workqueue: fix locking in retry path of maybe_create_worker()
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <linux/idr.h>
37
38 #include "workqueue_sched.h"
39
40 enum {
41 /* global_cwq flags */
42 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
43 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
44 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
45 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
46 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
47
48 /* worker flags */
49 WORKER_STARTED = 1 << 0, /* started */
50 WORKER_DIE = 1 << 1, /* die die die */
51 WORKER_IDLE = 1 << 2, /* is idle */
52 WORKER_PREP = 1 << 3, /* preparing to run works */
53 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
54 WORKER_REBIND = 1 << 5, /* mom is home, come back */
55 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
56 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
57
58 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
59 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
60
61 /* gcwq->trustee_state */
62 TRUSTEE_START = 0, /* start */
63 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
64 TRUSTEE_BUTCHER = 2, /* butcher workers */
65 TRUSTEE_RELEASE = 3, /* release workers */
66 TRUSTEE_DONE = 4, /* trustee is done */
67
68 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
69 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
70 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
71
72 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
73 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
74
75 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
76 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
77 CREATE_COOLDOWN = HZ, /* time to breath after fail */
78 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
79
80 /*
81 * Rescue workers are used only on emergencies and shared by
82 * all cpus. Give -20.
83 */
84 RESCUER_NICE_LEVEL = -20,
85 };
86
87 /*
88 * Structure fields follow one of the following exclusion rules.
89 *
90 * I: Set during initialization and read-only afterwards.
91 *
92 * P: Preemption protected. Disabling preemption is enough and should
93 * only be modified and accessed from the local cpu.
94 *
95 * L: gcwq->lock protected. Access with gcwq->lock held.
96 *
97 * X: During normal operation, modification requires gcwq->lock and
98 * should be done only from local cpu. Either disabling preemption
99 * on local cpu or grabbing gcwq->lock is enough for read access.
100 * If GCWQ_DISASSOCIATED is set, it's identical to L.
101 *
102 * F: wq->flush_mutex protected.
103 *
104 * W: workqueue_lock protected.
105 */
106
107 struct global_cwq;
108
109 /*
110 * The poor guys doing the actual heavy lifting. All on-duty workers
111 * are either serving the manager role, on idle list or on busy hash.
112 */
113 struct worker {
114 /* on idle list while idle, on busy hash table while busy */
115 union {
116 struct list_head entry; /* L: while idle */
117 struct hlist_node hentry; /* L: while busy */
118 };
119
120 struct work_struct *current_work; /* L: work being processed */
121 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
122 struct list_head scheduled; /* L: scheduled works */
123 struct task_struct *task; /* I: worker task */
124 struct global_cwq *gcwq; /* I: the associated gcwq */
125 /* 64 bytes boundary on 64bit, 32 on 32bit */
126 unsigned long last_active; /* L: last active timestamp */
127 unsigned int flags; /* X: flags */
128 int id; /* I: worker id */
129 struct work_struct rebind_work; /* L: rebind worker to cpu */
130 };
131
132 /*
133 * Global per-cpu workqueue. There's one and only one for each cpu
134 * and all works are queued and processed here regardless of their
135 * target workqueues.
136 */
137 struct global_cwq {
138 spinlock_t lock; /* the gcwq lock */
139 struct list_head worklist; /* L: list of pending works */
140 unsigned int cpu; /* I: the associated cpu */
141 unsigned int flags; /* L: GCWQ_* flags */
142
143 int nr_workers; /* L: total number of workers */
144 int nr_idle; /* L: currently idle ones */
145
146 /* workers are chained either in the idle_list or busy_hash */
147 struct list_head idle_list; /* X: list of idle workers */
148 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
149 /* L: hash of busy workers */
150
151 struct timer_list idle_timer; /* L: worker idle timeout */
152 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
153
154 struct ida worker_ida; /* L: for worker IDs */
155
156 struct task_struct *trustee; /* L: for gcwq shutdown */
157 unsigned int trustee_state; /* L: trustee state */
158 wait_queue_head_t trustee_wait; /* trustee wait */
159 struct worker *first_idle; /* L: first idle worker */
160 } ____cacheline_aligned_in_smp;
161
162 /*
163 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
164 * work_struct->data are used for flags and thus cwqs need to be
165 * aligned at two's power of the number of flag bits.
166 */
167 struct cpu_workqueue_struct {
168 struct global_cwq *gcwq; /* I: the associated gcwq */
169 struct workqueue_struct *wq; /* I: the owning workqueue */
170 int work_color; /* L: current color */
171 int flush_color; /* L: flushing color */
172 int nr_in_flight[WORK_NR_COLORS];
173 /* L: nr of in_flight works */
174 int nr_active; /* L: nr of active works */
175 int max_active; /* L: max active works */
176 struct list_head delayed_works; /* L: delayed works */
177 };
178
179 /*
180 * Structure used to wait for workqueue flush.
181 */
182 struct wq_flusher {
183 struct list_head list; /* F: list of flushers */
184 int flush_color; /* F: flush color waiting for */
185 struct completion done; /* flush completion */
186 };
187
188 /*
189 * The externally visible workqueue abstraction is an array of
190 * per-CPU workqueues:
191 */
192 struct workqueue_struct {
193 unsigned int flags; /* I: WQ_* flags */
194 union {
195 struct cpu_workqueue_struct __percpu *pcpu;
196 struct cpu_workqueue_struct *single;
197 unsigned long v;
198 } cpu_wq; /* I: cwq's */
199 struct list_head list; /* W: list of all workqueues */
200
201 struct mutex flush_mutex; /* protects wq flushing */
202 int work_color; /* F: current work color */
203 int flush_color; /* F: current flush color */
204 atomic_t nr_cwqs_to_flush; /* flush in progress */
205 struct wq_flusher *first_flusher; /* F: first flusher */
206 struct list_head flusher_queue; /* F: flush waiters */
207 struct list_head flusher_overflow; /* F: flush overflow list */
208
209 cpumask_var_t mayday_mask; /* cpus requesting rescue */
210 struct worker *rescuer; /* I: rescue worker */
211
212 int saved_max_active; /* W: saved cwq max_active */
213 const char *name; /* I: workqueue name */
214 #ifdef CONFIG_LOCKDEP
215 struct lockdep_map lockdep_map;
216 #endif
217 };
218
219 struct workqueue_struct *system_wq __read_mostly;
220 struct workqueue_struct *system_long_wq __read_mostly;
221 struct workqueue_struct *system_nrt_wq __read_mostly;
222 struct workqueue_struct *system_unbound_wq __read_mostly;
223 EXPORT_SYMBOL_GPL(system_wq);
224 EXPORT_SYMBOL_GPL(system_long_wq);
225 EXPORT_SYMBOL_GPL(system_nrt_wq);
226 EXPORT_SYMBOL_GPL(system_unbound_wq);
227
228 #define for_each_busy_worker(worker, i, pos, gcwq) \
229 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
230 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
231
232 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
233 unsigned int sw)
234 {
235 if (cpu < nr_cpu_ids) {
236 if (sw & 1) {
237 cpu = cpumask_next(cpu, mask);
238 if (cpu < nr_cpu_ids)
239 return cpu;
240 }
241 if (sw & 2)
242 return WORK_CPU_UNBOUND;
243 }
244 return WORK_CPU_NONE;
245 }
246
247 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
248 struct workqueue_struct *wq)
249 {
250 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
251 }
252
253 #define for_each_gcwq_cpu(cpu) \
254 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
255 (cpu) < WORK_CPU_NONE; \
256 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
257
258 #define for_each_online_gcwq_cpu(cpu) \
259 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
260 (cpu) < WORK_CPU_NONE; \
261 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
262
263 #define for_each_cwq_cpu(cpu, wq) \
264 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
265 (cpu) < WORK_CPU_NONE; \
266 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
267
268 #ifdef CONFIG_DEBUG_OBJECTS_WORK
269
270 static struct debug_obj_descr work_debug_descr;
271
272 /*
273 * fixup_init is called when:
274 * - an active object is initialized
275 */
276 static int work_fixup_init(void *addr, enum debug_obj_state state)
277 {
278 struct work_struct *work = addr;
279
280 switch (state) {
281 case ODEBUG_STATE_ACTIVE:
282 cancel_work_sync(work);
283 debug_object_init(work, &work_debug_descr);
284 return 1;
285 default:
286 return 0;
287 }
288 }
289
290 /*
291 * fixup_activate is called when:
292 * - an active object is activated
293 * - an unknown object is activated (might be a statically initialized object)
294 */
295 static int work_fixup_activate(void *addr, enum debug_obj_state state)
296 {
297 struct work_struct *work = addr;
298
299 switch (state) {
300
301 case ODEBUG_STATE_NOTAVAILABLE:
302 /*
303 * This is not really a fixup. The work struct was
304 * statically initialized. We just make sure that it
305 * is tracked in the object tracker.
306 */
307 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
308 debug_object_init(work, &work_debug_descr);
309 debug_object_activate(work, &work_debug_descr);
310 return 0;
311 }
312 WARN_ON_ONCE(1);
313 return 0;
314
315 case ODEBUG_STATE_ACTIVE:
316 WARN_ON(1);
317
318 default:
319 return 0;
320 }
321 }
322
323 /*
324 * fixup_free is called when:
325 * - an active object is freed
326 */
327 static int work_fixup_free(void *addr, enum debug_obj_state state)
328 {
329 struct work_struct *work = addr;
330
331 switch (state) {
332 case ODEBUG_STATE_ACTIVE:
333 cancel_work_sync(work);
334 debug_object_free(work, &work_debug_descr);
335 return 1;
336 default:
337 return 0;
338 }
339 }
340
341 static struct debug_obj_descr work_debug_descr = {
342 .name = "work_struct",
343 .fixup_init = work_fixup_init,
344 .fixup_activate = work_fixup_activate,
345 .fixup_free = work_fixup_free,
346 };
347
348 static inline void debug_work_activate(struct work_struct *work)
349 {
350 debug_object_activate(work, &work_debug_descr);
351 }
352
353 static inline void debug_work_deactivate(struct work_struct *work)
354 {
355 debug_object_deactivate(work, &work_debug_descr);
356 }
357
358 void __init_work(struct work_struct *work, int onstack)
359 {
360 if (onstack)
361 debug_object_init_on_stack(work, &work_debug_descr);
362 else
363 debug_object_init(work, &work_debug_descr);
364 }
365 EXPORT_SYMBOL_GPL(__init_work);
366
367 void destroy_work_on_stack(struct work_struct *work)
368 {
369 debug_object_free(work, &work_debug_descr);
370 }
371 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
372
373 #else
374 static inline void debug_work_activate(struct work_struct *work) { }
375 static inline void debug_work_deactivate(struct work_struct *work) { }
376 #endif
377
378 /* Serializes the accesses to the list of workqueues. */
379 static DEFINE_SPINLOCK(workqueue_lock);
380 static LIST_HEAD(workqueues);
381 static bool workqueue_freezing; /* W: have wqs started freezing? */
382
383 /*
384 * The almighty global cpu workqueues. nr_running is the only field
385 * which is expected to be used frequently by other cpus via
386 * try_to_wake_up(). Put it in a separate cacheline.
387 */
388 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
389 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
390
391 /*
392 * Global cpu workqueue and nr_running counter for unbound gcwq. The
393 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
394 * workers have WORKER_UNBOUND set.
395 */
396 static struct global_cwq unbound_global_cwq;
397 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
398
399 static int worker_thread(void *__worker);
400
401 static struct global_cwq *get_gcwq(unsigned int cpu)
402 {
403 if (cpu != WORK_CPU_UNBOUND)
404 return &per_cpu(global_cwq, cpu);
405 else
406 return &unbound_global_cwq;
407 }
408
409 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
410 {
411 if (cpu != WORK_CPU_UNBOUND)
412 return &per_cpu(gcwq_nr_running, cpu);
413 else
414 return &unbound_gcwq_nr_running;
415 }
416
417 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
418 struct workqueue_struct *wq)
419 {
420 if (!(wq->flags & WQ_UNBOUND)) {
421 if (likely(cpu < nr_cpu_ids)) {
422 #ifdef CONFIG_SMP
423 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
424 #else
425 return wq->cpu_wq.single;
426 #endif
427 }
428 } else if (likely(cpu == WORK_CPU_UNBOUND))
429 return wq->cpu_wq.single;
430 return NULL;
431 }
432
433 static unsigned int work_color_to_flags(int color)
434 {
435 return color << WORK_STRUCT_COLOR_SHIFT;
436 }
437
438 static int get_work_color(struct work_struct *work)
439 {
440 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
441 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
442 }
443
444 static int work_next_color(int color)
445 {
446 return (color + 1) % WORK_NR_COLORS;
447 }
448
449 /*
450 * Work data points to the cwq while a work is on queue. Once
451 * execution starts, it points to the cpu the work was last on. This
452 * can be distinguished by comparing the data value against
453 * PAGE_OFFSET.
454 *
455 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
456 * cwq, cpu or clear work->data. These functions should only be
457 * called while the work is owned - ie. while the PENDING bit is set.
458 *
459 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
460 * corresponding to a work. gcwq is available once the work has been
461 * queued anywhere after initialization. cwq is available only from
462 * queueing until execution starts.
463 */
464 static inline void set_work_data(struct work_struct *work, unsigned long data,
465 unsigned long flags)
466 {
467 BUG_ON(!work_pending(work));
468 atomic_long_set(&work->data, data | flags | work_static(work));
469 }
470
471 static void set_work_cwq(struct work_struct *work,
472 struct cpu_workqueue_struct *cwq,
473 unsigned long extra_flags)
474 {
475 set_work_data(work, (unsigned long)cwq,
476 WORK_STRUCT_PENDING | extra_flags);
477 }
478
479 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
480 {
481 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
482 }
483
484 static void clear_work_data(struct work_struct *work)
485 {
486 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
487 }
488
489 static inline unsigned long get_work_data(struct work_struct *work)
490 {
491 return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
492 }
493
494 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
495 {
496 unsigned long data = get_work_data(work);
497
498 return data >= PAGE_OFFSET ? (void *)data : NULL;
499 }
500
501 static struct global_cwq *get_work_gcwq(struct work_struct *work)
502 {
503 unsigned long data = get_work_data(work);
504 unsigned int cpu;
505
506 if (data >= PAGE_OFFSET)
507 return ((struct cpu_workqueue_struct *)data)->gcwq;
508
509 cpu = data >> WORK_STRUCT_FLAG_BITS;
510 if (cpu == WORK_CPU_NONE)
511 return NULL;
512
513 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
514 return get_gcwq(cpu);
515 }
516
517 /*
518 * Policy functions. These define the policies on how the global
519 * worker pool is managed. Unless noted otherwise, these functions
520 * assume that they're being called with gcwq->lock held.
521 */
522
523 static bool __need_more_worker(struct global_cwq *gcwq)
524 {
525 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
526 gcwq->flags & GCWQ_HIGHPRI_PENDING;
527 }
528
529 /*
530 * Need to wake up a worker? Called from anything but currently
531 * running workers.
532 */
533 static bool need_more_worker(struct global_cwq *gcwq)
534 {
535 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
536 }
537
538 /* Can I start working? Called from busy but !running workers. */
539 static bool may_start_working(struct global_cwq *gcwq)
540 {
541 return gcwq->nr_idle;
542 }
543
544 /* Do I need to keep working? Called from currently running workers. */
545 static bool keep_working(struct global_cwq *gcwq)
546 {
547 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
548
549 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
550 }
551
552 /* Do we need a new worker? Called from manager. */
553 static bool need_to_create_worker(struct global_cwq *gcwq)
554 {
555 return need_more_worker(gcwq) && !may_start_working(gcwq);
556 }
557
558 /* Do I need to be the manager? */
559 static bool need_to_manage_workers(struct global_cwq *gcwq)
560 {
561 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
562 }
563
564 /* Do we have too many workers and should some go away? */
565 static bool too_many_workers(struct global_cwq *gcwq)
566 {
567 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
568 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
569 int nr_busy = gcwq->nr_workers - nr_idle;
570
571 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
572 }
573
574 /*
575 * Wake up functions.
576 */
577
578 /* Return the first worker. Safe with preemption disabled */
579 static struct worker *first_worker(struct global_cwq *gcwq)
580 {
581 if (unlikely(list_empty(&gcwq->idle_list)))
582 return NULL;
583
584 return list_first_entry(&gcwq->idle_list, struct worker, entry);
585 }
586
587 /**
588 * wake_up_worker - wake up an idle worker
589 * @gcwq: gcwq to wake worker for
590 *
591 * Wake up the first idle worker of @gcwq.
592 *
593 * CONTEXT:
594 * spin_lock_irq(gcwq->lock).
595 */
596 static void wake_up_worker(struct global_cwq *gcwq)
597 {
598 struct worker *worker = first_worker(gcwq);
599
600 if (likely(worker))
601 wake_up_process(worker->task);
602 }
603
604 /**
605 * wq_worker_waking_up - a worker is waking up
606 * @task: task waking up
607 * @cpu: CPU @task is waking up to
608 *
609 * This function is called during try_to_wake_up() when a worker is
610 * being awoken.
611 *
612 * CONTEXT:
613 * spin_lock_irq(rq->lock)
614 */
615 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
616 {
617 struct worker *worker = kthread_data(task);
618
619 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
620 atomic_inc(get_gcwq_nr_running(cpu));
621 }
622
623 /**
624 * wq_worker_sleeping - a worker is going to sleep
625 * @task: task going to sleep
626 * @cpu: CPU in question, must be the current CPU number
627 *
628 * This function is called during schedule() when a busy worker is
629 * going to sleep. Worker on the same cpu can be woken up by
630 * returning pointer to its task.
631 *
632 * CONTEXT:
633 * spin_lock_irq(rq->lock)
634 *
635 * RETURNS:
636 * Worker task on @cpu to wake up, %NULL if none.
637 */
638 struct task_struct *wq_worker_sleeping(struct task_struct *task,
639 unsigned int cpu)
640 {
641 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
642 struct global_cwq *gcwq = get_gcwq(cpu);
643 atomic_t *nr_running = get_gcwq_nr_running(cpu);
644
645 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
646 return NULL;
647
648 /* this can only happen on the local cpu */
649 BUG_ON(cpu != raw_smp_processor_id());
650
651 /*
652 * The counterpart of the following dec_and_test, implied mb,
653 * worklist not empty test sequence is in insert_work().
654 * Please read comment there.
655 *
656 * NOT_RUNNING is clear. This means that trustee is not in
657 * charge and we're running on the local cpu w/ rq lock held
658 * and preemption disabled, which in turn means that none else
659 * could be manipulating idle_list, so dereferencing idle_list
660 * without gcwq lock is safe.
661 */
662 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
663 to_wakeup = first_worker(gcwq);
664 return to_wakeup ? to_wakeup->task : NULL;
665 }
666
667 /**
668 * worker_set_flags - set worker flags and adjust nr_running accordingly
669 * @worker: self
670 * @flags: flags to set
671 * @wakeup: wakeup an idle worker if necessary
672 *
673 * Set @flags in @worker->flags and adjust nr_running accordingly. If
674 * nr_running becomes zero and @wakeup is %true, an idle worker is
675 * woken up.
676 *
677 * CONTEXT:
678 * spin_lock_irq(gcwq->lock)
679 */
680 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
681 bool wakeup)
682 {
683 struct global_cwq *gcwq = worker->gcwq;
684
685 WARN_ON_ONCE(worker->task != current);
686
687 /*
688 * If transitioning into NOT_RUNNING, adjust nr_running and
689 * wake up an idle worker as necessary if requested by
690 * @wakeup.
691 */
692 if ((flags & WORKER_NOT_RUNNING) &&
693 !(worker->flags & WORKER_NOT_RUNNING)) {
694 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
695
696 if (wakeup) {
697 if (atomic_dec_and_test(nr_running) &&
698 !list_empty(&gcwq->worklist))
699 wake_up_worker(gcwq);
700 } else
701 atomic_dec(nr_running);
702 }
703
704 worker->flags |= flags;
705 }
706
707 /**
708 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
709 * @worker: self
710 * @flags: flags to clear
711 *
712 * Clear @flags in @worker->flags and adjust nr_running accordingly.
713 *
714 * CONTEXT:
715 * spin_lock_irq(gcwq->lock)
716 */
717 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
718 {
719 struct global_cwq *gcwq = worker->gcwq;
720 unsigned int oflags = worker->flags;
721
722 WARN_ON_ONCE(worker->task != current);
723
724 worker->flags &= ~flags;
725
726 /* if transitioning out of NOT_RUNNING, increment nr_running */
727 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
728 if (!(worker->flags & WORKER_NOT_RUNNING))
729 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
730 }
731
732 /**
733 * busy_worker_head - return the busy hash head for a work
734 * @gcwq: gcwq of interest
735 * @work: work to be hashed
736 *
737 * Return hash head of @gcwq for @work.
738 *
739 * CONTEXT:
740 * spin_lock_irq(gcwq->lock).
741 *
742 * RETURNS:
743 * Pointer to the hash head.
744 */
745 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
746 struct work_struct *work)
747 {
748 const int base_shift = ilog2(sizeof(struct work_struct));
749 unsigned long v = (unsigned long)work;
750
751 /* simple shift and fold hash, do we need something better? */
752 v >>= base_shift;
753 v += v >> BUSY_WORKER_HASH_ORDER;
754 v &= BUSY_WORKER_HASH_MASK;
755
756 return &gcwq->busy_hash[v];
757 }
758
759 /**
760 * __find_worker_executing_work - find worker which is executing a work
761 * @gcwq: gcwq of interest
762 * @bwh: hash head as returned by busy_worker_head()
763 * @work: work to find worker for
764 *
765 * Find a worker which is executing @work on @gcwq. @bwh should be
766 * the hash head obtained by calling busy_worker_head() with the same
767 * work.
768 *
769 * CONTEXT:
770 * spin_lock_irq(gcwq->lock).
771 *
772 * RETURNS:
773 * Pointer to worker which is executing @work if found, NULL
774 * otherwise.
775 */
776 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
777 struct hlist_head *bwh,
778 struct work_struct *work)
779 {
780 struct worker *worker;
781 struct hlist_node *tmp;
782
783 hlist_for_each_entry(worker, tmp, bwh, hentry)
784 if (worker->current_work == work)
785 return worker;
786 return NULL;
787 }
788
789 /**
790 * find_worker_executing_work - find worker which is executing a work
791 * @gcwq: gcwq of interest
792 * @work: work to find worker for
793 *
794 * Find a worker which is executing @work on @gcwq. This function is
795 * identical to __find_worker_executing_work() except that this
796 * function calculates @bwh itself.
797 *
798 * CONTEXT:
799 * spin_lock_irq(gcwq->lock).
800 *
801 * RETURNS:
802 * Pointer to worker which is executing @work if found, NULL
803 * otherwise.
804 */
805 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
806 struct work_struct *work)
807 {
808 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
809 work);
810 }
811
812 /**
813 * gcwq_determine_ins_pos - find insertion position
814 * @gcwq: gcwq of interest
815 * @cwq: cwq a work is being queued for
816 *
817 * A work for @cwq is about to be queued on @gcwq, determine insertion
818 * position for the work. If @cwq is for HIGHPRI wq, the work is
819 * queued at the head of the queue but in FIFO order with respect to
820 * other HIGHPRI works; otherwise, at the end of the queue. This
821 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
822 * there are HIGHPRI works pending.
823 *
824 * CONTEXT:
825 * spin_lock_irq(gcwq->lock).
826 *
827 * RETURNS:
828 * Pointer to inserstion position.
829 */
830 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
831 struct cpu_workqueue_struct *cwq)
832 {
833 struct work_struct *twork;
834
835 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
836 return &gcwq->worklist;
837
838 list_for_each_entry(twork, &gcwq->worklist, entry) {
839 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
840
841 if (!(tcwq->wq->flags & WQ_HIGHPRI))
842 break;
843 }
844
845 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
846 return &twork->entry;
847 }
848
849 /**
850 * insert_work - insert a work into gcwq
851 * @cwq: cwq @work belongs to
852 * @work: work to insert
853 * @head: insertion point
854 * @extra_flags: extra WORK_STRUCT_* flags to set
855 *
856 * Insert @work which belongs to @cwq into @gcwq after @head.
857 * @extra_flags is or'd to work_struct flags.
858 *
859 * CONTEXT:
860 * spin_lock_irq(gcwq->lock).
861 */
862 static void insert_work(struct cpu_workqueue_struct *cwq,
863 struct work_struct *work, struct list_head *head,
864 unsigned int extra_flags)
865 {
866 struct global_cwq *gcwq = cwq->gcwq;
867
868 /* we own @work, set data and link */
869 set_work_cwq(work, cwq, extra_flags);
870
871 /*
872 * Ensure that we get the right work->data if we see the
873 * result of list_add() below, see try_to_grab_pending().
874 */
875 smp_wmb();
876
877 list_add_tail(&work->entry, head);
878
879 /*
880 * Ensure either worker_sched_deactivated() sees the above
881 * list_add_tail() or we see zero nr_running to avoid workers
882 * lying around lazily while there are works to be processed.
883 */
884 smp_mb();
885
886 if (__need_more_worker(gcwq))
887 wake_up_worker(gcwq);
888 }
889
890 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
891 struct work_struct *work)
892 {
893 struct global_cwq *gcwq;
894 struct cpu_workqueue_struct *cwq;
895 struct list_head *worklist;
896 unsigned long flags;
897
898 debug_work_activate(work);
899
900 /* determine gcwq to use */
901 if (!(wq->flags & WQ_UNBOUND)) {
902 struct global_cwq *last_gcwq;
903
904 if (unlikely(cpu == WORK_CPU_UNBOUND))
905 cpu = raw_smp_processor_id();
906
907 /*
908 * It's multi cpu. If @wq is non-reentrant and @work
909 * was previously on a different cpu, it might still
910 * be running there, in which case the work needs to
911 * be queued on that cpu to guarantee non-reentrance.
912 */
913 gcwq = get_gcwq(cpu);
914 if (wq->flags & WQ_NON_REENTRANT &&
915 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
916 struct worker *worker;
917
918 spin_lock_irqsave(&last_gcwq->lock, flags);
919
920 worker = find_worker_executing_work(last_gcwq, work);
921
922 if (worker && worker->current_cwq->wq == wq)
923 gcwq = last_gcwq;
924 else {
925 /* meh... not running there, queue here */
926 spin_unlock_irqrestore(&last_gcwq->lock, flags);
927 spin_lock_irqsave(&gcwq->lock, flags);
928 }
929 } else
930 spin_lock_irqsave(&gcwq->lock, flags);
931 } else {
932 gcwq = get_gcwq(WORK_CPU_UNBOUND);
933 spin_lock_irqsave(&gcwq->lock, flags);
934 }
935
936 /* gcwq determined, get cwq and queue */
937 cwq = get_cwq(gcwq->cpu, wq);
938
939 BUG_ON(!list_empty(&work->entry));
940
941 cwq->nr_in_flight[cwq->work_color]++;
942
943 if (likely(cwq->nr_active < cwq->max_active)) {
944 cwq->nr_active++;
945 worklist = gcwq_determine_ins_pos(gcwq, cwq);
946 } else
947 worklist = &cwq->delayed_works;
948
949 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
950
951 spin_unlock_irqrestore(&gcwq->lock, flags);
952 }
953
954 /**
955 * queue_work - queue work on a workqueue
956 * @wq: workqueue to use
957 * @work: work to queue
958 *
959 * Returns 0 if @work was already on a queue, non-zero otherwise.
960 *
961 * We queue the work to the CPU on which it was submitted, but if the CPU dies
962 * it can be processed by another CPU.
963 */
964 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
965 {
966 int ret;
967
968 ret = queue_work_on(get_cpu(), wq, work);
969 put_cpu();
970
971 return ret;
972 }
973 EXPORT_SYMBOL_GPL(queue_work);
974
975 /**
976 * queue_work_on - queue work on specific cpu
977 * @cpu: CPU number to execute work on
978 * @wq: workqueue to use
979 * @work: work to queue
980 *
981 * Returns 0 if @work was already on a queue, non-zero otherwise.
982 *
983 * We queue the work to a specific CPU, the caller must ensure it
984 * can't go away.
985 */
986 int
987 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
988 {
989 int ret = 0;
990
991 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
992 __queue_work(cpu, wq, work);
993 ret = 1;
994 }
995 return ret;
996 }
997 EXPORT_SYMBOL_GPL(queue_work_on);
998
999 static void delayed_work_timer_fn(unsigned long __data)
1000 {
1001 struct delayed_work *dwork = (struct delayed_work *)__data;
1002 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1003
1004 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1005 }
1006
1007 /**
1008 * queue_delayed_work - queue work on a workqueue after delay
1009 * @wq: workqueue to use
1010 * @dwork: delayable work to queue
1011 * @delay: number of jiffies to wait before queueing
1012 *
1013 * Returns 0 if @work was already on a queue, non-zero otherwise.
1014 */
1015 int queue_delayed_work(struct workqueue_struct *wq,
1016 struct delayed_work *dwork, unsigned long delay)
1017 {
1018 if (delay == 0)
1019 return queue_work(wq, &dwork->work);
1020
1021 return queue_delayed_work_on(-1, wq, dwork, delay);
1022 }
1023 EXPORT_SYMBOL_GPL(queue_delayed_work);
1024
1025 /**
1026 * queue_delayed_work_on - queue work on specific CPU after delay
1027 * @cpu: CPU number to execute work on
1028 * @wq: workqueue to use
1029 * @dwork: work to queue
1030 * @delay: number of jiffies to wait before queueing
1031 *
1032 * Returns 0 if @work was already on a queue, non-zero otherwise.
1033 */
1034 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1035 struct delayed_work *dwork, unsigned long delay)
1036 {
1037 int ret = 0;
1038 struct timer_list *timer = &dwork->timer;
1039 struct work_struct *work = &dwork->work;
1040
1041 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1042 unsigned int lcpu;
1043
1044 BUG_ON(timer_pending(timer));
1045 BUG_ON(!list_empty(&work->entry));
1046
1047 timer_stats_timer_set_start_info(&dwork->timer);
1048
1049 /*
1050 * This stores cwq for the moment, for the timer_fn.
1051 * Note that the work's gcwq is preserved to allow
1052 * reentrance detection for delayed works.
1053 */
1054 if (!(wq->flags & WQ_UNBOUND)) {
1055 struct global_cwq *gcwq = get_work_gcwq(work);
1056
1057 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1058 lcpu = gcwq->cpu;
1059 else
1060 lcpu = raw_smp_processor_id();
1061 } else
1062 lcpu = WORK_CPU_UNBOUND;
1063
1064 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1065
1066 timer->expires = jiffies + delay;
1067 timer->data = (unsigned long)dwork;
1068 timer->function = delayed_work_timer_fn;
1069
1070 if (unlikely(cpu >= 0))
1071 add_timer_on(timer, cpu);
1072 else
1073 add_timer(timer);
1074 ret = 1;
1075 }
1076 return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1079
1080 /**
1081 * worker_enter_idle - enter idle state
1082 * @worker: worker which is entering idle state
1083 *
1084 * @worker is entering idle state. Update stats and idle timer if
1085 * necessary.
1086 *
1087 * LOCKING:
1088 * spin_lock_irq(gcwq->lock).
1089 */
1090 static void worker_enter_idle(struct worker *worker)
1091 {
1092 struct global_cwq *gcwq = worker->gcwq;
1093
1094 BUG_ON(worker->flags & WORKER_IDLE);
1095 BUG_ON(!list_empty(&worker->entry) &&
1096 (worker->hentry.next || worker->hentry.pprev));
1097
1098 /* can't use worker_set_flags(), also called from start_worker() */
1099 worker->flags |= WORKER_IDLE;
1100 gcwq->nr_idle++;
1101 worker->last_active = jiffies;
1102
1103 /* idle_list is LIFO */
1104 list_add(&worker->entry, &gcwq->idle_list);
1105
1106 if (likely(!(worker->flags & WORKER_ROGUE))) {
1107 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1108 mod_timer(&gcwq->idle_timer,
1109 jiffies + IDLE_WORKER_TIMEOUT);
1110 } else
1111 wake_up_all(&gcwq->trustee_wait);
1112
1113 /* sanity check nr_running */
1114 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1115 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1116 }
1117
1118 /**
1119 * worker_leave_idle - leave idle state
1120 * @worker: worker which is leaving idle state
1121 *
1122 * @worker is leaving idle state. Update stats.
1123 *
1124 * LOCKING:
1125 * spin_lock_irq(gcwq->lock).
1126 */
1127 static void worker_leave_idle(struct worker *worker)
1128 {
1129 struct global_cwq *gcwq = worker->gcwq;
1130
1131 BUG_ON(!(worker->flags & WORKER_IDLE));
1132 worker_clr_flags(worker, WORKER_IDLE);
1133 gcwq->nr_idle--;
1134 list_del_init(&worker->entry);
1135 }
1136
1137 /**
1138 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1139 * @worker: self
1140 *
1141 * Works which are scheduled while the cpu is online must at least be
1142 * scheduled to a worker which is bound to the cpu so that if they are
1143 * flushed from cpu callbacks while cpu is going down, they are
1144 * guaranteed to execute on the cpu.
1145 *
1146 * This function is to be used by rogue workers and rescuers to bind
1147 * themselves to the target cpu and may race with cpu going down or
1148 * coming online. kthread_bind() can't be used because it may put the
1149 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1150 * verbatim as it's best effort and blocking and gcwq may be
1151 * [dis]associated in the meantime.
1152 *
1153 * This function tries set_cpus_allowed() and locks gcwq and verifies
1154 * the binding against GCWQ_DISASSOCIATED which is set during
1155 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1156 * idle state or fetches works without dropping lock, it can guarantee
1157 * the scheduling requirement described in the first paragraph.
1158 *
1159 * CONTEXT:
1160 * Might sleep. Called without any lock but returns with gcwq->lock
1161 * held.
1162 *
1163 * RETURNS:
1164 * %true if the associated gcwq is online (@worker is successfully
1165 * bound), %false if offline.
1166 */
1167 static bool worker_maybe_bind_and_lock(struct worker *worker)
1168 {
1169 struct global_cwq *gcwq = worker->gcwq;
1170 struct task_struct *task = worker->task;
1171
1172 while (true) {
1173 /*
1174 * The following call may fail, succeed or succeed
1175 * without actually migrating the task to the cpu if
1176 * it races with cpu hotunplug operation. Verify
1177 * against GCWQ_DISASSOCIATED.
1178 */
1179 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1180 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1181
1182 spin_lock_irq(&gcwq->lock);
1183 if (gcwq->flags & GCWQ_DISASSOCIATED)
1184 return false;
1185 if (task_cpu(task) == gcwq->cpu &&
1186 cpumask_equal(&current->cpus_allowed,
1187 get_cpu_mask(gcwq->cpu)))
1188 return true;
1189 spin_unlock_irq(&gcwq->lock);
1190
1191 /* CPU has come up inbetween, retry migration */
1192 cpu_relax();
1193 }
1194 }
1195
1196 /*
1197 * Function for worker->rebind_work used to rebind rogue busy workers
1198 * to the associated cpu which is coming back online. This is
1199 * scheduled by cpu up but can race with other cpu hotplug operations
1200 * and may be executed twice without intervening cpu down.
1201 */
1202 static void worker_rebind_fn(struct work_struct *work)
1203 {
1204 struct worker *worker = container_of(work, struct worker, rebind_work);
1205 struct global_cwq *gcwq = worker->gcwq;
1206
1207 if (worker_maybe_bind_and_lock(worker))
1208 worker_clr_flags(worker, WORKER_REBIND);
1209
1210 spin_unlock_irq(&gcwq->lock);
1211 }
1212
1213 static struct worker *alloc_worker(void)
1214 {
1215 struct worker *worker;
1216
1217 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1218 if (worker) {
1219 INIT_LIST_HEAD(&worker->entry);
1220 INIT_LIST_HEAD(&worker->scheduled);
1221 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1222 /* on creation a worker is in !idle && prep state */
1223 worker->flags = WORKER_PREP;
1224 }
1225 return worker;
1226 }
1227
1228 /**
1229 * create_worker - create a new workqueue worker
1230 * @gcwq: gcwq the new worker will belong to
1231 * @bind: whether to set affinity to @cpu or not
1232 *
1233 * Create a new worker which is bound to @gcwq. The returned worker
1234 * can be started by calling start_worker() or destroyed using
1235 * destroy_worker().
1236 *
1237 * CONTEXT:
1238 * Might sleep. Does GFP_KERNEL allocations.
1239 *
1240 * RETURNS:
1241 * Pointer to the newly created worker.
1242 */
1243 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1244 {
1245 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1246 struct worker *worker = NULL;
1247 int id = -1;
1248
1249 spin_lock_irq(&gcwq->lock);
1250 while (ida_get_new(&gcwq->worker_ida, &id)) {
1251 spin_unlock_irq(&gcwq->lock);
1252 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1253 goto fail;
1254 spin_lock_irq(&gcwq->lock);
1255 }
1256 spin_unlock_irq(&gcwq->lock);
1257
1258 worker = alloc_worker();
1259 if (!worker)
1260 goto fail;
1261
1262 worker->gcwq = gcwq;
1263 worker->id = id;
1264
1265 if (!on_unbound_cpu)
1266 worker->task = kthread_create(worker_thread, worker,
1267 "kworker/%u:%d", gcwq->cpu, id);
1268 else
1269 worker->task = kthread_create(worker_thread, worker,
1270 "kworker/u:%d", id);
1271 if (IS_ERR(worker->task))
1272 goto fail;
1273
1274 /*
1275 * A rogue worker will become a regular one if CPU comes
1276 * online later on. Make sure every worker has
1277 * PF_THREAD_BOUND set.
1278 */
1279 if (bind && !on_unbound_cpu)
1280 kthread_bind(worker->task, gcwq->cpu);
1281 else {
1282 worker->task->flags |= PF_THREAD_BOUND;
1283 if (on_unbound_cpu)
1284 worker->flags |= WORKER_UNBOUND;
1285 }
1286
1287 return worker;
1288 fail:
1289 if (id >= 0) {
1290 spin_lock_irq(&gcwq->lock);
1291 ida_remove(&gcwq->worker_ida, id);
1292 spin_unlock_irq(&gcwq->lock);
1293 }
1294 kfree(worker);
1295 return NULL;
1296 }
1297
1298 /**
1299 * start_worker - start a newly created worker
1300 * @worker: worker to start
1301 *
1302 * Make the gcwq aware of @worker and start it.
1303 *
1304 * CONTEXT:
1305 * spin_lock_irq(gcwq->lock).
1306 */
1307 static void start_worker(struct worker *worker)
1308 {
1309 worker->flags |= WORKER_STARTED;
1310 worker->gcwq->nr_workers++;
1311 worker_enter_idle(worker);
1312 wake_up_process(worker->task);
1313 }
1314
1315 /**
1316 * destroy_worker - destroy a workqueue worker
1317 * @worker: worker to be destroyed
1318 *
1319 * Destroy @worker and adjust @gcwq stats accordingly.
1320 *
1321 * CONTEXT:
1322 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1323 */
1324 static void destroy_worker(struct worker *worker)
1325 {
1326 struct global_cwq *gcwq = worker->gcwq;
1327 int id = worker->id;
1328
1329 /* sanity check frenzy */
1330 BUG_ON(worker->current_work);
1331 BUG_ON(!list_empty(&worker->scheduled));
1332
1333 if (worker->flags & WORKER_STARTED)
1334 gcwq->nr_workers--;
1335 if (worker->flags & WORKER_IDLE)
1336 gcwq->nr_idle--;
1337
1338 list_del_init(&worker->entry);
1339 worker->flags |= WORKER_DIE;
1340
1341 spin_unlock_irq(&gcwq->lock);
1342
1343 kthread_stop(worker->task);
1344 kfree(worker);
1345
1346 spin_lock_irq(&gcwq->lock);
1347 ida_remove(&gcwq->worker_ida, id);
1348 }
1349
1350 static void idle_worker_timeout(unsigned long __gcwq)
1351 {
1352 struct global_cwq *gcwq = (void *)__gcwq;
1353
1354 spin_lock_irq(&gcwq->lock);
1355
1356 if (too_many_workers(gcwq)) {
1357 struct worker *worker;
1358 unsigned long expires;
1359
1360 /* idle_list is kept in LIFO order, check the last one */
1361 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1362 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1363
1364 if (time_before(jiffies, expires))
1365 mod_timer(&gcwq->idle_timer, expires);
1366 else {
1367 /* it's been idle for too long, wake up manager */
1368 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1369 wake_up_worker(gcwq);
1370 }
1371 }
1372
1373 spin_unlock_irq(&gcwq->lock);
1374 }
1375
1376 static bool send_mayday(struct work_struct *work)
1377 {
1378 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1379 struct workqueue_struct *wq = cwq->wq;
1380 unsigned int cpu;
1381
1382 if (!(wq->flags & WQ_RESCUER))
1383 return false;
1384
1385 /* mayday mayday mayday */
1386 cpu = cwq->gcwq->cpu;
1387 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1388 if (cpu == WORK_CPU_UNBOUND)
1389 cpu = 0;
1390 if (!cpumask_test_and_set_cpu(cpu, wq->mayday_mask))
1391 wake_up_process(wq->rescuer->task);
1392 return true;
1393 }
1394
1395 static void gcwq_mayday_timeout(unsigned long __gcwq)
1396 {
1397 struct global_cwq *gcwq = (void *)__gcwq;
1398 struct work_struct *work;
1399
1400 spin_lock_irq(&gcwq->lock);
1401
1402 if (need_to_create_worker(gcwq)) {
1403 /*
1404 * We've been trying to create a new worker but
1405 * haven't been successful. We might be hitting an
1406 * allocation deadlock. Send distress signals to
1407 * rescuers.
1408 */
1409 list_for_each_entry(work, &gcwq->worklist, entry)
1410 send_mayday(work);
1411 }
1412
1413 spin_unlock_irq(&gcwq->lock);
1414
1415 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1416 }
1417
1418 /**
1419 * maybe_create_worker - create a new worker if necessary
1420 * @gcwq: gcwq to create a new worker for
1421 *
1422 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1423 * have at least one idle worker on return from this function. If
1424 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1425 * sent to all rescuers with works scheduled on @gcwq to resolve
1426 * possible allocation deadlock.
1427 *
1428 * On return, need_to_create_worker() is guaranteed to be false and
1429 * may_start_working() true.
1430 *
1431 * LOCKING:
1432 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1433 * multiple times. Does GFP_KERNEL allocations. Called only from
1434 * manager.
1435 *
1436 * RETURNS:
1437 * false if no action was taken and gcwq->lock stayed locked, true
1438 * otherwise.
1439 */
1440 static bool maybe_create_worker(struct global_cwq *gcwq)
1441 {
1442 if (!need_to_create_worker(gcwq))
1443 return false;
1444 restart:
1445 spin_unlock_irq(&gcwq->lock);
1446
1447 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1448 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1449
1450 while (true) {
1451 struct worker *worker;
1452
1453 worker = create_worker(gcwq, true);
1454 if (worker) {
1455 del_timer_sync(&gcwq->mayday_timer);
1456 spin_lock_irq(&gcwq->lock);
1457 start_worker(worker);
1458 BUG_ON(need_to_create_worker(gcwq));
1459 return true;
1460 }
1461
1462 if (!need_to_create_worker(gcwq))
1463 break;
1464
1465 __set_current_state(TASK_INTERRUPTIBLE);
1466 schedule_timeout(CREATE_COOLDOWN);
1467
1468 if (!need_to_create_worker(gcwq))
1469 break;
1470 }
1471
1472 del_timer_sync(&gcwq->mayday_timer);
1473 spin_lock_irq(&gcwq->lock);
1474 if (need_to_create_worker(gcwq))
1475 goto restart;
1476 return true;
1477 }
1478
1479 /**
1480 * maybe_destroy_worker - destroy workers which have been idle for a while
1481 * @gcwq: gcwq to destroy workers for
1482 *
1483 * Destroy @gcwq workers which have been idle for longer than
1484 * IDLE_WORKER_TIMEOUT.
1485 *
1486 * LOCKING:
1487 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1488 * multiple times. Called only from manager.
1489 *
1490 * RETURNS:
1491 * false if no action was taken and gcwq->lock stayed locked, true
1492 * otherwise.
1493 */
1494 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1495 {
1496 bool ret = false;
1497
1498 while (too_many_workers(gcwq)) {
1499 struct worker *worker;
1500 unsigned long expires;
1501
1502 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1503 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1504
1505 if (time_before(jiffies, expires)) {
1506 mod_timer(&gcwq->idle_timer, expires);
1507 break;
1508 }
1509
1510 destroy_worker(worker);
1511 ret = true;
1512 }
1513
1514 return ret;
1515 }
1516
1517 /**
1518 * manage_workers - manage worker pool
1519 * @worker: self
1520 *
1521 * Assume the manager role and manage gcwq worker pool @worker belongs
1522 * to. At any given time, there can be only zero or one manager per
1523 * gcwq. The exclusion is handled automatically by this function.
1524 *
1525 * The caller can safely start processing works on false return. On
1526 * true return, it's guaranteed that need_to_create_worker() is false
1527 * and may_start_working() is true.
1528 *
1529 * CONTEXT:
1530 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1531 * multiple times. Does GFP_KERNEL allocations.
1532 *
1533 * RETURNS:
1534 * false if no action was taken and gcwq->lock stayed locked, true if
1535 * some action was taken.
1536 */
1537 static bool manage_workers(struct worker *worker)
1538 {
1539 struct global_cwq *gcwq = worker->gcwq;
1540 bool ret = false;
1541
1542 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1543 return ret;
1544
1545 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1546 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1547
1548 /*
1549 * Destroy and then create so that may_start_working() is true
1550 * on return.
1551 */
1552 ret |= maybe_destroy_workers(gcwq);
1553 ret |= maybe_create_worker(gcwq);
1554
1555 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1556
1557 /*
1558 * The trustee might be waiting to take over the manager
1559 * position, tell it we're done.
1560 */
1561 if (unlikely(gcwq->trustee))
1562 wake_up_all(&gcwq->trustee_wait);
1563
1564 return ret;
1565 }
1566
1567 /**
1568 * move_linked_works - move linked works to a list
1569 * @work: start of series of works to be scheduled
1570 * @head: target list to append @work to
1571 * @nextp: out paramter for nested worklist walking
1572 *
1573 * Schedule linked works starting from @work to @head. Work series to
1574 * be scheduled starts at @work and includes any consecutive work with
1575 * WORK_STRUCT_LINKED set in its predecessor.
1576 *
1577 * If @nextp is not NULL, it's updated to point to the next work of
1578 * the last scheduled work. This allows move_linked_works() to be
1579 * nested inside outer list_for_each_entry_safe().
1580 *
1581 * CONTEXT:
1582 * spin_lock_irq(gcwq->lock).
1583 */
1584 static void move_linked_works(struct work_struct *work, struct list_head *head,
1585 struct work_struct **nextp)
1586 {
1587 struct work_struct *n;
1588
1589 /*
1590 * Linked worklist will always end before the end of the list,
1591 * use NULL for list head.
1592 */
1593 list_for_each_entry_safe_from(work, n, NULL, entry) {
1594 list_move_tail(&work->entry, head);
1595 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1596 break;
1597 }
1598
1599 /*
1600 * If we're already inside safe list traversal and have moved
1601 * multiple works to the scheduled queue, the next position
1602 * needs to be updated.
1603 */
1604 if (nextp)
1605 *nextp = n;
1606 }
1607
1608 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1609 {
1610 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1611 struct work_struct, entry);
1612 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1613
1614 move_linked_works(work, pos, NULL);
1615 cwq->nr_active++;
1616 }
1617
1618 /**
1619 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1620 * @cwq: cwq of interest
1621 * @color: color of work which left the queue
1622 *
1623 * A work either has completed or is removed from pending queue,
1624 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1625 *
1626 * CONTEXT:
1627 * spin_lock_irq(gcwq->lock).
1628 */
1629 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1630 {
1631 /* ignore uncolored works */
1632 if (color == WORK_NO_COLOR)
1633 return;
1634
1635 cwq->nr_in_flight[color]--;
1636 cwq->nr_active--;
1637
1638 if (!list_empty(&cwq->delayed_works)) {
1639 /* one down, submit a delayed one */
1640 if (cwq->nr_active < cwq->max_active)
1641 cwq_activate_first_delayed(cwq);
1642 }
1643
1644 /* is flush in progress and are we at the flushing tip? */
1645 if (likely(cwq->flush_color != color))
1646 return;
1647
1648 /* are there still in-flight works? */
1649 if (cwq->nr_in_flight[color])
1650 return;
1651
1652 /* this cwq is done, clear flush_color */
1653 cwq->flush_color = -1;
1654
1655 /*
1656 * If this was the last cwq, wake up the first flusher. It
1657 * will handle the rest.
1658 */
1659 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1660 complete(&cwq->wq->first_flusher->done);
1661 }
1662
1663 /**
1664 * process_one_work - process single work
1665 * @worker: self
1666 * @work: work to process
1667 *
1668 * Process @work. This function contains all the logics necessary to
1669 * process a single work including synchronization against and
1670 * interaction with other workers on the same cpu, queueing and
1671 * flushing. As long as context requirement is met, any worker can
1672 * call this function to process a work.
1673 *
1674 * CONTEXT:
1675 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1676 */
1677 static void process_one_work(struct worker *worker, struct work_struct *work)
1678 {
1679 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1680 struct global_cwq *gcwq = cwq->gcwq;
1681 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1682 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1683 work_func_t f = work->func;
1684 int work_color;
1685 struct worker *collision;
1686 #ifdef CONFIG_LOCKDEP
1687 /*
1688 * It is permissible to free the struct work_struct from
1689 * inside the function that is called from it, this we need to
1690 * take into account for lockdep too. To avoid bogus "held
1691 * lock freed" warnings as well as problems when looking into
1692 * work->lockdep_map, make a copy and use that here.
1693 */
1694 struct lockdep_map lockdep_map = work->lockdep_map;
1695 #endif
1696 /*
1697 * A single work shouldn't be executed concurrently by
1698 * multiple workers on a single cpu. Check whether anyone is
1699 * already processing the work. If so, defer the work to the
1700 * currently executing one.
1701 */
1702 collision = __find_worker_executing_work(gcwq, bwh, work);
1703 if (unlikely(collision)) {
1704 move_linked_works(work, &collision->scheduled, NULL);
1705 return;
1706 }
1707
1708 /* claim and process */
1709 debug_work_deactivate(work);
1710 hlist_add_head(&worker->hentry, bwh);
1711 worker->current_work = work;
1712 worker->current_cwq = cwq;
1713 work_color = get_work_color(work);
1714
1715 /* record the current cpu number in the work data and dequeue */
1716 set_work_cpu(work, gcwq->cpu);
1717 list_del_init(&work->entry);
1718
1719 /*
1720 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1721 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1722 */
1723 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1724 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1725 struct work_struct, entry);
1726
1727 if (!list_empty(&gcwq->worklist) &&
1728 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1729 wake_up_worker(gcwq);
1730 else
1731 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1732 }
1733
1734 /*
1735 * CPU intensive works don't participate in concurrency
1736 * management. They're the scheduler's responsibility.
1737 */
1738 if (unlikely(cpu_intensive))
1739 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1740
1741 spin_unlock_irq(&gcwq->lock);
1742
1743 work_clear_pending(work);
1744 lock_map_acquire(&cwq->wq->lockdep_map);
1745 lock_map_acquire(&lockdep_map);
1746 f(work);
1747 lock_map_release(&lockdep_map);
1748 lock_map_release(&cwq->wq->lockdep_map);
1749
1750 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1751 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1752 "%s/0x%08x/%d\n",
1753 current->comm, preempt_count(), task_pid_nr(current));
1754 printk(KERN_ERR " last function: ");
1755 print_symbol("%s\n", (unsigned long)f);
1756 debug_show_held_locks(current);
1757 dump_stack();
1758 }
1759
1760 spin_lock_irq(&gcwq->lock);
1761
1762 /* clear cpu intensive status */
1763 if (unlikely(cpu_intensive))
1764 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1765
1766 /* we're done with it, release */
1767 hlist_del_init(&worker->hentry);
1768 worker->current_work = NULL;
1769 worker->current_cwq = NULL;
1770 cwq_dec_nr_in_flight(cwq, work_color);
1771 }
1772
1773 /**
1774 * process_scheduled_works - process scheduled works
1775 * @worker: self
1776 *
1777 * Process all scheduled works. Please note that the scheduled list
1778 * may change while processing a work, so this function repeatedly
1779 * fetches a work from the top and executes it.
1780 *
1781 * CONTEXT:
1782 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1783 * multiple times.
1784 */
1785 static void process_scheduled_works(struct worker *worker)
1786 {
1787 while (!list_empty(&worker->scheduled)) {
1788 struct work_struct *work = list_first_entry(&worker->scheduled,
1789 struct work_struct, entry);
1790 process_one_work(worker, work);
1791 }
1792 }
1793
1794 /**
1795 * worker_thread - the worker thread function
1796 * @__worker: self
1797 *
1798 * The gcwq worker thread function. There's a single dynamic pool of
1799 * these per each cpu. These workers process all works regardless of
1800 * their specific target workqueue. The only exception is works which
1801 * belong to workqueues with a rescuer which will be explained in
1802 * rescuer_thread().
1803 */
1804 static int worker_thread(void *__worker)
1805 {
1806 struct worker *worker = __worker;
1807 struct global_cwq *gcwq = worker->gcwq;
1808
1809 /* tell the scheduler that this is a workqueue worker */
1810 worker->task->flags |= PF_WQ_WORKER;
1811 woke_up:
1812 spin_lock_irq(&gcwq->lock);
1813
1814 /* DIE can be set only while we're idle, checking here is enough */
1815 if (worker->flags & WORKER_DIE) {
1816 spin_unlock_irq(&gcwq->lock);
1817 worker->task->flags &= ~PF_WQ_WORKER;
1818 return 0;
1819 }
1820
1821 worker_leave_idle(worker);
1822 recheck:
1823 /* no more worker necessary? */
1824 if (!need_more_worker(gcwq))
1825 goto sleep;
1826
1827 /* do we need to manage? */
1828 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1829 goto recheck;
1830
1831 /*
1832 * ->scheduled list can only be filled while a worker is
1833 * preparing to process a work or actually processing it.
1834 * Make sure nobody diddled with it while I was sleeping.
1835 */
1836 BUG_ON(!list_empty(&worker->scheduled));
1837
1838 /*
1839 * When control reaches this point, we're guaranteed to have
1840 * at least one idle worker or that someone else has already
1841 * assumed the manager role.
1842 */
1843 worker_clr_flags(worker, WORKER_PREP);
1844
1845 do {
1846 struct work_struct *work =
1847 list_first_entry(&gcwq->worklist,
1848 struct work_struct, entry);
1849
1850 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1851 /* optimization path, not strictly necessary */
1852 process_one_work(worker, work);
1853 if (unlikely(!list_empty(&worker->scheduled)))
1854 process_scheduled_works(worker);
1855 } else {
1856 move_linked_works(work, &worker->scheduled, NULL);
1857 process_scheduled_works(worker);
1858 }
1859 } while (keep_working(gcwq));
1860
1861 worker_set_flags(worker, WORKER_PREP, false);
1862 sleep:
1863 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1864 goto recheck;
1865
1866 /*
1867 * gcwq->lock is held and there's no work to process and no
1868 * need to manage, sleep. Workers are woken up only while
1869 * holding gcwq->lock or from local cpu, so setting the
1870 * current state before releasing gcwq->lock is enough to
1871 * prevent losing any event.
1872 */
1873 worker_enter_idle(worker);
1874 __set_current_state(TASK_INTERRUPTIBLE);
1875 spin_unlock_irq(&gcwq->lock);
1876 schedule();
1877 goto woke_up;
1878 }
1879
1880 /**
1881 * rescuer_thread - the rescuer thread function
1882 * @__wq: the associated workqueue
1883 *
1884 * Workqueue rescuer thread function. There's one rescuer for each
1885 * workqueue which has WQ_RESCUER set.
1886 *
1887 * Regular work processing on a gcwq may block trying to create a new
1888 * worker which uses GFP_KERNEL allocation which has slight chance of
1889 * developing into deadlock if some works currently on the same queue
1890 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1891 * the problem rescuer solves.
1892 *
1893 * When such condition is possible, the gcwq summons rescuers of all
1894 * workqueues which have works queued on the gcwq and let them process
1895 * those works so that forward progress can be guaranteed.
1896 *
1897 * This should happen rarely.
1898 */
1899 static int rescuer_thread(void *__wq)
1900 {
1901 struct workqueue_struct *wq = __wq;
1902 struct worker *rescuer = wq->rescuer;
1903 struct list_head *scheduled = &rescuer->scheduled;
1904 bool is_unbound = wq->flags & WQ_UNBOUND;
1905 unsigned int cpu;
1906
1907 set_user_nice(current, RESCUER_NICE_LEVEL);
1908 repeat:
1909 set_current_state(TASK_INTERRUPTIBLE);
1910
1911 if (kthread_should_stop())
1912 return 0;
1913
1914 /*
1915 * See whether any cpu is asking for help. Unbounded
1916 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1917 */
1918 for_each_cpu(cpu, wq->mayday_mask) {
1919 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
1920 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
1921 struct global_cwq *gcwq = cwq->gcwq;
1922 struct work_struct *work, *n;
1923
1924 __set_current_state(TASK_RUNNING);
1925 cpumask_clear_cpu(cpu, wq->mayday_mask);
1926
1927 /* migrate to the target cpu if possible */
1928 rescuer->gcwq = gcwq;
1929 worker_maybe_bind_and_lock(rescuer);
1930
1931 /*
1932 * Slurp in all works issued via this workqueue and
1933 * process'em.
1934 */
1935 BUG_ON(!list_empty(&rescuer->scheduled));
1936 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
1937 if (get_work_cwq(work) == cwq)
1938 move_linked_works(work, scheduled, &n);
1939
1940 process_scheduled_works(rescuer);
1941 spin_unlock_irq(&gcwq->lock);
1942 }
1943
1944 schedule();
1945 goto repeat;
1946 }
1947
1948 struct wq_barrier {
1949 struct work_struct work;
1950 struct completion done;
1951 };
1952
1953 static void wq_barrier_func(struct work_struct *work)
1954 {
1955 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1956 complete(&barr->done);
1957 }
1958
1959 /**
1960 * insert_wq_barrier - insert a barrier work
1961 * @cwq: cwq to insert barrier into
1962 * @barr: wq_barrier to insert
1963 * @target: target work to attach @barr to
1964 * @worker: worker currently executing @target, NULL if @target is not executing
1965 *
1966 * @barr is linked to @target such that @barr is completed only after
1967 * @target finishes execution. Please note that the ordering
1968 * guarantee is observed only with respect to @target and on the local
1969 * cpu.
1970 *
1971 * Currently, a queued barrier can't be canceled. This is because
1972 * try_to_grab_pending() can't determine whether the work to be
1973 * grabbed is at the head of the queue and thus can't clear LINKED
1974 * flag of the previous work while there must be a valid next work
1975 * after a work with LINKED flag set.
1976 *
1977 * Note that when @worker is non-NULL, @target may be modified
1978 * underneath us, so we can't reliably determine cwq from @target.
1979 *
1980 * CONTEXT:
1981 * spin_lock_irq(gcwq->lock).
1982 */
1983 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
1984 struct wq_barrier *barr,
1985 struct work_struct *target, struct worker *worker)
1986 {
1987 struct list_head *head;
1988 unsigned int linked = 0;
1989
1990 /*
1991 * debugobject calls are safe here even with gcwq->lock locked
1992 * as we know for sure that this will not trigger any of the
1993 * checks and call back into the fixup functions where we
1994 * might deadlock.
1995 */
1996 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
1997 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
1998 init_completion(&barr->done);
1999
2000 /*
2001 * If @target is currently being executed, schedule the
2002 * barrier to the worker; otherwise, put it after @target.
2003 */
2004 if (worker)
2005 head = worker->scheduled.next;
2006 else {
2007 unsigned long *bits = work_data_bits(target);
2008
2009 head = target->entry.next;
2010 /* there can already be other linked works, inherit and set */
2011 linked = *bits & WORK_STRUCT_LINKED;
2012 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2013 }
2014
2015 debug_work_activate(&barr->work);
2016 insert_work(cwq, &barr->work, head,
2017 work_color_to_flags(WORK_NO_COLOR) | linked);
2018 }
2019
2020 /**
2021 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2022 * @wq: workqueue being flushed
2023 * @flush_color: new flush color, < 0 for no-op
2024 * @work_color: new work color, < 0 for no-op
2025 *
2026 * Prepare cwqs for workqueue flushing.
2027 *
2028 * If @flush_color is non-negative, flush_color on all cwqs should be
2029 * -1. If no cwq has in-flight commands at the specified color, all
2030 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2031 * has in flight commands, its cwq->flush_color is set to
2032 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2033 * wakeup logic is armed and %true is returned.
2034 *
2035 * The caller should have initialized @wq->first_flusher prior to
2036 * calling this function with non-negative @flush_color. If
2037 * @flush_color is negative, no flush color update is done and %false
2038 * is returned.
2039 *
2040 * If @work_color is non-negative, all cwqs should have the same
2041 * work_color which is previous to @work_color and all will be
2042 * advanced to @work_color.
2043 *
2044 * CONTEXT:
2045 * mutex_lock(wq->flush_mutex).
2046 *
2047 * RETURNS:
2048 * %true if @flush_color >= 0 and there's something to flush. %false
2049 * otherwise.
2050 */
2051 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2052 int flush_color, int work_color)
2053 {
2054 bool wait = false;
2055 unsigned int cpu;
2056
2057 if (flush_color >= 0) {
2058 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2059 atomic_set(&wq->nr_cwqs_to_flush, 1);
2060 }
2061
2062 for_each_cwq_cpu(cpu, wq) {
2063 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2064 struct global_cwq *gcwq = cwq->gcwq;
2065
2066 spin_lock_irq(&gcwq->lock);
2067
2068 if (flush_color >= 0) {
2069 BUG_ON(cwq->flush_color != -1);
2070
2071 if (cwq->nr_in_flight[flush_color]) {
2072 cwq->flush_color = flush_color;
2073 atomic_inc(&wq->nr_cwqs_to_flush);
2074 wait = true;
2075 }
2076 }
2077
2078 if (work_color >= 0) {
2079 BUG_ON(work_color != work_next_color(cwq->work_color));
2080 cwq->work_color = work_color;
2081 }
2082
2083 spin_unlock_irq(&gcwq->lock);
2084 }
2085
2086 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2087 complete(&wq->first_flusher->done);
2088
2089 return wait;
2090 }
2091
2092 /**
2093 * flush_workqueue - ensure that any scheduled work has run to completion.
2094 * @wq: workqueue to flush
2095 *
2096 * Forces execution of the workqueue and blocks until its completion.
2097 * This is typically used in driver shutdown handlers.
2098 *
2099 * We sleep until all works which were queued on entry have been handled,
2100 * but we are not livelocked by new incoming ones.
2101 */
2102 void flush_workqueue(struct workqueue_struct *wq)
2103 {
2104 struct wq_flusher this_flusher = {
2105 .list = LIST_HEAD_INIT(this_flusher.list),
2106 .flush_color = -1,
2107 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2108 };
2109 int next_color;
2110
2111 lock_map_acquire(&wq->lockdep_map);
2112 lock_map_release(&wq->lockdep_map);
2113
2114 mutex_lock(&wq->flush_mutex);
2115
2116 /*
2117 * Start-to-wait phase
2118 */
2119 next_color = work_next_color(wq->work_color);
2120
2121 if (next_color != wq->flush_color) {
2122 /*
2123 * Color space is not full. The current work_color
2124 * becomes our flush_color and work_color is advanced
2125 * by one.
2126 */
2127 BUG_ON(!list_empty(&wq->flusher_overflow));
2128 this_flusher.flush_color = wq->work_color;
2129 wq->work_color = next_color;
2130
2131 if (!wq->first_flusher) {
2132 /* no flush in progress, become the first flusher */
2133 BUG_ON(wq->flush_color != this_flusher.flush_color);
2134
2135 wq->first_flusher = &this_flusher;
2136
2137 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2138 wq->work_color)) {
2139 /* nothing to flush, done */
2140 wq->flush_color = next_color;
2141 wq->first_flusher = NULL;
2142 goto out_unlock;
2143 }
2144 } else {
2145 /* wait in queue */
2146 BUG_ON(wq->flush_color == this_flusher.flush_color);
2147 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2148 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2149 }
2150 } else {
2151 /*
2152 * Oops, color space is full, wait on overflow queue.
2153 * The next flush completion will assign us
2154 * flush_color and transfer to flusher_queue.
2155 */
2156 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2157 }
2158
2159 mutex_unlock(&wq->flush_mutex);
2160
2161 wait_for_completion(&this_flusher.done);
2162
2163 /*
2164 * Wake-up-and-cascade phase
2165 *
2166 * First flushers are responsible for cascading flushes and
2167 * handling overflow. Non-first flushers can simply return.
2168 */
2169 if (wq->first_flusher != &this_flusher)
2170 return;
2171
2172 mutex_lock(&wq->flush_mutex);
2173
2174 /* we might have raced, check again with mutex held */
2175 if (wq->first_flusher != &this_flusher)
2176 goto out_unlock;
2177
2178 wq->first_flusher = NULL;
2179
2180 BUG_ON(!list_empty(&this_flusher.list));
2181 BUG_ON(wq->flush_color != this_flusher.flush_color);
2182
2183 while (true) {
2184 struct wq_flusher *next, *tmp;
2185
2186 /* complete all the flushers sharing the current flush color */
2187 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2188 if (next->flush_color != wq->flush_color)
2189 break;
2190 list_del_init(&next->list);
2191 complete(&next->done);
2192 }
2193
2194 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2195 wq->flush_color != work_next_color(wq->work_color));
2196
2197 /* this flush_color is finished, advance by one */
2198 wq->flush_color = work_next_color(wq->flush_color);
2199
2200 /* one color has been freed, handle overflow queue */
2201 if (!list_empty(&wq->flusher_overflow)) {
2202 /*
2203 * Assign the same color to all overflowed
2204 * flushers, advance work_color and append to
2205 * flusher_queue. This is the start-to-wait
2206 * phase for these overflowed flushers.
2207 */
2208 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2209 tmp->flush_color = wq->work_color;
2210
2211 wq->work_color = work_next_color(wq->work_color);
2212
2213 list_splice_tail_init(&wq->flusher_overflow,
2214 &wq->flusher_queue);
2215 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2216 }
2217
2218 if (list_empty(&wq->flusher_queue)) {
2219 BUG_ON(wq->flush_color != wq->work_color);
2220 break;
2221 }
2222
2223 /*
2224 * Need to flush more colors. Make the next flusher
2225 * the new first flusher and arm cwqs.
2226 */
2227 BUG_ON(wq->flush_color == wq->work_color);
2228 BUG_ON(wq->flush_color != next->flush_color);
2229
2230 list_del_init(&next->list);
2231 wq->first_flusher = next;
2232
2233 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2234 break;
2235
2236 /*
2237 * Meh... this color is already done, clear first
2238 * flusher and repeat cascading.
2239 */
2240 wq->first_flusher = NULL;
2241 }
2242
2243 out_unlock:
2244 mutex_unlock(&wq->flush_mutex);
2245 }
2246 EXPORT_SYMBOL_GPL(flush_workqueue);
2247
2248 /**
2249 * flush_work - block until a work_struct's callback has terminated
2250 * @work: the work which is to be flushed
2251 *
2252 * Returns false if @work has already terminated.
2253 *
2254 * It is expected that, prior to calling flush_work(), the caller has
2255 * arranged for the work to not be requeued, otherwise it doesn't make
2256 * sense to use this function.
2257 */
2258 int flush_work(struct work_struct *work)
2259 {
2260 struct worker *worker = NULL;
2261 struct global_cwq *gcwq;
2262 struct cpu_workqueue_struct *cwq;
2263 struct wq_barrier barr;
2264
2265 might_sleep();
2266 gcwq = get_work_gcwq(work);
2267 if (!gcwq)
2268 return 0;
2269
2270 spin_lock_irq(&gcwq->lock);
2271 if (!list_empty(&work->entry)) {
2272 /*
2273 * See the comment near try_to_grab_pending()->smp_rmb().
2274 * If it was re-queued to a different gcwq under us, we
2275 * are not going to wait.
2276 */
2277 smp_rmb();
2278 cwq = get_work_cwq(work);
2279 if (unlikely(!cwq || gcwq != cwq->gcwq))
2280 goto already_gone;
2281 } else {
2282 worker = find_worker_executing_work(gcwq, work);
2283 if (!worker)
2284 goto already_gone;
2285 cwq = worker->current_cwq;
2286 }
2287
2288 insert_wq_barrier(cwq, &barr, work, worker);
2289 spin_unlock_irq(&gcwq->lock);
2290
2291 lock_map_acquire(&cwq->wq->lockdep_map);
2292 lock_map_release(&cwq->wq->lockdep_map);
2293
2294 wait_for_completion(&barr.done);
2295 destroy_work_on_stack(&barr.work);
2296 return 1;
2297 already_gone:
2298 spin_unlock_irq(&gcwq->lock);
2299 return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(flush_work);
2302
2303 /*
2304 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2305 * so this work can't be re-armed in any way.
2306 */
2307 static int try_to_grab_pending(struct work_struct *work)
2308 {
2309 struct global_cwq *gcwq;
2310 int ret = -1;
2311
2312 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2313 return 0;
2314
2315 /*
2316 * The queueing is in progress, or it is already queued. Try to
2317 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2318 */
2319 gcwq = get_work_gcwq(work);
2320 if (!gcwq)
2321 return ret;
2322
2323 spin_lock_irq(&gcwq->lock);
2324 if (!list_empty(&work->entry)) {
2325 /*
2326 * This work is queued, but perhaps we locked the wrong gcwq.
2327 * In that case we must see the new value after rmb(), see
2328 * insert_work()->wmb().
2329 */
2330 smp_rmb();
2331 if (gcwq == get_work_gcwq(work)) {
2332 debug_work_deactivate(work);
2333 list_del_init(&work->entry);
2334 cwq_dec_nr_in_flight(get_work_cwq(work),
2335 get_work_color(work));
2336 ret = 1;
2337 }
2338 }
2339 spin_unlock_irq(&gcwq->lock);
2340
2341 return ret;
2342 }
2343
2344 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2345 {
2346 struct wq_barrier barr;
2347 struct worker *worker;
2348
2349 spin_lock_irq(&gcwq->lock);
2350
2351 worker = find_worker_executing_work(gcwq, work);
2352 if (unlikely(worker))
2353 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2354
2355 spin_unlock_irq(&gcwq->lock);
2356
2357 if (unlikely(worker)) {
2358 wait_for_completion(&barr.done);
2359 destroy_work_on_stack(&barr.work);
2360 }
2361 }
2362
2363 static void wait_on_work(struct work_struct *work)
2364 {
2365 int cpu;
2366
2367 might_sleep();
2368
2369 lock_map_acquire(&work->lockdep_map);
2370 lock_map_release(&work->lockdep_map);
2371
2372 for_each_gcwq_cpu(cpu)
2373 wait_on_cpu_work(get_gcwq(cpu), work);
2374 }
2375
2376 static int __cancel_work_timer(struct work_struct *work,
2377 struct timer_list* timer)
2378 {
2379 int ret;
2380
2381 do {
2382 ret = (timer && likely(del_timer(timer)));
2383 if (!ret)
2384 ret = try_to_grab_pending(work);
2385 wait_on_work(work);
2386 } while (unlikely(ret < 0));
2387
2388 clear_work_data(work);
2389 return ret;
2390 }
2391
2392 /**
2393 * cancel_work_sync - block until a work_struct's callback has terminated
2394 * @work: the work which is to be flushed
2395 *
2396 * Returns true if @work was pending.
2397 *
2398 * cancel_work_sync() will cancel the work if it is queued. If the work's
2399 * callback appears to be running, cancel_work_sync() will block until it
2400 * has completed.
2401 *
2402 * It is possible to use this function if the work re-queues itself. It can
2403 * cancel the work even if it migrates to another workqueue, however in that
2404 * case it only guarantees that work->func() has completed on the last queued
2405 * workqueue.
2406 *
2407 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
2408 * pending, otherwise it goes into a busy-wait loop until the timer expires.
2409 *
2410 * The caller must ensure that workqueue_struct on which this work was last
2411 * queued can't be destroyed before this function returns.
2412 */
2413 int cancel_work_sync(struct work_struct *work)
2414 {
2415 return __cancel_work_timer(work, NULL);
2416 }
2417 EXPORT_SYMBOL_GPL(cancel_work_sync);
2418
2419 /**
2420 * cancel_delayed_work_sync - reliably kill off a delayed work.
2421 * @dwork: the delayed work struct
2422 *
2423 * Returns true if @dwork was pending.
2424 *
2425 * It is possible to use this function if @dwork rearms itself via queue_work()
2426 * or queue_delayed_work(). See also the comment for cancel_work_sync().
2427 */
2428 int cancel_delayed_work_sync(struct delayed_work *dwork)
2429 {
2430 return __cancel_work_timer(&dwork->work, &dwork->timer);
2431 }
2432 EXPORT_SYMBOL(cancel_delayed_work_sync);
2433
2434 /**
2435 * schedule_work - put work task in global workqueue
2436 * @work: job to be done
2437 *
2438 * Returns zero if @work was already on the kernel-global workqueue and
2439 * non-zero otherwise.
2440 *
2441 * This puts a job in the kernel-global workqueue if it was not already
2442 * queued and leaves it in the same position on the kernel-global
2443 * workqueue otherwise.
2444 */
2445 int schedule_work(struct work_struct *work)
2446 {
2447 return queue_work(system_wq, work);
2448 }
2449 EXPORT_SYMBOL(schedule_work);
2450
2451 /*
2452 * schedule_work_on - put work task on a specific cpu
2453 * @cpu: cpu to put the work task on
2454 * @work: job to be done
2455 *
2456 * This puts a job on a specific cpu
2457 */
2458 int schedule_work_on(int cpu, struct work_struct *work)
2459 {
2460 return queue_work_on(cpu, system_wq, work);
2461 }
2462 EXPORT_SYMBOL(schedule_work_on);
2463
2464 /**
2465 * schedule_delayed_work - put work task in global workqueue after delay
2466 * @dwork: job to be done
2467 * @delay: number of jiffies to wait or 0 for immediate execution
2468 *
2469 * After waiting for a given time this puts a job in the kernel-global
2470 * workqueue.
2471 */
2472 int schedule_delayed_work(struct delayed_work *dwork,
2473 unsigned long delay)
2474 {
2475 return queue_delayed_work(system_wq, dwork, delay);
2476 }
2477 EXPORT_SYMBOL(schedule_delayed_work);
2478
2479 /**
2480 * flush_delayed_work - block until a dwork_struct's callback has terminated
2481 * @dwork: the delayed work which is to be flushed
2482 *
2483 * Any timeout is cancelled, and any pending work is run immediately.
2484 */
2485 void flush_delayed_work(struct delayed_work *dwork)
2486 {
2487 if (del_timer_sync(&dwork->timer)) {
2488 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
2489 &dwork->work);
2490 put_cpu();
2491 }
2492 flush_work(&dwork->work);
2493 }
2494 EXPORT_SYMBOL(flush_delayed_work);
2495
2496 /**
2497 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2498 * @cpu: cpu to use
2499 * @dwork: job to be done
2500 * @delay: number of jiffies to wait
2501 *
2502 * After waiting for a given time this puts a job in the kernel-global
2503 * workqueue on the specified CPU.
2504 */
2505 int schedule_delayed_work_on(int cpu,
2506 struct delayed_work *dwork, unsigned long delay)
2507 {
2508 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2509 }
2510 EXPORT_SYMBOL(schedule_delayed_work_on);
2511
2512 /**
2513 * schedule_on_each_cpu - call a function on each online CPU from keventd
2514 * @func: the function to call
2515 *
2516 * Returns zero on success.
2517 * Returns -ve errno on failure.
2518 *
2519 * schedule_on_each_cpu() is very slow.
2520 */
2521 int schedule_on_each_cpu(work_func_t func)
2522 {
2523 int cpu;
2524 struct work_struct *works;
2525
2526 works = alloc_percpu(struct work_struct);
2527 if (!works)
2528 return -ENOMEM;
2529
2530 get_online_cpus();
2531
2532 for_each_online_cpu(cpu) {
2533 struct work_struct *work = per_cpu_ptr(works, cpu);
2534
2535 INIT_WORK(work, func);
2536 schedule_work_on(cpu, work);
2537 }
2538
2539 for_each_online_cpu(cpu)
2540 flush_work(per_cpu_ptr(works, cpu));
2541
2542 put_online_cpus();
2543 free_percpu(works);
2544 return 0;
2545 }
2546
2547 /**
2548 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2549 *
2550 * Forces execution of the kernel-global workqueue and blocks until its
2551 * completion.
2552 *
2553 * Think twice before calling this function! It's very easy to get into
2554 * trouble if you don't take great care. Either of the following situations
2555 * will lead to deadlock:
2556 *
2557 * One of the work items currently on the workqueue needs to acquire
2558 * a lock held by your code or its caller.
2559 *
2560 * Your code is running in the context of a work routine.
2561 *
2562 * They will be detected by lockdep when they occur, but the first might not
2563 * occur very often. It depends on what work items are on the workqueue and
2564 * what locks they need, which you have no control over.
2565 *
2566 * In most situations flushing the entire workqueue is overkill; you merely
2567 * need to know that a particular work item isn't queued and isn't running.
2568 * In such cases you should use cancel_delayed_work_sync() or
2569 * cancel_work_sync() instead.
2570 */
2571 void flush_scheduled_work(void)
2572 {
2573 flush_workqueue(system_wq);
2574 }
2575 EXPORT_SYMBOL(flush_scheduled_work);
2576
2577 /**
2578 * execute_in_process_context - reliably execute the routine with user context
2579 * @fn: the function to execute
2580 * @ew: guaranteed storage for the execute work structure (must
2581 * be available when the work executes)
2582 *
2583 * Executes the function immediately if process context is available,
2584 * otherwise schedules the function for delayed execution.
2585 *
2586 * Returns: 0 - function was executed
2587 * 1 - function was scheduled for execution
2588 */
2589 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2590 {
2591 if (!in_interrupt()) {
2592 fn(&ew->work);
2593 return 0;
2594 }
2595
2596 INIT_WORK(&ew->work, fn);
2597 schedule_work(&ew->work);
2598
2599 return 1;
2600 }
2601 EXPORT_SYMBOL_GPL(execute_in_process_context);
2602
2603 int keventd_up(void)
2604 {
2605 return system_wq != NULL;
2606 }
2607
2608 static int alloc_cwqs(struct workqueue_struct *wq)
2609 {
2610 /*
2611 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2612 * Make sure that the alignment isn't lower than that of
2613 * unsigned long long.
2614 */
2615 const size_t size = sizeof(struct cpu_workqueue_struct);
2616 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2617 __alignof__(unsigned long long));
2618
2619 if (CONFIG_SMP && !(wq->flags & WQ_UNBOUND)) {
2620 /* on SMP, percpu allocator can align itself */
2621 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2622 } else {
2623 void *ptr;
2624
2625 /*
2626 * Allocate enough room to align cwq and put an extra
2627 * pointer at the end pointing back to the originally
2628 * allocated pointer which will be used for free.
2629 */
2630 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2631 if (ptr) {
2632 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2633 *(void **)(wq->cpu_wq.single + 1) = ptr;
2634 }
2635 }
2636
2637 /* just in case, make sure it's actually aligned */
2638 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2639 return wq->cpu_wq.v ? 0 : -ENOMEM;
2640 }
2641
2642 static void free_cwqs(struct workqueue_struct *wq)
2643 {
2644 if (CONFIG_SMP && !(wq->flags & WQ_UNBOUND))
2645 free_percpu(wq->cpu_wq.pcpu);
2646 else if (wq->cpu_wq.single) {
2647 /* the pointer to free is stored right after the cwq */
2648 kfree(*(void **)(wq->cpu_wq.single + 1));
2649 }
2650 }
2651
2652 static int wq_clamp_max_active(int max_active, unsigned int flags,
2653 const char *name)
2654 {
2655 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2656
2657 if (max_active < 1 || max_active > lim)
2658 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2659 "is out of range, clamping between %d and %d\n",
2660 max_active, name, 1, lim);
2661
2662 return clamp_val(max_active, 1, lim);
2663 }
2664
2665 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2666 unsigned int flags,
2667 int max_active,
2668 struct lock_class_key *key,
2669 const char *lock_name)
2670 {
2671 struct workqueue_struct *wq;
2672 unsigned int cpu;
2673
2674 /*
2675 * Unbound workqueues aren't concurrency managed and should be
2676 * dispatched to workers immediately.
2677 */
2678 if (flags & WQ_UNBOUND)
2679 flags |= WQ_HIGHPRI;
2680
2681 max_active = max_active ?: WQ_DFL_ACTIVE;
2682 max_active = wq_clamp_max_active(max_active, flags, name);
2683
2684 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2685 if (!wq)
2686 goto err;
2687
2688 wq->flags = flags;
2689 wq->saved_max_active = max_active;
2690 mutex_init(&wq->flush_mutex);
2691 atomic_set(&wq->nr_cwqs_to_flush, 0);
2692 INIT_LIST_HEAD(&wq->flusher_queue);
2693 INIT_LIST_HEAD(&wq->flusher_overflow);
2694
2695 wq->name = name;
2696 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2697 INIT_LIST_HEAD(&wq->list);
2698
2699 if (alloc_cwqs(wq) < 0)
2700 goto err;
2701
2702 for_each_cwq_cpu(cpu, wq) {
2703 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2704 struct global_cwq *gcwq = get_gcwq(cpu);
2705
2706 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2707 cwq->gcwq = gcwq;
2708 cwq->wq = wq;
2709 cwq->flush_color = -1;
2710 cwq->max_active = max_active;
2711 INIT_LIST_HEAD(&cwq->delayed_works);
2712 }
2713
2714 if (flags & WQ_RESCUER) {
2715 struct worker *rescuer;
2716
2717 if (!alloc_cpumask_var(&wq->mayday_mask, GFP_KERNEL))
2718 goto err;
2719
2720 wq->rescuer = rescuer = alloc_worker();
2721 if (!rescuer)
2722 goto err;
2723
2724 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2725 if (IS_ERR(rescuer->task))
2726 goto err;
2727
2728 wq->rescuer = rescuer;
2729 rescuer->task->flags |= PF_THREAD_BOUND;
2730 wake_up_process(rescuer->task);
2731 }
2732
2733 /*
2734 * workqueue_lock protects global freeze state and workqueues
2735 * list. Grab it, set max_active accordingly and add the new
2736 * workqueue to workqueues list.
2737 */
2738 spin_lock(&workqueue_lock);
2739
2740 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2741 for_each_cwq_cpu(cpu, wq)
2742 get_cwq(cpu, wq)->max_active = 0;
2743
2744 list_add(&wq->list, &workqueues);
2745
2746 spin_unlock(&workqueue_lock);
2747
2748 return wq;
2749 err:
2750 if (wq) {
2751 free_cwqs(wq);
2752 free_cpumask_var(wq->mayday_mask);
2753 kfree(wq->rescuer);
2754 kfree(wq);
2755 }
2756 return NULL;
2757 }
2758 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2759
2760 /**
2761 * destroy_workqueue - safely terminate a workqueue
2762 * @wq: target workqueue
2763 *
2764 * Safely destroy a workqueue. All work currently pending will be done first.
2765 */
2766 void destroy_workqueue(struct workqueue_struct *wq)
2767 {
2768 unsigned int cpu;
2769
2770 flush_workqueue(wq);
2771
2772 /*
2773 * wq list is used to freeze wq, remove from list after
2774 * flushing is complete in case freeze races us.
2775 */
2776 spin_lock(&workqueue_lock);
2777 list_del(&wq->list);
2778 spin_unlock(&workqueue_lock);
2779
2780 /* sanity check */
2781 for_each_cwq_cpu(cpu, wq) {
2782 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2783 int i;
2784
2785 for (i = 0; i < WORK_NR_COLORS; i++)
2786 BUG_ON(cwq->nr_in_flight[i]);
2787 BUG_ON(cwq->nr_active);
2788 BUG_ON(!list_empty(&cwq->delayed_works));
2789 }
2790
2791 if (wq->flags & WQ_RESCUER) {
2792 kthread_stop(wq->rescuer->task);
2793 free_cpumask_var(wq->mayday_mask);
2794 }
2795
2796 free_cwqs(wq);
2797 kfree(wq);
2798 }
2799 EXPORT_SYMBOL_GPL(destroy_workqueue);
2800
2801 /**
2802 * workqueue_set_max_active - adjust max_active of a workqueue
2803 * @wq: target workqueue
2804 * @max_active: new max_active value.
2805 *
2806 * Set max_active of @wq to @max_active.
2807 *
2808 * CONTEXT:
2809 * Don't call from IRQ context.
2810 */
2811 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2812 {
2813 unsigned int cpu;
2814
2815 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2816
2817 spin_lock(&workqueue_lock);
2818
2819 wq->saved_max_active = max_active;
2820
2821 for_each_cwq_cpu(cpu, wq) {
2822 struct global_cwq *gcwq = get_gcwq(cpu);
2823
2824 spin_lock_irq(&gcwq->lock);
2825
2826 if (!(wq->flags & WQ_FREEZEABLE) ||
2827 !(gcwq->flags & GCWQ_FREEZING))
2828 get_cwq(gcwq->cpu, wq)->max_active = max_active;
2829
2830 spin_unlock_irq(&gcwq->lock);
2831 }
2832
2833 spin_unlock(&workqueue_lock);
2834 }
2835 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
2836
2837 /**
2838 * workqueue_congested - test whether a workqueue is congested
2839 * @cpu: CPU in question
2840 * @wq: target workqueue
2841 *
2842 * Test whether @wq's cpu workqueue for @cpu is congested. There is
2843 * no synchronization around this function and the test result is
2844 * unreliable and only useful as advisory hints or for debugging.
2845 *
2846 * RETURNS:
2847 * %true if congested, %false otherwise.
2848 */
2849 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
2850 {
2851 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2852
2853 return !list_empty(&cwq->delayed_works);
2854 }
2855 EXPORT_SYMBOL_GPL(workqueue_congested);
2856
2857 /**
2858 * work_cpu - return the last known associated cpu for @work
2859 * @work: the work of interest
2860 *
2861 * RETURNS:
2862 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
2863 */
2864 unsigned int work_cpu(struct work_struct *work)
2865 {
2866 struct global_cwq *gcwq = get_work_gcwq(work);
2867
2868 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
2869 }
2870 EXPORT_SYMBOL_GPL(work_cpu);
2871
2872 /**
2873 * work_busy - test whether a work is currently pending or running
2874 * @work: the work to be tested
2875 *
2876 * Test whether @work is currently pending or running. There is no
2877 * synchronization around this function and the test result is
2878 * unreliable and only useful as advisory hints or for debugging.
2879 * Especially for reentrant wqs, the pending state might hide the
2880 * running state.
2881 *
2882 * RETURNS:
2883 * OR'd bitmask of WORK_BUSY_* bits.
2884 */
2885 unsigned int work_busy(struct work_struct *work)
2886 {
2887 struct global_cwq *gcwq = get_work_gcwq(work);
2888 unsigned long flags;
2889 unsigned int ret = 0;
2890
2891 if (!gcwq)
2892 return false;
2893
2894 spin_lock_irqsave(&gcwq->lock, flags);
2895
2896 if (work_pending(work))
2897 ret |= WORK_BUSY_PENDING;
2898 if (find_worker_executing_work(gcwq, work))
2899 ret |= WORK_BUSY_RUNNING;
2900
2901 spin_unlock_irqrestore(&gcwq->lock, flags);
2902
2903 return ret;
2904 }
2905 EXPORT_SYMBOL_GPL(work_busy);
2906
2907 /*
2908 * CPU hotplug.
2909 *
2910 * There are two challenges in supporting CPU hotplug. Firstly, there
2911 * are a lot of assumptions on strong associations among work, cwq and
2912 * gcwq which make migrating pending and scheduled works very
2913 * difficult to implement without impacting hot paths. Secondly,
2914 * gcwqs serve mix of short, long and very long running works making
2915 * blocked draining impractical.
2916 *
2917 * This is solved by allowing a gcwq to be detached from CPU, running
2918 * it with unbound (rogue) workers and allowing it to be reattached
2919 * later if the cpu comes back online. A separate thread is created
2920 * to govern a gcwq in such state and is called the trustee of the
2921 * gcwq.
2922 *
2923 * Trustee states and their descriptions.
2924 *
2925 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2926 * new trustee is started with this state.
2927 *
2928 * IN_CHARGE Once started, trustee will enter this state after
2929 * assuming the manager role and making all existing
2930 * workers rogue. DOWN_PREPARE waits for trustee to
2931 * enter this state. After reaching IN_CHARGE, trustee
2932 * tries to execute the pending worklist until it's empty
2933 * and the state is set to BUTCHER, or the state is set
2934 * to RELEASE.
2935 *
2936 * BUTCHER Command state which is set by the cpu callback after
2937 * the cpu has went down. Once this state is set trustee
2938 * knows that there will be no new works on the worklist
2939 * and once the worklist is empty it can proceed to
2940 * killing idle workers.
2941 *
2942 * RELEASE Command state which is set by the cpu callback if the
2943 * cpu down has been canceled or it has come online
2944 * again. After recognizing this state, trustee stops
2945 * trying to drain or butcher and clears ROGUE, rebinds
2946 * all remaining workers back to the cpu and releases
2947 * manager role.
2948 *
2949 * DONE Trustee will enter this state after BUTCHER or RELEASE
2950 * is complete.
2951 *
2952 * trustee CPU draining
2953 * took over down complete
2954 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2955 * | | ^
2956 * | CPU is back online v return workers |
2957 * ----------------> RELEASE --------------
2958 */
2959
2960 /**
2961 * trustee_wait_event_timeout - timed event wait for trustee
2962 * @cond: condition to wait for
2963 * @timeout: timeout in jiffies
2964 *
2965 * wait_event_timeout() for trustee to use. Handles locking and
2966 * checks for RELEASE request.
2967 *
2968 * CONTEXT:
2969 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2970 * multiple times. To be used by trustee.
2971 *
2972 * RETURNS:
2973 * Positive indicating left time if @cond is satisfied, 0 if timed
2974 * out, -1 if canceled.
2975 */
2976 #define trustee_wait_event_timeout(cond, timeout) ({ \
2977 long __ret = (timeout); \
2978 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
2979 __ret) { \
2980 spin_unlock_irq(&gcwq->lock); \
2981 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
2982 (gcwq->trustee_state == TRUSTEE_RELEASE), \
2983 __ret); \
2984 spin_lock_irq(&gcwq->lock); \
2985 } \
2986 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
2987 })
2988
2989 /**
2990 * trustee_wait_event - event wait for trustee
2991 * @cond: condition to wait for
2992 *
2993 * wait_event() for trustee to use. Automatically handles locking and
2994 * checks for CANCEL request.
2995 *
2996 * CONTEXT:
2997 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2998 * multiple times. To be used by trustee.
2999 *
3000 * RETURNS:
3001 * 0 if @cond is satisfied, -1 if canceled.
3002 */
3003 #define trustee_wait_event(cond) ({ \
3004 long __ret1; \
3005 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3006 __ret1 < 0 ? -1 : 0; \
3007 })
3008
3009 static int __cpuinit trustee_thread(void *__gcwq)
3010 {
3011 struct global_cwq *gcwq = __gcwq;
3012 struct worker *worker;
3013 struct work_struct *work;
3014 struct hlist_node *pos;
3015 long rc;
3016 int i;
3017
3018 BUG_ON(gcwq->cpu != smp_processor_id());
3019
3020 spin_lock_irq(&gcwq->lock);
3021 /*
3022 * Claim the manager position and make all workers rogue.
3023 * Trustee must be bound to the target cpu and can't be
3024 * cancelled.
3025 */
3026 BUG_ON(gcwq->cpu != smp_processor_id());
3027 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3028 BUG_ON(rc < 0);
3029
3030 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3031
3032 list_for_each_entry(worker, &gcwq->idle_list, entry)
3033 worker->flags |= WORKER_ROGUE;
3034
3035 for_each_busy_worker(worker, i, pos, gcwq)
3036 worker->flags |= WORKER_ROGUE;
3037
3038 /*
3039 * Call schedule() so that we cross rq->lock and thus can
3040 * guarantee sched callbacks see the rogue flag. This is
3041 * necessary as scheduler callbacks may be invoked from other
3042 * cpus.
3043 */
3044 spin_unlock_irq(&gcwq->lock);
3045 schedule();
3046 spin_lock_irq(&gcwq->lock);
3047
3048 /*
3049 * Sched callbacks are disabled now. Zap nr_running. After
3050 * this, nr_running stays zero and need_more_worker() and
3051 * keep_working() are always true as long as the worklist is
3052 * not empty.
3053 */
3054 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3055
3056 spin_unlock_irq(&gcwq->lock);
3057 del_timer_sync(&gcwq->idle_timer);
3058 spin_lock_irq(&gcwq->lock);
3059
3060 /*
3061 * We're now in charge. Notify and proceed to drain. We need
3062 * to keep the gcwq running during the whole CPU down
3063 * procedure as other cpu hotunplug callbacks may need to
3064 * flush currently running tasks.
3065 */
3066 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3067 wake_up_all(&gcwq->trustee_wait);
3068
3069 /*
3070 * The original cpu is in the process of dying and may go away
3071 * anytime now. When that happens, we and all workers would
3072 * be migrated to other cpus. Try draining any left work. We
3073 * want to get it over with ASAP - spam rescuers, wake up as
3074 * many idlers as necessary and create new ones till the
3075 * worklist is empty. Note that if the gcwq is frozen, there
3076 * may be frozen works in freezeable cwqs. Don't declare
3077 * completion while frozen.
3078 */
3079 while (gcwq->nr_workers != gcwq->nr_idle ||
3080 gcwq->flags & GCWQ_FREEZING ||
3081 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3082 int nr_works = 0;
3083
3084 list_for_each_entry(work, &gcwq->worklist, entry) {
3085 send_mayday(work);
3086 nr_works++;
3087 }
3088
3089 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3090 if (!nr_works--)
3091 break;
3092 wake_up_process(worker->task);
3093 }
3094
3095 if (need_to_create_worker(gcwq)) {
3096 spin_unlock_irq(&gcwq->lock);
3097 worker = create_worker(gcwq, false);
3098 spin_lock_irq(&gcwq->lock);
3099 if (worker) {
3100 worker->flags |= WORKER_ROGUE;
3101 start_worker(worker);
3102 }
3103 }
3104
3105 /* give a breather */
3106 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3107 break;
3108 }
3109
3110 /*
3111 * Either all works have been scheduled and cpu is down, or
3112 * cpu down has already been canceled. Wait for and butcher
3113 * all workers till we're canceled.
3114 */
3115 do {
3116 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3117 while (!list_empty(&gcwq->idle_list))
3118 destroy_worker(list_first_entry(&gcwq->idle_list,
3119 struct worker, entry));
3120 } while (gcwq->nr_workers && rc >= 0);
3121
3122 /*
3123 * At this point, either draining has completed and no worker
3124 * is left, or cpu down has been canceled or the cpu is being
3125 * brought back up. There shouldn't be any idle one left.
3126 * Tell the remaining busy ones to rebind once it finishes the
3127 * currently scheduled works by scheduling the rebind_work.
3128 */
3129 WARN_ON(!list_empty(&gcwq->idle_list));
3130
3131 for_each_busy_worker(worker, i, pos, gcwq) {
3132 struct work_struct *rebind_work = &worker->rebind_work;
3133
3134 /*
3135 * Rebind_work may race with future cpu hotplug
3136 * operations. Use a separate flag to mark that
3137 * rebinding is scheduled.
3138 */
3139 worker->flags |= WORKER_REBIND;
3140 worker->flags &= ~WORKER_ROGUE;
3141
3142 /* queue rebind_work, wq doesn't matter, use the default one */
3143 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3144 work_data_bits(rebind_work)))
3145 continue;
3146
3147 debug_work_activate(rebind_work);
3148 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3149 worker->scheduled.next,
3150 work_color_to_flags(WORK_NO_COLOR));
3151 }
3152
3153 /* relinquish manager role */
3154 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3155
3156 /* notify completion */
3157 gcwq->trustee = NULL;
3158 gcwq->trustee_state = TRUSTEE_DONE;
3159 wake_up_all(&gcwq->trustee_wait);
3160 spin_unlock_irq(&gcwq->lock);
3161 return 0;
3162 }
3163
3164 /**
3165 * wait_trustee_state - wait for trustee to enter the specified state
3166 * @gcwq: gcwq the trustee of interest belongs to
3167 * @state: target state to wait for
3168 *
3169 * Wait for the trustee to reach @state. DONE is already matched.
3170 *
3171 * CONTEXT:
3172 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3173 * multiple times. To be used by cpu_callback.
3174 */
3175 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3176 {
3177 if (!(gcwq->trustee_state == state ||
3178 gcwq->trustee_state == TRUSTEE_DONE)) {
3179 spin_unlock_irq(&gcwq->lock);
3180 __wait_event(gcwq->trustee_wait,
3181 gcwq->trustee_state == state ||
3182 gcwq->trustee_state == TRUSTEE_DONE);
3183 spin_lock_irq(&gcwq->lock);
3184 }
3185 }
3186
3187 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3188 unsigned long action,
3189 void *hcpu)
3190 {
3191 unsigned int cpu = (unsigned long)hcpu;
3192 struct global_cwq *gcwq = get_gcwq(cpu);
3193 struct task_struct *new_trustee = NULL;
3194 struct worker *uninitialized_var(new_worker);
3195 unsigned long flags;
3196
3197 action &= ~CPU_TASKS_FROZEN;
3198
3199 switch (action) {
3200 case CPU_DOWN_PREPARE:
3201 new_trustee = kthread_create(trustee_thread, gcwq,
3202 "workqueue_trustee/%d\n", cpu);
3203 if (IS_ERR(new_trustee))
3204 return notifier_from_errno(PTR_ERR(new_trustee));
3205 kthread_bind(new_trustee, cpu);
3206 /* fall through */
3207 case CPU_UP_PREPARE:
3208 BUG_ON(gcwq->first_idle);
3209 new_worker = create_worker(gcwq, false);
3210 if (!new_worker) {
3211 if (new_trustee)
3212 kthread_stop(new_trustee);
3213 return NOTIFY_BAD;
3214 }
3215 }
3216
3217 /* some are called w/ irq disabled, don't disturb irq status */
3218 spin_lock_irqsave(&gcwq->lock, flags);
3219
3220 switch (action) {
3221 case CPU_DOWN_PREPARE:
3222 /* initialize trustee and tell it to acquire the gcwq */
3223 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3224 gcwq->trustee = new_trustee;
3225 gcwq->trustee_state = TRUSTEE_START;
3226 wake_up_process(gcwq->trustee);
3227 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3228 /* fall through */
3229 case CPU_UP_PREPARE:
3230 BUG_ON(gcwq->first_idle);
3231 gcwq->first_idle = new_worker;
3232 break;
3233
3234 case CPU_DYING:
3235 /*
3236 * Before this, the trustee and all workers except for
3237 * the ones which are still executing works from
3238 * before the last CPU down must be on the cpu. After
3239 * this, they'll all be diasporas.
3240 */
3241 gcwq->flags |= GCWQ_DISASSOCIATED;
3242 break;
3243
3244 case CPU_POST_DEAD:
3245 gcwq->trustee_state = TRUSTEE_BUTCHER;
3246 /* fall through */
3247 case CPU_UP_CANCELED:
3248 destroy_worker(gcwq->first_idle);
3249 gcwq->first_idle = NULL;
3250 break;
3251
3252 case CPU_DOWN_FAILED:
3253 case CPU_ONLINE:
3254 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3255 if (gcwq->trustee_state != TRUSTEE_DONE) {
3256 gcwq->trustee_state = TRUSTEE_RELEASE;
3257 wake_up_process(gcwq->trustee);
3258 wait_trustee_state(gcwq, TRUSTEE_DONE);
3259 }
3260
3261 /*
3262 * Trustee is done and there might be no worker left.
3263 * Put the first_idle in and request a real manager to
3264 * take a look.
3265 */
3266 spin_unlock_irq(&gcwq->lock);
3267 kthread_bind(gcwq->first_idle->task, cpu);
3268 spin_lock_irq(&gcwq->lock);
3269 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3270 start_worker(gcwq->first_idle);
3271 gcwq->first_idle = NULL;
3272 break;
3273 }
3274
3275 spin_unlock_irqrestore(&gcwq->lock, flags);
3276
3277 return notifier_from_errno(0);
3278 }
3279
3280 #ifdef CONFIG_SMP
3281
3282 struct work_for_cpu {
3283 struct completion completion;
3284 long (*fn)(void *);
3285 void *arg;
3286 long ret;
3287 };
3288
3289 static int do_work_for_cpu(void *_wfc)
3290 {
3291 struct work_for_cpu *wfc = _wfc;
3292 wfc->ret = wfc->fn(wfc->arg);
3293 complete(&wfc->completion);
3294 return 0;
3295 }
3296
3297 /**
3298 * work_on_cpu - run a function in user context on a particular cpu
3299 * @cpu: the cpu to run on
3300 * @fn: the function to run
3301 * @arg: the function arg
3302 *
3303 * This will return the value @fn returns.
3304 * It is up to the caller to ensure that the cpu doesn't go offline.
3305 * The caller must not hold any locks which would prevent @fn from completing.
3306 */
3307 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3308 {
3309 struct task_struct *sub_thread;
3310 struct work_for_cpu wfc = {
3311 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3312 .fn = fn,
3313 .arg = arg,
3314 };
3315
3316 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3317 if (IS_ERR(sub_thread))
3318 return PTR_ERR(sub_thread);
3319 kthread_bind(sub_thread, cpu);
3320 wake_up_process(sub_thread);
3321 wait_for_completion(&wfc.completion);
3322 return wfc.ret;
3323 }
3324 EXPORT_SYMBOL_GPL(work_on_cpu);
3325 #endif /* CONFIG_SMP */
3326
3327 #ifdef CONFIG_FREEZER
3328
3329 /**
3330 * freeze_workqueues_begin - begin freezing workqueues
3331 *
3332 * Start freezing workqueues. After this function returns, all
3333 * freezeable workqueues will queue new works to their frozen_works
3334 * list instead of gcwq->worklist.
3335 *
3336 * CONTEXT:
3337 * Grabs and releases workqueue_lock and gcwq->lock's.
3338 */
3339 void freeze_workqueues_begin(void)
3340 {
3341 unsigned int cpu;
3342
3343 spin_lock(&workqueue_lock);
3344
3345 BUG_ON(workqueue_freezing);
3346 workqueue_freezing = true;
3347
3348 for_each_gcwq_cpu(cpu) {
3349 struct global_cwq *gcwq = get_gcwq(cpu);
3350 struct workqueue_struct *wq;
3351
3352 spin_lock_irq(&gcwq->lock);
3353
3354 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3355 gcwq->flags |= GCWQ_FREEZING;
3356
3357 list_for_each_entry(wq, &workqueues, list) {
3358 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3359
3360 if (cwq && wq->flags & WQ_FREEZEABLE)
3361 cwq->max_active = 0;
3362 }
3363
3364 spin_unlock_irq(&gcwq->lock);
3365 }
3366
3367 spin_unlock(&workqueue_lock);
3368 }
3369
3370 /**
3371 * freeze_workqueues_busy - are freezeable workqueues still busy?
3372 *
3373 * Check whether freezing is complete. This function must be called
3374 * between freeze_workqueues_begin() and thaw_workqueues().
3375 *
3376 * CONTEXT:
3377 * Grabs and releases workqueue_lock.
3378 *
3379 * RETURNS:
3380 * %true if some freezeable workqueues are still busy. %false if
3381 * freezing is complete.
3382 */
3383 bool freeze_workqueues_busy(void)
3384 {
3385 unsigned int cpu;
3386 bool busy = false;
3387
3388 spin_lock(&workqueue_lock);
3389
3390 BUG_ON(!workqueue_freezing);
3391
3392 for_each_gcwq_cpu(cpu) {
3393 struct workqueue_struct *wq;
3394 /*
3395 * nr_active is monotonically decreasing. It's safe
3396 * to peek without lock.
3397 */
3398 list_for_each_entry(wq, &workqueues, list) {
3399 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3400
3401 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3402 continue;
3403
3404 BUG_ON(cwq->nr_active < 0);
3405 if (cwq->nr_active) {
3406 busy = true;
3407 goto out_unlock;
3408 }
3409 }
3410 }
3411 out_unlock:
3412 spin_unlock(&workqueue_lock);
3413 return busy;
3414 }
3415
3416 /**
3417 * thaw_workqueues - thaw workqueues
3418 *
3419 * Thaw workqueues. Normal queueing is restored and all collected
3420 * frozen works are transferred to their respective gcwq worklists.
3421 *
3422 * CONTEXT:
3423 * Grabs and releases workqueue_lock and gcwq->lock's.
3424 */
3425 void thaw_workqueues(void)
3426 {
3427 unsigned int cpu;
3428
3429 spin_lock(&workqueue_lock);
3430
3431 if (!workqueue_freezing)
3432 goto out_unlock;
3433
3434 for_each_gcwq_cpu(cpu) {
3435 struct global_cwq *gcwq = get_gcwq(cpu);
3436 struct workqueue_struct *wq;
3437
3438 spin_lock_irq(&gcwq->lock);
3439
3440 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3441 gcwq->flags &= ~GCWQ_FREEZING;
3442
3443 list_for_each_entry(wq, &workqueues, list) {
3444 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3445
3446 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3447 continue;
3448
3449 /* restore max_active and repopulate worklist */
3450 cwq->max_active = wq->saved_max_active;
3451
3452 while (!list_empty(&cwq->delayed_works) &&
3453 cwq->nr_active < cwq->max_active)
3454 cwq_activate_first_delayed(cwq);
3455 }
3456
3457 wake_up_worker(gcwq);
3458
3459 spin_unlock_irq(&gcwq->lock);
3460 }
3461
3462 workqueue_freezing = false;
3463 out_unlock:
3464 spin_unlock(&workqueue_lock);
3465 }
3466 #endif /* CONFIG_FREEZER */
3467
3468 void __init init_workqueues(void)
3469 {
3470 unsigned int cpu;
3471 int i;
3472
3473 /*
3474 * The pointer part of work->data is either pointing to the
3475 * cwq or contains the cpu number the work ran last on. Make
3476 * sure cpu number won't overflow into kernel pointer area so
3477 * that they can be distinguished.
3478 */
3479 BUILD_BUG_ON(WORK_CPU_LAST << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
3480
3481 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3482
3483 /* initialize gcwqs */
3484 for_each_gcwq_cpu(cpu) {
3485 struct global_cwq *gcwq = get_gcwq(cpu);
3486
3487 spin_lock_init(&gcwq->lock);
3488 INIT_LIST_HEAD(&gcwq->worklist);
3489 gcwq->cpu = cpu;
3490 if (cpu == WORK_CPU_UNBOUND)
3491 gcwq->flags |= GCWQ_DISASSOCIATED;
3492
3493 INIT_LIST_HEAD(&gcwq->idle_list);
3494 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3495 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3496
3497 init_timer_deferrable(&gcwq->idle_timer);
3498 gcwq->idle_timer.function = idle_worker_timeout;
3499 gcwq->idle_timer.data = (unsigned long)gcwq;
3500
3501 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3502 (unsigned long)gcwq);
3503
3504 ida_init(&gcwq->worker_ida);
3505
3506 gcwq->trustee_state = TRUSTEE_DONE;
3507 init_waitqueue_head(&gcwq->trustee_wait);
3508 }
3509
3510 /* create the initial worker */
3511 for_each_online_gcwq_cpu(cpu) {
3512 struct global_cwq *gcwq = get_gcwq(cpu);
3513 struct worker *worker;
3514
3515 worker = create_worker(gcwq, true);
3516 BUG_ON(!worker);
3517 spin_lock_irq(&gcwq->lock);
3518 start_worker(worker);
3519 spin_unlock_irq(&gcwq->lock);
3520 }
3521
3522 system_wq = alloc_workqueue("events", 0, 0);
3523 system_long_wq = alloc_workqueue("events_long", 0, 0);
3524 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3525 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3526 WQ_UNBOUND_MAX_ACTIVE);
3527 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
3528 }
This page took 0.112741 seconds and 5 git commands to generate.