
3708 * this, they may become diasporas.
3709 */
3710 list_for_each_entry(worker, &pool->idle_list, entry)
3711 worker->flags |= WORKER_UNBOUND;
3712
3713 for_each_busy_worker(worker, i, pool)
3714 worker->flags |= WORKER_UNBOUND;
3715
3716 pool->flags |= POOL_DISASSOCIATED;
3717
3718 spin_unlock_irq(&pool->lock);
3719 mutex_unlock(&pool->assoc_mutex);
3720 }
3721
3722 /*
3723 * Call schedule() so that we cross rq->lock and thus can guarantee
3724 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3725 * as scheduler callbacks may be invoked from other cpus.
3726 */
3727 schedule();
3728
3729 /*
3730 * Sched callbacks are disabled now. Zap nr_running. After this,
3731 * nr_running stays zero and need_more_worker() and keep_working()
3732 * are always true as long as the worklist is not empty. Pools on
3733 * @cpu now behave as unbound (in terms of concurrency management)
3734 * pools which are served by workers tied to the CPU.
3735 *
3736 * On return from this function, the current worker would trigger
3737 * unbound chain execution of pending work items if other workers
3738 * didn't already.
3739 */
3740 for_each_std_worker_pool(pool, cpu)
3741 atomic_set(&pool->nr_running, 0);
3742 }
3743
3744 /*
3745 * Workqueues should be brought up before normal priority CPU notifiers.
3746 * This will be registered high priority CPU notifier.
3747 */
3748 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3749 unsigned long action,
3750 void *hcpu)
3751 {
3752 int cpu = (unsigned long)hcpu;
3753 struct worker_pool *pool;
3754
3755 switch (action & ~CPU_TASKS_FROZEN) {
3756 case CPU_UP_PREPARE:
3757 for_each_std_worker_pool(pool, cpu) {
3758 struct worker *worker;
3759
3760 if (pool->nr_workers)
3761 continue;
3762
3763 worker = create_worker(pool);
3764 if (!worker)
3765 return NOTIFY_BAD;
3766
3767 spin_lock_irq(&pool->lock);
3768 start_worker(worker);
3769 spin_unlock_irq(&pool->lock);
3770 }
3771 break;
3772
3773 case CPU_DOWN_FAILED:
3774 case CPU_ONLINE:
3775 for_each_std_worker_pool(pool, cpu) {
3776 mutex_lock(&pool->assoc_mutex);
3777 spin_lock_irq(&pool->lock);
3778
3779 pool->flags &= ~POOL_DISASSOCIATED;
3780 rebind_workers(pool);
3781
3782 spin_unlock_irq(&pool->lock);
3783 mutex_unlock(&pool->assoc_mutex);
3784 }
3785 break;
3786 }
3787 return NOTIFY_OK;
3788 }
3789
3790 /*
3791 * Workqueues should be brought down after normal priority CPU notifiers.
3792 * This will be registered as low priority CPU notifier.
3793 */
3794 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3795 unsigned long action,
3796 void *hcpu)
3797 {
3798 int cpu = (unsigned long)hcpu;
3799 struct work_struct unbind_work;
3800
3801 switch (action & ~CPU_TASKS_FROZEN) {
3802 case CPU_DOWN_PREPARE:
3803 /* unbinding should happen on the local CPU */
3804 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3805 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3806 flush_work(&unbind_work);
3807 break;
3808 }
3809 return NOTIFY_OK;
3810 }
3811
3812 #ifdef CONFIG_SMP
3813
3814 struct work_for_cpu {
3815 struct work_struct work;
3816 long (*fn)(void *);
3817 void *arg;
3818 long ret;
3819 };
3820
3821 static void work_for_cpu_fn(struct work_struct *work)
3822 {
3823 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3824
3825 wfc->ret = wfc->fn(wfc->arg);
3826 }
3827
3828 /**
3829 * work_on_cpu - run a function in user context on a particular cpu
3830 * @cpu: the cpu to run on
3831 * @fn: the function to run
3832 * @arg: the function arg
3833 *
3834 * This will return the value @fn returns.
3835 * It is up to the caller to ensure that the cpu doesn't go offline.
3836 * The caller must not hold any locks which would prevent @fn from completing.
3837 */
3838 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3839 {
3840 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3841
3842 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3843 schedule_work_on(cpu, &wfc.work);
3844 flush_work(&wfc.work);
3845 return wfc.ret;
3846 }
3847 EXPORT_SYMBOL_GPL(work_on_cpu);
3848 #endif /* CONFIG_SMP */
3849
3850 #ifdef CONFIG_FREEZER
3851
3852 /**
3853 * freeze_workqueues_begin - begin freezing workqueues
3854 *
3855 * Start freezing workqueues. After this function returns, all freezable
3856 * workqueues will queue new works to their frozen_works list instead of
3857 * pool->worklist.
3858 *
3859 * CONTEXT:
3860 * Grabs and releases workqueue_lock and pool->lock's.
3861 */
3862 void freeze_workqueues_begin(void)
3863 {
3864 struct worker_pool *pool;
3865 struct workqueue_struct *wq;
3866 struct pool_workqueue *pwq;
3867 int id;
3868
3869 spin_lock_irq(&workqueue_lock);
3870
3871 WARN_ON_ONCE(workqueue_freezing);
3872 workqueue_freezing = true;
3873
3874 /* set FREEZING */
3875 for_each_pool(pool, id) {
3876 spin_lock(&pool->lock);
3877 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3878 pool->flags |= POOL_FREEZING;
3879 spin_unlock(&pool->lock);
3880 }
3881
3882 /* suppress further executions by setting max_active to zero */
3883 list_for_each_entry(wq, &workqueues, list) {
3884 if (!(wq->flags & WQ_FREEZABLE))
3885 continue;
3886
3887 for_each_pwq(pwq, wq) {
3888 spin_lock(&pwq->pool->lock);
3889 pwq->max_active = 0;
3890 spin_unlock(&pwq->pool->lock);
3891 }
3892 }
3893
3894 spin_unlock_irq(&workqueue_lock);
3895 }
3896
3897 /**
3898 * freeze_workqueues_busy - are freezable workqueues still busy?
3899 *
3900 * Check whether freezing is complete. This function must be called
3901 * between freeze_workqueues_begin() and thaw_workqueues().
3902 *
3903 * CONTEXT:
3904 * Grabs and releases workqueue_lock.
3905 *
3906 * RETURNS:
3907 * %true if some freezable workqueues are still busy. %false if freezing
3908 * is complete.
3909 */
3910 bool freeze_workqueues_busy(void)
3911 {
3912 bool busy = false;
3913 struct workqueue_struct *wq;
3914 struct pool_workqueue *pwq;
3915
3916 spin_lock_irq(&workqueue_lock);
3917
3918 WARN_ON_ONCE(!workqueue_freezing);
3919
3920 list_for_each_entry(wq, &workqueues, list) {
3921 if (!(wq->flags & WQ_FREEZABLE))
3922 continue;
3923 /*
3924 * nr_active is monotonically decreasing. It's safe
3925 * to peek without lock.
3926 */
3927 for_each_pwq(pwq, wq) {
3928 WARN_ON_ONCE(pwq->nr_active < 0);
3929 if (pwq->nr_active) {
3930 busy = true;
3931 goto out_unlock;
3932 }
3933 }
3934 }
3935 out_unlock:
3936 spin_unlock_irq(&workqueue_lock);
3937 return busy;
3938 }
3939
3940 /**
3941 * thaw_workqueues - thaw workqueues
3942 *
3943 * Thaw workqueues. Normal queueing is restored and all collected
3944 * frozen works are transferred to their respective pool worklists.
3945 *
3946 * CONTEXT:
3947 * Grabs and releases workqueue_lock and pool->lock's.
3948 */
3949 void thaw_workqueues(void)
3950 {
3951 struct workqueue_struct *wq;
3952 struct pool_workqueue *pwq;
3953 struct worker_pool *pool;
3954 int id;
3955
3956 spin_lock_irq(&workqueue_lock);
3957
3958 if (!workqueue_freezing)
3959 goto out_unlock;
3960
3961 /* clear FREEZING */
3962 for_each_pool(pool, id) {
3963 spin_lock(&pool->lock);
3964 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3965 pool->flags &= ~POOL_FREEZING;
3966 spin_unlock(&pool->lock);
3967 }
3968
3969 /* restore max_active and repopulate worklist */
3970 list_for_each_entry(wq, &workqueues, list) {
3971 if (!(wq->flags & WQ_FREEZABLE))
3972 continue;
3973
3974 for_each_pwq(pwq, wq) {
3975 spin_lock(&pwq->pool->lock);
3976 pwq_set_max_active(pwq, wq->saved_max_active);
3977 spin_unlock(&pwq->pool->lock);
3978 }
3979 }
3980
3981 /* kick workers */
3982 for_each_pool(pool, id) {
3983 spin_lock(&pool->lock);
3984 wake_up_worker(pool);
3985 spin_unlock(&pool->lock);
3986 }
3987
3988 workqueue_freezing = false;
3989 out_unlock:
3990 spin_unlock_irq(&workqueue_lock);
3991 }
3992 #endif /* CONFIG_FREEZER */
3993
3994 static int __init init_workqueues(void)
3995 {
3996 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
3997 int i, cpu;
3998
3999 /* make sure we have enough bits for OFFQ pool ID */
4000 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4001 WORK_CPU_END * NR_STD_WORKER_POOLS);
4002
4003 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4004
4005 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4006
4007 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4008 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4009
4010 /* initialize CPU pools */
4011 for_each_possible_cpu(cpu) {
4012 struct worker_pool *pool;
4013
4014 i = 0;
4015 for_each_std_worker_pool(pool, cpu) {
4016 BUG_ON(init_worker_pool(pool));
4017 pool->cpu = cpu;
4018 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4019 pool->attrs->nice = std_nice[i++];
4020
4021 /* alloc pool ID */
4022 BUG_ON(worker_pool_assign_id(pool));
4023 }
4024 }
4025
4026 /* create the initial worker */
4027 for_each_online_cpu(cpu) {
4028 struct worker_pool *pool;
4029
4030 for_each_std_worker_pool(pool, cpu) {
4031 struct worker *worker;
4032
4033 pool->flags &= ~POOL_DISASSOCIATED;
4034
4035 worker = create_worker(pool);
4036 BUG_ON(!worker);
4037 spin_lock_irq(&pool->lock);
4038 start_worker(worker);
4039 spin_unlock_irq(&pool->lock);
4040 }
4041 }
4042
4043 /* create default unbound wq attrs */
4044 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4045 struct workqueue_attrs *attrs;
4046
4047 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4048
4049 attrs->nice = std_nice[i];
4050 cpumask_setall(attrs->cpumask);
4051
4052 unbound_std_wq_attrs[i] = attrs;
4053 }
4054
4055 system_wq = alloc_workqueue("events", 0, 0);
4056 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4057 system_long_wq = alloc_workqueue("events_long", 0, 0);
4058 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4059 WQ_UNBOUND_MAX_ACTIVE);
4060 system_freezable_wq = alloc_workqueue("events_freezable",
4061 WQ_FREEZABLE, 0);
4062 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4063 !system_unbound_wq || !system_freezable_wq);
4064 return 0;
4065 }
4066 early_initcall(init_workqueues);
This page took 0.120373 seconds and 5 git commands to generate.