workqueue: fix possible deadlock in idle worker rebinding
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
81
82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
83
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
87
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
103 };
104
105 /*
106 * Structure fields follow one of the following exclusion rules.
107 *
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
110 *
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
114 * L: gcwq->lock protected. Access with gcwq->lock held.
115 *
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
120 *
121 * F: wq->flush_mutex protected.
122 *
123 * W: workqueue_lock protected.
124 */
125
126 struct global_cwq;
127 struct worker_pool;
128 struct idle_rebind;
129
130 /*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
134 struct worker {
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
140
141 struct work_struct *current_work; /* L: work being processed */
142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143 struct list_head scheduled; /* L: scheduled works */
144 struct task_struct *task; /* I: worker task */
145 struct worker_pool *pool; /* I: the associated pool */
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
149 int id; /* I: worker id */
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
154 };
155
156 struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
158 unsigned int flags; /* X: flags */
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
168 struct mutex manager_mutex; /* mutex manager should hold */
169 struct ida worker_ida; /* L: for worker IDs */
170 };
171
172 /*
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
176 */
177 struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
180 unsigned int flags; /* L: GCWQ_* flags */
181
182 /* workers are chained either in busy_hash or pool idle_list */
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
186 struct worker_pool pools[2]; /* normal and highpri pools */
187
188 wait_queue_head_t rebind_hold; /* rebind hold wait */
189 } ____cacheline_aligned_in_smp;
190
191 /*
192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
195 */
196 struct cpu_workqueue_struct {
197 struct worker_pool *pool; /* I: the associated pool */
198 struct workqueue_struct *wq; /* I: the owning workqueue */
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
203 int nr_active; /* L: nr of active works */
204 int max_active; /* L: max active works */
205 struct list_head delayed_works; /* L: delayed works */
206 };
207
208 /*
209 * Structure used to wait for workqueue flush.
210 */
211 struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215 };
216
217 /*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221 #ifdef CONFIG_SMP
222 typedef cpumask_var_t mayday_mask_t;
223 #define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
227 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
228 #define free_mayday_mask(mask) free_cpumask_var((mask))
229 #else
230 typedef unsigned long mayday_mask_t;
231 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234 #define alloc_mayday_mask(maskp, gfp) true
235 #define free_mayday_mask(mask) do { } while (0)
236 #endif
237
238 /*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242 struct workqueue_struct {
243 unsigned int flags; /* W: WQ_* flags */
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
249 struct list_head list; /* W: list of all workqueues */
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
260 struct worker *rescuer; /* I: rescue worker */
261
262 int nr_drainers; /* W: drain in progress */
263 int saved_max_active; /* W: saved cwq max_active */
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[]; /* I: workqueue name */
268 };
269
270 struct workqueue_struct *system_wq __read_mostly;
271 struct workqueue_struct *system_long_wq __read_mostly;
272 struct workqueue_struct *system_nrt_wq __read_mostly;
273 struct workqueue_struct *system_unbound_wq __read_mostly;
274 struct workqueue_struct *system_freezable_wq __read_mostly;
275 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_wq);
277 EXPORT_SYMBOL_GPL(system_long_wq);
278 EXPORT_SYMBOL_GPL(system_nrt_wq);
279 EXPORT_SYMBOL_GPL(system_unbound_wq);
280 EXPORT_SYMBOL_GPL(system_freezable_wq);
281 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
282
283 #define CREATE_TRACE_POINTS
284 #include <trace/events/workqueue.h>
285
286 #define for_each_worker_pool(pool, gcwq) \
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289
290 #define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
294 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296 {
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307 }
308
309 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311 {
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313 }
314
315 /*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
328 #define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333 #define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338 #define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
343 #ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345 static struct debug_obj_descr work_debug_descr;
346
347 static void *work_debug_hint(void *addr)
348 {
349 return ((struct work_struct *) addr)->func;
350 }
351
352 /*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356 static int work_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368 }
369
370 /*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375 static int work_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401 }
402
403 /*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407 static int work_fixup_free(void *addr, enum debug_obj_state state)
408 {
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419 }
420
421 static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
423 .debug_hint = work_debug_hint,
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427 };
428
429 static inline void debug_work_activate(struct work_struct *work)
430 {
431 debug_object_activate(work, &work_debug_descr);
432 }
433
434 static inline void debug_work_deactivate(struct work_struct *work)
435 {
436 debug_object_deactivate(work, &work_debug_descr);
437 }
438
439 void __init_work(struct work_struct *work, int onstack)
440 {
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445 }
446 EXPORT_SYMBOL_GPL(__init_work);
447
448 void destroy_work_on_stack(struct work_struct *work)
449 {
450 debug_object_free(work, &work_debug_descr);
451 }
452 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454 #else
455 static inline void debug_work_activate(struct work_struct *work) { }
456 static inline void debug_work_deactivate(struct work_struct *work) { }
457 #endif
458
459 /* Serializes the accesses to the list of workqueues. */
460 static DEFINE_SPINLOCK(workqueue_lock);
461 static LIST_HEAD(workqueues);
462 static bool workqueue_freezing; /* W: have wqs started freezing? */
463
464 /*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
469 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
470 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
471
472 /*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477 static struct global_cwq unbound_global_cwq;
478 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480 };
481
482 static int worker_thread(void *__worker);
483
484 static int worker_pool_pri(struct worker_pool *pool)
485 {
486 return pool - pool->gcwq->pools;
487 }
488
489 static struct global_cwq *get_gcwq(unsigned int cpu)
490 {
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
495 }
496
497 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
498 {
499 int cpu = pool->gcwq->cpu;
500 int idx = worker_pool_pri(pool);
501
502 if (cpu != WORK_CPU_UNBOUND)
503 return &per_cpu(pool_nr_running, cpu)[idx];
504 else
505 return &unbound_pool_nr_running[idx];
506 }
507
508 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
510 {
511 if (!(wq->flags & WQ_UNBOUND)) {
512 if (likely(cpu < nr_cpu_ids))
513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
517 }
518
519 static unsigned int work_color_to_flags(int color)
520 {
521 return color << WORK_STRUCT_COLOR_SHIFT;
522 }
523
524 static int get_work_color(struct work_struct *work)
525 {
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528 }
529
530 static int work_next_color(int color)
531 {
532 return (color + 1) % WORK_NR_COLORS;
533 }
534
535 /*
536 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
537 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
538 * cleared and the work data contains the cpu number it was last on.
539 *
540 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
541 * cwq, cpu or clear work->data. These functions should only be
542 * called while the work is owned - ie. while the PENDING bit is set.
543 *
544 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
545 * corresponding to a work. gcwq is available once the work has been
546 * queued anywhere after initialization. cwq is available only from
547 * queueing until execution starts.
548 */
549 static inline void set_work_data(struct work_struct *work, unsigned long data,
550 unsigned long flags)
551 {
552 BUG_ON(!work_pending(work));
553 atomic_long_set(&work->data, data | flags | work_static(work));
554 }
555
556 static void set_work_cwq(struct work_struct *work,
557 struct cpu_workqueue_struct *cwq,
558 unsigned long extra_flags)
559 {
560 set_work_data(work, (unsigned long)cwq,
561 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
562 }
563
564 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
565 {
566 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
567 }
568
569 static void clear_work_data(struct work_struct *work)
570 {
571 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
572 }
573
574 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
575 {
576 unsigned long data = atomic_long_read(&work->data);
577
578 if (data & WORK_STRUCT_CWQ)
579 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
580 else
581 return NULL;
582 }
583
584 static struct global_cwq *get_work_gcwq(struct work_struct *work)
585 {
586 unsigned long data = atomic_long_read(&work->data);
587 unsigned int cpu;
588
589 if (data & WORK_STRUCT_CWQ)
590 return ((struct cpu_workqueue_struct *)
591 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
592
593 cpu = data >> WORK_STRUCT_FLAG_BITS;
594 if (cpu == WORK_CPU_NONE)
595 return NULL;
596
597 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
598 return get_gcwq(cpu);
599 }
600
601 /*
602 * Policy functions. These define the policies on how the global worker
603 * pools are managed. Unless noted otherwise, these functions assume that
604 * they're being called with gcwq->lock held.
605 */
606
607 static bool __need_more_worker(struct worker_pool *pool)
608 {
609 return !atomic_read(get_pool_nr_running(pool));
610 }
611
612 /*
613 * Need to wake up a worker? Called from anything but currently
614 * running workers.
615 *
616 * Note that, because unbound workers never contribute to nr_running, this
617 * function will always return %true for unbound gcwq as long as the
618 * worklist isn't empty.
619 */
620 static bool need_more_worker(struct worker_pool *pool)
621 {
622 return !list_empty(&pool->worklist) && __need_more_worker(pool);
623 }
624
625 /* Can I start working? Called from busy but !running workers. */
626 static bool may_start_working(struct worker_pool *pool)
627 {
628 return pool->nr_idle;
629 }
630
631 /* Do I need to keep working? Called from currently running workers. */
632 static bool keep_working(struct worker_pool *pool)
633 {
634 atomic_t *nr_running = get_pool_nr_running(pool);
635
636 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
637 }
638
639 /* Do we need a new worker? Called from manager. */
640 static bool need_to_create_worker(struct worker_pool *pool)
641 {
642 return need_more_worker(pool) && !may_start_working(pool);
643 }
644
645 /* Do I need to be the manager? */
646 static bool need_to_manage_workers(struct worker_pool *pool)
647 {
648 return need_to_create_worker(pool) ||
649 (pool->flags & POOL_MANAGE_WORKERS);
650 }
651
652 /* Do we have too many workers and should some go away? */
653 static bool too_many_workers(struct worker_pool *pool)
654 {
655 bool managing = mutex_is_locked(&pool->manager_mutex);
656 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
657 int nr_busy = pool->nr_workers - nr_idle;
658
659 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
660 }
661
662 /*
663 * Wake up functions.
664 */
665
666 /* Return the first worker. Safe with preemption disabled */
667 static struct worker *first_worker(struct worker_pool *pool)
668 {
669 if (unlikely(list_empty(&pool->idle_list)))
670 return NULL;
671
672 return list_first_entry(&pool->idle_list, struct worker, entry);
673 }
674
675 /**
676 * wake_up_worker - wake up an idle worker
677 * @pool: worker pool to wake worker from
678 *
679 * Wake up the first idle worker of @pool.
680 *
681 * CONTEXT:
682 * spin_lock_irq(gcwq->lock).
683 */
684 static void wake_up_worker(struct worker_pool *pool)
685 {
686 struct worker *worker = first_worker(pool);
687
688 if (likely(worker))
689 wake_up_process(worker->task);
690 }
691
692 /**
693 * wq_worker_waking_up - a worker is waking up
694 * @task: task waking up
695 * @cpu: CPU @task is waking up to
696 *
697 * This function is called during try_to_wake_up() when a worker is
698 * being awoken.
699 *
700 * CONTEXT:
701 * spin_lock_irq(rq->lock)
702 */
703 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
704 {
705 struct worker *worker = kthread_data(task);
706
707 if (!(worker->flags & WORKER_NOT_RUNNING))
708 atomic_inc(get_pool_nr_running(worker->pool));
709 }
710
711 /**
712 * wq_worker_sleeping - a worker is going to sleep
713 * @task: task going to sleep
714 * @cpu: CPU in question, must be the current CPU number
715 *
716 * This function is called during schedule() when a busy worker is
717 * going to sleep. Worker on the same cpu can be woken up by
718 * returning pointer to its task.
719 *
720 * CONTEXT:
721 * spin_lock_irq(rq->lock)
722 *
723 * RETURNS:
724 * Worker task on @cpu to wake up, %NULL if none.
725 */
726 struct task_struct *wq_worker_sleeping(struct task_struct *task,
727 unsigned int cpu)
728 {
729 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
730 struct worker_pool *pool = worker->pool;
731 atomic_t *nr_running = get_pool_nr_running(pool);
732
733 if (worker->flags & WORKER_NOT_RUNNING)
734 return NULL;
735
736 /* this can only happen on the local cpu */
737 BUG_ON(cpu != raw_smp_processor_id());
738
739 /*
740 * The counterpart of the following dec_and_test, implied mb,
741 * worklist not empty test sequence is in insert_work().
742 * Please read comment there.
743 *
744 * NOT_RUNNING is clear. This means that we're bound to and
745 * running on the local cpu w/ rq lock held and preemption
746 * disabled, which in turn means that none else could be
747 * manipulating idle_list, so dereferencing idle_list without gcwq
748 * lock is safe.
749 */
750 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
751 to_wakeup = first_worker(pool);
752 return to_wakeup ? to_wakeup->task : NULL;
753 }
754
755 /**
756 * worker_set_flags - set worker flags and adjust nr_running accordingly
757 * @worker: self
758 * @flags: flags to set
759 * @wakeup: wakeup an idle worker if necessary
760 *
761 * Set @flags in @worker->flags and adjust nr_running accordingly. If
762 * nr_running becomes zero and @wakeup is %true, an idle worker is
763 * woken up.
764 *
765 * CONTEXT:
766 * spin_lock_irq(gcwq->lock)
767 */
768 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
769 bool wakeup)
770 {
771 struct worker_pool *pool = worker->pool;
772
773 WARN_ON_ONCE(worker->task != current);
774
775 /*
776 * If transitioning into NOT_RUNNING, adjust nr_running and
777 * wake up an idle worker as necessary if requested by
778 * @wakeup.
779 */
780 if ((flags & WORKER_NOT_RUNNING) &&
781 !(worker->flags & WORKER_NOT_RUNNING)) {
782 atomic_t *nr_running = get_pool_nr_running(pool);
783
784 if (wakeup) {
785 if (atomic_dec_and_test(nr_running) &&
786 !list_empty(&pool->worklist))
787 wake_up_worker(pool);
788 } else
789 atomic_dec(nr_running);
790 }
791
792 worker->flags |= flags;
793 }
794
795 /**
796 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
797 * @worker: self
798 * @flags: flags to clear
799 *
800 * Clear @flags in @worker->flags and adjust nr_running accordingly.
801 *
802 * CONTEXT:
803 * spin_lock_irq(gcwq->lock)
804 */
805 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
806 {
807 struct worker_pool *pool = worker->pool;
808 unsigned int oflags = worker->flags;
809
810 WARN_ON_ONCE(worker->task != current);
811
812 worker->flags &= ~flags;
813
814 /*
815 * If transitioning out of NOT_RUNNING, increment nr_running. Note
816 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
817 * of multiple flags, not a single flag.
818 */
819 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
820 if (!(worker->flags & WORKER_NOT_RUNNING))
821 atomic_inc(get_pool_nr_running(pool));
822 }
823
824 /**
825 * busy_worker_head - return the busy hash head for a work
826 * @gcwq: gcwq of interest
827 * @work: work to be hashed
828 *
829 * Return hash head of @gcwq for @work.
830 *
831 * CONTEXT:
832 * spin_lock_irq(gcwq->lock).
833 *
834 * RETURNS:
835 * Pointer to the hash head.
836 */
837 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
838 struct work_struct *work)
839 {
840 const int base_shift = ilog2(sizeof(struct work_struct));
841 unsigned long v = (unsigned long)work;
842
843 /* simple shift and fold hash, do we need something better? */
844 v >>= base_shift;
845 v += v >> BUSY_WORKER_HASH_ORDER;
846 v &= BUSY_WORKER_HASH_MASK;
847
848 return &gcwq->busy_hash[v];
849 }
850
851 /**
852 * __find_worker_executing_work - find worker which is executing a work
853 * @gcwq: gcwq of interest
854 * @bwh: hash head as returned by busy_worker_head()
855 * @work: work to find worker for
856 *
857 * Find a worker which is executing @work on @gcwq. @bwh should be
858 * the hash head obtained by calling busy_worker_head() with the same
859 * work.
860 *
861 * CONTEXT:
862 * spin_lock_irq(gcwq->lock).
863 *
864 * RETURNS:
865 * Pointer to worker which is executing @work if found, NULL
866 * otherwise.
867 */
868 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
869 struct hlist_head *bwh,
870 struct work_struct *work)
871 {
872 struct worker *worker;
873 struct hlist_node *tmp;
874
875 hlist_for_each_entry(worker, tmp, bwh, hentry)
876 if (worker->current_work == work)
877 return worker;
878 return NULL;
879 }
880
881 /**
882 * find_worker_executing_work - find worker which is executing a work
883 * @gcwq: gcwq of interest
884 * @work: work to find worker for
885 *
886 * Find a worker which is executing @work on @gcwq. This function is
887 * identical to __find_worker_executing_work() except that this
888 * function calculates @bwh itself.
889 *
890 * CONTEXT:
891 * spin_lock_irq(gcwq->lock).
892 *
893 * RETURNS:
894 * Pointer to worker which is executing @work if found, NULL
895 * otherwise.
896 */
897 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
898 struct work_struct *work)
899 {
900 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
901 work);
902 }
903
904 /**
905 * insert_work - insert a work into gcwq
906 * @cwq: cwq @work belongs to
907 * @work: work to insert
908 * @head: insertion point
909 * @extra_flags: extra WORK_STRUCT_* flags to set
910 *
911 * Insert @work which belongs to @cwq into @gcwq after @head.
912 * @extra_flags is or'd to work_struct flags.
913 *
914 * CONTEXT:
915 * spin_lock_irq(gcwq->lock).
916 */
917 static void insert_work(struct cpu_workqueue_struct *cwq,
918 struct work_struct *work, struct list_head *head,
919 unsigned int extra_flags)
920 {
921 struct worker_pool *pool = cwq->pool;
922
923 /* we own @work, set data and link */
924 set_work_cwq(work, cwq, extra_flags);
925
926 /*
927 * Ensure that we get the right work->data if we see the
928 * result of list_add() below, see try_to_grab_pending().
929 */
930 smp_wmb();
931
932 list_add_tail(&work->entry, head);
933
934 /*
935 * Ensure either worker_sched_deactivated() sees the above
936 * list_add_tail() or we see zero nr_running to avoid workers
937 * lying around lazily while there are works to be processed.
938 */
939 smp_mb();
940
941 if (__need_more_worker(pool))
942 wake_up_worker(pool);
943 }
944
945 /*
946 * Test whether @work is being queued from another work executing on the
947 * same workqueue. This is rather expensive and should only be used from
948 * cold paths.
949 */
950 static bool is_chained_work(struct workqueue_struct *wq)
951 {
952 unsigned long flags;
953 unsigned int cpu;
954
955 for_each_gcwq_cpu(cpu) {
956 struct global_cwq *gcwq = get_gcwq(cpu);
957 struct worker *worker;
958 struct hlist_node *pos;
959 int i;
960
961 spin_lock_irqsave(&gcwq->lock, flags);
962 for_each_busy_worker(worker, i, pos, gcwq) {
963 if (worker->task != current)
964 continue;
965 spin_unlock_irqrestore(&gcwq->lock, flags);
966 /*
967 * I'm @worker, no locking necessary. See if @work
968 * is headed to the same workqueue.
969 */
970 return worker->current_cwq->wq == wq;
971 }
972 spin_unlock_irqrestore(&gcwq->lock, flags);
973 }
974 return false;
975 }
976
977 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
978 struct work_struct *work)
979 {
980 struct global_cwq *gcwq;
981 struct cpu_workqueue_struct *cwq;
982 struct list_head *worklist;
983 unsigned int work_flags;
984 unsigned long flags;
985
986 debug_work_activate(work);
987
988 /* if dying, only works from the same workqueue are allowed */
989 if (unlikely(wq->flags & WQ_DRAINING) &&
990 WARN_ON_ONCE(!is_chained_work(wq)))
991 return;
992
993 /* determine gcwq to use */
994 if (!(wq->flags & WQ_UNBOUND)) {
995 struct global_cwq *last_gcwq;
996
997 if (unlikely(cpu == WORK_CPU_UNBOUND))
998 cpu = raw_smp_processor_id();
999
1000 /*
1001 * It's multi cpu. If @wq is non-reentrant and @work
1002 * was previously on a different cpu, it might still
1003 * be running there, in which case the work needs to
1004 * be queued on that cpu to guarantee non-reentrance.
1005 */
1006 gcwq = get_gcwq(cpu);
1007 if (wq->flags & WQ_NON_REENTRANT &&
1008 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1009 struct worker *worker;
1010
1011 spin_lock_irqsave(&last_gcwq->lock, flags);
1012
1013 worker = find_worker_executing_work(last_gcwq, work);
1014
1015 if (worker && worker->current_cwq->wq == wq)
1016 gcwq = last_gcwq;
1017 else {
1018 /* meh... not running there, queue here */
1019 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1020 spin_lock_irqsave(&gcwq->lock, flags);
1021 }
1022 } else
1023 spin_lock_irqsave(&gcwq->lock, flags);
1024 } else {
1025 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1026 spin_lock_irqsave(&gcwq->lock, flags);
1027 }
1028
1029 /* gcwq determined, get cwq and queue */
1030 cwq = get_cwq(gcwq->cpu, wq);
1031 trace_workqueue_queue_work(cpu, cwq, work);
1032
1033 if (WARN_ON(!list_empty(&work->entry))) {
1034 spin_unlock_irqrestore(&gcwq->lock, flags);
1035 return;
1036 }
1037
1038 cwq->nr_in_flight[cwq->work_color]++;
1039 work_flags = work_color_to_flags(cwq->work_color);
1040
1041 if (likely(cwq->nr_active < cwq->max_active)) {
1042 trace_workqueue_activate_work(work);
1043 cwq->nr_active++;
1044 worklist = &cwq->pool->worklist;
1045 } else {
1046 work_flags |= WORK_STRUCT_DELAYED;
1047 worklist = &cwq->delayed_works;
1048 }
1049
1050 insert_work(cwq, work, worklist, work_flags);
1051
1052 spin_unlock_irqrestore(&gcwq->lock, flags);
1053 }
1054
1055 /**
1056 * queue_work - queue work on a workqueue
1057 * @wq: workqueue to use
1058 * @work: work to queue
1059 *
1060 * Returns 0 if @work was already on a queue, non-zero otherwise.
1061 *
1062 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1063 * it can be processed by another CPU.
1064 */
1065 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1066 {
1067 int ret;
1068
1069 ret = queue_work_on(get_cpu(), wq, work);
1070 put_cpu();
1071
1072 return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(queue_work);
1075
1076 /**
1077 * queue_work_on - queue work on specific cpu
1078 * @cpu: CPU number to execute work on
1079 * @wq: workqueue to use
1080 * @work: work to queue
1081 *
1082 * Returns 0 if @work was already on a queue, non-zero otherwise.
1083 *
1084 * We queue the work to a specific CPU, the caller must ensure it
1085 * can't go away.
1086 */
1087 int
1088 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1089 {
1090 int ret = 0;
1091
1092 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1093 __queue_work(cpu, wq, work);
1094 ret = 1;
1095 }
1096 return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(queue_work_on);
1099
1100 static void delayed_work_timer_fn(unsigned long __data)
1101 {
1102 struct delayed_work *dwork = (struct delayed_work *)__data;
1103 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1104
1105 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1106 }
1107
1108 /**
1109 * queue_delayed_work - queue work on a workqueue after delay
1110 * @wq: workqueue to use
1111 * @dwork: delayable work to queue
1112 * @delay: number of jiffies to wait before queueing
1113 *
1114 * Returns 0 if @work was already on a queue, non-zero otherwise.
1115 */
1116 int queue_delayed_work(struct workqueue_struct *wq,
1117 struct delayed_work *dwork, unsigned long delay)
1118 {
1119 if (delay == 0)
1120 return queue_work(wq, &dwork->work);
1121
1122 return queue_delayed_work_on(-1, wq, dwork, delay);
1123 }
1124 EXPORT_SYMBOL_GPL(queue_delayed_work);
1125
1126 /**
1127 * queue_delayed_work_on - queue work on specific CPU after delay
1128 * @cpu: CPU number to execute work on
1129 * @wq: workqueue to use
1130 * @dwork: work to queue
1131 * @delay: number of jiffies to wait before queueing
1132 *
1133 * Returns 0 if @work was already on a queue, non-zero otherwise.
1134 */
1135 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1136 struct delayed_work *dwork, unsigned long delay)
1137 {
1138 int ret = 0;
1139 struct timer_list *timer = &dwork->timer;
1140 struct work_struct *work = &dwork->work;
1141
1142 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1143 unsigned int lcpu;
1144
1145 BUG_ON(timer_pending(timer));
1146 BUG_ON(!list_empty(&work->entry));
1147
1148 timer_stats_timer_set_start_info(&dwork->timer);
1149
1150 /*
1151 * This stores cwq for the moment, for the timer_fn.
1152 * Note that the work's gcwq is preserved to allow
1153 * reentrance detection for delayed works.
1154 */
1155 if (!(wq->flags & WQ_UNBOUND)) {
1156 struct global_cwq *gcwq = get_work_gcwq(work);
1157
1158 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1159 lcpu = gcwq->cpu;
1160 else
1161 lcpu = raw_smp_processor_id();
1162 } else
1163 lcpu = WORK_CPU_UNBOUND;
1164
1165 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1166
1167 timer->expires = jiffies + delay;
1168 timer->data = (unsigned long)dwork;
1169 timer->function = delayed_work_timer_fn;
1170
1171 if (unlikely(cpu >= 0))
1172 add_timer_on(timer, cpu);
1173 else
1174 add_timer(timer);
1175 ret = 1;
1176 }
1177 return ret;
1178 }
1179 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1180
1181 /**
1182 * worker_enter_idle - enter idle state
1183 * @worker: worker which is entering idle state
1184 *
1185 * @worker is entering idle state. Update stats and idle timer if
1186 * necessary.
1187 *
1188 * LOCKING:
1189 * spin_lock_irq(gcwq->lock).
1190 */
1191 static void worker_enter_idle(struct worker *worker)
1192 {
1193 struct worker_pool *pool = worker->pool;
1194 struct global_cwq *gcwq = pool->gcwq;
1195
1196 BUG_ON(worker->flags & WORKER_IDLE);
1197 BUG_ON(!list_empty(&worker->entry) &&
1198 (worker->hentry.next || worker->hentry.pprev));
1199
1200 /* can't use worker_set_flags(), also called from start_worker() */
1201 worker->flags |= WORKER_IDLE;
1202 pool->nr_idle++;
1203 worker->last_active = jiffies;
1204
1205 /* idle_list is LIFO */
1206 list_add(&worker->entry, &pool->idle_list);
1207
1208 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1209 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1210
1211 /*
1212 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1213 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1214 * nr_running, the warning may trigger spuriously. Check iff
1215 * unbind is not in progress.
1216 */
1217 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1218 pool->nr_workers == pool->nr_idle &&
1219 atomic_read(get_pool_nr_running(pool)));
1220 }
1221
1222 /**
1223 * worker_leave_idle - leave idle state
1224 * @worker: worker which is leaving idle state
1225 *
1226 * @worker is leaving idle state. Update stats.
1227 *
1228 * LOCKING:
1229 * spin_lock_irq(gcwq->lock).
1230 */
1231 static void worker_leave_idle(struct worker *worker)
1232 {
1233 struct worker_pool *pool = worker->pool;
1234
1235 BUG_ON(!(worker->flags & WORKER_IDLE));
1236 worker_clr_flags(worker, WORKER_IDLE);
1237 pool->nr_idle--;
1238 list_del_init(&worker->entry);
1239 }
1240
1241 /**
1242 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1243 * @worker: self
1244 *
1245 * Works which are scheduled while the cpu is online must at least be
1246 * scheduled to a worker which is bound to the cpu so that if they are
1247 * flushed from cpu callbacks while cpu is going down, they are
1248 * guaranteed to execute on the cpu.
1249 *
1250 * This function is to be used by rogue workers and rescuers to bind
1251 * themselves to the target cpu and may race with cpu going down or
1252 * coming online. kthread_bind() can't be used because it may put the
1253 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1254 * verbatim as it's best effort and blocking and gcwq may be
1255 * [dis]associated in the meantime.
1256 *
1257 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1258 * binding against %GCWQ_DISASSOCIATED which is set during
1259 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1260 * enters idle state or fetches works without dropping lock, it can
1261 * guarantee the scheduling requirement described in the first paragraph.
1262 *
1263 * CONTEXT:
1264 * Might sleep. Called without any lock but returns with gcwq->lock
1265 * held.
1266 *
1267 * RETURNS:
1268 * %true if the associated gcwq is online (@worker is successfully
1269 * bound), %false if offline.
1270 */
1271 static bool worker_maybe_bind_and_lock(struct worker *worker)
1272 __acquires(&gcwq->lock)
1273 {
1274 struct global_cwq *gcwq = worker->pool->gcwq;
1275 struct task_struct *task = worker->task;
1276
1277 while (true) {
1278 /*
1279 * The following call may fail, succeed or succeed
1280 * without actually migrating the task to the cpu if
1281 * it races with cpu hotunplug operation. Verify
1282 * against GCWQ_DISASSOCIATED.
1283 */
1284 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1285 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1286
1287 spin_lock_irq(&gcwq->lock);
1288 if (gcwq->flags & GCWQ_DISASSOCIATED)
1289 return false;
1290 if (task_cpu(task) == gcwq->cpu &&
1291 cpumask_equal(&current->cpus_allowed,
1292 get_cpu_mask(gcwq->cpu)))
1293 return true;
1294 spin_unlock_irq(&gcwq->lock);
1295
1296 /*
1297 * We've raced with CPU hot[un]plug. Give it a breather
1298 * and retry migration. cond_resched() is required here;
1299 * otherwise, we might deadlock against cpu_stop trying to
1300 * bring down the CPU on non-preemptive kernel.
1301 */
1302 cpu_relax();
1303 cond_resched();
1304 }
1305 }
1306
1307 struct idle_rebind {
1308 int cnt; /* # workers to be rebound */
1309 struct completion done; /* all workers rebound */
1310 };
1311
1312 /*
1313 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1314 * happen synchronously for idle workers. worker_thread() will test
1315 * %WORKER_REBIND before leaving idle and call this function.
1316 */
1317 static void idle_worker_rebind(struct worker *worker)
1318 {
1319 struct global_cwq *gcwq = worker->pool->gcwq;
1320
1321 /* CPU must be online at this point */
1322 WARN_ON(!worker_maybe_bind_and_lock(worker));
1323 if (!--worker->idle_rebind->cnt)
1324 complete(&worker->idle_rebind->done);
1325 spin_unlock_irq(&worker->pool->gcwq->lock);
1326
1327 /* we did our part, wait for rebind_workers() to finish up */
1328 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1329
1330 /*
1331 * rebind_workers() shouldn't finish until all workers passed the
1332 * above WORKER_REBIND wait. Tell it when done.
1333 */
1334 spin_lock_irq(&worker->pool->gcwq->lock);
1335 if (!--worker->idle_rebind->cnt)
1336 complete(&worker->idle_rebind->done);
1337 spin_unlock_irq(&worker->pool->gcwq->lock);
1338 }
1339
1340 /*
1341 * Function for @worker->rebind.work used to rebind unbound busy workers to
1342 * the associated cpu which is coming back online. This is scheduled by
1343 * cpu up but can race with other cpu hotplug operations and may be
1344 * executed twice without intervening cpu down.
1345 */
1346 static void busy_worker_rebind_fn(struct work_struct *work)
1347 {
1348 struct worker *worker = container_of(work, struct worker, rebind_work);
1349 struct global_cwq *gcwq = worker->pool->gcwq;
1350
1351 if (worker_maybe_bind_and_lock(worker))
1352 worker_clr_flags(worker, WORKER_REBIND);
1353
1354 spin_unlock_irq(&gcwq->lock);
1355 }
1356
1357 /**
1358 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1359 * @gcwq: gcwq of interest
1360 *
1361 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1362 * is different for idle and busy ones.
1363 *
1364 * The idle ones should be rebound synchronously and idle rebinding should
1365 * be complete before any worker starts executing work items with
1366 * concurrency management enabled; otherwise, scheduler may oops trying to
1367 * wake up non-local idle worker from wq_worker_sleeping().
1368 *
1369 * This is achieved by repeatedly requesting rebinding until all idle
1370 * workers are known to have been rebound under @gcwq->lock and holding all
1371 * idle workers from becoming busy until idle rebinding is complete.
1372 *
1373 * Once idle workers are rebound, busy workers can be rebound as they
1374 * finish executing their current work items. Queueing the rebind work at
1375 * the head of their scheduled lists is enough. Note that nr_running will
1376 * be properbly bumped as busy workers rebind.
1377 *
1378 * On return, all workers are guaranteed to either be bound or have rebind
1379 * work item scheduled.
1380 */
1381 static void rebind_workers(struct global_cwq *gcwq)
1382 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1383 {
1384 struct idle_rebind idle_rebind;
1385 struct worker_pool *pool;
1386 struct worker *worker;
1387 struct hlist_node *pos;
1388 int i;
1389
1390 lockdep_assert_held(&gcwq->lock);
1391
1392 for_each_worker_pool(pool, gcwq)
1393 lockdep_assert_held(&pool->manager_mutex);
1394
1395 /*
1396 * Rebind idle workers. Interlocked both ways. We wait for
1397 * workers to rebind via @idle_rebind.done. Workers will wait for
1398 * us to finish up by watching %WORKER_REBIND.
1399 */
1400 init_completion(&idle_rebind.done);
1401 retry:
1402 idle_rebind.cnt = 1;
1403 INIT_COMPLETION(idle_rebind.done);
1404
1405 /* set REBIND and kick idle ones, we'll wait for these later */
1406 for_each_worker_pool(pool, gcwq) {
1407 list_for_each_entry(worker, &pool->idle_list, entry) {
1408 unsigned long worker_flags = worker->flags;
1409
1410 if (worker->flags & WORKER_REBIND)
1411 continue;
1412
1413 /* morph UNBOUND to REBIND atomically */
1414 worker_flags &= ~WORKER_UNBOUND;
1415 worker_flags |= WORKER_REBIND;
1416 ACCESS_ONCE(worker->flags) = worker_flags;
1417
1418 idle_rebind.cnt++;
1419 worker->idle_rebind = &idle_rebind;
1420
1421 /* worker_thread() will call idle_worker_rebind() */
1422 wake_up_process(worker->task);
1423 }
1424 }
1425
1426 if (--idle_rebind.cnt) {
1427 spin_unlock_irq(&gcwq->lock);
1428 wait_for_completion(&idle_rebind.done);
1429 spin_lock_irq(&gcwq->lock);
1430 /* busy ones might have become idle while waiting, retry */
1431 goto retry;
1432 }
1433
1434 /* all idle workers are rebound, rebind busy workers */
1435 for_each_busy_worker(worker, i, pos, gcwq) {
1436 struct work_struct *rebind_work = &worker->rebind_work;
1437 unsigned long worker_flags = worker->flags;
1438
1439 /* morph UNBOUND to REBIND atomically */
1440 worker_flags &= ~WORKER_UNBOUND;
1441 worker_flags |= WORKER_REBIND;
1442 ACCESS_ONCE(worker->flags) = worker_flags;
1443
1444 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1445 work_data_bits(rebind_work)))
1446 continue;
1447
1448 /* wq doesn't matter, use the default one */
1449 debug_work_activate(rebind_work);
1450 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1451 worker->scheduled.next,
1452 work_color_to_flags(WORK_NO_COLOR));
1453 }
1454
1455 /*
1456 * All idle workers are rebound and waiting for %WORKER_REBIND to
1457 * be cleared inside idle_worker_rebind(). Clear and release.
1458 * Clearing %WORKER_REBIND from this foreign context is safe
1459 * because these workers are still guaranteed to be idle.
1460 *
1461 * We need to make sure all idle workers passed WORKER_REBIND wait
1462 * in idle_worker_rebind() before returning; otherwise, workers can
1463 * get stuck at the wait if hotplug cycle repeats.
1464 */
1465 idle_rebind.cnt = 1;
1466 INIT_COMPLETION(idle_rebind.done);
1467
1468 for_each_worker_pool(pool, gcwq) {
1469 list_for_each_entry(worker, &pool->idle_list, entry) {
1470 worker->flags &= ~WORKER_REBIND;
1471 idle_rebind.cnt++;
1472 }
1473 }
1474
1475 wake_up_all(&gcwq->rebind_hold);
1476
1477 if (--idle_rebind.cnt) {
1478 spin_unlock_irq(&gcwq->lock);
1479 wait_for_completion(&idle_rebind.done);
1480 spin_lock_irq(&gcwq->lock);
1481 }
1482 }
1483
1484 static struct worker *alloc_worker(void)
1485 {
1486 struct worker *worker;
1487
1488 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1489 if (worker) {
1490 INIT_LIST_HEAD(&worker->entry);
1491 INIT_LIST_HEAD(&worker->scheduled);
1492 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1493 /* on creation a worker is in !idle && prep state */
1494 worker->flags = WORKER_PREP;
1495 }
1496 return worker;
1497 }
1498
1499 /**
1500 * create_worker - create a new workqueue worker
1501 * @pool: pool the new worker will belong to
1502 *
1503 * Create a new worker which is bound to @pool. The returned worker
1504 * can be started by calling start_worker() or destroyed using
1505 * destroy_worker().
1506 *
1507 * CONTEXT:
1508 * Might sleep. Does GFP_KERNEL allocations.
1509 *
1510 * RETURNS:
1511 * Pointer to the newly created worker.
1512 */
1513 static struct worker *create_worker(struct worker_pool *pool)
1514 {
1515 struct global_cwq *gcwq = pool->gcwq;
1516 const char *pri = worker_pool_pri(pool) ? "H" : "";
1517 struct worker *worker = NULL;
1518 int id = -1;
1519
1520 spin_lock_irq(&gcwq->lock);
1521 while (ida_get_new(&pool->worker_ida, &id)) {
1522 spin_unlock_irq(&gcwq->lock);
1523 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1524 goto fail;
1525 spin_lock_irq(&gcwq->lock);
1526 }
1527 spin_unlock_irq(&gcwq->lock);
1528
1529 worker = alloc_worker();
1530 if (!worker)
1531 goto fail;
1532
1533 worker->pool = pool;
1534 worker->id = id;
1535
1536 if (gcwq->cpu != WORK_CPU_UNBOUND)
1537 worker->task = kthread_create_on_node(worker_thread,
1538 worker, cpu_to_node(gcwq->cpu),
1539 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1540 else
1541 worker->task = kthread_create(worker_thread, worker,
1542 "kworker/u:%d%s", id, pri);
1543 if (IS_ERR(worker->task))
1544 goto fail;
1545
1546 if (worker_pool_pri(pool))
1547 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1548
1549 /*
1550 * Determine CPU binding of the new worker depending on
1551 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1552 * flag remains stable across this function. See the comments
1553 * above the flag definition for details.
1554 *
1555 * As an unbound worker may later become a regular one if CPU comes
1556 * online, make sure every worker has %PF_THREAD_BOUND set.
1557 */
1558 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1559 kthread_bind(worker->task, gcwq->cpu);
1560 } else {
1561 worker->task->flags |= PF_THREAD_BOUND;
1562 worker->flags |= WORKER_UNBOUND;
1563 }
1564
1565 return worker;
1566 fail:
1567 if (id >= 0) {
1568 spin_lock_irq(&gcwq->lock);
1569 ida_remove(&pool->worker_ida, id);
1570 spin_unlock_irq(&gcwq->lock);
1571 }
1572 kfree(worker);
1573 return NULL;
1574 }
1575
1576 /**
1577 * start_worker - start a newly created worker
1578 * @worker: worker to start
1579 *
1580 * Make the gcwq aware of @worker and start it.
1581 *
1582 * CONTEXT:
1583 * spin_lock_irq(gcwq->lock).
1584 */
1585 static void start_worker(struct worker *worker)
1586 {
1587 worker->flags |= WORKER_STARTED;
1588 worker->pool->nr_workers++;
1589 worker_enter_idle(worker);
1590 wake_up_process(worker->task);
1591 }
1592
1593 /**
1594 * destroy_worker - destroy a workqueue worker
1595 * @worker: worker to be destroyed
1596 *
1597 * Destroy @worker and adjust @gcwq stats accordingly.
1598 *
1599 * CONTEXT:
1600 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1601 */
1602 static void destroy_worker(struct worker *worker)
1603 {
1604 struct worker_pool *pool = worker->pool;
1605 struct global_cwq *gcwq = pool->gcwq;
1606 int id = worker->id;
1607
1608 /* sanity check frenzy */
1609 BUG_ON(worker->current_work);
1610 BUG_ON(!list_empty(&worker->scheduled));
1611
1612 if (worker->flags & WORKER_STARTED)
1613 pool->nr_workers--;
1614 if (worker->flags & WORKER_IDLE)
1615 pool->nr_idle--;
1616
1617 list_del_init(&worker->entry);
1618 worker->flags |= WORKER_DIE;
1619
1620 spin_unlock_irq(&gcwq->lock);
1621
1622 kthread_stop(worker->task);
1623 kfree(worker);
1624
1625 spin_lock_irq(&gcwq->lock);
1626 ida_remove(&pool->worker_ida, id);
1627 }
1628
1629 static void idle_worker_timeout(unsigned long __pool)
1630 {
1631 struct worker_pool *pool = (void *)__pool;
1632 struct global_cwq *gcwq = pool->gcwq;
1633
1634 spin_lock_irq(&gcwq->lock);
1635
1636 if (too_many_workers(pool)) {
1637 struct worker *worker;
1638 unsigned long expires;
1639
1640 /* idle_list is kept in LIFO order, check the last one */
1641 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1642 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1643
1644 if (time_before(jiffies, expires))
1645 mod_timer(&pool->idle_timer, expires);
1646 else {
1647 /* it's been idle for too long, wake up manager */
1648 pool->flags |= POOL_MANAGE_WORKERS;
1649 wake_up_worker(pool);
1650 }
1651 }
1652
1653 spin_unlock_irq(&gcwq->lock);
1654 }
1655
1656 static bool send_mayday(struct work_struct *work)
1657 {
1658 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1659 struct workqueue_struct *wq = cwq->wq;
1660 unsigned int cpu;
1661
1662 if (!(wq->flags & WQ_RESCUER))
1663 return false;
1664
1665 /* mayday mayday mayday */
1666 cpu = cwq->pool->gcwq->cpu;
1667 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1668 if (cpu == WORK_CPU_UNBOUND)
1669 cpu = 0;
1670 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1671 wake_up_process(wq->rescuer->task);
1672 return true;
1673 }
1674
1675 static void gcwq_mayday_timeout(unsigned long __pool)
1676 {
1677 struct worker_pool *pool = (void *)__pool;
1678 struct global_cwq *gcwq = pool->gcwq;
1679 struct work_struct *work;
1680
1681 spin_lock_irq(&gcwq->lock);
1682
1683 if (need_to_create_worker(pool)) {
1684 /*
1685 * We've been trying to create a new worker but
1686 * haven't been successful. We might be hitting an
1687 * allocation deadlock. Send distress signals to
1688 * rescuers.
1689 */
1690 list_for_each_entry(work, &pool->worklist, entry)
1691 send_mayday(work);
1692 }
1693
1694 spin_unlock_irq(&gcwq->lock);
1695
1696 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1697 }
1698
1699 /**
1700 * maybe_create_worker - create a new worker if necessary
1701 * @pool: pool to create a new worker for
1702 *
1703 * Create a new worker for @pool if necessary. @pool is guaranteed to
1704 * have at least one idle worker on return from this function. If
1705 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1706 * sent to all rescuers with works scheduled on @pool to resolve
1707 * possible allocation deadlock.
1708 *
1709 * On return, need_to_create_worker() is guaranteed to be false and
1710 * may_start_working() true.
1711 *
1712 * LOCKING:
1713 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1714 * multiple times. Does GFP_KERNEL allocations. Called only from
1715 * manager.
1716 *
1717 * RETURNS:
1718 * false if no action was taken and gcwq->lock stayed locked, true
1719 * otherwise.
1720 */
1721 static bool maybe_create_worker(struct worker_pool *pool)
1722 __releases(&gcwq->lock)
1723 __acquires(&gcwq->lock)
1724 {
1725 struct global_cwq *gcwq = pool->gcwq;
1726
1727 if (!need_to_create_worker(pool))
1728 return false;
1729 restart:
1730 spin_unlock_irq(&gcwq->lock);
1731
1732 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1733 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1734
1735 while (true) {
1736 struct worker *worker;
1737
1738 worker = create_worker(pool);
1739 if (worker) {
1740 del_timer_sync(&pool->mayday_timer);
1741 spin_lock_irq(&gcwq->lock);
1742 start_worker(worker);
1743 BUG_ON(need_to_create_worker(pool));
1744 return true;
1745 }
1746
1747 if (!need_to_create_worker(pool))
1748 break;
1749
1750 __set_current_state(TASK_INTERRUPTIBLE);
1751 schedule_timeout(CREATE_COOLDOWN);
1752
1753 if (!need_to_create_worker(pool))
1754 break;
1755 }
1756
1757 del_timer_sync(&pool->mayday_timer);
1758 spin_lock_irq(&gcwq->lock);
1759 if (need_to_create_worker(pool))
1760 goto restart;
1761 return true;
1762 }
1763
1764 /**
1765 * maybe_destroy_worker - destroy workers which have been idle for a while
1766 * @pool: pool to destroy workers for
1767 *
1768 * Destroy @pool workers which have been idle for longer than
1769 * IDLE_WORKER_TIMEOUT.
1770 *
1771 * LOCKING:
1772 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1773 * multiple times. Called only from manager.
1774 *
1775 * RETURNS:
1776 * false if no action was taken and gcwq->lock stayed locked, true
1777 * otherwise.
1778 */
1779 static bool maybe_destroy_workers(struct worker_pool *pool)
1780 {
1781 bool ret = false;
1782
1783 while (too_many_workers(pool)) {
1784 struct worker *worker;
1785 unsigned long expires;
1786
1787 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1788 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1789
1790 if (time_before(jiffies, expires)) {
1791 mod_timer(&pool->idle_timer, expires);
1792 break;
1793 }
1794
1795 destroy_worker(worker);
1796 ret = true;
1797 }
1798
1799 return ret;
1800 }
1801
1802 /**
1803 * manage_workers - manage worker pool
1804 * @worker: self
1805 *
1806 * Assume the manager role and manage gcwq worker pool @worker belongs
1807 * to. At any given time, there can be only zero or one manager per
1808 * gcwq. The exclusion is handled automatically by this function.
1809 *
1810 * The caller can safely start processing works on false return. On
1811 * true return, it's guaranteed that need_to_create_worker() is false
1812 * and may_start_working() is true.
1813 *
1814 * CONTEXT:
1815 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1816 * multiple times. Does GFP_KERNEL allocations.
1817 *
1818 * RETURNS:
1819 * false if no action was taken and gcwq->lock stayed locked, true if
1820 * some action was taken.
1821 */
1822 static bool manage_workers(struct worker *worker)
1823 {
1824 struct worker_pool *pool = worker->pool;
1825 bool ret = false;
1826
1827 if (!mutex_trylock(&pool->manager_mutex))
1828 return ret;
1829
1830 pool->flags &= ~POOL_MANAGE_WORKERS;
1831
1832 /*
1833 * Destroy and then create so that may_start_working() is true
1834 * on return.
1835 */
1836 ret |= maybe_destroy_workers(pool);
1837 ret |= maybe_create_worker(pool);
1838
1839 mutex_unlock(&pool->manager_mutex);
1840 return ret;
1841 }
1842
1843 /**
1844 * move_linked_works - move linked works to a list
1845 * @work: start of series of works to be scheduled
1846 * @head: target list to append @work to
1847 * @nextp: out paramter for nested worklist walking
1848 *
1849 * Schedule linked works starting from @work to @head. Work series to
1850 * be scheduled starts at @work and includes any consecutive work with
1851 * WORK_STRUCT_LINKED set in its predecessor.
1852 *
1853 * If @nextp is not NULL, it's updated to point to the next work of
1854 * the last scheduled work. This allows move_linked_works() to be
1855 * nested inside outer list_for_each_entry_safe().
1856 *
1857 * CONTEXT:
1858 * spin_lock_irq(gcwq->lock).
1859 */
1860 static void move_linked_works(struct work_struct *work, struct list_head *head,
1861 struct work_struct **nextp)
1862 {
1863 struct work_struct *n;
1864
1865 /*
1866 * Linked worklist will always end before the end of the list,
1867 * use NULL for list head.
1868 */
1869 list_for_each_entry_safe_from(work, n, NULL, entry) {
1870 list_move_tail(&work->entry, head);
1871 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1872 break;
1873 }
1874
1875 /*
1876 * If we're already inside safe list traversal and have moved
1877 * multiple works to the scheduled queue, the next position
1878 * needs to be updated.
1879 */
1880 if (nextp)
1881 *nextp = n;
1882 }
1883
1884 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1885 {
1886 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1887 struct work_struct, entry);
1888
1889 trace_workqueue_activate_work(work);
1890 move_linked_works(work, &cwq->pool->worklist, NULL);
1891 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1892 cwq->nr_active++;
1893 }
1894
1895 /**
1896 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1897 * @cwq: cwq of interest
1898 * @color: color of work which left the queue
1899 * @delayed: for a delayed work
1900 *
1901 * A work either has completed or is removed from pending queue,
1902 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1903 *
1904 * CONTEXT:
1905 * spin_lock_irq(gcwq->lock).
1906 */
1907 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1908 bool delayed)
1909 {
1910 /* ignore uncolored works */
1911 if (color == WORK_NO_COLOR)
1912 return;
1913
1914 cwq->nr_in_flight[color]--;
1915
1916 if (!delayed) {
1917 cwq->nr_active--;
1918 if (!list_empty(&cwq->delayed_works)) {
1919 /* one down, submit a delayed one */
1920 if (cwq->nr_active < cwq->max_active)
1921 cwq_activate_first_delayed(cwq);
1922 }
1923 }
1924
1925 /* is flush in progress and are we at the flushing tip? */
1926 if (likely(cwq->flush_color != color))
1927 return;
1928
1929 /* are there still in-flight works? */
1930 if (cwq->nr_in_flight[color])
1931 return;
1932
1933 /* this cwq is done, clear flush_color */
1934 cwq->flush_color = -1;
1935
1936 /*
1937 * If this was the last cwq, wake up the first flusher. It
1938 * will handle the rest.
1939 */
1940 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1941 complete(&cwq->wq->first_flusher->done);
1942 }
1943
1944 /**
1945 * process_one_work - process single work
1946 * @worker: self
1947 * @work: work to process
1948 *
1949 * Process @work. This function contains all the logics necessary to
1950 * process a single work including synchronization against and
1951 * interaction with other workers on the same cpu, queueing and
1952 * flushing. As long as context requirement is met, any worker can
1953 * call this function to process a work.
1954 *
1955 * CONTEXT:
1956 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1957 */
1958 static void process_one_work(struct worker *worker, struct work_struct *work)
1959 __releases(&gcwq->lock)
1960 __acquires(&gcwq->lock)
1961 {
1962 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1963 struct worker_pool *pool = worker->pool;
1964 struct global_cwq *gcwq = pool->gcwq;
1965 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1966 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1967 work_func_t f = work->func;
1968 int work_color;
1969 struct worker *collision;
1970 #ifdef CONFIG_LOCKDEP
1971 /*
1972 * It is permissible to free the struct work_struct from
1973 * inside the function that is called from it, this we need to
1974 * take into account for lockdep too. To avoid bogus "held
1975 * lock freed" warnings as well as problems when looking into
1976 * work->lockdep_map, make a copy and use that here.
1977 */
1978 struct lockdep_map lockdep_map;
1979
1980 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1981 #endif
1982 /*
1983 * Ensure we're on the correct CPU. DISASSOCIATED test is
1984 * necessary to avoid spurious warnings from rescuers servicing the
1985 * unbound or a disassociated gcwq.
1986 */
1987 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
1988 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
1989 raw_smp_processor_id() != gcwq->cpu);
1990
1991 /*
1992 * A single work shouldn't be executed concurrently by
1993 * multiple workers on a single cpu. Check whether anyone is
1994 * already processing the work. If so, defer the work to the
1995 * currently executing one.
1996 */
1997 collision = __find_worker_executing_work(gcwq, bwh, work);
1998 if (unlikely(collision)) {
1999 move_linked_works(work, &collision->scheduled, NULL);
2000 return;
2001 }
2002
2003 /* claim and process */
2004 debug_work_deactivate(work);
2005 hlist_add_head(&worker->hentry, bwh);
2006 worker->current_work = work;
2007 worker->current_cwq = cwq;
2008 work_color = get_work_color(work);
2009
2010 /* record the current cpu number in the work data and dequeue */
2011 set_work_cpu(work, gcwq->cpu);
2012 list_del_init(&work->entry);
2013
2014 /*
2015 * CPU intensive works don't participate in concurrency
2016 * management. They're the scheduler's responsibility.
2017 */
2018 if (unlikely(cpu_intensive))
2019 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2020
2021 /*
2022 * Unbound gcwq isn't concurrency managed and work items should be
2023 * executed ASAP. Wake up another worker if necessary.
2024 */
2025 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2026 wake_up_worker(pool);
2027
2028 spin_unlock_irq(&gcwq->lock);
2029
2030 work_clear_pending(work);
2031 lock_map_acquire_read(&cwq->wq->lockdep_map);
2032 lock_map_acquire(&lockdep_map);
2033 trace_workqueue_execute_start(work);
2034 f(work);
2035 /*
2036 * While we must be careful to not use "work" after this, the trace
2037 * point will only record its address.
2038 */
2039 trace_workqueue_execute_end(work);
2040 lock_map_release(&lockdep_map);
2041 lock_map_release(&cwq->wq->lockdep_map);
2042
2043 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2044 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2045 "%s/0x%08x/%d\n",
2046 current->comm, preempt_count(), task_pid_nr(current));
2047 printk(KERN_ERR " last function: ");
2048 print_symbol("%s\n", (unsigned long)f);
2049 debug_show_held_locks(current);
2050 dump_stack();
2051 }
2052
2053 spin_lock_irq(&gcwq->lock);
2054
2055 /* clear cpu intensive status */
2056 if (unlikely(cpu_intensive))
2057 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2058
2059 /* we're done with it, release */
2060 hlist_del_init(&worker->hentry);
2061 worker->current_work = NULL;
2062 worker->current_cwq = NULL;
2063 cwq_dec_nr_in_flight(cwq, work_color, false);
2064 }
2065
2066 /**
2067 * process_scheduled_works - process scheduled works
2068 * @worker: self
2069 *
2070 * Process all scheduled works. Please note that the scheduled list
2071 * may change while processing a work, so this function repeatedly
2072 * fetches a work from the top and executes it.
2073 *
2074 * CONTEXT:
2075 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2076 * multiple times.
2077 */
2078 static void process_scheduled_works(struct worker *worker)
2079 {
2080 while (!list_empty(&worker->scheduled)) {
2081 struct work_struct *work = list_first_entry(&worker->scheduled,
2082 struct work_struct, entry);
2083 process_one_work(worker, work);
2084 }
2085 }
2086
2087 /**
2088 * worker_thread - the worker thread function
2089 * @__worker: self
2090 *
2091 * The gcwq worker thread function. There's a single dynamic pool of
2092 * these per each cpu. These workers process all works regardless of
2093 * their specific target workqueue. The only exception is works which
2094 * belong to workqueues with a rescuer which will be explained in
2095 * rescuer_thread().
2096 */
2097 static int worker_thread(void *__worker)
2098 {
2099 struct worker *worker = __worker;
2100 struct worker_pool *pool = worker->pool;
2101 struct global_cwq *gcwq = pool->gcwq;
2102
2103 /* tell the scheduler that this is a workqueue worker */
2104 worker->task->flags |= PF_WQ_WORKER;
2105 woke_up:
2106 spin_lock_irq(&gcwq->lock);
2107
2108 /*
2109 * DIE can be set only while idle and REBIND set while busy has
2110 * @worker->rebind_work scheduled. Checking here is enough.
2111 */
2112 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2113 spin_unlock_irq(&gcwq->lock);
2114
2115 if (worker->flags & WORKER_DIE) {
2116 worker->task->flags &= ~PF_WQ_WORKER;
2117 return 0;
2118 }
2119
2120 idle_worker_rebind(worker);
2121 goto woke_up;
2122 }
2123
2124 worker_leave_idle(worker);
2125 recheck:
2126 /* no more worker necessary? */
2127 if (!need_more_worker(pool))
2128 goto sleep;
2129
2130 /* do we need to manage? */
2131 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2132 goto recheck;
2133
2134 /*
2135 * ->scheduled list can only be filled while a worker is
2136 * preparing to process a work or actually processing it.
2137 * Make sure nobody diddled with it while I was sleeping.
2138 */
2139 BUG_ON(!list_empty(&worker->scheduled));
2140
2141 /*
2142 * When control reaches this point, we're guaranteed to have
2143 * at least one idle worker or that someone else has already
2144 * assumed the manager role.
2145 */
2146 worker_clr_flags(worker, WORKER_PREP);
2147
2148 do {
2149 struct work_struct *work =
2150 list_first_entry(&pool->worklist,
2151 struct work_struct, entry);
2152
2153 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2154 /* optimization path, not strictly necessary */
2155 process_one_work(worker, work);
2156 if (unlikely(!list_empty(&worker->scheduled)))
2157 process_scheduled_works(worker);
2158 } else {
2159 move_linked_works(work, &worker->scheduled, NULL);
2160 process_scheduled_works(worker);
2161 }
2162 } while (keep_working(pool));
2163
2164 worker_set_flags(worker, WORKER_PREP, false);
2165 sleep:
2166 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2167 goto recheck;
2168
2169 /*
2170 * gcwq->lock is held and there's no work to process and no
2171 * need to manage, sleep. Workers are woken up only while
2172 * holding gcwq->lock or from local cpu, so setting the
2173 * current state before releasing gcwq->lock is enough to
2174 * prevent losing any event.
2175 */
2176 worker_enter_idle(worker);
2177 __set_current_state(TASK_INTERRUPTIBLE);
2178 spin_unlock_irq(&gcwq->lock);
2179 schedule();
2180 goto woke_up;
2181 }
2182
2183 /**
2184 * rescuer_thread - the rescuer thread function
2185 * @__wq: the associated workqueue
2186 *
2187 * Workqueue rescuer thread function. There's one rescuer for each
2188 * workqueue which has WQ_RESCUER set.
2189 *
2190 * Regular work processing on a gcwq may block trying to create a new
2191 * worker which uses GFP_KERNEL allocation which has slight chance of
2192 * developing into deadlock if some works currently on the same queue
2193 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2194 * the problem rescuer solves.
2195 *
2196 * When such condition is possible, the gcwq summons rescuers of all
2197 * workqueues which have works queued on the gcwq and let them process
2198 * those works so that forward progress can be guaranteed.
2199 *
2200 * This should happen rarely.
2201 */
2202 static int rescuer_thread(void *__wq)
2203 {
2204 struct workqueue_struct *wq = __wq;
2205 struct worker *rescuer = wq->rescuer;
2206 struct list_head *scheduled = &rescuer->scheduled;
2207 bool is_unbound = wq->flags & WQ_UNBOUND;
2208 unsigned int cpu;
2209
2210 set_user_nice(current, RESCUER_NICE_LEVEL);
2211 repeat:
2212 set_current_state(TASK_INTERRUPTIBLE);
2213
2214 if (kthread_should_stop())
2215 return 0;
2216
2217 /*
2218 * See whether any cpu is asking for help. Unbounded
2219 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2220 */
2221 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2222 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2223 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2224 struct worker_pool *pool = cwq->pool;
2225 struct global_cwq *gcwq = pool->gcwq;
2226 struct work_struct *work, *n;
2227
2228 __set_current_state(TASK_RUNNING);
2229 mayday_clear_cpu(cpu, wq->mayday_mask);
2230
2231 /* migrate to the target cpu if possible */
2232 rescuer->pool = pool;
2233 worker_maybe_bind_and_lock(rescuer);
2234
2235 /*
2236 * Slurp in all works issued via this workqueue and
2237 * process'em.
2238 */
2239 BUG_ON(!list_empty(&rescuer->scheduled));
2240 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2241 if (get_work_cwq(work) == cwq)
2242 move_linked_works(work, scheduled, &n);
2243
2244 process_scheduled_works(rescuer);
2245
2246 /*
2247 * Leave this gcwq. If keep_working() is %true, notify a
2248 * regular worker; otherwise, we end up with 0 concurrency
2249 * and stalling the execution.
2250 */
2251 if (keep_working(pool))
2252 wake_up_worker(pool);
2253
2254 spin_unlock_irq(&gcwq->lock);
2255 }
2256
2257 schedule();
2258 goto repeat;
2259 }
2260
2261 struct wq_barrier {
2262 struct work_struct work;
2263 struct completion done;
2264 };
2265
2266 static void wq_barrier_func(struct work_struct *work)
2267 {
2268 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2269 complete(&barr->done);
2270 }
2271
2272 /**
2273 * insert_wq_barrier - insert a barrier work
2274 * @cwq: cwq to insert barrier into
2275 * @barr: wq_barrier to insert
2276 * @target: target work to attach @barr to
2277 * @worker: worker currently executing @target, NULL if @target is not executing
2278 *
2279 * @barr is linked to @target such that @barr is completed only after
2280 * @target finishes execution. Please note that the ordering
2281 * guarantee is observed only with respect to @target and on the local
2282 * cpu.
2283 *
2284 * Currently, a queued barrier can't be canceled. This is because
2285 * try_to_grab_pending() can't determine whether the work to be
2286 * grabbed is at the head of the queue and thus can't clear LINKED
2287 * flag of the previous work while there must be a valid next work
2288 * after a work with LINKED flag set.
2289 *
2290 * Note that when @worker is non-NULL, @target may be modified
2291 * underneath us, so we can't reliably determine cwq from @target.
2292 *
2293 * CONTEXT:
2294 * spin_lock_irq(gcwq->lock).
2295 */
2296 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2297 struct wq_barrier *barr,
2298 struct work_struct *target, struct worker *worker)
2299 {
2300 struct list_head *head;
2301 unsigned int linked = 0;
2302
2303 /*
2304 * debugobject calls are safe here even with gcwq->lock locked
2305 * as we know for sure that this will not trigger any of the
2306 * checks and call back into the fixup functions where we
2307 * might deadlock.
2308 */
2309 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2310 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2311 init_completion(&barr->done);
2312
2313 /*
2314 * If @target is currently being executed, schedule the
2315 * barrier to the worker; otherwise, put it after @target.
2316 */
2317 if (worker)
2318 head = worker->scheduled.next;
2319 else {
2320 unsigned long *bits = work_data_bits(target);
2321
2322 head = target->entry.next;
2323 /* there can already be other linked works, inherit and set */
2324 linked = *bits & WORK_STRUCT_LINKED;
2325 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2326 }
2327
2328 debug_work_activate(&barr->work);
2329 insert_work(cwq, &barr->work, head,
2330 work_color_to_flags(WORK_NO_COLOR) | linked);
2331 }
2332
2333 /**
2334 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2335 * @wq: workqueue being flushed
2336 * @flush_color: new flush color, < 0 for no-op
2337 * @work_color: new work color, < 0 for no-op
2338 *
2339 * Prepare cwqs for workqueue flushing.
2340 *
2341 * If @flush_color is non-negative, flush_color on all cwqs should be
2342 * -1. If no cwq has in-flight commands at the specified color, all
2343 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2344 * has in flight commands, its cwq->flush_color is set to
2345 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2346 * wakeup logic is armed and %true is returned.
2347 *
2348 * The caller should have initialized @wq->first_flusher prior to
2349 * calling this function with non-negative @flush_color. If
2350 * @flush_color is negative, no flush color update is done and %false
2351 * is returned.
2352 *
2353 * If @work_color is non-negative, all cwqs should have the same
2354 * work_color which is previous to @work_color and all will be
2355 * advanced to @work_color.
2356 *
2357 * CONTEXT:
2358 * mutex_lock(wq->flush_mutex).
2359 *
2360 * RETURNS:
2361 * %true if @flush_color >= 0 and there's something to flush. %false
2362 * otherwise.
2363 */
2364 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2365 int flush_color, int work_color)
2366 {
2367 bool wait = false;
2368 unsigned int cpu;
2369
2370 if (flush_color >= 0) {
2371 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2372 atomic_set(&wq->nr_cwqs_to_flush, 1);
2373 }
2374
2375 for_each_cwq_cpu(cpu, wq) {
2376 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2377 struct global_cwq *gcwq = cwq->pool->gcwq;
2378
2379 spin_lock_irq(&gcwq->lock);
2380
2381 if (flush_color >= 0) {
2382 BUG_ON(cwq->flush_color != -1);
2383
2384 if (cwq->nr_in_flight[flush_color]) {
2385 cwq->flush_color = flush_color;
2386 atomic_inc(&wq->nr_cwqs_to_flush);
2387 wait = true;
2388 }
2389 }
2390
2391 if (work_color >= 0) {
2392 BUG_ON(work_color != work_next_color(cwq->work_color));
2393 cwq->work_color = work_color;
2394 }
2395
2396 spin_unlock_irq(&gcwq->lock);
2397 }
2398
2399 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2400 complete(&wq->first_flusher->done);
2401
2402 return wait;
2403 }
2404
2405 /**
2406 * flush_workqueue - ensure that any scheduled work has run to completion.
2407 * @wq: workqueue to flush
2408 *
2409 * Forces execution of the workqueue and blocks until its completion.
2410 * This is typically used in driver shutdown handlers.
2411 *
2412 * We sleep until all works which were queued on entry have been handled,
2413 * but we are not livelocked by new incoming ones.
2414 */
2415 void flush_workqueue(struct workqueue_struct *wq)
2416 {
2417 struct wq_flusher this_flusher = {
2418 .list = LIST_HEAD_INIT(this_flusher.list),
2419 .flush_color = -1,
2420 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2421 };
2422 int next_color;
2423
2424 lock_map_acquire(&wq->lockdep_map);
2425 lock_map_release(&wq->lockdep_map);
2426
2427 mutex_lock(&wq->flush_mutex);
2428
2429 /*
2430 * Start-to-wait phase
2431 */
2432 next_color = work_next_color(wq->work_color);
2433
2434 if (next_color != wq->flush_color) {
2435 /*
2436 * Color space is not full. The current work_color
2437 * becomes our flush_color and work_color is advanced
2438 * by one.
2439 */
2440 BUG_ON(!list_empty(&wq->flusher_overflow));
2441 this_flusher.flush_color = wq->work_color;
2442 wq->work_color = next_color;
2443
2444 if (!wq->first_flusher) {
2445 /* no flush in progress, become the first flusher */
2446 BUG_ON(wq->flush_color != this_flusher.flush_color);
2447
2448 wq->first_flusher = &this_flusher;
2449
2450 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2451 wq->work_color)) {
2452 /* nothing to flush, done */
2453 wq->flush_color = next_color;
2454 wq->first_flusher = NULL;
2455 goto out_unlock;
2456 }
2457 } else {
2458 /* wait in queue */
2459 BUG_ON(wq->flush_color == this_flusher.flush_color);
2460 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2461 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2462 }
2463 } else {
2464 /*
2465 * Oops, color space is full, wait on overflow queue.
2466 * The next flush completion will assign us
2467 * flush_color and transfer to flusher_queue.
2468 */
2469 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2470 }
2471
2472 mutex_unlock(&wq->flush_mutex);
2473
2474 wait_for_completion(&this_flusher.done);
2475
2476 /*
2477 * Wake-up-and-cascade phase
2478 *
2479 * First flushers are responsible for cascading flushes and
2480 * handling overflow. Non-first flushers can simply return.
2481 */
2482 if (wq->first_flusher != &this_flusher)
2483 return;
2484
2485 mutex_lock(&wq->flush_mutex);
2486
2487 /* we might have raced, check again with mutex held */
2488 if (wq->first_flusher != &this_flusher)
2489 goto out_unlock;
2490
2491 wq->first_flusher = NULL;
2492
2493 BUG_ON(!list_empty(&this_flusher.list));
2494 BUG_ON(wq->flush_color != this_flusher.flush_color);
2495
2496 while (true) {
2497 struct wq_flusher *next, *tmp;
2498
2499 /* complete all the flushers sharing the current flush color */
2500 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2501 if (next->flush_color != wq->flush_color)
2502 break;
2503 list_del_init(&next->list);
2504 complete(&next->done);
2505 }
2506
2507 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2508 wq->flush_color != work_next_color(wq->work_color));
2509
2510 /* this flush_color is finished, advance by one */
2511 wq->flush_color = work_next_color(wq->flush_color);
2512
2513 /* one color has been freed, handle overflow queue */
2514 if (!list_empty(&wq->flusher_overflow)) {
2515 /*
2516 * Assign the same color to all overflowed
2517 * flushers, advance work_color and append to
2518 * flusher_queue. This is the start-to-wait
2519 * phase for these overflowed flushers.
2520 */
2521 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2522 tmp->flush_color = wq->work_color;
2523
2524 wq->work_color = work_next_color(wq->work_color);
2525
2526 list_splice_tail_init(&wq->flusher_overflow,
2527 &wq->flusher_queue);
2528 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2529 }
2530
2531 if (list_empty(&wq->flusher_queue)) {
2532 BUG_ON(wq->flush_color != wq->work_color);
2533 break;
2534 }
2535
2536 /*
2537 * Need to flush more colors. Make the next flusher
2538 * the new first flusher and arm cwqs.
2539 */
2540 BUG_ON(wq->flush_color == wq->work_color);
2541 BUG_ON(wq->flush_color != next->flush_color);
2542
2543 list_del_init(&next->list);
2544 wq->first_flusher = next;
2545
2546 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2547 break;
2548
2549 /*
2550 * Meh... this color is already done, clear first
2551 * flusher and repeat cascading.
2552 */
2553 wq->first_flusher = NULL;
2554 }
2555
2556 out_unlock:
2557 mutex_unlock(&wq->flush_mutex);
2558 }
2559 EXPORT_SYMBOL_GPL(flush_workqueue);
2560
2561 /**
2562 * drain_workqueue - drain a workqueue
2563 * @wq: workqueue to drain
2564 *
2565 * Wait until the workqueue becomes empty. While draining is in progress,
2566 * only chain queueing is allowed. IOW, only currently pending or running
2567 * work items on @wq can queue further work items on it. @wq is flushed
2568 * repeatedly until it becomes empty. The number of flushing is detemined
2569 * by the depth of chaining and should be relatively short. Whine if it
2570 * takes too long.
2571 */
2572 void drain_workqueue(struct workqueue_struct *wq)
2573 {
2574 unsigned int flush_cnt = 0;
2575 unsigned int cpu;
2576
2577 /*
2578 * __queue_work() needs to test whether there are drainers, is much
2579 * hotter than drain_workqueue() and already looks at @wq->flags.
2580 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2581 */
2582 spin_lock(&workqueue_lock);
2583 if (!wq->nr_drainers++)
2584 wq->flags |= WQ_DRAINING;
2585 spin_unlock(&workqueue_lock);
2586 reflush:
2587 flush_workqueue(wq);
2588
2589 for_each_cwq_cpu(cpu, wq) {
2590 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2591 bool drained;
2592
2593 spin_lock_irq(&cwq->pool->gcwq->lock);
2594 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2595 spin_unlock_irq(&cwq->pool->gcwq->lock);
2596
2597 if (drained)
2598 continue;
2599
2600 if (++flush_cnt == 10 ||
2601 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2602 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2603 wq->name, flush_cnt);
2604 goto reflush;
2605 }
2606
2607 spin_lock(&workqueue_lock);
2608 if (!--wq->nr_drainers)
2609 wq->flags &= ~WQ_DRAINING;
2610 spin_unlock(&workqueue_lock);
2611 }
2612 EXPORT_SYMBOL_GPL(drain_workqueue);
2613
2614 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2615 bool wait_executing)
2616 {
2617 struct worker *worker = NULL;
2618 struct global_cwq *gcwq;
2619 struct cpu_workqueue_struct *cwq;
2620
2621 might_sleep();
2622 gcwq = get_work_gcwq(work);
2623 if (!gcwq)
2624 return false;
2625
2626 spin_lock_irq(&gcwq->lock);
2627 if (!list_empty(&work->entry)) {
2628 /*
2629 * See the comment near try_to_grab_pending()->smp_rmb().
2630 * If it was re-queued to a different gcwq under us, we
2631 * are not going to wait.
2632 */
2633 smp_rmb();
2634 cwq = get_work_cwq(work);
2635 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2636 goto already_gone;
2637 } else if (wait_executing) {
2638 worker = find_worker_executing_work(gcwq, work);
2639 if (!worker)
2640 goto already_gone;
2641 cwq = worker->current_cwq;
2642 } else
2643 goto already_gone;
2644
2645 insert_wq_barrier(cwq, barr, work, worker);
2646 spin_unlock_irq(&gcwq->lock);
2647
2648 /*
2649 * If @max_active is 1 or rescuer is in use, flushing another work
2650 * item on the same workqueue may lead to deadlock. Make sure the
2651 * flusher is not running on the same workqueue by verifying write
2652 * access.
2653 */
2654 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2655 lock_map_acquire(&cwq->wq->lockdep_map);
2656 else
2657 lock_map_acquire_read(&cwq->wq->lockdep_map);
2658 lock_map_release(&cwq->wq->lockdep_map);
2659
2660 return true;
2661 already_gone:
2662 spin_unlock_irq(&gcwq->lock);
2663 return false;
2664 }
2665
2666 /**
2667 * flush_work - wait for a work to finish executing the last queueing instance
2668 * @work: the work to flush
2669 *
2670 * Wait until @work has finished execution. This function considers
2671 * only the last queueing instance of @work. If @work has been
2672 * enqueued across different CPUs on a non-reentrant workqueue or on
2673 * multiple workqueues, @work might still be executing on return on
2674 * some of the CPUs from earlier queueing.
2675 *
2676 * If @work was queued only on a non-reentrant, ordered or unbound
2677 * workqueue, @work is guaranteed to be idle on return if it hasn't
2678 * been requeued since flush started.
2679 *
2680 * RETURNS:
2681 * %true if flush_work() waited for the work to finish execution,
2682 * %false if it was already idle.
2683 */
2684 bool flush_work(struct work_struct *work)
2685 {
2686 struct wq_barrier barr;
2687
2688 lock_map_acquire(&work->lockdep_map);
2689 lock_map_release(&work->lockdep_map);
2690
2691 if (start_flush_work(work, &barr, true)) {
2692 wait_for_completion(&barr.done);
2693 destroy_work_on_stack(&barr.work);
2694 return true;
2695 } else
2696 return false;
2697 }
2698 EXPORT_SYMBOL_GPL(flush_work);
2699
2700 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2701 {
2702 struct wq_barrier barr;
2703 struct worker *worker;
2704
2705 spin_lock_irq(&gcwq->lock);
2706
2707 worker = find_worker_executing_work(gcwq, work);
2708 if (unlikely(worker))
2709 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2710
2711 spin_unlock_irq(&gcwq->lock);
2712
2713 if (unlikely(worker)) {
2714 wait_for_completion(&barr.done);
2715 destroy_work_on_stack(&barr.work);
2716 return true;
2717 } else
2718 return false;
2719 }
2720
2721 static bool wait_on_work(struct work_struct *work)
2722 {
2723 bool ret = false;
2724 int cpu;
2725
2726 might_sleep();
2727
2728 lock_map_acquire(&work->lockdep_map);
2729 lock_map_release(&work->lockdep_map);
2730
2731 for_each_gcwq_cpu(cpu)
2732 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2733 return ret;
2734 }
2735
2736 /**
2737 * flush_work_sync - wait until a work has finished execution
2738 * @work: the work to flush
2739 *
2740 * Wait until @work has finished execution. On return, it's
2741 * guaranteed that all queueing instances of @work which happened
2742 * before this function is called are finished. In other words, if
2743 * @work hasn't been requeued since this function was called, @work is
2744 * guaranteed to be idle on return.
2745 *
2746 * RETURNS:
2747 * %true if flush_work_sync() waited for the work to finish execution,
2748 * %false if it was already idle.
2749 */
2750 bool flush_work_sync(struct work_struct *work)
2751 {
2752 struct wq_barrier barr;
2753 bool pending, waited;
2754
2755 /* we'll wait for executions separately, queue barr only if pending */
2756 pending = start_flush_work(work, &barr, false);
2757
2758 /* wait for executions to finish */
2759 waited = wait_on_work(work);
2760
2761 /* wait for the pending one */
2762 if (pending) {
2763 wait_for_completion(&barr.done);
2764 destroy_work_on_stack(&barr.work);
2765 }
2766
2767 return pending || waited;
2768 }
2769 EXPORT_SYMBOL_GPL(flush_work_sync);
2770
2771 /*
2772 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2773 * so this work can't be re-armed in any way.
2774 */
2775 static int try_to_grab_pending(struct work_struct *work)
2776 {
2777 struct global_cwq *gcwq;
2778 int ret = -1;
2779
2780 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2781 return 0;
2782
2783 /*
2784 * The queueing is in progress, or it is already queued. Try to
2785 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2786 */
2787 gcwq = get_work_gcwq(work);
2788 if (!gcwq)
2789 return ret;
2790
2791 spin_lock_irq(&gcwq->lock);
2792 if (!list_empty(&work->entry)) {
2793 /*
2794 * This work is queued, but perhaps we locked the wrong gcwq.
2795 * In that case we must see the new value after rmb(), see
2796 * insert_work()->wmb().
2797 */
2798 smp_rmb();
2799 if (gcwq == get_work_gcwq(work)) {
2800 debug_work_deactivate(work);
2801 list_del_init(&work->entry);
2802 cwq_dec_nr_in_flight(get_work_cwq(work),
2803 get_work_color(work),
2804 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2805 ret = 1;
2806 }
2807 }
2808 spin_unlock_irq(&gcwq->lock);
2809
2810 return ret;
2811 }
2812
2813 static bool __cancel_work_timer(struct work_struct *work,
2814 struct timer_list* timer)
2815 {
2816 int ret;
2817
2818 do {
2819 ret = (timer && likely(del_timer(timer)));
2820 if (!ret)
2821 ret = try_to_grab_pending(work);
2822 wait_on_work(work);
2823 } while (unlikely(ret < 0));
2824
2825 clear_work_data(work);
2826 return ret;
2827 }
2828
2829 /**
2830 * cancel_work_sync - cancel a work and wait for it to finish
2831 * @work: the work to cancel
2832 *
2833 * Cancel @work and wait for its execution to finish. This function
2834 * can be used even if the work re-queues itself or migrates to
2835 * another workqueue. On return from this function, @work is
2836 * guaranteed to be not pending or executing on any CPU.
2837 *
2838 * cancel_work_sync(&delayed_work->work) must not be used for
2839 * delayed_work's. Use cancel_delayed_work_sync() instead.
2840 *
2841 * The caller must ensure that the workqueue on which @work was last
2842 * queued can't be destroyed before this function returns.
2843 *
2844 * RETURNS:
2845 * %true if @work was pending, %false otherwise.
2846 */
2847 bool cancel_work_sync(struct work_struct *work)
2848 {
2849 return __cancel_work_timer(work, NULL);
2850 }
2851 EXPORT_SYMBOL_GPL(cancel_work_sync);
2852
2853 /**
2854 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2855 * @dwork: the delayed work to flush
2856 *
2857 * Delayed timer is cancelled and the pending work is queued for
2858 * immediate execution. Like flush_work(), this function only
2859 * considers the last queueing instance of @dwork.
2860 *
2861 * RETURNS:
2862 * %true if flush_work() waited for the work to finish execution,
2863 * %false if it was already idle.
2864 */
2865 bool flush_delayed_work(struct delayed_work *dwork)
2866 {
2867 if (del_timer_sync(&dwork->timer))
2868 __queue_work(raw_smp_processor_id(),
2869 get_work_cwq(&dwork->work)->wq, &dwork->work);
2870 return flush_work(&dwork->work);
2871 }
2872 EXPORT_SYMBOL(flush_delayed_work);
2873
2874 /**
2875 * flush_delayed_work_sync - wait for a dwork to finish
2876 * @dwork: the delayed work to flush
2877 *
2878 * Delayed timer is cancelled and the pending work is queued for
2879 * execution immediately. Other than timer handling, its behavior
2880 * is identical to flush_work_sync().
2881 *
2882 * RETURNS:
2883 * %true if flush_work_sync() waited for the work to finish execution,
2884 * %false if it was already idle.
2885 */
2886 bool flush_delayed_work_sync(struct delayed_work *dwork)
2887 {
2888 if (del_timer_sync(&dwork->timer))
2889 __queue_work(raw_smp_processor_id(),
2890 get_work_cwq(&dwork->work)->wq, &dwork->work);
2891 return flush_work_sync(&dwork->work);
2892 }
2893 EXPORT_SYMBOL(flush_delayed_work_sync);
2894
2895 /**
2896 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2897 * @dwork: the delayed work cancel
2898 *
2899 * This is cancel_work_sync() for delayed works.
2900 *
2901 * RETURNS:
2902 * %true if @dwork was pending, %false otherwise.
2903 */
2904 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2905 {
2906 return __cancel_work_timer(&dwork->work, &dwork->timer);
2907 }
2908 EXPORT_SYMBOL(cancel_delayed_work_sync);
2909
2910 /**
2911 * schedule_work - put work task in global workqueue
2912 * @work: job to be done
2913 *
2914 * Returns zero if @work was already on the kernel-global workqueue and
2915 * non-zero otherwise.
2916 *
2917 * This puts a job in the kernel-global workqueue if it was not already
2918 * queued and leaves it in the same position on the kernel-global
2919 * workqueue otherwise.
2920 */
2921 int schedule_work(struct work_struct *work)
2922 {
2923 return queue_work(system_wq, work);
2924 }
2925 EXPORT_SYMBOL(schedule_work);
2926
2927 /*
2928 * schedule_work_on - put work task on a specific cpu
2929 * @cpu: cpu to put the work task on
2930 * @work: job to be done
2931 *
2932 * This puts a job on a specific cpu
2933 */
2934 int schedule_work_on(int cpu, struct work_struct *work)
2935 {
2936 return queue_work_on(cpu, system_wq, work);
2937 }
2938 EXPORT_SYMBOL(schedule_work_on);
2939
2940 /**
2941 * schedule_delayed_work - put work task in global workqueue after delay
2942 * @dwork: job to be done
2943 * @delay: number of jiffies to wait or 0 for immediate execution
2944 *
2945 * After waiting for a given time this puts a job in the kernel-global
2946 * workqueue.
2947 */
2948 int schedule_delayed_work(struct delayed_work *dwork,
2949 unsigned long delay)
2950 {
2951 return queue_delayed_work(system_wq, dwork, delay);
2952 }
2953 EXPORT_SYMBOL(schedule_delayed_work);
2954
2955 /**
2956 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2957 * @cpu: cpu to use
2958 * @dwork: job to be done
2959 * @delay: number of jiffies to wait
2960 *
2961 * After waiting for a given time this puts a job in the kernel-global
2962 * workqueue on the specified CPU.
2963 */
2964 int schedule_delayed_work_on(int cpu,
2965 struct delayed_work *dwork, unsigned long delay)
2966 {
2967 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2968 }
2969 EXPORT_SYMBOL(schedule_delayed_work_on);
2970
2971 /**
2972 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2973 * @func: the function to call
2974 *
2975 * schedule_on_each_cpu() executes @func on each online CPU using the
2976 * system workqueue and blocks until all CPUs have completed.
2977 * schedule_on_each_cpu() is very slow.
2978 *
2979 * RETURNS:
2980 * 0 on success, -errno on failure.
2981 */
2982 int schedule_on_each_cpu(work_func_t func)
2983 {
2984 int cpu;
2985 struct work_struct __percpu *works;
2986
2987 works = alloc_percpu(struct work_struct);
2988 if (!works)
2989 return -ENOMEM;
2990
2991 get_online_cpus();
2992
2993 for_each_online_cpu(cpu) {
2994 struct work_struct *work = per_cpu_ptr(works, cpu);
2995
2996 INIT_WORK(work, func);
2997 schedule_work_on(cpu, work);
2998 }
2999
3000 for_each_online_cpu(cpu)
3001 flush_work(per_cpu_ptr(works, cpu));
3002
3003 put_online_cpus();
3004 free_percpu(works);
3005 return 0;
3006 }
3007
3008 /**
3009 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3010 *
3011 * Forces execution of the kernel-global workqueue and blocks until its
3012 * completion.
3013 *
3014 * Think twice before calling this function! It's very easy to get into
3015 * trouble if you don't take great care. Either of the following situations
3016 * will lead to deadlock:
3017 *
3018 * One of the work items currently on the workqueue needs to acquire
3019 * a lock held by your code or its caller.
3020 *
3021 * Your code is running in the context of a work routine.
3022 *
3023 * They will be detected by lockdep when they occur, but the first might not
3024 * occur very often. It depends on what work items are on the workqueue and
3025 * what locks they need, which you have no control over.
3026 *
3027 * In most situations flushing the entire workqueue is overkill; you merely
3028 * need to know that a particular work item isn't queued and isn't running.
3029 * In such cases you should use cancel_delayed_work_sync() or
3030 * cancel_work_sync() instead.
3031 */
3032 void flush_scheduled_work(void)
3033 {
3034 flush_workqueue(system_wq);
3035 }
3036 EXPORT_SYMBOL(flush_scheduled_work);
3037
3038 /**
3039 * execute_in_process_context - reliably execute the routine with user context
3040 * @fn: the function to execute
3041 * @ew: guaranteed storage for the execute work structure (must
3042 * be available when the work executes)
3043 *
3044 * Executes the function immediately if process context is available,
3045 * otherwise schedules the function for delayed execution.
3046 *
3047 * Returns: 0 - function was executed
3048 * 1 - function was scheduled for execution
3049 */
3050 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3051 {
3052 if (!in_interrupt()) {
3053 fn(&ew->work);
3054 return 0;
3055 }
3056
3057 INIT_WORK(&ew->work, fn);
3058 schedule_work(&ew->work);
3059
3060 return 1;
3061 }
3062 EXPORT_SYMBOL_GPL(execute_in_process_context);
3063
3064 int keventd_up(void)
3065 {
3066 return system_wq != NULL;
3067 }
3068
3069 static int alloc_cwqs(struct workqueue_struct *wq)
3070 {
3071 /*
3072 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3073 * Make sure that the alignment isn't lower than that of
3074 * unsigned long long.
3075 */
3076 const size_t size = sizeof(struct cpu_workqueue_struct);
3077 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3078 __alignof__(unsigned long long));
3079
3080 if (!(wq->flags & WQ_UNBOUND))
3081 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3082 else {
3083 void *ptr;
3084
3085 /*
3086 * Allocate enough room to align cwq and put an extra
3087 * pointer at the end pointing back to the originally
3088 * allocated pointer which will be used for free.
3089 */
3090 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3091 if (ptr) {
3092 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3093 *(void **)(wq->cpu_wq.single + 1) = ptr;
3094 }
3095 }
3096
3097 /* just in case, make sure it's actually aligned */
3098 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3099 return wq->cpu_wq.v ? 0 : -ENOMEM;
3100 }
3101
3102 static void free_cwqs(struct workqueue_struct *wq)
3103 {
3104 if (!(wq->flags & WQ_UNBOUND))
3105 free_percpu(wq->cpu_wq.pcpu);
3106 else if (wq->cpu_wq.single) {
3107 /* the pointer to free is stored right after the cwq */
3108 kfree(*(void **)(wq->cpu_wq.single + 1));
3109 }
3110 }
3111
3112 static int wq_clamp_max_active(int max_active, unsigned int flags,
3113 const char *name)
3114 {
3115 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3116
3117 if (max_active < 1 || max_active > lim)
3118 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3119 "is out of range, clamping between %d and %d\n",
3120 max_active, name, 1, lim);
3121
3122 return clamp_val(max_active, 1, lim);
3123 }
3124
3125 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3126 unsigned int flags,
3127 int max_active,
3128 struct lock_class_key *key,
3129 const char *lock_name, ...)
3130 {
3131 va_list args, args1;
3132 struct workqueue_struct *wq;
3133 unsigned int cpu;
3134 size_t namelen;
3135
3136 /* determine namelen, allocate wq and format name */
3137 va_start(args, lock_name);
3138 va_copy(args1, args);
3139 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3140
3141 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3142 if (!wq)
3143 goto err;
3144
3145 vsnprintf(wq->name, namelen, fmt, args1);
3146 va_end(args);
3147 va_end(args1);
3148
3149 /*
3150 * Workqueues which may be used during memory reclaim should
3151 * have a rescuer to guarantee forward progress.
3152 */
3153 if (flags & WQ_MEM_RECLAIM)
3154 flags |= WQ_RESCUER;
3155
3156 max_active = max_active ?: WQ_DFL_ACTIVE;
3157 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3158
3159 /* init wq */
3160 wq->flags = flags;
3161 wq->saved_max_active = max_active;
3162 mutex_init(&wq->flush_mutex);
3163 atomic_set(&wq->nr_cwqs_to_flush, 0);
3164 INIT_LIST_HEAD(&wq->flusher_queue);
3165 INIT_LIST_HEAD(&wq->flusher_overflow);
3166
3167 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3168 INIT_LIST_HEAD(&wq->list);
3169
3170 if (alloc_cwqs(wq) < 0)
3171 goto err;
3172
3173 for_each_cwq_cpu(cpu, wq) {
3174 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3175 struct global_cwq *gcwq = get_gcwq(cpu);
3176 int pool_idx = (bool)(flags & WQ_HIGHPRI);
3177
3178 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3179 cwq->pool = &gcwq->pools[pool_idx];
3180 cwq->wq = wq;
3181 cwq->flush_color = -1;
3182 cwq->max_active = max_active;
3183 INIT_LIST_HEAD(&cwq->delayed_works);
3184 }
3185
3186 if (flags & WQ_RESCUER) {
3187 struct worker *rescuer;
3188
3189 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3190 goto err;
3191
3192 wq->rescuer = rescuer = alloc_worker();
3193 if (!rescuer)
3194 goto err;
3195
3196 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3197 wq->name);
3198 if (IS_ERR(rescuer->task))
3199 goto err;
3200
3201 rescuer->task->flags |= PF_THREAD_BOUND;
3202 wake_up_process(rescuer->task);
3203 }
3204
3205 /*
3206 * workqueue_lock protects global freeze state and workqueues
3207 * list. Grab it, set max_active accordingly and add the new
3208 * workqueue to workqueues list.
3209 */
3210 spin_lock(&workqueue_lock);
3211
3212 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3213 for_each_cwq_cpu(cpu, wq)
3214 get_cwq(cpu, wq)->max_active = 0;
3215
3216 list_add(&wq->list, &workqueues);
3217
3218 spin_unlock(&workqueue_lock);
3219
3220 return wq;
3221 err:
3222 if (wq) {
3223 free_cwqs(wq);
3224 free_mayday_mask(wq->mayday_mask);
3225 kfree(wq->rescuer);
3226 kfree(wq);
3227 }
3228 return NULL;
3229 }
3230 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3231
3232 /**
3233 * destroy_workqueue - safely terminate a workqueue
3234 * @wq: target workqueue
3235 *
3236 * Safely destroy a workqueue. All work currently pending will be done first.
3237 */
3238 void destroy_workqueue(struct workqueue_struct *wq)
3239 {
3240 unsigned int cpu;
3241
3242 /* drain it before proceeding with destruction */
3243 drain_workqueue(wq);
3244
3245 /*
3246 * wq list is used to freeze wq, remove from list after
3247 * flushing is complete in case freeze races us.
3248 */
3249 spin_lock(&workqueue_lock);
3250 list_del(&wq->list);
3251 spin_unlock(&workqueue_lock);
3252
3253 /* sanity check */
3254 for_each_cwq_cpu(cpu, wq) {
3255 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3256 int i;
3257
3258 for (i = 0; i < WORK_NR_COLORS; i++)
3259 BUG_ON(cwq->nr_in_flight[i]);
3260 BUG_ON(cwq->nr_active);
3261 BUG_ON(!list_empty(&cwq->delayed_works));
3262 }
3263
3264 if (wq->flags & WQ_RESCUER) {
3265 kthread_stop(wq->rescuer->task);
3266 free_mayday_mask(wq->mayday_mask);
3267 kfree(wq->rescuer);
3268 }
3269
3270 free_cwqs(wq);
3271 kfree(wq);
3272 }
3273 EXPORT_SYMBOL_GPL(destroy_workqueue);
3274
3275 /**
3276 * workqueue_set_max_active - adjust max_active of a workqueue
3277 * @wq: target workqueue
3278 * @max_active: new max_active value.
3279 *
3280 * Set max_active of @wq to @max_active.
3281 *
3282 * CONTEXT:
3283 * Don't call from IRQ context.
3284 */
3285 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3286 {
3287 unsigned int cpu;
3288
3289 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3290
3291 spin_lock(&workqueue_lock);
3292
3293 wq->saved_max_active = max_active;
3294
3295 for_each_cwq_cpu(cpu, wq) {
3296 struct global_cwq *gcwq = get_gcwq(cpu);
3297
3298 spin_lock_irq(&gcwq->lock);
3299
3300 if (!(wq->flags & WQ_FREEZABLE) ||
3301 !(gcwq->flags & GCWQ_FREEZING))
3302 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3303
3304 spin_unlock_irq(&gcwq->lock);
3305 }
3306
3307 spin_unlock(&workqueue_lock);
3308 }
3309 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3310
3311 /**
3312 * workqueue_congested - test whether a workqueue is congested
3313 * @cpu: CPU in question
3314 * @wq: target workqueue
3315 *
3316 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3317 * no synchronization around this function and the test result is
3318 * unreliable and only useful as advisory hints or for debugging.
3319 *
3320 * RETURNS:
3321 * %true if congested, %false otherwise.
3322 */
3323 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3324 {
3325 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3326
3327 return !list_empty(&cwq->delayed_works);
3328 }
3329 EXPORT_SYMBOL_GPL(workqueue_congested);
3330
3331 /**
3332 * work_cpu - return the last known associated cpu for @work
3333 * @work: the work of interest
3334 *
3335 * RETURNS:
3336 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3337 */
3338 unsigned int work_cpu(struct work_struct *work)
3339 {
3340 struct global_cwq *gcwq = get_work_gcwq(work);
3341
3342 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3343 }
3344 EXPORT_SYMBOL_GPL(work_cpu);
3345
3346 /**
3347 * work_busy - test whether a work is currently pending or running
3348 * @work: the work to be tested
3349 *
3350 * Test whether @work is currently pending or running. There is no
3351 * synchronization around this function and the test result is
3352 * unreliable and only useful as advisory hints or for debugging.
3353 * Especially for reentrant wqs, the pending state might hide the
3354 * running state.
3355 *
3356 * RETURNS:
3357 * OR'd bitmask of WORK_BUSY_* bits.
3358 */
3359 unsigned int work_busy(struct work_struct *work)
3360 {
3361 struct global_cwq *gcwq = get_work_gcwq(work);
3362 unsigned long flags;
3363 unsigned int ret = 0;
3364
3365 if (!gcwq)
3366 return false;
3367
3368 spin_lock_irqsave(&gcwq->lock, flags);
3369
3370 if (work_pending(work))
3371 ret |= WORK_BUSY_PENDING;
3372 if (find_worker_executing_work(gcwq, work))
3373 ret |= WORK_BUSY_RUNNING;
3374
3375 spin_unlock_irqrestore(&gcwq->lock, flags);
3376
3377 return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(work_busy);
3380
3381 /*
3382 * CPU hotplug.
3383 *
3384 * There are two challenges in supporting CPU hotplug. Firstly, there
3385 * are a lot of assumptions on strong associations among work, cwq and
3386 * gcwq which make migrating pending and scheduled works very
3387 * difficult to implement without impacting hot paths. Secondly,
3388 * gcwqs serve mix of short, long and very long running works making
3389 * blocked draining impractical.
3390 *
3391 * This is solved by allowing a gcwq to be disassociated from the CPU
3392 * running as an unbound one and allowing it to be reattached later if the
3393 * cpu comes back online.
3394 */
3395
3396 /* claim manager positions of all pools */
3397 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3398 {
3399 struct worker_pool *pool;
3400
3401 for_each_worker_pool(pool, gcwq)
3402 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3403 spin_lock_irq(&gcwq->lock);
3404 }
3405
3406 /* release manager positions */
3407 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3408 {
3409 struct worker_pool *pool;
3410
3411 spin_unlock_irq(&gcwq->lock);
3412 for_each_worker_pool(pool, gcwq)
3413 mutex_unlock(&pool->manager_mutex);
3414 }
3415
3416 static void gcwq_unbind_fn(struct work_struct *work)
3417 {
3418 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3419 struct worker_pool *pool;
3420 struct worker *worker;
3421 struct hlist_node *pos;
3422 int i;
3423
3424 BUG_ON(gcwq->cpu != smp_processor_id());
3425
3426 gcwq_claim_management_and_lock(gcwq);
3427
3428 /*
3429 * We've claimed all manager positions. Make all workers unbound
3430 * and set DISASSOCIATED. Before this, all workers except for the
3431 * ones which are still executing works from before the last CPU
3432 * down must be on the cpu. After this, they may become diasporas.
3433 */
3434 for_each_worker_pool(pool, gcwq)
3435 list_for_each_entry(worker, &pool->idle_list, entry)
3436 worker->flags |= WORKER_UNBOUND;
3437
3438 for_each_busy_worker(worker, i, pos, gcwq)
3439 worker->flags |= WORKER_UNBOUND;
3440
3441 gcwq->flags |= GCWQ_DISASSOCIATED;
3442
3443 gcwq_release_management_and_unlock(gcwq);
3444
3445 /*
3446 * Call schedule() so that we cross rq->lock and thus can guarantee
3447 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3448 * as scheduler callbacks may be invoked from other cpus.
3449 */
3450 schedule();
3451
3452 /*
3453 * Sched callbacks are disabled now. Zap nr_running. After this,
3454 * nr_running stays zero and need_more_worker() and keep_working()
3455 * are always true as long as the worklist is not empty. @gcwq now
3456 * behaves as unbound (in terms of concurrency management) gcwq
3457 * which is served by workers tied to the CPU.
3458 *
3459 * On return from this function, the current worker would trigger
3460 * unbound chain execution of pending work items if other workers
3461 * didn't already.
3462 */
3463 for_each_worker_pool(pool, gcwq)
3464 atomic_set(get_pool_nr_running(pool), 0);
3465 }
3466
3467 /*
3468 * Workqueues should be brought up before normal priority CPU notifiers.
3469 * This will be registered high priority CPU notifier.
3470 */
3471 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3472 unsigned long action,
3473 void *hcpu)
3474 {
3475 unsigned int cpu = (unsigned long)hcpu;
3476 struct global_cwq *gcwq = get_gcwq(cpu);
3477 struct worker_pool *pool;
3478
3479 switch (action & ~CPU_TASKS_FROZEN) {
3480 case CPU_UP_PREPARE:
3481 for_each_worker_pool(pool, gcwq) {
3482 struct worker *worker;
3483
3484 if (pool->nr_workers)
3485 continue;
3486
3487 worker = create_worker(pool);
3488 if (!worker)
3489 return NOTIFY_BAD;
3490
3491 spin_lock_irq(&gcwq->lock);
3492 start_worker(worker);
3493 spin_unlock_irq(&gcwq->lock);
3494 }
3495 break;
3496
3497 case CPU_DOWN_FAILED:
3498 case CPU_ONLINE:
3499 gcwq_claim_management_and_lock(gcwq);
3500 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3501 rebind_workers(gcwq);
3502 gcwq_release_management_and_unlock(gcwq);
3503 break;
3504 }
3505 return NOTIFY_OK;
3506 }
3507
3508 /*
3509 * Workqueues should be brought down after normal priority CPU notifiers.
3510 * This will be registered as low priority CPU notifier.
3511 */
3512 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3513 unsigned long action,
3514 void *hcpu)
3515 {
3516 unsigned int cpu = (unsigned long)hcpu;
3517 struct work_struct unbind_work;
3518
3519 switch (action & ~CPU_TASKS_FROZEN) {
3520 case CPU_DOWN_PREPARE:
3521 /* unbinding should happen on the local CPU */
3522 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3523 schedule_work_on(cpu, &unbind_work);
3524 flush_work(&unbind_work);
3525 break;
3526 }
3527 return NOTIFY_OK;
3528 }
3529
3530 #ifdef CONFIG_SMP
3531
3532 struct work_for_cpu {
3533 struct completion completion;
3534 long (*fn)(void *);
3535 void *arg;
3536 long ret;
3537 };
3538
3539 static int do_work_for_cpu(void *_wfc)
3540 {
3541 struct work_for_cpu *wfc = _wfc;
3542 wfc->ret = wfc->fn(wfc->arg);
3543 complete(&wfc->completion);
3544 return 0;
3545 }
3546
3547 /**
3548 * work_on_cpu - run a function in user context on a particular cpu
3549 * @cpu: the cpu to run on
3550 * @fn: the function to run
3551 * @arg: the function arg
3552 *
3553 * This will return the value @fn returns.
3554 * It is up to the caller to ensure that the cpu doesn't go offline.
3555 * The caller must not hold any locks which would prevent @fn from completing.
3556 */
3557 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3558 {
3559 struct task_struct *sub_thread;
3560 struct work_for_cpu wfc = {
3561 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3562 .fn = fn,
3563 .arg = arg,
3564 };
3565
3566 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3567 if (IS_ERR(sub_thread))
3568 return PTR_ERR(sub_thread);
3569 kthread_bind(sub_thread, cpu);
3570 wake_up_process(sub_thread);
3571 wait_for_completion(&wfc.completion);
3572 return wfc.ret;
3573 }
3574 EXPORT_SYMBOL_GPL(work_on_cpu);
3575 #endif /* CONFIG_SMP */
3576
3577 #ifdef CONFIG_FREEZER
3578
3579 /**
3580 * freeze_workqueues_begin - begin freezing workqueues
3581 *
3582 * Start freezing workqueues. After this function returns, all freezable
3583 * workqueues will queue new works to their frozen_works list instead of
3584 * gcwq->worklist.
3585 *
3586 * CONTEXT:
3587 * Grabs and releases workqueue_lock and gcwq->lock's.
3588 */
3589 void freeze_workqueues_begin(void)
3590 {
3591 unsigned int cpu;
3592
3593 spin_lock(&workqueue_lock);
3594
3595 BUG_ON(workqueue_freezing);
3596 workqueue_freezing = true;
3597
3598 for_each_gcwq_cpu(cpu) {
3599 struct global_cwq *gcwq = get_gcwq(cpu);
3600 struct workqueue_struct *wq;
3601
3602 spin_lock_irq(&gcwq->lock);
3603
3604 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3605 gcwq->flags |= GCWQ_FREEZING;
3606
3607 list_for_each_entry(wq, &workqueues, list) {
3608 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3609
3610 if (cwq && wq->flags & WQ_FREEZABLE)
3611 cwq->max_active = 0;
3612 }
3613
3614 spin_unlock_irq(&gcwq->lock);
3615 }
3616
3617 spin_unlock(&workqueue_lock);
3618 }
3619
3620 /**
3621 * freeze_workqueues_busy - are freezable workqueues still busy?
3622 *
3623 * Check whether freezing is complete. This function must be called
3624 * between freeze_workqueues_begin() and thaw_workqueues().
3625 *
3626 * CONTEXT:
3627 * Grabs and releases workqueue_lock.
3628 *
3629 * RETURNS:
3630 * %true if some freezable workqueues are still busy. %false if freezing
3631 * is complete.
3632 */
3633 bool freeze_workqueues_busy(void)
3634 {
3635 unsigned int cpu;
3636 bool busy = false;
3637
3638 spin_lock(&workqueue_lock);
3639
3640 BUG_ON(!workqueue_freezing);
3641
3642 for_each_gcwq_cpu(cpu) {
3643 struct workqueue_struct *wq;
3644 /*
3645 * nr_active is monotonically decreasing. It's safe
3646 * to peek without lock.
3647 */
3648 list_for_each_entry(wq, &workqueues, list) {
3649 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3650
3651 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3652 continue;
3653
3654 BUG_ON(cwq->nr_active < 0);
3655 if (cwq->nr_active) {
3656 busy = true;
3657 goto out_unlock;
3658 }
3659 }
3660 }
3661 out_unlock:
3662 spin_unlock(&workqueue_lock);
3663 return busy;
3664 }
3665
3666 /**
3667 * thaw_workqueues - thaw workqueues
3668 *
3669 * Thaw workqueues. Normal queueing is restored and all collected
3670 * frozen works are transferred to their respective gcwq worklists.
3671 *
3672 * CONTEXT:
3673 * Grabs and releases workqueue_lock and gcwq->lock's.
3674 */
3675 void thaw_workqueues(void)
3676 {
3677 unsigned int cpu;
3678
3679 spin_lock(&workqueue_lock);
3680
3681 if (!workqueue_freezing)
3682 goto out_unlock;
3683
3684 for_each_gcwq_cpu(cpu) {
3685 struct global_cwq *gcwq = get_gcwq(cpu);
3686 struct worker_pool *pool;
3687 struct workqueue_struct *wq;
3688
3689 spin_lock_irq(&gcwq->lock);
3690
3691 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3692 gcwq->flags &= ~GCWQ_FREEZING;
3693
3694 list_for_each_entry(wq, &workqueues, list) {
3695 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3696
3697 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3698 continue;
3699
3700 /* restore max_active and repopulate worklist */
3701 cwq->max_active = wq->saved_max_active;
3702
3703 while (!list_empty(&cwq->delayed_works) &&
3704 cwq->nr_active < cwq->max_active)
3705 cwq_activate_first_delayed(cwq);
3706 }
3707
3708 for_each_worker_pool(pool, gcwq)
3709 wake_up_worker(pool);
3710
3711 spin_unlock_irq(&gcwq->lock);
3712 }
3713
3714 workqueue_freezing = false;
3715 out_unlock:
3716 spin_unlock(&workqueue_lock);
3717 }
3718 #endif /* CONFIG_FREEZER */
3719
3720 static int __init init_workqueues(void)
3721 {
3722 unsigned int cpu;
3723 int i;
3724
3725 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3726 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3727
3728 /* initialize gcwqs */
3729 for_each_gcwq_cpu(cpu) {
3730 struct global_cwq *gcwq = get_gcwq(cpu);
3731 struct worker_pool *pool;
3732
3733 spin_lock_init(&gcwq->lock);
3734 gcwq->cpu = cpu;
3735 gcwq->flags |= GCWQ_DISASSOCIATED;
3736
3737 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3738 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3739
3740 for_each_worker_pool(pool, gcwq) {
3741 pool->gcwq = gcwq;
3742 INIT_LIST_HEAD(&pool->worklist);
3743 INIT_LIST_HEAD(&pool->idle_list);
3744
3745 init_timer_deferrable(&pool->idle_timer);
3746 pool->idle_timer.function = idle_worker_timeout;
3747 pool->idle_timer.data = (unsigned long)pool;
3748
3749 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3750 (unsigned long)pool);
3751
3752 mutex_init(&pool->manager_mutex);
3753 ida_init(&pool->worker_ida);
3754 }
3755
3756 init_waitqueue_head(&gcwq->rebind_hold);
3757 }
3758
3759 /* create the initial worker */
3760 for_each_online_gcwq_cpu(cpu) {
3761 struct global_cwq *gcwq = get_gcwq(cpu);
3762 struct worker_pool *pool;
3763
3764 if (cpu != WORK_CPU_UNBOUND)
3765 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3766
3767 for_each_worker_pool(pool, gcwq) {
3768 struct worker *worker;
3769
3770 worker = create_worker(pool);
3771 BUG_ON(!worker);
3772 spin_lock_irq(&gcwq->lock);
3773 start_worker(worker);
3774 spin_unlock_irq(&gcwq->lock);
3775 }
3776 }
3777
3778 system_wq = alloc_workqueue("events", 0, 0);
3779 system_long_wq = alloc_workqueue("events_long", 0, 0);
3780 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3781 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3782 WQ_UNBOUND_MAX_ACTIVE);
3783 system_freezable_wq = alloc_workqueue("events_freezable",
3784 WQ_FREEZABLE, 0);
3785 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3786 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3787 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3788 !system_unbound_wq || !system_freezable_wq ||
3789 !system_nrt_freezable_wq);
3790 return 0;
3791 }
3792 early_initcall(init_workqueues);
This page took 0.113793 seconds and 5 git commands to generate.