workqueue: use system_highpri_wq for highpri workers in rebind_workers()
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
83
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
87
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
103 };
104
105 /*
106 * Structure fields follow one of the following exclusion rules.
107 *
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
110 *
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
114 * L: gcwq->lock protected. Access with gcwq->lock held.
115 *
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
120 *
121 * F: wq->flush_mutex protected.
122 *
123 * W: workqueue_lock protected.
124 */
125
126 struct global_cwq;
127 struct worker_pool;
128 struct idle_rebind;
129
130 /*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
134 struct worker {
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
140
141 struct work_struct *current_work; /* L: work being processed */
142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143 struct list_head scheduled; /* L: scheduled works */
144 struct task_struct *task; /* I: worker task */
145 struct worker_pool *pool; /* I: the associated pool */
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
149 int id; /* I: worker id */
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
154 };
155
156 struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
158 unsigned int flags; /* X: flags */
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
168 struct mutex manager_mutex; /* mutex manager should hold */
169 struct ida worker_ida; /* L: for worker IDs */
170 };
171
172 /*
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
176 */
177 struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
180 unsigned int flags; /* L: GCWQ_* flags */
181
182 /* workers are chained either in busy_hash or pool idle_list */
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
188
189 wait_queue_head_t rebind_hold; /* rebind hold wait */
190 } ____cacheline_aligned_in_smp;
191
192 /*
193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
196 */
197 struct cpu_workqueue_struct {
198 struct worker_pool *pool; /* I: the associated pool */
199 struct workqueue_struct *wq; /* I: the owning workqueue */
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
204 int nr_active; /* L: nr of active works */
205 int max_active; /* L: max active works */
206 struct list_head delayed_works; /* L: delayed works */
207 };
208
209 /*
210 * Structure used to wait for workqueue flush.
211 */
212 struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216 };
217
218 /*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222 #ifdef CONFIG_SMP
223 typedef cpumask_var_t mayday_mask_t;
224 #define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
228 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
229 #define free_mayday_mask(mask) free_cpumask_var((mask))
230 #else
231 typedef unsigned long mayday_mask_t;
232 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235 #define alloc_mayday_mask(maskp, gfp) true
236 #define free_mayday_mask(mask) do { } while (0)
237 #endif
238
239 /*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243 struct workqueue_struct {
244 unsigned int flags; /* W: WQ_* flags */
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
250 struct list_head list; /* W: list of all workqueues */
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
261 struct worker *rescuer; /* I: rescue worker */
262
263 int nr_drainers; /* W: drain in progress */
264 int saved_max_active; /* W: saved cwq max_active */
265 #ifdef CONFIG_LOCKDEP
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[]; /* I: workqueue name */
269 };
270
271 struct workqueue_struct *system_wq __read_mostly;
272 struct workqueue_struct *system_highpri_wq __read_mostly;
273 struct workqueue_struct *system_long_wq __read_mostly;
274 struct workqueue_struct *system_nrt_wq __read_mostly;
275 struct workqueue_struct *system_unbound_wq __read_mostly;
276 struct workqueue_struct *system_freezable_wq __read_mostly;
277 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
278 EXPORT_SYMBOL_GPL(system_wq);
279 EXPORT_SYMBOL_GPL(system_highpri_wq);
280 EXPORT_SYMBOL_GPL(system_long_wq);
281 EXPORT_SYMBOL_GPL(system_nrt_wq);
282 EXPORT_SYMBOL_GPL(system_unbound_wq);
283 EXPORT_SYMBOL_GPL(system_freezable_wq);
284 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
285
286 #define CREATE_TRACE_POINTS
287 #include <trace/events/workqueue.h>
288
289 #define for_each_worker_pool(pool, gcwq) \
290 for ((pool) = &(gcwq)->pools[0]; \
291 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
292
293 #define for_each_busy_worker(worker, i, pos, gcwq) \
294 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
295 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
296
297 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
298 unsigned int sw)
299 {
300 if (cpu < nr_cpu_ids) {
301 if (sw & 1) {
302 cpu = cpumask_next(cpu, mask);
303 if (cpu < nr_cpu_ids)
304 return cpu;
305 }
306 if (sw & 2)
307 return WORK_CPU_UNBOUND;
308 }
309 return WORK_CPU_NONE;
310 }
311
312 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
313 struct workqueue_struct *wq)
314 {
315 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
316 }
317
318 /*
319 * CPU iterators
320 *
321 * An extra gcwq is defined for an invalid cpu number
322 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
323 * specific CPU. The following iterators are similar to
324 * for_each_*_cpu() iterators but also considers the unbound gcwq.
325 *
326 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
327 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
328 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
329 * WORK_CPU_UNBOUND for unbound workqueues
330 */
331 #define for_each_gcwq_cpu(cpu) \
332 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
333 (cpu) < WORK_CPU_NONE; \
334 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
335
336 #define for_each_online_gcwq_cpu(cpu) \
337 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
338 (cpu) < WORK_CPU_NONE; \
339 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
340
341 #define for_each_cwq_cpu(cpu, wq) \
342 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
343 (cpu) < WORK_CPU_NONE; \
344 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
345
346 #ifdef CONFIG_DEBUG_OBJECTS_WORK
347
348 static struct debug_obj_descr work_debug_descr;
349
350 static void *work_debug_hint(void *addr)
351 {
352 return ((struct work_struct *) addr)->func;
353 }
354
355 /*
356 * fixup_init is called when:
357 * - an active object is initialized
358 */
359 static int work_fixup_init(void *addr, enum debug_obj_state state)
360 {
361 struct work_struct *work = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 cancel_work_sync(work);
366 debug_object_init(work, &work_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371 }
372
373 /*
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown object is activated (might be a statically initialized object)
377 */
378 static int work_fixup_activate(void *addr, enum debug_obj_state state)
379 {
380 struct work_struct *work = addr;
381
382 switch (state) {
383
384 case ODEBUG_STATE_NOTAVAILABLE:
385 /*
386 * This is not really a fixup. The work struct was
387 * statically initialized. We just make sure that it
388 * is tracked in the object tracker.
389 */
390 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
391 debug_object_init(work, &work_debug_descr);
392 debug_object_activate(work, &work_debug_descr);
393 return 0;
394 }
395 WARN_ON_ONCE(1);
396 return 0;
397
398 case ODEBUG_STATE_ACTIVE:
399 WARN_ON(1);
400
401 default:
402 return 0;
403 }
404 }
405
406 /*
407 * fixup_free is called when:
408 * - an active object is freed
409 */
410 static int work_fixup_free(void *addr, enum debug_obj_state state)
411 {
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_free(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422 }
423
424 static struct debug_obj_descr work_debug_descr = {
425 .name = "work_struct",
426 .debug_hint = work_debug_hint,
427 .fixup_init = work_fixup_init,
428 .fixup_activate = work_fixup_activate,
429 .fixup_free = work_fixup_free,
430 };
431
432 static inline void debug_work_activate(struct work_struct *work)
433 {
434 debug_object_activate(work, &work_debug_descr);
435 }
436
437 static inline void debug_work_deactivate(struct work_struct *work)
438 {
439 debug_object_deactivate(work, &work_debug_descr);
440 }
441
442 void __init_work(struct work_struct *work, int onstack)
443 {
444 if (onstack)
445 debug_object_init_on_stack(work, &work_debug_descr);
446 else
447 debug_object_init(work, &work_debug_descr);
448 }
449 EXPORT_SYMBOL_GPL(__init_work);
450
451 void destroy_work_on_stack(struct work_struct *work)
452 {
453 debug_object_free(work, &work_debug_descr);
454 }
455 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
456
457 #else
458 static inline void debug_work_activate(struct work_struct *work) { }
459 static inline void debug_work_deactivate(struct work_struct *work) { }
460 #endif
461
462 /* Serializes the accesses to the list of workqueues. */
463 static DEFINE_SPINLOCK(workqueue_lock);
464 static LIST_HEAD(workqueues);
465 static bool workqueue_freezing; /* W: have wqs started freezing? */
466
467 /*
468 * The almighty global cpu workqueues. nr_running is the only field
469 * which is expected to be used frequently by other cpus via
470 * try_to_wake_up(). Put it in a separate cacheline.
471 */
472 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
473 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
474
475 /*
476 * Global cpu workqueue and nr_running counter for unbound gcwq. The
477 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
478 * workers have WORKER_UNBOUND set.
479 */
480 static struct global_cwq unbound_global_cwq;
481 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
482 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
483 };
484
485 static int worker_thread(void *__worker);
486
487 static int worker_pool_pri(struct worker_pool *pool)
488 {
489 return pool - pool->gcwq->pools;
490 }
491
492 static struct global_cwq *get_gcwq(unsigned int cpu)
493 {
494 if (cpu != WORK_CPU_UNBOUND)
495 return &per_cpu(global_cwq, cpu);
496 else
497 return &unbound_global_cwq;
498 }
499
500 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
501 {
502 int cpu = pool->gcwq->cpu;
503 int idx = worker_pool_pri(pool);
504
505 if (cpu != WORK_CPU_UNBOUND)
506 return &per_cpu(pool_nr_running, cpu)[idx];
507 else
508 return &unbound_pool_nr_running[idx];
509 }
510
511 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
512 struct workqueue_struct *wq)
513 {
514 if (!(wq->flags & WQ_UNBOUND)) {
515 if (likely(cpu < nr_cpu_ids))
516 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
517 } else if (likely(cpu == WORK_CPU_UNBOUND))
518 return wq->cpu_wq.single;
519 return NULL;
520 }
521
522 static unsigned int work_color_to_flags(int color)
523 {
524 return color << WORK_STRUCT_COLOR_SHIFT;
525 }
526
527 static int get_work_color(struct work_struct *work)
528 {
529 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
530 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
531 }
532
533 static int work_next_color(int color)
534 {
535 return (color + 1) % WORK_NR_COLORS;
536 }
537
538 /*
539 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
540 * contain the pointer to the queued cwq. Once execution starts, the flag
541 * is cleared and the high bits contain OFFQ flags and CPU number.
542 *
543 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
544 * and clear_work_data() can be used to set the cwq, cpu or clear
545 * work->data. These functions should only be called while the work is
546 * owned - ie. while the PENDING bit is set.
547 *
548 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
549 * a work. gcwq is available once the work has been queued anywhere after
550 * initialization until it is sync canceled. cwq is available only while
551 * the work item is queued.
552 *
553 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
554 * canceled. While being canceled, a work item may have its PENDING set
555 * but stay off timer and worklist for arbitrarily long and nobody should
556 * try to steal the PENDING bit.
557 */
558 static inline void set_work_data(struct work_struct *work, unsigned long data,
559 unsigned long flags)
560 {
561 BUG_ON(!work_pending(work));
562 atomic_long_set(&work->data, data | flags | work_static(work));
563 }
564
565 static void set_work_cwq(struct work_struct *work,
566 struct cpu_workqueue_struct *cwq,
567 unsigned long extra_flags)
568 {
569 set_work_data(work, (unsigned long)cwq,
570 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
571 }
572
573 static void set_work_cpu_and_clear_pending(struct work_struct *work,
574 unsigned int cpu)
575 {
576 /*
577 * The following wmb is paired with the implied mb in
578 * test_and_set_bit(PENDING) and ensures all updates to @work made
579 * here are visible to and precede any updates by the next PENDING
580 * owner.
581 */
582 smp_wmb();
583 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
584 }
585
586 static void clear_work_data(struct work_struct *work)
587 {
588 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
589 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
590 }
591
592 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
593 {
594 unsigned long data = atomic_long_read(&work->data);
595
596 if (data & WORK_STRUCT_CWQ)
597 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
598 else
599 return NULL;
600 }
601
602 static struct global_cwq *get_work_gcwq(struct work_struct *work)
603 {
604 unsigned long data = atomic_long_read(&work->data);
605 unsigned int cpu;
606
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
610
611 cpu = data >> WORK_OFFQ_CPU_SHIFT;
612 if (cpu == WORK_CPU_NONE)
613 return NULL;
614
615 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
616 return get_gcwq(cpu);
617 }
618
619 static void mark_work_canceling(struct work_struct *work)
620 {
621 struct global_cwq *gcwq = get_work_gcwq(work);
622 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
623
624 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
625 WORK_STRUCT_PENDING);
626 }
627
628 static bool work_is_canceling(struct work_struct *work)
629 {
630 unsigned long data = atomic_long_read(&work->data);
631
632 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
633 }
634
635 /*
636 * Policy functions. These define the policies on how the global worker
637 * pools are managed. Unless noted otherwise, these functions assume that
638 * they're being called with gcwq->lock held.
639 */
640
641 static bool __need_more_worker(struct worker_pool *pool)
642 {
643 return !atomic_read(get_pool_nr_running(pool));
644 }
645
646 /*
647 * Need to wake up a worker? Called from anything but currently
648 * running workers.
649 *
650 * Note that, because unbound workers never contribute to nr_running, this
651 * function will always return %true for unbound gcwq as long as the
652 * worklist isn't empty.
653 */
654 static bool need_more_worker(struct worker_pool *pool)
655 {
656 return !list_empty(&pool->worklist) && __need_more_worker(pool);
657 }
658
659 /* Can I start working? Called from busy but !running workers. */
660 static bool may_start_working(struct worker_pool *pool)
661 {
662 return pool->nr_idle;
663 }
664
665 /* Do I need to keep working? Called from currently running workers. */
666 static bool keep_working(struct worker_pool *pool)
667 {
668 atomic_t *nr_running = get_pool_nr_running(pool);
669
670 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
671 }
672
673 /* Do we need a new worker? Called from manager. */
674 static bool need_to_create_worker(struct worker_pool *pool)
675 {
676 return need_more_worker(pool) && !may_start_working(pool);
677 }
678
679 /* Do I need to be the manager? */
680 static bool need_to_manage_workers(struct worker_pool *pool)
681 {
682 return need_to_create_worker(pool) ||
683 (pool->flags & POOL_MANAGE_WORKERS);
684 }
685
686 /* Do we have too many workers and should some go away? */
687 static bool too_many_workers(struct worker_pool *pool)
688 {
689 bool managing = mutex_is_locked(&pool->manager_mutex);
690 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
691 int nr_busy = pool->nr_workers - nr_idle;
692
693 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
694 }
695
696 /*
697 * Wake up functions.
698 */
699
700 /* Return the first worker. Safe with preemption disabled */
701 static struct worker *first_worker(struct worker_pool *pool)
702 {
703 if (unlikely(list_empty(&pool->idle_list)))
704 return NULL;
705
706 return list_first_entry(&pool->idle_list, struct worker, entry);
707 }
708
709 /**
710 * wake_up_worker - wake up an idle worker
711 * @pool: worker pool to wake worker from
712 *
713 * Wake up the first idle worker of @pool.
714 *
715 * CONTEXT:
716 * spin_lock_irq(gcwq->lock).
717 */
718 static void wake_up_worker(struct worker_pool *pool)
719 {
720 struct worker *worker = first_worker(pool);
721
722 if (likely(worker))
723 wake_up_process(worker->task);
724 }
725
726 /**
727 * wq_worker_waking_up - a worker is waking up
728 * @task: task waking up
729 * @cpu: CPU @task is waking up to
730 *
731 * This function is called during try_to_wake_up() when a worker is
732 * being awoken.
733 *
734 * CONTEXT:
735 * spin_lock_irq(rq->lock)
736 */
737 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
738 {
739 struct worker *worker = kthread_data(task);
740
741 if (!(worker->flags & WORKER_NOT_RUNNING))
742 atomic_inc(get_pool_nr_running(worker->pool));
743 }
744
745 /**
746 * wq_worker_sleeping - a worker is going to sleep
747 * @task: task going to sleep
748 * @cpu: CPU in question, must be the current CPU number
749 *
750 * This function is called during schedule() when a busy worker is
751 * going to sleep. Worker on the same cpu can be woken up by
752 * returning pointer to its task.
753 *
754 * CONTEXT:
755 * spin_lock_irq(rq->lock)
756 *
757 * RETURNS:
758 * Worker task on @cpu to wake up, %NULL if none.
759 */
760 struct task_struct *wq_worker_sleeping(struct task_struct *task,
761 unsigned int cpu)
762 {
763 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
764 struct worker_pool *pool = worker->pool;
765 atomic_t *nr_running = get_pool_nr_running(pool);
766
767 if (worker->flags & WORKER_NOT_RUNNING)
768 return NULL;
769
770 /* this can only happen on the local cpu */
771 BUG_ON(cpu != raw_smp_processor_id());
772
773 /*
774 * The counterpart of the following dec_and_test, implied mb,
775 * worklist not empty test sequence is in insert_work().
776 * Please read comment there.
777 *
778 * NOT_RUNNING is clear. This means that we're bound to and
779 * running on the local cpu w/ rq lock held and preemption
780 * disabled, which in turn means that none else could be
781 * manipulating idle_list, so dereferencing idle_list without gcwq
782 * lock is safe.
783 */
784 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
785 to_wakeup = first_worker(pool);
786 return to_wakeup ? to_wakeup->task : NULL;
787 }
788
789 /**
790 * worker_set_flags - set worker flags and adjust nr_running accordingly
791 * @worker: self
792 * @flags: flags to set
793 * @wakeup: wakeup an idle worker if necessary
794 *
795 * Set @flags in @worker->flags and adjust nr_running accordingly. If
796 * nr_running becomes zero and @wakeup is %true, an idle worker is
797 * woken up.
798 *
799 * CONTEXT:
800 * spin_lock_irq(gcwq->lock)
801 */
802 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
803 bool wakeup)
804 {
805 struct worker_pool *pool = worker->pool;
806
807 WARN_ON_ONCE(worker->task != current);
808
809 /*
810 * If transitioning into NOT_RUNNING, adjust nr_running and
811 * wake up an idle worker as necessary if requested by
812 * @wakeup.
813 */
814 if ((flags & WORKER_NOT_RUNNING) &&
815 !(worker->flags & WORKER_NOT_RUNNING)) {
816 atomic_t *nr_running = get_pool_nr_running(pool);
817
818 if (wakeup) {
819 if (atomic_dec_and_test(nr_running) &&
820 !list_empty(&pool->worklist))
821 wake_up_worker(pool);
822 } else
823 atomic_dec(nr_running);
824 }
825
826 worker->flags |= flags;
827 }
828
829 /**
830 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
831 * @worker: self
832 * @flags: flags to clear
833 *
834 * Clear @flags in @worker->flags and adjust nr_running accordingly.
835 *
836 * CONTEXT:
837 * spin_lock_irq(gcwq->lock)
838 */
839 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
840 {
841 struct worker_pool *pool = worker->pool;
842 unsigned int oflags = worker->flags;
843
844 WARN_ON_ONCE(worker->task != current);
845
846 worker->flags &= ~flags;
847
848 /*
849 * If transitioning out of NOT_RUNNING, increment nr_running. Note
850 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
851 * of multiple flags, not a single flag.
852 */
853 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
854 if (!(worker->flags & WORKER_NOT_RUNNING))
855 atomic_inc(get_pool_nr_running(pool));
856 }
857
858 /**
859 * busy_worker_head - return the busy hash head for a work
860 * @gcwq: gcwq of interest
861 * @work: work to be hashed
862 *
863 * Return hash head of @gcwq for @work.
864 *
865 * CONTEXT:
866 * spin_lock_irq(gcwq->lock).
867 *
868 * RETURNS:
869 * Pointer to the hash head.
870 */
871 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
872 struct work_struct *work)
873 {
874 const int base_shift = ilog2(sizeof(struct work_struct));
875 unsigned long v = (unsigned long)work;
876
877 /* simple shift and fold hash, do we need something better? */
878 v >>= base_shift;
879 v += v >> BUSY_WORKER_HASH_ORDER;
880 v &= BUSY_WORKER_HASH_MASK;
881
882 return &gcwq->busy_hash[v];
883 }
884
885 /**
886 * __find_worker_executing_work - find worker which is executing a work
887 * @gcwq: gcwq of interest
888 * @bwh: hash head as returned by busy_worker_head()
889 * @work: work to find worker for
890 *
891 * Find a worker which is executing @work on @gcwq. @bwh should be
892 * the hash head obtained by calling busy_worker_head() with the same
893 * work.
894 *
895 * CONTEXT:
896 * spin_lock_irq(gcwq->lock).
897 *
898 * RETURNS:
899 * Pointer to worker which is executing @work if found, NULL
900 * otherwise.
901 */
902 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
903 struct hlist_head *bwh,
904 struct work_struct *work)
905 {
906 struct worker *worker;
907 struct hlist_node *tmp;
908
909 hlist_for_each_entry(worker, tmp, bwh, hentry)
910 if (worker->current_work == work)
911 return worker;
912 return NULL;
913 }
914
915 /**
916 * find_worker_executing_work - find worker which is executing a work
917 * @gcwq: gcwq of interest
918 * @work: work to find worker for
919 *
920 * Find a worker which is executing @work on @gcwq. This function is
921 * identical to __find_worker_executing_work() except that this
922 * function calculates @bwh itself.
923 *
924 * CONTEXT:
925 * spin_lock_irq(gcwq->lock).
926 *
927 * RETURNS:
928 * Pointer to worker which is executing @work if found, NULL
929 * otherwise.
930 */
931 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
932 struct work_struct *work)
933 {
934 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
935 work);
936 }
937
938 /**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
953 * spin_lock_irq(gcwq->lock).
954 */
955 static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957 {
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977 }
978
979 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
980 {
981 struct work_struct *work = list_first_entry(&cwq->delayed_works,
982 struct work_struct, entry);
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988 }
989
990 /**
991 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
992 * @cwq: cwq of interest
993 * @color: color of work which left the queue
994 * @delayed: for a delayed work
995 *
996 * A work either has completed or is removed from pending queue,
997 * decrement nr_in_flight of its cwq and handle workqueue flushing.
998 *
999 * CONTEXT:
1000 * spin_lock_irq(gcwq->lock).
1001 */
1002 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1003 bool delayed)
1004 {
1005 /* ignore uncolored works */
1006 if (color == WORK_NO_COLOR)
1007 return;
1008
1009 cwq->nr_in_flight[color]--;
1010
1011 if (!delayed) {
1012 cwq->nr_active--;
1013 if (!list_empty(&cwq->delayed_works)) {
1014 /* one down, submit a delayed one */
1015 if (cwq->nr_active < cwq->max_active)
1016 cwq_activate_first_delayed(cwq);
1017 }
1018 }
1019
1020 /* is flush in progress and are we at the flushing tip? */
1021 if (likely(cwq->flush_color != color))
1022 return;
1023
1024 /* are there still in-flight works? */
1025 if (cwq->nr_in_flight[color])
1026 return;
1027
1028 /* this cwq is done, clear flush_color */
1029 cwq->flush_color = -1;
1030
1031 /*
1032 * If this was the last cwq, wake up the first flusher. It
1033 * will handle the rest.
1034 */
1035 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1036 complete(&cwq->wq->first_flusher->done);
1037 }
1038
1039 /**
1040 * try_to_grab_pending - steal work item from worklist and disable irq
1041 * @work: work item to steal
1042 * @is_dwork: @work is a delayed_work
1043 * @flags: place to store irq state
1044 *
1045 * Try to grab PENDING bit of @work. This function can handle @work in any
1046 * stable state - idle, on timer or on worklist. Return values are
1047 *
1048 * 1 if @work was pending and we successfully stole PENDING
1049 * 0 if @work was idle and we claimed PENDING
1050 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1051 * -ENOENT if someone else is canceling @work, this state may persist
1052 * for arbitrarily long
1053 *
1054 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1055 * preempted while holding PENDING and @work off queue, preemption must be
1056 * disabled on entry. This ensures that we don't return -EAGAIN while
1057 * another task is preempted in this function.
1058 *
1059 * On successful return, >= 0, irq is disabled and the caller is
1060 * responsible for releasing it using local_irq_restore(*@flags).
1061 *
1062 * This function is safe to call from any context other than IRQ handler.
1063 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1064 * this function return -EAGAIN perpetually.
1065 */
1066 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1067 unsigned long *flags)
1068 {
1069 struct global_cwq *gcwq;
1070
1071 WARN_ON_ONCE(in_irq());
1072
1073 local_irq_save(*flags);
1074
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
1079 if (likely(del_timer(&dwork->timer)))
1080 return 1;
1081 }
1082
1083 /* try to claim PENDING the normal way */
1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1085 return 0;
1086
1087 /*
1088 * The queueing is in progress, or it is already queued. Try to
1089 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1090 */
1091 gcwq = get_work_gcwq(work);
1092 if (!gcwq)
1093 goto fail;
1094
1095 spin_lock(&gcwq->lock);
1096 if (!list_empty(&work->entry)) {
1097 /*
1098 * This work is queued, but perhaps we locked the wrong gcwq.
1099 * In that case we must see the new value after rmb(), see
1100 * insert_work()->wmb().
1101 */
1102 smp_rmb();
1103 if (gcwq == get_work_gcwq(work)) {
1104 debug_work_deactivate(work);
1105 list_del_init(&work->entry);
1106 cwq_dec_nr_in_flight(get_work_cwq(work),
1107 get_work_color(work),
1108 *work_data_bits(work) & WORK_STRUCT_DELAYED);
1109
1110 spin_unlock(&gcwq->lock);
1111 return 1;
1112 }
1113 }
1114 spin_unlock(&gcwq->lock);
1115 fail:
1116 local_irq_restore(*flags);
1117 if (work_is_canceling(work))
1118 return -ENOENT;
1119 cpu_relax();
1120 return -EAGAIN;
1121 }
1122
1123 /**
1124 * insert_work - insert a work into gcwq
1125 * @cwq: cwq @work belongs to
1126 * @work: work to insert
1127 * @head: insertion point
1128 * @extra_flags: extra WORK_STRUCT_* flags to set
1129 *
1130 * Insert @work which belongs to @cwq into @gcwq after @head.
1131 * @extra_flags is or'd to work_struct flags.
1132 *
1133 * CONTEXT:
1134 * spin_lock_irq(gcwq->lock).
1135 */
1136 static void insert_work(struct cpu_workqueue_struct *cwq,
1137 struct work_struct *work, struct list_head *head,
1138 unsigned int extra_flags)
1139 {
1140 struct worker_pool *pool = cwq->pool;
1141
1142 /* we own @work, set data and link */
1143 set_work_cwq(work, cwq, extra_flags);
1144
1145 /*
1146 * Ensure that we get the right work->data if we see the
1147 * result of list_add() below, see try_to_grab_pending().
1148 */
1149 smp_wmb();
1150
1151 list_add_tail(&work->entry, head);
1152
1153 /*
1154 * Ensure either worker_sched_deactivated() sees the above
1155 * list_add_tail() or we see zero nr_running to avoid workers
1156 * lying around lazily while there are works to be processed.
1157 */
1158 smp_mb();
1159
1160 if (__need_more_worker(pool))
1161 wake_up_worker(pool);
1162 }
1163
1164 /*
1165 * Test whether @work is being queued from another work executing on the
1166 * same workqueue. This is rather expensive and should only be used from
1167 * cold paths.
1168 */
1169 static bool is_chained_work(struct workqueue_struct *wq)
1170 {
1171 unsigned long flags;
1172 unsigned int cpu;
1173
1174 for_each_gcwq_cpu(cpu) {
1175 struct global_cwq *gcwq = get_gcwq(cpu);
1176 struct worker *worker;
1177 struct hlist_node *pos;
1178 int i;
1179
1180 spin_lock_irqsave(&gcwq->lock, flags);
1181 for_each_busy_worker(worker, i, pos, gcwq) {
1182 if (worker->task != current)
1183 continue;
1184 spin_unlock_irqrestore(&gcwq->lock, flags);
1185 /*
1186 * I'm @worker, no locking necessary. See if @work
1187 * is headed to the same workqueue.
1188 */
1189 return worker->current_cwq->wq == wq;
1190 }
1191 spin_unlock_irqrestore(&gcwq->lock, flags);
1192 }
1193 return false;
1194 }
1195
1196 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1197 struct work_struct *work)
1198 {
1199 struct global_cwq *gcwq;
1200 struct cpu_workqueue_struct *cwq;
1201 struct list_head *worklist;
1202 unsigned int work_flags;
1203 unsigned int req_cpu = cpu;
1204
1205 /*
1206 * While a work item is PENDING && off queue, a task trying to
1207 * steal the PENDING will busy-loop waiting for it to either get
1208 * queued or lose PENDING. Grabbing PENDING and queueing should
1209 * happen with IRQ disabled.
1210 */
1211 WARN_ON_ONCE(!irqs_disabled());
1212
1213 debug_work_activate(work);
1214
1215 /* if dying, only works from the same workqueue are allowed */
1216 if (unlikely(wq->flags & WQ_DRAINING) &&
1217 WARN_ON_ONCE(!is_chained_work(wq)))
1218 return;
1219
1220 /* determine gcwq to use */
1221 if (!(wq->flags & WQ_UNBOUND)) {
1222 struct global_cwq *last_gcwq;
1223
1224 if (cpu == WORK_CPU_UNBOUND)
1225 cpu = raw_smp_processor_id();
1226
1227 /*
1228 * It's multi cpu. If @wq is non-reentrant and @work
1229 * was previously on a different cpu, it might still
1230 * be running there, in which case the work needs to
1231 * be queued on that cpu to guarantee non-reentrance.
1232 */
1233 gcwq = get_gcwq(cpu);
1234 if (wq->flags & WQ_NON_REENTRANT &&
1235 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1236 struct worker *worker;
1237
1238 spin_lock(&last_gcwq->lock);
1239
1240 worker = find_worker_executing_work(last_gcwq, work);
1241
1242 if (worker && worker->current_cwq->wq == wq)
1243 gcwq = last_gcwq;
1244 else {
1245 /* meh... not running there, queue here */
1246 spin_unlock(&last_gcwq->lock);
1247 spin_lock(&gcwq->lock);
1248 }
1249 } else {
1250 spin_lock(&gcwq->lock);
1251 }
1252 } else {
1253 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1254 spin_lock(&gcwq->lock);
1255 }
1256
1257 /* gcwq determined, get cwq and queue */
1258 cwq = get_cwq(gcwq->cpu, wq);
1259 trace_workqueue_queue_work(req_cpu, cwq, work);
1260
1261 if (WARN_ON(!list_empty(&work->entry))) {
1262 spin_unlock(&gcwq->lock);
1263 return;
1264 }
1265
1266 cwq->nr_in_flight[cwq->work_color]++;
1267 work_flags = work_color_to_flags(cwq->work_color);
1268
1269 if (likely(cwq->nr_active < cwq->max_active)) {
1270 trace_workqueue_activate_work(work);
1271 cwq->nr_active++;
1272 worklist = &cwq->pool->worklist;
1273 } else {
1274 work_flags |= WORK_STRUCT_DELAYED;
1275 worklist = &cwq->delayed_works;
1276 }
1277
1278 insert_work(cwq, work, worklist, work_flags);
1279
1280 spin_unlock(&gcwq->lock);
1281 }
1282
1283 /**
1284 * queue_work_on - queue work on specific cpu
1285 * @cpu: CPU number to execute work on
1286 * @wq: workqueue to use
1287 * @work: work to queue
1288 *
1289 * Returns %false if @work was already on a queue, %true otherwise.
1290 *
1291 * We queue the work to a specific CPU, the caller must ensure it
1292 * can't go away.
1293 */
1294 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1295 struct work_struct *work)
1296 {
1297 bool ret = false;
1298 unsigned long flags;
1299
1300 local_irq_save(flags);
1301
1302 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1303 __queue_work(cpu, wq, work);
1304 ret = true;
1305 }
1306
1307 local_irq_restore(flags);
1308 return ret;
1309 }
1310 EXPORT_SYMBOL_GPL(queue_work_on);
1311
1312 /**
1313 * queue_work - queue work on a workqueue
1314 * @wq: workqueue to use
1315 * @work: work to queue
1316 *
1317 * Returns %false if @work was already on a queue, %true otherwise.
1318 *
1319 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1320 * it can be processed by another CPU.
1321 */
1322 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1323 {
1324 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1325 }
1326 EXPORT_SYMBOL_GPL(queue_work);
1327
1328 void delayed_work_timer_fn(unsigned long __data)
1329 {
1330 struct delayed_work *dwork = (struct delayed_work *)__data;
1331 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1332
1333 local_irq_disable();
1334 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1335 local_irq_enable();
1336 }
1337 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1338
1339 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1340 struct delayed_work *dwork, unsigned long delay)
1341 {
1342 struct timer_list *timer = &dwork->timer;
1343 struct work_struct *work = &dwork->work;
1344 unsigned int lcpu;
1345
1346 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1347 timer->data != (unsigned long)dwork);
1348 BUG_ON(timer_pending(timer));
1349 BUG_ON(!list_empty(&work->entry));
1350
1351 timer_stats_timer_set_start_info(&dwork->timer);
1352
1353 /*
1354 * This stores cwq for the moment, for the timer_fn. Note that the
1355 * work's gcwq is preserved to allow reentrance detection for
1356 * delayed works.
1357 */
1358 if (!(wq->flags & WQ_UNBOUND)) {
1359 struct global_cwq *gcwq = get_work_gcwq(work);
1360
1361 /*
1362 * If we cannot get the last gcwq from @work directly,
1363 * select the last CPU such that it avoids unnecessarily
1364 * triggering non-reentrancy check in __queue_work().
1365 */
1366 lcpu = cpu;
1367 if (gcwq)
1368 lcpu = gcwq->cpu;
1369 if (lcpu == WORK_CPU_UNBOUND)
1370 lcpu = raw_smp_processor_id();
1371 } else {
1372 lcpu = WORK_CPU_UNBOUND;
1373 }
1374
1375 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1376
1377 dwork->cpu = cpu;
1378 timer->expires = jiffies + delay;
1379
1380 if (unlikely(cpu != WORK_CPU_UNBOUND))
1381 add_timer_on(timer, cpu);
1382 else
1383 add_timer(timer);
1384 }
1385
1386 /**
1387 * queue_delayed_work_on - queue work on specific CPU after delay
1388 * @cpu: CPU number to execute work on
1389 * @wq: workqueue to use
1390 * @dwork: work to queue
1391 * @delay: number of jiffies to wait before queueing
1392 *
1393 * Returns %false if @work was already on a queue, %true otherwise. If
1394 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1395 * execution.
1396 */
1397 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1398 struct delayed_work *dwork, unsigned long delay)
1399 {
1400 struct work_struct *work = &dwork->work;
1401 bool ret = false;
1402 unsigned long flags;
1403
1404 if (!delay)
1405 return queue_work_on(cpu, wq, &dwork->work);
1406
1407 /* read the comment in __queue_work() */
1408 local_irq_save(flags);
1409
1410 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1411 __queue_delayed_work(cpu, wq, dwork, delay);
1412 ret = true;
1413 }
1414
1415 local_irq_restore(flags);
1416 return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1419
1420 /**
1421 * queue_delayed_work - queue work on a workqueue after delay
1422 * @wq: workqueue to use
1423 * @dwork: delayable work to queue
1424 * @delay: number of jiffies to wait before queueing
1425 *
1426 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1427 */
1428 bool queue_delayed_work(struct workqueue_struct *wq,
1429 struct delayed_work *dwork, unsigned long delay)
1430 {
1431 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1432 }
1433 EXPORT_SYMBOL_GPL(queue_delayed_work);
1434
1435 /**
1436 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1437 * @cpu: CPU number to execute work on
1438 * @wq: workqueue to use
1439 * @dwork: work to queue
1440 * @delay: number of jiffies to wait before queueing
1441 *
1442 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1443 * modify @dwork's timer so that it expires after @delay. If @delay is
1444 * zero, @work is guaranteed to be scheduled immediately regardless of its
1445 * current state.
1446 *
1447 * Returns %false if @dwork was idle and queued, %true if @dwork was
1448 * pending and its timer was modified.
1449 *
1450 * This function is safe to call from any context other than IRQ handler.
1451 * See try_to_grab_pending() for details.
1452 */
1453 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1454 struct delayed_work *dwork, unsigned long delay)
1455 {
1456 unsigned long flags;
1457 int ret;
1458
1459 do {
1460 ret = try_to_grab_pending(&dwork->work, true, &flags);
1461 } while (unlikely(ret == -EAGAIN));
1462
1463 if (likely(ret >= 0)) {
1464 __queue_delayed_work(cpu, wq, dwork, delay);
1465 local_irq_restore(flags);
1466 }
1467
1468 /* -ENOENT from try_to_grab_pending() becomes %true */
1469 return ret;
1470 }
1471 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1472
1473 /**
1474 * mod_delayed_work - modify delay of or queue a delayed work
1475 * @wq: workqueue to use
1476 * @dwork: work to queue
1477 * @delay: number of jiffies to wait before queueing
1478 *
1479 * mod_delayed_work_on() on local CPU.
1480 */
1481 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1482 unsigned long delay)
1483 {
1484 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1485 }
1486 EXPORT_SYMBOL_GPL(mod_delayed_work);
1487
1488 /**
1489 * worker_enter_idle - enter idle state
1490 * @worker: worker which is entering idle state
1491 *
1492 * @worker is entering idle state. Update stats and idle timer if
1493 * necessary.
1494 *
1495 * LOCKING:
1496 * spin_lock_irq(gcwq->lock).
1497 */
1498 static void worker_enter_idle(struct worker *worker)
1499 {
1500 struct worker_pool *pool = worker->pool;
1501 struct global_cwq *gcwq = pool->gcwq;
1502
1503 BUG_ON(worker->flags & WORKER_IDLE);
1504 BUG_ON(!list_empty(&worker->entry) &&
1505 (worker->hentry.next || worker->hentry.pprev));
1506
1507 /* can't use worker_set_flags(), also called from start_worker() */
1508 worker->flags |= WORKER_IDLE;
1509 pool->nr_idle++;
1510 worker->last_active = jiffies;
1511
1512 /* idle_list is LIFO */
1513 list_add(&worker->entry, &pool->idle_list);
1514
1515 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1516 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1517
1518 /*
1519 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1520 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1521 * nr_running, the warning may trigger spuriously. Check iff
1522 * unbind is not in progress.
1523 */
1524 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1525 pool->nr_workers == pool->nr_idle &&
1526 atomic_read(get_pool_nr_running(pool)));
1527 }
1528
1529 /**
1530 * worker_leave_idle - leave idle state
1531 * @worker: worker which is leaving idle state
1532 *
1533 * @worker is leaving idle state. Update stats.
1534 *
1535 * LOCKING:
1536 * spin_lock_irq(gcwq->lock).
1537 */
1538 static void worker_leave_idle(struct worker *worker)
1539 {
1540 struct worker_pool *pool = worker->pool;
1541
1542 BUG_ON(!(worker->flags & WORKER_IDLE));
1543 worker_clr_flags(worker, WORKER_IDLE);
1544 pool->nr_idle--;
1545 list_del_init(&worker->entry);
1546 }
1547
1548 /**
1549 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1550 * @worker: self
1551 *
1552 * Works which are scheduled while the cpu is online must at least be
1553 * scheduled to a worker which is bound to the cpu so that if they are
1554 * flushed from cpu callbacks while cpu is going down, they are
1555 * guaranteed to execute on the cpu.
1556 *
1557 * This function is to be used by rogue workers and rescuers to bind
1558 * themselves to the target cpu and may race with cpu going down or
1559 * coming online. kthread_bind() can't be used because it may put the
1560 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1561 * verbatim as it's best effort and blocking and gcwq may be
1562 * [dis]associated in the meantime.
1563 *
1564 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1565 * binding against %GCWQ_DISASSOCIATED which is set during
1566 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1567 * enters idle state or fetches works without dropping lock, it can
1568 * guarantee the scheduling requirement described in the first paragraph.
1569 *
1570 * CONTEXT:
1571 * Might sleep. Called without any lock but returns with gcwq->lock
1572 * held.
1573 *
1574 * RETURNS:
1575 * %true if the associated gcwq is online (@worker is successfully
1576 * bound), %false if offline.
1577 */
1578 static bool worker_maybe_bind_and_lock(struct worker *worker)
1579 __acquires(&gcwq->lock)
1580 {
1581 struct global_cwq *gcwq = worker->pool->gcwq;
1582 struct task_struct *task = worker->task;
1583
1584 while (true) {
1585 /*
1586 * The following call may fail, succeed or succeed
1587 * without actually migrating the task to the cpu if
1588 * it races with cpu hotunplug operation. Verify
1589 * against GCWQ_DISASSOCIATED.
1590 */
1591 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1592 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1593
1594 spin_lock_irq(&gcwq->lock);
1595 if (gcwq->flags & GCWQ_DISASSOCIATED)
1596 return false;
1597 if (task_cpu(task) == gcwq->cpu &&
1598 cpumask_equal(&current->cpus_allowed,
1599 get_cpu_mask(gcwq->cpu)))
1600 return true;
1601 spin_unlock_irq(&gcwq->lock);
1602
1603 /*
1604 * We've raced with CPU hot[un]plug. Give it a breather
1605 * and retry migration. cond_resched() is required here;
1606 * otherwise, we might deadlock against cpu_stop trying to
1607 * bring down the CPU on non-preemptive kernel.
1608 */
1609 cpu_relax();
1610 cond_resched();
1611 }
1612 }
1613
1614 struct idle_rebind {
1615 int cnt; /* # workers to be rebound */
1616 struct completion done; /* all workers rebound */
1617 };
1618
1619 /*
1620 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1621 * happen synchronously for idle workers. worker_thread() will test
1622 * %WORKER_REBIND before leaving idle and call this function.
1623 */
1624 static void idle_worker_rebind(struct worker *worker)
1625 {
1626 struct global_cwq *gcwq = worker->pool->gcwq;
1627
1628 /* CPU must be online at this point */
1629 WARN_ON(!worker_maybe_bind_and_lock(worker));
1630 if (!--worker->idle_rebind->cnt)
1631 complete(&worker->idle_rebind->done);
1632 spin_unlock_irq(&worker->pool->gcwq->lock);
1633
1634 /* we did our part, wait for rebind_workers() to finish up */
1635 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1636 }
1637
1638 /*
1639 * Function for @worker->rebind.work used to rebind unbound busy workers to
1640 * the associated cpu which is coming back online. This is scheduled by
1641 * cpu up but can race with other cpu hotplug operations and may be
1642 * executed twice without intervening cpu down.
1643 */
1644 static void busy_worker_rebind_fn(struct work_struct *work)
1645 {
1646 struct worker *worker = container_of(work, struct worker, rebind_work);
1647 struct global_cwq *gcwq = worker->pool->gcwq;
1648
1649 if (worker_maybe_bind_and_lock(worker))
1650 worker_clr_flags(worker, WORKER_REBIND);
1651
1652 spin_unlock_irq(&gcwq->lock);
1653 }
1654
1655 /**
1656 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1657 * @gcwq: gcwq of interest
1658 *
1659 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1660 * is different for idle and busy ones.
1661 *
1662 * The idle ones should be rebound synchronously and idle rebinding should
1663 * be complete before any worker starts executing work items with
1664 * concurrency management enabled; otherwise, scheduler may oops trying to
1665 * wake up non-local idle worker from wq_worker_sleeping().
1666 *
1667 * This is achieved by repeatedly requesting rebinding until all idle
1668 * workers are known to have been rebound under @gcwq->lock and holding all
1669 * idle workers from becoming busy until idle rebinding is complete.
1670 *
1671 * Once idle workers are rebound, busy workers can be rebound as they
1672 * finish executing their current work items. Queueing the rebind work at
1673 * the head of their scheduled lists is enough. Note that nr_running will
1674 * be properbly bumped as busy workers rebind.
1675 *
1676 * On return, all workers are guaranteed to either be bound or have rebind
1677 * work item scheduled.
1678 */
1679 static void rebind_workers(struct global_cwq *gcwq)
1680 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1681 {
1682 struct idle_rebind idle_rebind;
1683 struct worker_pool *pool;
1684 struct worker *worker;
1685 struct hlist_node *pos;
1686 int i;
1687
1688 lockdep_assert_held(&gcwq->lock);
1689
1690 for_each_worker_pool(pool, gcwq)
1691 lockdep_assert_held(&pool->manager_mutex);
1692
1693 /*
1694 * Rebind idle workers. Interlocked both ways. We wait for
1695 * workers to rebind via @idle_rebind.done. Workers will wait for
1696 * us to finish up by watching %WORKER_REBIND.
1697 */
1698 init_completion(&idle_rebind.done);
1699 retry:
1700 idle_rebind.cnt = 1;
1701 INIT_COMPLETION(idle_rebind.done);
1702
1703 /* set REBIND and kick idle ones, we'll wait for these later */
1704 for_each_worker_pool(pool, gcwq) {
1705 list_for_each_entry(worker, &pool->idle_list, entry) {
1706 if (worker->flags & WORKER_REBIND)
1707 continue;
1708
1709 /* morph UNBOUND to REBIND */
1710 worker->flags &= ~WORKER_UNBOUND;
1711 worker->flags |= WORKER_REBIND;
1712
1713 idle_rebind.cnt++;
1714 worker->idle_rebind = &idle_rebind;
1715
1716 /* worker_thread() will call idle_worker_rebind() */
1717 wake_up_process(worker->task);
1718 }
1719 }
1720
1721 if (--idle_rebind.cnt) {
1722 spin_unlock_irq(&gcwq->lock);
1723 wait_for_completion(&idle_rebind.done);
1724 spin_lock_irq(&gcwq->lock);
1725 /* busy ones might have become idle while waiting, retry */
1726 goto retry;
1727 }
1728
1729 /*
1730 * All idle workers are rebound and waiting for %WORKER_REBIND to
1731 * be cleared inside idle_worker_rebind(). Clear and release.
1732 * Clearing %WORKER_REBIND from this foreign context is safe
1733 * because these workers are still guaranteed to be idle.
1734 */
1735 for_each_worker_pool(pool, gcwq)
1736 list_for_each_entry(worker, &pool->idle_list, entry)
1737 worker->flags &= ~WORKER_REBIND;
1738
1739 wake_up_all(&gcwq->rebind_hold);
1740
1741 /* rebind busy workers */
1742 for_each_busy_worker(worker, i, pos, gcwq) {
1743 struct work_struct *rebind_work = &worker->rebind_work;
1744 struct workqueue_struct *wq;
1745
1746 /* morph UNBOUND to REBIND */
1747 worker->flags &= ~WORKER_UNBOUND;
1748 worker->flags |= WORKER_REBIND;
1749
1750 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1751 work_data_bits(rebind_work)))
1752 continue;
1753
1754 debug_work_activate(rebind_work);
1755
1756 /*
1757 * wq doesn't really matter but let's keep @worker->pool
1758 * and @cwq->pool consistent for sanity.
1759 */
1760 if (worker_pool_pri(worker->pool))
1761 wq = system_highpri_wq;
1762 else
1763 wq = system_wq;
1764
1765 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1766 worker->scheduled.next,
1767 work_color_to_flags(WORK_NO_COLOR));
1768 }
1769 }
1770
1771 static struct worker *alloc_worker(void)
1772 {
1773 struct worker *worker;
1774
1775 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1776 if (worker) {
1777 INIT_LIST_HEAD(&worker->entry);
1778 INIT_LIST_HEAD(&worker->scheduled);
1779 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1780 /* on creation a worker is in !idle && prep state */
1781 worker->flags = WORKER_PREP;
1782 }
1783 return worker;
1784 }
1785
1786 /**
1787 * create_worker - create a new workqueue worker
1788 * @pool: pool the new worker will belong to
1789 *
1790 * Create a new worker which is bound to @pool. The returned worker
1791 * can be started by calling start_worker() or destroyed using
1792 * destroy_worker().
1793 *
1794 * CONTEXT:
1795 * Might sleep. Does GFP_KERNEL allocations.
1796 *
1797 * RETURNS:
1798 * Pointer to the newly created worker.
1799 */
1800 static struct worker *create_worker(struct worker_pool *pool)
1801 {
1802 struct global_cwq *gcwq = pool->gcwq;
1803 const char *pri = worker_pool_pri(pool) ? "H" : "";
1804 struct worker *worker = NULL;
1805 int id = -1;
1806
1807 spin_lock_irq(&gcwq->lock);
1808 while (ida_get_new(&pool->worker_ida, &id)) {
1809 spin_unlock_irq(&gcwq->lock);
1810 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1811 goto fail;
1812 spin_lock_irq(&gcwq->lock);
1813 }
1814 spin_unlock_irq(&gcwq->lock);
1815
1816 worker = alloc_worker();
1817 if (!worker)
1818 goto fail;
1819
1820 worker->pool = pool;
1821 worker->id = id;
1822
1823 if (gcwq->cpu != WORK_CPU_UNBOUND)
1824 worker->task = kthread_create_on_node(worker_thread,
1825 worker, cpu_to_node(gcwq->cpu),
1826 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1827 else
1828 worker->task = kthread_create(worker_thread, worker,
1829 "kworker/u:%d%s", id, pri);
1830 if (IS_ERR(worker->task))
1831 goto fail;
1832
1833 if (worker_pool_pri(pool))
1834 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1835
1836 /*
1837 * Determine CPU binding of the new worker depending on
1838 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1839 * flag remains stable across this function. See the comments
1840 * above the flag definition for details.
1841 *
1842 * As an unbound worker may later become a regular one if CPU comes
1843 * online, make sure every worker has %PF_THREAD_BOUND set.
1844 */
1845 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1846 kthread_bind(worker->task, gcwq->cpu);
1847 } else {
1848 worker->task->flags |= PF_THREAD_BOUND;
1849 worker->flags |= WORKER_UNBOUND;
1850 }
1851
1852 return worker;
1853 fail:
1854 if (id >= 0) {
1855 spin_lock_irq(&gcwq->lock);
1856 ida_remove(&pool->worker_ida, id);
1857 spin_unlock_irq(&gcwq->lock);
1858 }
1859 kfree(worker);
1860 return NULL;
1861 }
1862
1863 /**
1864 * start_worker - start a newly created worker
1865 * @worker: worker to start
1866 *
1867 * Make the gcwq aware of @worker and start it.
1868 *
1869 * CONTEXT:
1870 * spin_lock_irq(gcwq->lock).
1871 */
1872 static void start_worker(struct worker *worker)
1873 {
1874 worker->flags |= WORKER_STARTED;
1875 worker->pool->nr_workers++;
1876 worker_enter_idle(worker);
1877 wake_up_process(worker->task);
1878 }
1879
1880 /**
1881 * destroy_worker - destroy a workqueue worker
1882 * @worker: worker to be destroyed
1883 *
1884 * Destroy @worker and adjust @gcwq stats accordingly.
1885 *
1886 * CONTEXT:
1887 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1888 */
1889 static void destroy_worker(struct worker *worker)
1890 {
1891 struct worker_pool *pool = worker->pool;
1892 struct global_cwq *gcwq = pool->gcwq;
1893 int id = worker->id;
1894
1895 /* sanity check frenzy */
1896 BUG_ON(worker->current_work);
1897 BUG_ON(!list_empty(&worker->scheduled));
1898
1899 if (worker->flags & WORKER_STARTED)
1900 pool->nr_workers--;
1901 if (worker->flags & WORKER_IDLE)
1902 pool->nr_idle--;
1903
1904 list_del_init(&worker->entry);
1905 worker->flags |= WORKER_DIE;
1906
1907 spin_unlock_irq(&gcwq->lock);
1908
1909 kthread_stop(worker->task);
1910 kfree(worker);
1911
1912 spin_lock_irq(&gcwq->lock);
1913 ida_remove(&pool->worker_ida, id);
1914 }
1915
1916 static void idle_worker_timeout(unsigned long __pool)
1917 {
1918 struct worker_pool *pool = (void *)__pool;
1919 struct global_cwq *gcwq = pool->gcwq;
1920
1921 spin_lock_irq(&gcwq->lock);
1922
1923 if (too_many_workers(pool)) {
1924 struct worker *worker;
1925 unsigned long expires;
1926
1927 /* idle_list is kept in LIFO order, check the last one */
1928 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1929 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1930
1931 if (time_before(jiffies, expires))
1932 mod_timer(&pool->idle_timer, expires);
1933 else {
1934 /* it's been idle for too long, wake up manager */
1935 pool->flags |= POOL_MANAGE_WORKERS;
1936 wake_up_worker(pool);
1937 }
1938 }
1939
1940 spin_unlock_irq(&gcwq->lock);
1941 }
1942
1943 static bool send_mayday(struct work_struct *work)
1944 {
1945 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1946 struct workqueue_struct *wq = cwq->wq;
1947 unsigned int cpu;
1948
1949 if (!(wq->flags & WQ_RESCUER))
1950 return false;
1951
1952 /* mayday mayday mayday */
1953 cpu = cwq->pool->gcwq->cpu;
1954 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1955 if (cpu == WORK_CPU_UNBOUND)
1956 cpu = 0;
1957 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1958 wake_up_process(wq->rescuer->task);
1959 return true;
1960 }
1961
1962 static void gcwq_mayday_timeout(unsigned long __pool)
1963 {
1964 struct worker_pool *pool = (void *)__pool;
1965 struct global_cwq *gcwq = pool->gcwq;
1966 struct work_struct *work;
1967
1968 spin_lock_irq(&gcwq->lock);
1969
1970 if (need_to_create_worker(pool)) {
1971 /*
1972 * We've been trying to create a new worker but
1973 * haven't been successful. We might be hitting an
1974 * allocation deadlock. Send distress signals to
1975 * rescuers.
1976 */
1977 list_for_each_entry(work, &pool->worklist, entry)
1978 send_mayday(work);
1979 }
1980
1981 spin_unlock_irq(&gcwq->lock);
1982
1983 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1984 }
1985
1986 /**
1987 * maybe_create_worker - create a new worker if necessary
1988 * @pool: pool to create a new worker for
1989 *
1990 * Create a new worker for @pool if necessary. @pool is guaranteed to
1991 * have at least one idle worker on return from this function. If
1992 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1993 * sent to all rescuers with works scheduled on @pool to resolve
1994 * possible allocation deadlock.
1995 *
1996 * On return, need_to_create_worker() is guaranteed to be false and
1997 * may_start_working() true.
1998 *
1999 * LOCKING:
2000 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2001 * multiple times. Does GFP_KERNEL allocations. Called only from
2002 * manager.
2003 *
2004 * RETURNS:
2005 * false if no action was taken and gcwq->lock stayed locked, true
2006 * otherwise.
2007 */
2008 static bool maybe_create_worker(struct worker_pool *pool)
2009 __releases(&gcwq->lock)
2010 __acquires(&gcwq->lock)
2011 {
2012 struct global_cwq *gcwq = pool->gcwq;
2013
2014 if (!need_to_create_worker(pool))
2015 return false;
2016 restart:
2017 spin_unlock_irq(&gcwq->lock);
2018
2019 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2020 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2021
2022 while (true) {
2023 struct worker *worker;
2024
2025 worker = create_worker(pool);
2026 if (worker) {
2027 del_timer_sync(&pool->mayday_timer);
2028 spin_lock_irq(&gcwq->lock);
2029 start_worker(worker);
2030 BUG_ON(need_to_create_worker(pool));
2031 return true;
2032 }
2033
2034 if (!need_to_create_worker(pool))
2035 break;
2036
2037 __set_current_state(TASK_INTERRUPTIBLE);
2038 schedule_timeout(CREATE_COOLDOWN);
2039
2040 if (!need_to_create_worker(pool))
2041 break;
2042 }
2043
2044 del_timer_sync(&pool->mayday_timer);
2045 spin_lock_irq(&gcwq->lock);
2046 if (need_to_create_worker(pool))
2047 goto restart;
2048 return true;
2049 }
2050
2051 /**
2052 * maybe_destroy_worker - destroy workers which have been idle for a while
2053 * @pool: pool to destroy workers for
2054 *
2055 * Destroy @pool workers which have been idle for longer than
2056 * IDLE_WORKER_TIMEOUT.
2057 *
2058 * LOCKING:
2059 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2060 * multiple times. Called only from manager.
2061 *
2062 * RETURNS:
2063 * false if no action was taken and gcwq->lock stayed locked, true
2064 * otherwise.
2065 */
2066 static bool maybe_destroy_workers(struct worker_pool *pool)
2067 {
2068 bool ret = false;
2069
2070 while (too_many_workers(pool)) {
2071 struct worker *worker;
2072 unsigned long expires;
2073
2074 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2075 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2076
2077 if (time_before(jiffies, expires)) {
2078 mod_timer(&pool->idle_timer, expires);
2079 break;
2080 }
2081
2082 destroy_worker(worker);
2083 ret = true;
2084 }
2085
2086 return ret;
2087 }
2088
2089 /**
2090 * manage_workers - manage worker pool
2091 * @worker: self
2092 *
2093 * Assume the manager role and manage gcwq worker pool @worker belongs
2094 * to. At any given time, there can be only zero or one manager per
2095 * gcwq. The exclusion is handled automatically by this function.
2096 *
2097 * The caller can safely start processing works on false return. On
2098 * true return, it's guaranteed that need_to_create_worker() is false
2099 * and may_start_working() is true.
2100 *
2101 * CONTEXT:
2102 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2103 * multiple times. Does GFP_KERNEL allocations.
2104 *
2105 * RETURNS:
2106 * false if no action was taken and gcwq->lock stayed locked, true if
2107 * some action was taken.
2108 */
2109 static bool manage_workers(struct worker *worker)
2110 {
2111 struct worker_pool *pool = worker->pool;
2112 bool ret = false;
2113
2114 if (!mutex_trylock(&pool->manager_mutex))
2115 return ret;
2116
2117 pool->flags &= ~POOL_MANAGE_WORKERS;
2118
2119 /*
2120 * Destroy and then create so that may_start_working() is true
2121 * on return.
2122 */
2123 ret |= maybe_destroy_workers(pool);
2124 ret |= maybe_create_worker(pool);
2125
2126 mutex_unlock(&pool->manager_mutex);
2127 return ret;
2128 }
2129
2130 /**
2131 * process_one_work - process single work
2132 * @worker: self
2133 * @work: work to process
2134 *
2135 * Process @work. This function contains all the logics necessary to
2136 * process a single work including synchronization against and
2137 * interaction with other workers on the same cpu, queueing and
2138 * flushing. As long as context requirement is met, any worker can
2139 * call this function to process a work.
2140 *
2141 * CONTEXT:
2142 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2143 */
2144 static void process_one_work(struct worker *worker, struct work_struct *work)
2145 __releases(&gcwq->lock)
2146 __acquires(&gcwq->lock)
2147 {
2148 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2149 struct worker_pool *pool = worker->pool;
2150 struct global_cwq *gcwq = pool->gcwq;
2151 struct hlist_head *bwh = busy_worker_head(gcwq, work);
2152 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2153 work_func_t f = work->func;
2154 int work_color;
2155 struct worker *collision;
2156 #ifdef CONFIG_LOCKDEP
2157 /*
2158 * It is permissible to free the struct work_struct from
2159 * inside the function that is called from it, this we need to
2160 * take into account for lockdep too. To avoid bogus "held
2161 * lock freed" warnings as well as problems when looking into
2162 * work->lockdep_map, make a copy and use that here.
2163 */
2164 struct lockdep_map lockdep_map;
2165
2166 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2167 #endif
2168 /*
2169 * Ensure we're on the correct CPU. DISASSOCIATED test is
2170 * necessary to avoid spurious warnings from rescuers servicing the
2171 * unbound or a disassociated gcwq.
2172 */
2173 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2174 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2175 raw_smp_processor_id() != gcwq->cpu);
2176
2177 /*
2178 * A single work shouldn't be executed concurrently by
2179 * multiple workers on a single cpu. Check whether anyone is
2180 * already processing the work. If so, defer the work to the
2181 * currently executing one.
2182 */
2183 collision = __find_worker_executing_work(gcwq, bwh, work);
2184 if (unlikely(collision)) {
2185 move_linked_works(work, &collision->scheduled, NULL);
2186 return;
2187 }
2188
2189 /* claim and dequeue */
2190 debug_work_deactivate(work);
2191 hlist_add_head(&worker->hentry, bwh);
2192 worker->current_work = work;
2193 worker->current_cwq = cwq;
2194 work_color = get_work_color(work);
2195
2196 list_del_init(&work->entry);
2197
2198 /*
2199 * CPU intensive works don't participate in concurrency
2200 * management. They're the scheduler's responsibility.
2201 */
2202 if (unlikely(cpu_intensive))
2203 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2204
2205 /*
2206 * Unbound gcwq isn't concurrency managed and work items should be
2207 * executed ASAP. Wake up another worker if necessary.
2208 */
2209 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2210 wake_up_worker(pool);
2211
2212 /*
2213 * Record the last CPU and clear PENDING which should be the last
2214 * update to @work. Also, do this inside @gcwq->lock so that
2215 * PENDING and queued state changes happen together while IRQ is
2216 * disabled.
2217 */
2218 set_work_cpu_and_clear_pending(work, gcwq->cpu);
2219
2220 spin_unlock_irq(&gcwq->lock);
2221
2222 lock_map_acquire_read(&cwq->wq->lockdep_map);
2223 lock_map_acquire(&lockdep_map);
2224 trace_workqueue_execute_start(work);
2225 f(work);
2226 /*
2227 * While we must be careful to not use "work" after this, the trace
2228 * point will only record its address.
2229 */
2230 trace_workqueue_execute_end(work);
2231 lock_map_release(&lockdep_map);
2232 lock_map_release(&cwq->wq->lockdep_map);
2233
2234 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2235 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2236 "%s/0x%08x/%d\n",
2237 current->comm, preempt_count(), task_pid_nr(current));
2238 printk(KERN_ERR " last function: ");
2239 print_symbol("%s\n", (unsigned long)f);
2240 debug_show_held_locks(current);
2241 dump_stack();
2242 }
2243
2244 spin_lock_irq(&gcwq->lock);
2245
2246 /* clear cpu intensive status */
2247 if (unlikely(cpu_intensive))
2248 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2249
2250 /* we're done with it, release */
2251 hlist_del_init(&worker->hentry);
2252 worker->current_work = NULL;
2253 worker->current_cwq = NULL;
2254 cwq_dec_nr_in_flight(cwq, work_color, false);
2255 }
2256
2257 /**
2258 * process_scheduled_works - process scheduled works
2259 * @worker: self
2260 *
2261 * Process all scheduled works. Please note that the scheduled list
2262 * may change while processing a work, so this function repeatedly
2263 * fetches a work from the top and executes it.
2264 *
2265 * CONTEXT:
2266 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2267 * multiple times.
2268 */
2269 static void process_scheduled_works(struct worker *worker)
2270 {
2271 while (!list_empty(&worker->scheduled)) {
2272 struct work_struct *work = list_first_entry(&worker->scheduled,
2273 struct work_struct, entry);
2274 process_one_work(worker, work);
2275 }
2276 }
2277
2278 /**
2279 * worker_thread - the worker thread function
2280 * @__worker: self
2281 *
2282 * The gcwq worker thread function. There's a single dynamic pool of
2283 * these per each cpu. These workers process all works regardless of
2284 * their specific target workqueue. The only exception is works which
2285 * belong to workqueues with a rescuer which will be explained in
2286 * rescuer_thread().
2287 */
2288 static int worker_thread(void *__worker)
2289 {
2290 struct worker *worker = __worker;
2291 struct worker_pool *pool = worker->pool;
2292 struct global_cwq *gcwq = pool->gcwq;
2293
2294 /* tell the scheduler that this is a workqueue worker */
2295 worker->task->flags |= PF_WQ_WORKER;
2296 woke_up:
2297 spin_lock_irq(&gcwq->lock);
2298
2299 /*
2300 * DIE can be set only while idle and REBIND set while busy has
2301 * @worker->rebind_work scheduled. Checking here is enough.
2302 */
2303 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2304 spin_unlock_irq(&gcwq->lock);
2305
2306 if (worker->flags & WORKER_DIE) {
2307 worker->task->flags &= ~PF_WQ_WORKER;
2308 return 0;
2309 }
2310
2311 idle_worker_rebind(worker);
2312 goto woke_up;
2313 }
2314
2315 worker_leave_idle(worker);
2316 recheck:
2317 /* no more worker necessary? */
2318 if (!need_more_worker(pool))
2319 goto sleep;
2320
2321 /* do we need to manage? */
2322 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2323 goto recheck;
2324
2325 /*
2326 * ->scheduled list can only be filled while a worker is
2327 * preparing to process a work or actually processing it.
2328 * Make sure nobody diddled with it while I was sleeping.
2329 */
2330 BUG_ON(!list_empty(&worker->scheduled));
2331
2332 /*
2333 * When control reaches this point, we're guaranteed to have
2334 * at least one idle worker or that someone else has already
2335 * assumed the manager role.
2336 */
2337 worker_clr_flags(worker, WORKER_PREP);
2338
2339 do {
2340 struct work_struct *work =
2341 list_first_entry(&pool->worklist,
2342 struct work_struct, entry);
2343
2344 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2345 /* optimization path, not strictly necessary */
2346 process_one_work(worker, work);
2347 if (unlikely(!list_empty(&worker->scheduled)))
2348 process_scheduled_works(worker);
2349 } else {
2350 move_linked_works(work, &worker->scheduled, NULL);
2351 process_scheduled_works(worker);
2352 }
2353 } while (keep_working(pool));
2354
2355 worker_set_flags(worker, WORKER_PREP, false);
2356 sleep:
2357 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2358 goto recheck;
2359
2360 /*
2361 * gcwq->lock is held and there's no work to process and no
2362 * need to manage, sleep. Workers are woken up only while
2363 * holding gcwq->lock or from local cpu, so setting the
2364 * current state before releasing gcwq->lock is enough to
2365 * prevent losing any event.
2366 */
2367 worker_enter_idle(worker);
2368 __set_current_state(TASK_INTERRUPTIBLE);
2369 spin_unlock_irq(&gcwq->lock);
2370 schedule();
2371 goto woke_up;
2372 }
2373
2374 /**
2375 * rescuer_thread - the rescuer thread function
2376 * @__wq: the associated workqueue
2377 *
2378 * Workqueue rescuer thread function. There's one rescuer for each
2379 * workqueue which has WQ_RESCUER set.
2380 *
2381 * Regular work processing on a gcwq may block trying to create a new
2382 * worker which uses GFP_KERNEL allocation which has slight chance of
2383 * developing into deadlock if some works currently on the same queue
2384 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2385 * the problem rescuer solves.
2386 *
2387 * When such condition is possible, the gcwq summons rescuers of all
2388 * workqueues which have works queued on the gcwq and let them process
2389 * those works so that forward progress can be guaranteed.
2390 *
2391 * This should happen rarely.
2392 */
2393 static int rescuer_thread(void *__wq)
2394 {
2395 struct workqueue_struct *wq = __wq;
2396 struct worker *rescuer = wq->rescuer;
2397 struct list_head *scheduled = &rescuer->scheduled;
2398 bool is_unbound = wq->flags & WQ_UNBOUND;
2399 unsigned int cpu;
2400
2401 set_user_nice(current, RESCUER_NICE_LEVEL);
2402 repeat:
2403 set_current_state(TASK_INTERRUPTIBLE);
2404
2405 if (kthread_should_stop())
2406 return 0;
2407
2408 /*
2409 * See whether any cpu is asking for help. Unbounded
2410 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2411 */
2412 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2413 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2414 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2415 struct worker_pool *pool = cwq->pool;
2416 struct global_cwq *gcwq = pool->gcwq;
2417 struct work_struct *work, *n;
2418
2419 __set_current_state(TASK_RUNNING);
2420 mayday_clear_cpu(cpu, wq->mayday_mask);
2421
2422 /* migrate to the target cpu if possible */
2423 rescuer->pool = pool;
2424 worker_maybe_bind_and_lock(rescuer);
2425
2426 /*
2427 * Slurp in all works issued via this workqueue and
2428 * process'em.
2429 */
2430 BUG_ON(!list_empty(&rescuer->scheduled));
2431 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2432 if (get_work_cwq(work) == cwq)
2433 move_linked_works(work, scheduled, &n);
2434
2435 process_scheduled_works(rescuer);
2436
2437 /*
2438 * Leave this gcwq. If keep_working() is %true, notify a
2439 * regular worker; otherwise, we end up with 0 concurrency
2440 * and stalling the execution.
2441 */
2442 if (keep_working(pool))
2443 wake_up_worker(pool);
2444
2445 spin_unlock_irq(&gcwq->lock);
2446 }
2447
2448 schedule();
2449 goto repeat;
2450 }
2451
2452 struct wq_barrier {
2453 struct work_struct work;
2454 struct completion done;
2455 };
2456
2457 static void wq_barrier_func(struct work_struct *work)
2458 {
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2461 }
2462
2463 /**
2464 * insert_wq_barrier - insert a barrier work
2465 * @cwq: cwq to insert barrier into
2466 * @barr: wq_barrier to insert
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
2469 *
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine cwq from @target.
2483 *
2484 * CONTEXT:
2485 * spin_lock_irq(gcwq->lock).
2486 */
2487 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
2490 {
2491 struct list_head *head;
2492 unsigned int linked = 0;
2493
2494 /*
2495 * debugobject calls are safe here even with gcwq->lock locked
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2499 */
2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2502 init_completion(&barr->done);
2503
2504 /*
2505 * If @target is currently being executed, schedule the
2506 * barrier to the worker; otherwise, put it after @target.
2507 */
2508 if (worker)
2509 head = worker->scheduled.next;
2510 else {
2511 unsigned long *bits = work_data_bits(target);
2512
2513 head = target->entry.next;
2514 /* there can already be other linked works, inherit and set */
2515 linked = *bits & WORK_STRUCT_LINKED;
2516 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2517 }
2518
2519 debug_work_activate(&barr->work);
2520 insert_work(cwq, &barr->work, head,
2521 work_color_to_flags(WORK_NO_COLOR) | linked);
2522 }
2523
2524 /**
2525 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2526 * @wq: workqueue being flushed
2527 * @flush_color: new flush color, < 0 for no-op
2528 * @work_color: new work color, < 0 for no-op
2529 *
2530 * Prepare cwqs for workqueue flushing.
2531 *
2532 * If @flush_color is non-negative, flush_color on all cwqs should be
2533 * -1. If no cwq has in-flight commands at the specified color, all
2534 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2535 * has in flight commands, its cwq->flush_color is set to
2536 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2537 * wakeup logic is armed and %true is returned.
2538 *
2539 * The caller should have initialized @wq->first_flusher prior to
2540 * calling this function with non-negative @flush_color. If
2541 * @flush_color is negative, no flush color update is done and %false
2542 * is returned.
2543 *
2544 * If @work_color is non-negative, all cwqs should have the same
2545 * work_color which is previous to @work_color and all will be
2546 * advanced to @work_color.
2547 *
2548 * CONTEXT:
2549 * mutex_lock(wq->flush_mutex).
2550 *
2551 * RETURNS:
2552 * %true if @flush_color >= 0 and there's something to flush. %false
2553 * otherwise.
2554 */
2555 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2556 int flush_color, int work_color)
2557 {
2558 bool wait = false;
2559 unsigned int cpu;
2560
2561 if (flush_color >= 0) {
2562 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2563 atomic_set(&wq->nr_cwqs_to_flush, 1);
2564 }
2565
2566 for_each_cwq_cpu(cpu, wq) {
2567 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2568 struct global_cwq *gcwq = cwq->pool->gcwq;
2569
2570 spin_lock_irq(&gcwq->lock);
2571
2572 if (flush_color >= 0) {
2573 BUG_ON(cwq->flush_color != -1);
2574
2575 if (cwq->nr_in_flight[flush_color]) {
2576 cwq->flush_color = flush_color;
2577 atomic_inc(&wq->nr_cwqs_to_flush);
2578 wait = true;
2579 }
2580 }
2581
2582 if (work_color >= 0) {
2583 BUG_ON(work_color != work_next_color(cwq->work_color));
2584 cwq->work_color = work_color;
2585 }
2586
2587 spin_unlock_irq(&gcwq->lock);
2588 }
2589
2590 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2591 complete(&wq->first_flusher->done);
2592
2593 return wait;
2594 }
2595
2596 /**
2597 * flush_workqueue - ensure that any scheduled work has run to completion.
2598 * @wq: workqueue to flush
2599 *
2600 * Forces execution of the workqueue and blocks until its completion.
2601 * This is typically used in driver shutdown handlers.
2602 *
2603 * We sleep until all works which were queued on entry have been handled,
2604 * but we are not livelocked by new incoming ones.
2605 */
2606 void flush_workqueue(struct workqueue_struct *wq)
2607 {
2608 struct wq_flusher this_flusher = {
2609 .list = LIST_HEAD_INIT(this_flusher.list),
2610 .flush_color = -1,
2611 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2612 };
2613 int next_color;
2614
2615 lock_map_acquire(&wq->lockdep_map);
2616 lock_map_release(&wq->lockdep_map);
2617
2618 mutex_lock(&wq->flush_mutex);
2619
2620 /*
2621 * Start-to-wait phase
2622 */
2623 next_color = work_next_color(wq->work_color);
2624
2625 if (next_color != wq->flush_color) {
2626 /*
2627 * Color space is not full. The current work_color
2628 * becomes our flush_color and work_color is advanced
2629 * by one.
2630 */
2631 BUG_ON(!list_empty(&wq->flusher_overflow));
2632 this_flusher.flush_color = wq->work_color;
2633 wq->work_color = next_color;
2634
2635 if (!wq->first_flusher) {
2636 /* no flush in progress, become the first flusher */
2637 BUG_ON(wq->flush_color != this_flusher.flush_color);
2638
2639 wq->first_flusher = &this_flusher;
2640
2641 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2642 wq->work_color)) {
2643 /* nothing to flush, done */
2644 wq->flush_color = next_color;
2645 wq->first_flusher = NULL;
2646 goto out_unlock;
2647 }
2648 } else {
2649 /* wait in queue */
2650 BUG_ON(wq->flush_color == this_flusher.flush_color);
2651 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2652 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2653 }
2654 } else {
2655 /*
2656 * Oops, color space is full, wait on overflow queue.
2657 * The next flush completion will assign us
2658 * flush_color and transfer to flusher_queue.
2659 */
2660 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2661 }
2662
2663 mutex_unlock(&wq->flush_mutex);
2664
2665 wait_for_completion(&this_flusher.done);
2666
2667 /*
2668 * Wake-up-and-cascade phase
2669 *
2670 * First flushers are responsible for cascading flushes and
2671 * handling overflow. Non-first flushers can simply return.
2672 */
2673 if (wq->first_flusher != &this_flusher)
2674 return;
2675
2676 mutex_lock(&wq->flush_mutex);
2677
2678 /* we might have raced, check again with mutex held */
2679 if (wq->first_flusher != &this_flusher)
2680 goto out_unlock;
2681
2682 wq->first_flusher = NULL;
2683
2684 BUG_ON(!list_empty(&this_flusher.list));
2685 BUG_ON(wq->flush_color != this_flusher.flush_color);
2686
2687 while (true) {
2688 struct wq_flusher *next, *tmp;
2689
2690 /* complete all the flushers sharing the current flush color */
2691 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2692 if (next->flush_color != wq->flush_color)
2693 break;
2694 list_del_init(&next->list);
2695 complete(&next->done);
2696 }
2697
2698 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2699 wq->flush_color != work_next_color(wq->work_color));
2700
2701 /* this flush_color is finished, advance by one */
2702 wq->flush_color = work_next_color(wq->flush_color);
2703
2704 /* one color has been freed, handle overflow queue */
2705 if (!list_empty(&wq->flusher_overflow)) {
2706 /*
2707 * Assign the same color to all overflowed
2708 * flushers, advance work_color and append to
2709 * flusher_queue. This is the start-to-wait
2710 * phase for these overflowed flushers.
2711 */
2712 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2713 tmp->flush_color = wq->work_color;
2714
2715 wq->work_color = work_next_color(wq->work_color);
2716
2717 list_splice_tail_init(&wq->flusher_overflow,
2718 &wq->flusher_queue);
2719 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2720 }
2721
2722 if (list_empty(&wq->flusher_queue)) {
2723 BUG_ON(wq->flush_color != wq->work_color);
2724 break;
2725 }
2726
2727 /*
2728 * Need to flush more colors. Make the next flusher
2729 * the new first flusher and arm cwqs.
2730 */
2731 BUG_ON(wq->flush_color == wq->work_color);
2732 BUG_ON(wq->flush_color != next->flush_color);
2733
2734 list_del_init(&next->list);
2735 wq->first_flusher = next;
2736
2737 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2738 break;
2739
2740 /*
2741 * Meh... this color is already done, clear first
2742 * flusher and repeat cascading.
2743 */
2744 wq->first_flusher = NULL;
2745 }
2746
2747 out_unlock:
2748 mutex_unlock(&wq->flush_mutex);
2749 }
2750 EXPORT_SYMBOL_GPL(flush_workqueue);
2751
2752 /**
2753 * drain_workqueue - drain a workqueue
2754 * @wq: workqueue to drain
2755 *
2756 * Wait until the workqueue becomes empty. While draining is in progress,
2757 * only chain queueing is allowed. IOW, only currently pending or running
2758 * work items on @wq can queue further work items on it. @wq is flushed
2759 * repeatedly until it becomes empty. The number of flushing is detemined
2760 * by the depth of chaining and should be relatively short. Whine if it
2761 * takes too long.
2762 */
2763 void drain_workqueue(struct workqueue_struct *wq)
2764 {
2765 unsigned int flush_cnt = 0;
2766 unsigned int cpu;
2767
2768 /*
2769 * __queue_work() needs to test whether there are drainers, is much
2770 * hotter than drain_workqueue() and already looks at @wq->flags.
2771 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2772 */
2773 spin_lock(&workqueue_lock);
2774 if (!wq->nr_drainers++)
2775 wq->flags |= WQ_DRAINING;
2776 spin_unlock(&workqueue_lock);
2777 reflush:
2778 flush_workqueue(wq);
2779
2780 for_each_cwq_cpu(cpu, wq) {
2781 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2782 bool drained;
2783
2784 spin_lock_irq(&cwq->pool->gcwq->lock);
2785 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2786 spin_unlock_irq(&cwq->pool->gcwq->lock);
2787
2788 if (drained)
2789 continue;
2790
2791 if (++flush_cnt == 10 ||
2792 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2793 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2794 wq->name, flush_cnt);
2795 goto reflush;
2796 }
2797
2798 spin_lock(&workqueue_lock);
2799 if (!--wq->nr_drainers)
2800 wq->flags &= ~WQ_DRAINING;
2801 spin_unlock(&workqueue_lock);
2802 }
2803 EXPORT_SYMBOL_GPL(drain_workqueue);
2804
2805 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2806 bool wait_executing)
2807 {
2808 struct worker *worker = NULL;
2809 struct global_cwq *gcwq;
2810 struct cpu_workqueue_struct *cwq;
2811
2812 might_sleep();
2813 gcwq = get_work_gcwq(work);
2814 if (!gcwq)
2815 return false;
2816
2817 spin_lock_irq(&gcwq->lock);
2818 if (!list_empty(&work->entry)) {
2819 /*
2820 * See the comment near try_to_grab_pending()->smp_rmb().
2821 * If it was re-queued to a different gcwq under us, we
2822 * are not going to wait.
2823 */
2824 smp_rmb();
2825 cwq = get_work_cwq(work);
2826 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2827 goto already_gone;
2828 } else if (wait_executing) {
2829 worker = find_worker_executing_work(gcwq, work);
2830 if (!worker)
2831 goto already_gone;
2832 cwq = worker->current_cwq;
2833 } else
2834 goto already_gone;
2835
2836 insert_wq_barrier(cwq, barr, work, worker);
2837 spin_unlock_irq(&gcwq->lock);
2838
2839 /*
2840 * If @max_active is 1 or rescuer is in use, flushing another work
2841 * item on the same workqueue may lead to deadlock. Make sure the
2842 * flusher is not running on the same workqueue by verifying write
2843 * access.
2844 */
2845 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2846 lock_map_acquire(&cwq->wq->lockdep_map);
2847 else
2848 lock_map_acquire_read(&cwq->wq->lockdep_map);
2849 lock_map_release(&cwq->wq->lockdep_map);
2850
2851 return true;
2852 already_gone:
2853 spin_unlock_irq(&gcwq->lock);
2854 return false;
2855 }
2856
2857 /**
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2860 *
2861 * Wait until @work has finished execution. This function considers
2862 * only the last queueing instance of @work. If @work has been
2863 * enqueued across different CPUs on a non-reentrant workqueue or on
2864 * multiple workqueues, @work might still be executing on return on
2865 * some of the CPUs from earlier queueing.
2866 *
2867 * If @work was queued only on a non-reentrant, ordered or unbound
2868 * workqueue, @work is guaranteed to be idle on return if it hasn't
2869 * been requeued since flush started.
2870 *
2871 * RETURNS:
2872 * %true if flush_work() waited for the work to finish execution,
2873 * %false if it was already idle.
2874 */
2875 bool flush_work(struct work_struct *work)
2876 {
2877 struct wq_barrier barr;
2878
2879 lock_map_acquire(&work->lockdep_map);
2880 lock_map_release(&work->lockdep_map);
2881
2882 if (start_flush_work(work, &barr, true)) {
2883 wait_for_completion(&barr.done);
2884 destroy_work_on_stack(&barr.work);
2885 return true;
2886 } else
2887 return false;
2888 }
2889 EXPORT_SYMBOL_GPL(flush_work);
2890
2891 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2892 {
2893 struct wq_barrier barr;
2894 struct worker *worker;
2895
2896 spin_lock_irq(&gcwq->lock);
2897
2898 worker = find_worker_executing_work(gcwq, work);
2899 if (unlikely(worker))
2900 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2901
2902 spin_unlock_irq(&gcwq->lock);
2903
2904 if (unlikely(worker)) {
2905 wait_for_completion(&barr.done);
2906 destroy_work_on_stack(&barr.work);
2907 return true;
2908 } else
2909 return false;
2910 }
2911
2912 static bool wait_on_work(struct work_struct *work)
2913 {
2914 bool ret = false;
2915 int cpu;
2916
2917 might_sleep();
2918
2919 lock_map_acquire(&work->lockdep_map);
2920 lock_map_release(&work->lockdep_map);
2921
2922 for_each_gcwq_cpu(cpu)
2923 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2924 return ret;
2925 }
2926
2927 /**
2928 * flush_work_sync - wait until a work has finished execution
2929 * @work: the work to flush
2930 *
2931 * Wait until @work has finished execution. On return, it's
2932 * guaranteed that all queueing instances of @work which happened
2933 * before this function is called are finished. In other words, if
2934 * @work hasn't been requeued since this function was called, @work is
2935 * guaranteed to be idle on return.
2936 *
2937 * RETURNS:
2938 * %true if flush_work_sync() waited for the work to finish execution,
2939 * %false if it was already idle.
2940 */
2941 bool flush_work_sync(struct work_struct *work)
2942 {
2943 struct wq_barrier barr;
2944 bool pending, waited;
2945
2946 /* we'll wait for executions separately, queue barr only if pending */
2947 pending = start_flush_work(work, &barr, false);
2948
2949 /* wait for executions to finish */
2950 waited = wait_on_work(work);
2951
2952 /* wait for the pending one */
2953 if (pending) {
2954 wait_for_completion(&barr.done);
2955 destroy_work_on_stack(&barr.work);
2956 }
2957
2958 return pending || waited;
2959 }
2960 EXPORT_SYMBOL_GPL(flush_work_sync);
2961
2962 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2963 {
2964 unsigned long flags;
2965 int ret;
2966
2967 do {
2968 ret = try_to_grab_pending(work, is_dwork, &flags);
2969 /*
2970 * If someone else is canceling, wait for the same event it
2971 * would be waiting for before retrying.
2972 */
2973 if (unlikely(ret == -ENOENT))
2974 wait_on_work(work);
2975 } while (unlikely(ret < 0));
2976
2977 /* tell other tasks trying to grab @work to back off */
2978 mark_work_canceling(work);
2979 local_irq_restore(flags);
2980
2981 wait_on_work(work);
2982 clear_work_data(work);
2983 return ret;
2984 }
2985
2986 /**
2987 * cancel_work_sync - cancel a work and wait for it to finish
2988 * @work: the work to cancel
2989 *
2990 * Cancel @work and wait for its execution to finish. This function
2991 * can be used even if the work re-queues itself or migrates to
2992 * another workqueue. On return from this function, @work is
2993 * guaranteed to be not pending or executing on any CPU.
2994 *
2995 * cancel_work_sync(&delayed_work->work) must not be used for
2996 * delayed_work's. Use cancel_delayed_work_sync() instead.
2997 *
2998 * The caller must ensure that the workqueue on which @work was last
2999 * queued can't be destroyed before this function returns.
3000 *
3001 * RETURNS:
3002 * %true if @work was pending, %false otherwise.
3003 */
3004 bool cancel_work_sync(struct work_struct *work)
3005 {
3006 return __cancel_work_timer(work, false);
3007 }
3008 EXPORT_SYMBOL_GPL(cancel_work_sync);
3009
3010 /**
3011 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3012 * @dwork: the delayed work to flush
3013 *
3014 * Delayed timer is cancelled and the pending work is queued for
3015 * immediate execution. Like flush_work(), this function only
3016 * considers the last queueing instance of @dwork.
3017 *
3018 * RETURNS:
3019 * %true if flush_work() waited for the work to finish execution,
3020 * %false if it was already idle.
3021 */
3022 bool flush_delayed_work(struct delayed_work *dwork)
3023 {
3024 local_irq_disable();
3025 if (del_timer_sync(&dwork->timer))
3026 __queue_work(dwork->cpu,
3027 get_work_cwq(&dwork->work)->wq, &dwork->work);
3028 local_irq_enable();
3029 return flush_work(&dwork->work);
3030 }
3031 EXPORT_SYMBOL(flush_delayed_work);
3032
3033 /**
3034 * flush_delayed_work_sync - wait for a dwork to finish
3035 * @dwork: the delayed work to flush
3036 *
3037 * Delayed timer is cancelled and the pending work is queued for
3038 * execution immediately. Other than timer handling, its behavior
3039 * is identical to flush_work_sync().
3040 *
3041 * RETURNS:
3042 * %true if flush_work_sync() waited for the work to finish execution,
3043 * %false if it was already idle.
3044 */
3045 bool flush_delayed_work_sync(struct delayed_work *dwork)
3046 {
3047 local_irq_disable();
3048 if (del_timer_sync(&dwork->timer))
3049 __queue_work(dwork->cpu,
3050 get_work_cwq(&dwork->work)->wq, &dwork->work);
3051 local_irq_enable();
3052 return flush_work_sync(&dwork->work);
3053 }
3054 EXPORT_SYMBOL(flush_delayed_work_sync);
3055
3056 /**
3057 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3058 * @dwork: the delayed work cancel
3059 *
3060 * This is cancel_work_sync() for delayed works.
3061 *
3062 * RETURNS:
3063 * %true if @dwork was pending, %false otherwise.
3064 */
3065 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3066 {
3067 return __cancel_work_timer(&dwork->work, true);
3068 }
3069 EXPORT_SYMBOL(cancel_delayed_work_sync);
3070
3071 /**
3072 * schedule_work_on - put work task on a specific cpu
3073 * @cpu: cpu to put the work task on
3074 * @work: job to be done
3075 *
3076 * This puts a job on a specific cpu
3077 */
3078 bool schedule_work_on(int cpu, struct work_struct *work)
3079 {
3080 return queue_work_on(cpu, system_wq, work);
3081 }
3082 EXPORT_SYMBOL(schedule_work_on);
3083
3084 /**
3085 * schedule_work - put work task in global workqueue
3086 * @work: job to be done
3087 *
3088 * Returns %false if @work was already on the kernel-global workqueue and
3089 * %true otherwise.
3090 *
3091 * This puts a job in the kernel-global workqueue if it was not already
3092 * queued and leaves it in the same position on the kernel-global
3093 * workqueue otherwise.
3094 */
3095 bool schedule_work(struct work_struct *work)
3096 {
3097 return queue_work(system_wq, work);
3098 }
3099 EXPORT_SYMBOL(schedule_work);
3100
3101 /**
3102 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3103 * @cpu: cpu to use
3104 * @dwork: job to be done
3105 * @delay: number of jiffies to wait
3106 *
3107 * After waiting for a given time this puts a job in the kernel-global
3108 * workqueue on the specified CPU.
3109 */
3110 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3111 unsigned long delay)
3112 {
3113 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3114 }
3115 EXPORT_SYMBOL(schedule_delayed_work_on);
3116
3117 /**
3118 * schedule_delayed_work - put work task in global workqueue after delay
3119 * @dwork: job to be done
3120 * @delay: number of jiffies to wait or 0 for immediate execution
3121 *
3122 * After waiting for a given time this puts a job in the kernel-global
3123 * workqueue.
3124 */
3125 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3126 {
3127 return queue_delayed_work(system_wq, dwork, delay);
3128 }
3129 EXPORT_SYMBOL(schedule_delayed_work);
3130
3131 /**
3132 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3133 * @func: the function to call
3134 *
3135 * schedule_on_each_cpu() executes @func on each online CPU using the
3136 * system workqueue and blocks until all CPUs have completed.
3137 * schedule_on_each_cpu() is very slow.
3138 *
3139 * RETURNS:
3140 * 0 on success, -errno on failure.
3141 */
3142 int schedule_on_each_cpu(work_func_t func)
3143 {
3144 int cpu;
3145 struct work_struct __percpu *works;
3146
3147 works = alloc_percpu(struct work_struct);
3148 if (!works)
3149 return -ENOMEM;
3150
3151 get_online_cpus();
3152
3153 for_each_online_cpu(cpu) {
3154 struct work_struct *work = per_cpu_ptr(works, cpu);
3155
3156 INIT_WORK(work, func);
3157 schedule_work_on(cpu, work);
3158 }
3159
3160 for_each_online_cpu(cpu)
3161 flush_work(per_cpu_ptr(works, cpu));
3162
3163 put_online_cpus();
3164 free_percpu(works);
3165 return 0;
3166 }
3167
3168 /**
3169 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3170 *
3171 * Forces execution of the kernel-global workqueue and blocks until its
3172 * completion.
3173 *
3174 * Think twice before calling this function! It's very easy to get into
3175 * trouble if you don't take great care. Either of the following situations
3176 * will lead to deadlock:
3177 *
3178 * One of the work items currently on the workqueue needs to acquire
3179 * a lock held by your code or its caller.
3180 *
3181 * Your code is running in the context of a work routine.
3182 *
3183 * They will be detected by lockdep when they occur, but the first might not
3184 * occur very often. It depends on what work items are on the workqueue and
3185 * what locks they need, which you have no control over.
3186 *
3187 * In most situations flushing the entire workqueue is overkill; you merely
3188 * need to know that a particular work item isn't queued and isn't running.
3189 * In such cases you should use cancel_delayed_work_sync() or
3190 * cancel_work_sync() instead.
3191 */
3192 void flush_scheduled_work(void)
3193 {
3194 flush_workqueue(system_wq);
3195 }
3196 EXPORT_SYMBOL(flush_scheduled_work);
3197
3198 /**
3199 * execute_in_process_context - reliably execute the routine with user context
3200 * @fn: the function to execute
3201 * @ew: guaranteed storage for the execute work structure (must
3202 * be available when the work executes)
3203 *
3204 * Executes the function immediately if process context is available,
3205 * otherwise schedules the function for delayed execution.
3206 *
3207 * Returns: 0 - function was executed
3208 * 1 - function was scheduled for execution
3209 */
3210 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3211 {
3212 if (!in_interrupt()) {
3213 fn(&ew->work);
3214 return 0;
3215 }
3216
3217 INIT_WORK(&ew->work, fn);
3218 schedule_work(&ew->work);
3219
3220 return 1;
3221 }
3222 EXPORT_SYMBOL_GPL(execute_in_process_context);
3223
3224 int keventd_up(void)
3225 {
3226 return system_wq != NULL;
3227 }
3228
3229 static int alloc_cwqs(struct workqueue_struct *wq)
3230 {
3231 /*
3232 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3233 * Make sure that the alignment isn't lower than that of
3234 * unsigned long long.
3235 */
3236 const size_t size = sizeof(struct cpu_workqueue_struct);
3237 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3238 __alignof__(unsigned long long));
3239
3240 if (!(wq->flags & WQ_UNBOUND))
3241 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3242 else {
3243 void *ptr;
3244
3245 /*
3246 * Allocate enough room to align cwq and put an extra
3247 * pointer at the end pointing back to the originally
3248 * allocated pointer which will be used for free.
3249 */
3250 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3251 if (ptr) {
3252 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3253 *(void **)(wq->cpu_wq.single + 1) = ptr;
3254 }
3255 }
3256
3257 /* just in case, make sure it's actually aligned */
3258 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3259 return wq->cpu_wq.v ? 0 : -ENOMEM;
3260 }
3261
3262 static void free_cwqs(struct workqueue_struct *wq)
3263 {
3264 if (!(wq->flags & WQ_UNBOUND))
3265 free_percpu(wq->cpu_wq.pcpu);
3266 else if (wq->cpu_wq.single) {
3267 /* the pointer to free is stored right after the cwq */
3268 kfree(*(void **)(wq->cpu_wq.single + 1));
3269 }
3270 }
3271
3272 static int wq_clamp_max_active(int max_active, unsigned int flags,
3273 const char *name)
3274 {
3275 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3276
3277 if (max_active < 1 || max_active > lim)
3278 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3279 "is out of range, clamping between %d and %d\n",
3280 max_active, name, 1, lim);
3281
3282 return clamp_val(max_active, 1, lim);
3283 }
3284
3285 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3286 unsigned int flags,
3287 int max_active,
3288 struct lock_class_key *key,
3289 const char *lock_name, ...)
3290 {
3291 va_list args, args1;
3292 struct workqueue_struct *wq;
3293 unsigned int cpu;
3294 size_t namelen;
3295
3296 /* determine namelen, allocate wq and format name */
3297 va_start(args, lock_name);
3298 va_copy(args1, args);
3299 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3300
3301 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3302 if (!wq)
3303 goto err;
3304
3305 vsnprintf(wq->name, namelen, fmt, args1);
3306 va_end(args);
3307 va_end(args1);
3308
3309 /*
3310 * Workqueues which may be used during memory reclaim should
3311 * have a rescuer to guarantee forward progress.
3312 */
3313 if (flags & WQ_MEM_RECLAIM)
3314 flags |= WQ_RESCUER;
3315
3316 max_active = max_active ?: WQ_DFL_ACTIVE;
3317 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3318
3319 /* init wq */
3320 wq->flags = flags;
3321 wq->saved_max_active = max_active;
3322 mutex_init(&wq->flush_mutex);
3323 atomic_set(&wq->nr_cwqs_to_flush, 0);
3324 INIT_LIST_HEAD(&wq->flusher_queue);
3325 INIT_LIST_HEAD(&wq->flusher_overflow);
3326
3327 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3328 INIT_LIST_HEAD(&wq->list);
3329
3330 if (alloc_cwqs(wq) < 0)
3331 goto err;
3332
3333 for_each_cwq_cpu(cpu, wq) {
3334 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3335 struct global_cwq *gcwq = get_gcwq(cpu);
3336 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3337
3338 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3339 cwq->pool = &gcwq->pools[pool_idx];
3340 cwq->wq = wq;
3341 cwq->flush_color = -1;
3342 cwq->max_active = max_active;
3343 INIT_LIST_HEAD(&cwq->delayed_works);
3344 }
3345
3346 if (flags & WQ_RESCUER) {
3347 struct worker *rescuer;
3348
3349 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3350 goto err;
3351
3352 wq->rescuer = rescuer = alloc_worker();
3353 if (!rescuer)
3354 goto err;
3355
3356 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3357 wq->name);
3358 if (IS_ERR(rescuer->task))
3359 goto err;
3360
3361 rescuer->task->flags |= PF_THREAD_BOUND;
3362 wake_up_process(rescuer->task);
3363 }
3364
3365 /*
3366 * workqueue_lock protects global freeze state and workqueues
3367 * list. Grab it, set max_active accordingly and add the new
3368 * workqueue to workqueues list.
3369 */
3370 spin_lock(&workqueue_lock);
3371
3372 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3373 for_each_cwq_cpu(cpu, wq)
3374 get_cwq(cpu, wq)->max_active = 0;
3375
3376 list_add(&wq->list, &workqueues);
3377
3378 spin_unlock(&workqueue_lock);
3379
3380 return wq;
3381 err:
3382 if (wq) {
3383 free_cwqs(wq);
3384 free_mayday_mask(wq->mayday_mask);
3385 kfree(wq->rescuer);
3386 kfree(wq);
3387 }
3388 return NULL;
3389 }
3390 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3391
3392 /**
3393 * destroy_workqueue - safely terminate a workqueue
3394 * @wq: target workqueue
3395 *
3396 * Safely destroy a workqueue. All work currently pending will be done first.
3397 */
3398 void destroy_workqueue(struct workqueue_struct *wq)
3399 {
3400 unsigned int cpu;
3401
3402 /* drain it before proceeding with destruction */
3403 drain_workqueue(wq);
3404
3405 /*
3406 * wq list is used to freeze wq, remove from list after
3407 * flushing is complete in case freeze races us.
3408 */
3409 spin_lock(&workqueue_lock);
3410 list_del(&wq->list);
3411 spin_unlock(&workqueue_lock);
3412
3413 /* sanity check */
3414 for_each_cwq_cpu(cpu, wq) {
3415 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3416 int i;
3417
3418 for (i = 0; i < WORK_NR_COLORS; i++)
3419 BUG_ON(cwq->nr_in_flight[i]);
3420 BUG_ON(cwq->nr_active);
3421 BUG_ON(!list_empty(&cwq->delayed_works));
3422 }
3423
3424 if (wq->flags & WQ_RESCUER) {
3425 kthread_stop(wq->rescuer->task);
3426 free_mayday_mask(wq->mayday_mask);
3427 kfree(wq->rescuer);
3428 }
3429
3430 free_cwqs(wq);
3431 kfree(wq);
3432 }
3433 EXPORT_SYMBOL_GPL(destroy_workqueue);
3434
3435 /**
3436 * workqueue_set_max_active - adjust max_active of a workqueue
3437 * @wq: target workqueue
3438 * @max_active: new max_active value.
3439 *
3440 * Set max_active of @wq to @max_active.
3441 *
3442 * CONTEXT:
3443 * Don't call from IRQ context.
3444 */
3445 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3446 {
3447 unsigned int cpu;
3448
3449 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3450
3451 spin_lock(&workqueue_lock);
3452
3453 wq->saved_max_active = max_active;
3454
3455 for_each_cwq_cpu(cpu, wq) {
3456 struct global_cwq *gcwq = get_gcwq(cpu);
3457
3458 spin_lock_irq(&gcwq->lock);
3459
3460 if (!(wq->flags & WQ_FREEZABLE) ||
3461 !(gcwq->flags & GCWQ_FREEZING))
3462 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3463
3464 spin_unlock_irq(&gcwq->lock);
3465 }
3466
3467 spin_unlock(&workqueue_lock);
3468 }
3469 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3470
3471 /**
3472 * workqueue_congested - test whether a workqueue is congested
3473 * @cpu: CPU in question
3474 * @wq: target workqueue
3475 *
3476 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3477 * no synchronization around this function and the test result is
3478 * unreliable and only useful as advisory hints or for debugging.
3479 *
3480 * RETURNS:
3481 * %true if congested, %false otherwise.
3482 */
3483 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3484 {
3485 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3486
3487 return !list_empty(&cwq->delayed_works);
3488 }
3489 EXPORT_SYMBOL_GPL(workqueue_congested);
3490
3491 /**
3492 * work_cpu - return the last known associated cpu for @work
3493 * @work: the work of interest
3494 *
3495 * RETURNS:
3496 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3497 */
3498 unsigned int work_cpu(struct work_struct *work)
3499 {
3500 struct global_cwq *gcwq = get_work_gcwq(work);
3501
3502 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3503 }
3504 EXPORT_SYMBOL_GPL(work_cpu);
3505
3506 /**
3507 * work_busy - test whether a work is currently pending or running
3508 * @work: the work to be tested
3509 *
3510 * Test whether @work is currently pending or running. There is no
3511 * synchronization around this function and the test result is
3512 * unreliable and only useful as advisory hints or for debugging.
3513 * Especially for reentrant wqs, the pending state might hide the
3514 * running state.
3515 *
3516 * RETURNS:
3517 * OR'd bitmask of WORK_BUSY_* bits.
3518 */
3519 unsigned int work_busy(struct work_struct *work)
3520 {
3521 struct global_cwq *gcwq = get_work_gcwq(work);
3522 unsigned long flags;
3523 unsigned int ret = 0;
3524
3525 if (!gcwq)
3526 return false;
3527
3528 spin_lock_irqsave(&gcwq->lock, flags);
3529
3530 if (work_pending(work))
3531 ret |= WORK_BUSY_PENDING;
3532 if (find_worker_executing_work(gcwq, work))
3533 ret |= WORK_BUSY_RUNNING;
3534
3535 spin_unlock_irqrestore(&gcwq->lock, flags);
3536
3537 return ret;
3538 }
3539 EXPORT_SYMBOL_GPL(work_busy);
3540
3541 /*
3542 * CPU hotplug.
3543 *
3544 * There are two challenges in supporting CPU hotplug. Firstly, there
3545 * are a lot of assumptions on strong associations among work, cwq and
3546 * gcwq which make migrating pending and scheduled works very
3547 * difficult to implement without impacting hot paths. Secondly,
3548 * gcwqs serve mix of short, long and very long running works making
3549 * blocked draining impractical.
3550 *
3551 * This is solved by allowing a gcwq to be disassociated from the CPU
3552 * running as an unbound one and allowing it to be reattached later if the
3553 * cpu comes back online.
3554 */
3555
3556 /* claim manager positions of all pools */
3557 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3558 {
3559 struct worker_pool *pool;
3560
3561 for_each_worker_pool(pool, gcwq)
3562 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3563 spin_lock_irq(&gcwq->lock);
3564 }
3565
3566 /* release manager positions */
3567 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3568 {
3569 struct worker_pool *pool;
3570
3571 spin_unlock_irq(&gcwq->lock);
3572 for_each_worker_pool(pool, gcwq)
3573 mutex_unlock(&pool->manager_mutex);
3574 }
3575
3576 static void gcwq_unbind_fn(struct work_struct *work)
3577 {
3578 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3579 struct worker_pool *pool;
3580 struct worker *worker;
3581 struct hlist_node *pos;
3582 int i;
3583
3584 BUG_ON(gcwq->cpu != smp_processor_id());
3585
3586 gcwq_claim_management_and_lock(gcwq);
3587
3588 /*
3589 * We've claimed all manager positions. Make all workers unbound
3590 * and set DISASSOCIATED. Before this, all workers except for the
3591 * ones which are still executing works from before the last CPU
3592 * down must be on the cpu. After this, they may become diasporas.
3593 */
3594 for_each_worker_pool(pool, gcwq)
3595 list_for_each_entry(worker, &pool->idle_list, entry)
3596 worker->flags |= WORKER_UNBOUND;
3597
3598 for_each_busy_worker(worker, i, pos, gcwq)
3599 worker->flags |= WORKER_UNBOUND;
3600
3601 gcwq->flags |= GCWQ_DISASSOCIATED;
3602
3603 gcwq_release_management_and_unlock(gcwq);
3604
3605 /*
3606 * Call schedule() so that we cross rq->lock and thus can guarantee
3607 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3608 * as scheduler callbacks may be invoked from other cpus.
3609 */
3610 schedule();
3611
3612 /*
3613 * Sched callbacks are disabled now. Zap nr_running. After this,
3614 * nr_running stays zero and need_more_worker() and keep_working()
3615 * are always true as long as the worklist is not empty. @gcwq now
3616 * behaves as unbound (in terms of concurrency management) gcwq
3617 * which is served by workers tied to the CPU.
3618 *
3619 * On return from this function, the current worker would trigger
3620 * unbound chain execution of pending work items if other workers
3621 * didn't already.
3622 */
3623 for_each_worker_pool(pool, gcwq)
3624 atomic_set(get_pool_nr_running(pool), 0);
3625 }
3626
3627 /*
3628 * Workqueues should be brought up before normal priority CPU notifiers.
3629 * This will be registered high priority CPU notifier.
3630 */
3631 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3632 unsigned long action,
3633 void *hcpu)
3634 {
3635 unsigned int cpu = (unsigned long)hcpu;
3636 struct global_cwq *gcwq = get_gcwq(cpu);
3637 struct worker_pool *pool;
3638
3639 switch (action & ~CPU_TASKS_FROZEN) {
3640 case CPU_UP_PREPARE:
3641 for_each_worker_pool(pool, gcwq) {
3642 struct worker *worker;
3643
3644 if (pool->nr_workers)
3645 continue;
3646
3647 worker = create_worker(pool);
3648 if (!worker)
3649 return NOTIFY_BAD;
3650
3651 spin_lock_irq(&gcwq->lock);
3652 start_worker(worker);
3653 spin_unlock_irq(&gcwq->lock);
3654 }
3655 break;
3656
3657 case CPU_DOWN_FAILED:
3658 case CPU_ONLINE:
3659 gcwq_claim_management_and_lock(gcwq);
3660 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3661 rebind_workers(gcwq);
3662 gcwq_release_management_and_unlock(gcwq);
3663 break;
3664 }
3665 return NOTIFY_OK;
3666 }
3667
3668 /*
3669 * Workqueues should be brought down after normal priority CPU notifiers.
3670 * This will be registered as low priority CPU notifier.
3671 */
3672 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3673 unsigned long action,
3674 void *hcpu)
3675 {
3676 unsigned int cpu = (unsigned long)hcpu;
3677 struct work_struct unbind_work;
3678
3679 switch (action & ~CPU_TASKS_FROZEN) {
3680 case CPU_DOWN_PREPARE:
3681 /* unbinding should happen on the local CPU */
3682 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3683 schedule_work_on(cpu, &unbind_work);
3684 flush_work(&unbind_work);
3685 break;
3686 }
3687 return NOTIFY_OK;
3688 }
3689
3690 #ifdef CONFIG_SMP
3691
3692 struct work_for_cpu {
3693 struct completion completion;
3694 long (*fn)(void *);
3695 void *arg;
3696 long ret;
3697 };
3698
3699 static int do_work_for_cpu(void *_wfc)
3700 {
3701 struct work_for_cpu *wfc = _wfc;
3702 wfc->ret = wfc->fn(wfc->arg);
3703 complete(&wfc->completion);
3704 return 0;
3705 }
3706
3707 /**
3708 * work_on_cpu - run a function in user context on a particular cpu
3709 * @cpu: the cpu to run on
3710 * @fn: the function to run
3711 * @arg: the function arg
3712 *
3713 * This will return the value @fn returns.
3714 * It is up to the caller to ensure that the cpu doesn't go offline.
3715 * The caller must not hold any locks which would prevent @fn from completing.
3716 */
3717 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3718 {
3719 struct task_struct *sub_thread;
3720 struct work_for_cpu wfc = {
3721 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3722 .fn = fn,
3723 .arg = arg,
3724 };
3725
3726 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3727 if (IS_ERR(sub_thread))
3728 return PTR_ERR(sub_thread);
3729 kthread_bind(sub_thread, cpu);
3730 wake_up_process(sub_thread);
3731 wait_for_completion(&wfc.completion);
3732 return wfc.ret;
3733 }
3734 EXPORT_SYMBOL_GPL(work_on_cpu);
3735 #endif /* CONFIG_SMP */
3736
3737 #ifdef CONFIG_FREEZER
3738
3739 /**
3740 * freeze_workqueues_begin - begin freezing workqueues
3741 *
3742 * Start freezing workqueues. After this function returns, all freezable
3743 * workqueues will queue new works to their frozen_works list instead of
3744 * gcwq->worklist.
3745 *
3746 * CONTEXT:
3747 * Grabs and releases workqueue_lock and gcwq->lock's.
3748 */
3749 void freeze_workqueues_begin(void)
3750 {
3751 unsigned int cpu;
3752
3753 spin_lock(&workqueue_lock);
3754
3755 BUG_ON(workqueue_freezing);
3756 workqueue_freezing = true;
3757
3758 for_each_gcwq_cpu(cpu) {
3759 struct global_cwq *gcwq = get_gcwq(cpu);
3760 struct workqueue_struct *wq;
3761
3762 spin_lock_irq(&gcwq->lock);
3763
3764 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3765 gcwq->flags |= GCWQ_FREEZING;
3766
3767 list_for_each_entry(wq, &workqueues, list) {
3768 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3769
3770 if (cwq && wq->flags & WQ_FREEZABLE)
3771 cwq->max_active = 0;
3772 }
3773
3774 spin_unlock_irq(&gcwq->lock);
3775 }
3776
3777 spin_unlock(&workqueue_lock);
3778 }
3779
3780 /**
3781 * freeze_workqueues_busy - are freezable workqueues still busy?
3782 *
3783 * Check whether freezing is complete. This function must be called
3784 * between freeze_workqueues_begin() and thaw_workqueues().
3785 *
3786 * CONTEXT:
3787 * Grabs and releases workqueue_lock.
3788 *
3789 * RETURNS:
3790 * %true if some freezable workqueues are still busy. %false if freezing
3791 * is complete.
3792 */
3793 bool freeze_workqueues_busy(void)
3794 {
3795 unsigned int cpu;
3796 bool busy = false;
3797
3798 spin_lock(&workqueue_lock);
3799
3800 BUG_ON(!workqueue_freezing);
3801
3802 for_each_gcwq_cpu(cpu) {
3803 struct workqueue_struct *wq;
3804 /*
3805 * nr_active is monotonically decreasing. It's safe
3806 * to peek without lock.
3807 */
3808 list_for_each_entry(wq, &workqueues, list) {
3809 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3810
3811 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3812 continue;
3813
3814 BUG_ON(cwq->nr_active < 0);
3815 if (cwq->nr_active) {
3816 busy = true;
3817 goto out_unlock;
3818 }
3819 }
3820 }
3821 out_unlock:
3822 spin_unlock(&workqueue_lock);
3823 return busy;
3824 }
3825
3826 /**
3827 * thaw_workqueues - thaw workqueues
3828 *
3829 * Thaw workqueues. Normal queueing is restored and all collected
3830 * frozen works are transferred to their respective gcwq worklists.
3831 *
3832 * CONTEXT:
3833 * Grabs and releases workqueue_lock and gcwq->lock's.
3834 */
3835 void thaw_workqueues(void)
3836 {
3837 unsigned int cpu;
3838
3839 spin_lock(&workqueue_lock);
3840
3841 if (!workqueue_freezing)
3842 goto out_unlock;
3843
3844 for_each_gcwq_cpu(cpu) {
3845 struct global_cwq *gcwq = get_gcwq(cpu);
3846 struct worker_pool *pool;
3847 struct workqueue_struct *wq;
3848
3849 spin_lock_irq(&gcwq->lock);
3850
3851 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3852 gcwq->flags &= ~GCWQ_FREEZING;
3853
3854 list_for_each_entry(wq, &workqueues, list) {
3855 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3856
3857 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3858 continue;
3859
3860 /* restore max_active and repopulate worklist */
3861 cwq->max_active = wq->saved_max_active;
3862
3863 while (!list_empty(&cwq->delayed_works) &&
3864 cwq->nr_active < cwq->max_active)
3865 cwq_activate_first_delayed(cwq);
3866 }
3867
3868 for_each_worker_pool(pool, gcwq)
3869 wake_up_worker(pool);
3870
3871 spin_unlock_irq(&gcwq->lock);
3872 }
3873
3874 workqueue_freezing = false;
3875 out_unlock:
3876 spin_unlock(&workqueue_lock);
3877 }
3878 #endif /* CONFIG_FREEZER */
3879
3880 static int __init init_workqueues(void)
3881 {
3882 unsigned int cpu;
3883 int i;
3884
3885 /* make sure we have enough bits for OFFQ CPU number */
3886 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3887 WORK_CPU_LAST);
3888
3889 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3890 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3891
3892 /* initialize gcwqs */
3893 for_each_gcwq_cpu(cpu) {
3894 struct global_cwq *gcwq = get_gcwq(cpu);
3895 struct worker_pool *pool;
3896
3897 spin_lock_init(&gcwq->lock);
3898 gcwq->cpu = cpu;
3899 gcwq->flags |= GCWQ_DISASSOCIATED;
3900
3901 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3902 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3903
3904 for_each_worker_pool(pool, gcwq) {
3905 pool->gcwq = gcwq;
3906 INIT_LIST_HEAD(&pool->worklist);
3907 INIT_LIST_HEAD(&pool->idle_list);
3908
3909 init_timer_deferrable(&pool->idle_timer);
3910 pool->idle_timer.function = idle_worker_timeout;
3911 pool->idle_timer.data = (unsigned long)pool;
3912
3913 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3914 (unsigned long)pool);
3915
3916 mutex_init(&pool->manager_mutex);
3917 ida_init(&pool->worker_ida);
3918 }
3919
3920 init_waitqueue_head(&gcwq->rebind_hold);
3921 }
3922
3923 /* create the initial worker */
3924 for_each_online_gcwq_cpu(cpu) {
3925 struct global_cwq *gcwq = get_gcwq(cpu);
3926 struct worker_pool *pool;
3927
3928 if (cpu != WORK_CPU_UNBOUND)
3929 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3930
3931 for_each_worker_pool(pool, gcwq) {
3932 struct worker *worker;
3933
3934 worker = create_worker(pool);
3935 BUG_ON(!worker);
3936 spin_lock_irq(&gcwq->lock);
3937 start_worker(worker);
3938 spin_unlock_irq(&gcwq->lock);
3939 }
3940 }
3941
3942 system_wq = alloc_workqueue("events", 0, 0);
3943 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3944 system_long_wq = alloc_workqueue("events_long", 0, 0);
3945 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3946 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3947 WQ_UNBOUND_MAX_ACTIVE);
3948 system_freezable_wq = alloc_workqueue("events_freezable",
3949 WQ_FREEZABLE, 0);
3950 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3951 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3952 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3953 !system_nrt_wq || !system_unbound_wq || !system_freezable_wq ||
3954 !system_nrt_freezable_wq);
3955 return 0;
3956 }
3957 early_initcall(init_workqueues);
This page took 0.242842 seconds and 5 git commands to generate.