workqueue: use mutex for global_cwq manager exclusion
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44
45 #include "workqueue_sched.h"
46
47 enum {
48 /* global_cwq flags */
49 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
50 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
51
52 /* pool flags */
53 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
54
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_REBIND = 1 << 5, /* mom is home, come back */
61 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
62 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
63
64 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
65 WORKER_CPU_INTENSIVE,
66
67 /* gcwq->trustee_state */
68 TRUSTEE_START = 0, /* start */
69 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
70 TRUSTEE_BUTCHER = 2, /* butcher workers */
71 TRUSTEE_RELEASE = 3, /* release workers */
72 TRUSTEE_DONE = 4, /* trustee is done */
73
74 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
75
76 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
77 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
78 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
79
80 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
81 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
82
83 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
84 /* call for help after 10ms
85 (min two ticks) */
86 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
87 CREATE_COOLDOWN = HZ, /* time to breath after fail */
88 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
89
90 /*
91 * Rescue workers are used only on emergencies and shared by
92 * all cpus. Give -20.
93 */
94 RESCUER_NICE_LEVEL = -20,
95 HIGHPRI_NICE_LEVEL = -20,
96 };
97
98 /*
99 * Structure fields follow one of the following exclusion rules.
100 *
101 * I: Modifiable by initialization/destruction paths and read-only for
102 * everyone else.
103 *
104 * P: Preemption protected. Disabling preemption is enough and should
105 * only be modified and accessed from the local cpu.
106 *
107 * L: gcwq->lock protected. Access with gcwq->lock held.
108 *
109 * X: During normal operation, modification requires gcwq->lock and
110 * should be done only from local cpu. Either disabling preemption
111 * on local cpu or grabbing gcwq->lock is enough for read access.
112 * If GCWQ_DISASSOCIATED is set, it's identical to L.
113 *
114 * F: wq->flush_mutex protected.
115 *
116 * W: workqueue_lock protected.
117 */
118
119 struct global_cwq;
120 struct worker_pool;
121
122 /*
123 * The poor guys doing the actual heavy lifting. All on-duty workers
124 * are either serving the manager role, on idle list or on busy hash.
125 */
126 struct worker {
127 /* on idle list while idle, on busy hash table while busy */
128 union {
129 struct list_head entry; /* L: while idle */
130 struct hlist_node hentry; /* L: while busy */
131 };
132
133 struct work_struct *current_work; /* L: work being processed */
134 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
135 struct list_head scheduled; /* L: scheduled works */
136 struct task_struct *task; /* I: worker task */
137 struct worker_pool *pool; /* I: the associated pool */
138 /* 64 bytes boundary on 64bit, 32 on 32bit */
139 unsigned long last_active; /* L: last active timestamp */
140 unsigned int flags; /* X: flags */
141 int id; /* I: worker id */
142 struct work_struct rebind_work; /* L: rebind worker to cpu */
143 };
144
145 struct worker_pool {
146 struct global_cwq *gcwq; /* I: the owning gcwq */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151 int nr_idle; /* L: currently idle ones */
152
153 struct list_head idle_list; /* X: list of idle workers */
154 struct timer_list idle_timer; /* L: worker idle timeout */
155 struct timer_list mayday_timer; /* L: SOS timer for workers */
156
157 struct mutex manager_mutex; /* mutex manager should hold */
158 struct ida worker_ida; /* L: for worker IDs */
159 struct worker *first_idle; /* L: first idle worker */
160 };
161
162 /*
163 * Global per-cpu workqueue. There's one and only one for each cpu
164 * and all works are queued and processed here regardless of their
165 * target workqueues.
166 */
167 struct global_cwq {
168 spinlock_t lock; /* the gcwq lock */
169 unsigned int cpu; /* I: the associated cpu */
170 unsigned int flags; /* L: GCWQ_* flags */
171
172 /* workers are chained either in busy_hash or pool idle_list */
173 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
174 /* L: hash of busy workers */
175
176 struct worker_pool pools[2]; /* normal and highpri pools */
177
178 struct task_struct *trustee; /* L: for gcwq shutdown */
179 unsigned int trustee_state; /* L: trustee state */
180 wait_queue_head_t trustee_wait; /* trustee wait */
181 } ____cacheline_aligned_in_smp;
182
183 /*
184 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
185 * work_struct->data are used for flags and thus cwqs need to be
186 * aligned at two's power of the number of flag bits.
187 */
188 struct cpu_workqueue_struct {
189 struct worker_pool *pool; /* I: the associated pool */
190 struct workqueue_struct *wq; /* I: the owning workqueue */
191 int work_color; /* L: current color */
192 int flush_color; /* L: flushing color */
193 int nr_in_flight[WORK_NR_COLORS];
194 /* L: nr of in_flight works */
195 int nr_active; /* L: nr of active works */
196 int max_active; /* L: max active works */
197 struct list_head delayed_works; /* L: delayed works */
198 };
199
200 /*
201 * Structure used to wait for workqueue flush.
202 */
203 struct wq_flusher {
204 struct list_head list; /* F: list of flushers */
205 int flush_color; /* F: flush color waiting for */
206 struct completion done; /* flush completion */
207 };
208
209 /*
210 * All cpumasks are assumed to be always set on UP and thus can't be
211 * used to determine whether there's something to be done.
212 */
213 #ifdef CONFIG_SMP
214 typedef cpumask_var_t mayday_mask_t;
215 #define mayday_test_and_set_cpu(cpu, mask) \
216 cpumask_test_and_set_cpu((cpu), (mask))
217 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
218 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
219 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
220 #define free_mayday_mask(mask) free_cpumask_var((mask))
221 #else
222 typedef unsigned long mayday_mask_t;
223 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
224 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
225 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
226 #define alloc_mayday_mask(maskp, gfp) true
227 #define free_mayday_mask(mask) do { } while (0)
228 #endif
229
230 /*
231 * The externally visible workqueue abstraction is an array of
232 * per-CPU workqueues:
233 */
234 struct workqueue_struct {
235 unsigned int flags; /* W: WQ_* flags */
236 union {
237 struct cpu_workqueue_struct __percpu *pcpu;
238 struct cpu_workqueue_struct *single;
239 unsigned long v;
240 } cpu_wq; /* I: cwq's */
241 struct list_head list; /* W: list of all workqueues */
242
243 struct mutex flush_mutex; /* protects wq flushing */
244 int work_color; /* F: current work color */
245 int flush_color; /* F: current flush color */
246 atomic_t nr_cwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* F: first flusher */
248 struct list_head flusher_queue; /* F: flush waiters */
249 struct list_head flusher_overflow; /* F: flush overflow list */
250
251 mayday_mask_t mayday_mask; /* cpus requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* W: drain in progress */
255 int saved_max_active; /* W: saved cwq max_active */
256 #ifdef CONFIG_LOCKDEP
257 struct lockdep_map lockdep_map;
258 #endif
259 char name[]; /* I: workqueue name */
260 };
261
262 struct workqueue_struct *system_wq __read_mostly;
263 struct workqueue_struct *system_long_wq __read_mostly;
264 struct workqueue_struct *system_nrt_wq __read_mostly;
265 struct workqueue_struct *system_unbound_wq __read_mostly;
266 struct workqueue_struct *system_freezable_wq __read_mostly;
267 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
268 EXPORT_SYMBOL_GPL(system_wq);
269 EXPORT_SYMBOL_GPL(system_long_wq);
270 EXPORT_SYMBOL_GPL(system_nrt_wq);
271 EXPORT_SYMBOL_GPL(system_unbound_wq);
272 EXPORT_SYMBOL_GPL(system_freezable_wq);
273 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
274
275 #define CREATE_TRACE_POINTS
276 #include <trace/events/workqueue.h>
277
278 #define for_each_worker_pool(pool, gcwq) \
279 for ((pool) = &(gcwq)->pools[0]; \
280 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
281
282 #define for_each_busy_worker(worker, i, pos, gcwq) \
283 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
284 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
285
286 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
287 unsigned int sw)
288 {
289 if (cpu < nr_cpu_ids) {
290 if (sw & 1) {
291 cpu = cpumask_next(cpu, mask);
292 if (cpu < nr_cpu_ids)
293 return cpu;
294 }
295 if (sw & 2)
296 return WORK_CPU_UNBOUND;
297 }
298 return WORK_CPU_NONE;
299 }
300
301 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
302 struct workqueue_struct *wq)
303 {
304 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
305 }
306
307 /*
308 * CPU iterators
309 *
310 * An extra gcwq is defined for an invalid cpu number
311 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
312 * specific CPU. The following iterators are similar to
313 * for_each_*_cpu() iterators but also considers the unbound gcwq.
314 *
315 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
316 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
317 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
318 * WORK_CPU_UNBOUND for unbound workqueues
319 */
320 #define for_each_gcwq_cpu(cpu) \
321 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
322 (cpu) < WORK_CPU_NONE; \
323 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
324
325 #define for_each_online_gcwq_cpu(cpu) \
326 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
327 (cpu) < WORK_CPU_NONE; \
328 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
329
330 #define for_each_cwq_cpu(cpu, wq) \
331 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
332 (cpu) < WORK_CPU_NONE; \
333 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
334
335 #ifdef CONFIG_DEBUG_OBJECTS_WORK
336
337 static struct debug_obj_descr work_debug_descr;
338
339 static void *work_debug_hint(void *addr)
340 {
341 return ((struct work_struct *) addr)->func;
342 }
343
344 /*
345 * fixup_init is called when:
346 * - an active object is initialized
347 */
348 static int work_fixup_init(void *addr, enum debug_obj_state state)
349 {
350 struct work_struct *work = addr;
351
352 switch (state) {
353 case ODEBUG_STATE_ACTIVE:
354 cancel_work_sync(work);
355 debug_object_init(work, &work_debug_descr);
356 return 1;
357 default:
358 return 0;
359 }
360 }
361
362 /*
363 * fixup_activate is called when:
364 * - an active object is activated
365 * - an unknown object is activated (might be a statically initialized object)
366 */
367 static int work_fixup_activate(void *addr, enum debug_obj_state state)
368 {
369 struct work_struct *work = addr;
370
371 switch (state) {
372
373 case ODEBUG_STATE_NOTAVAILABLE:
374 /*
375 * This is not really a fixup. The work struct was
376 * statically initialized. We just make sure that it
377 * is tracked in the object tracker.
378 */
379 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
380 debug_object_init(work, &work_debug_descr);
381 debug_object_activate(work, &work_debug_descr);
382 return 0;
383 }
384 WARN_ON_ONCE(1);
385 return 0;
386
387 case ODEBUG_STATE_ACTIVE:
388 WARN_ON(1);
389
390 default:
391 return 0;
392 }
393 }
394
395 /*
396 * fixup_free is called when:
397 * - an active object is freed
398 */
399 static int work_fixup_free(void *addr, enum debug_obj_state state)
400 {
401 struct work_struct *work = addr;
402
403 switch (state) {
404 case ODEBUG_STATE_ACTIVE:
405 cancel_work_sync(work);
406 debug_object_free(work, &work_debug_descr);
407 return 1;
408 default:
409 return 0;
410 }
411 }
412
413 static struct debug_obj_descr work_debug_descr = {
414 .name = "work_struct",
415 .debug_hint = work_debug_hint,
416 .fixup_init = work_fixup_init,
417 .fixup_activate = work_fixup_activate,
418 .fixup_free = work_fixup_free,
419 };
420
421 static inline void debug_work_activate(struct work_struct *work)
422 {
423 debug_object_activate(work, &work_debug_descr);
424 }
425
426 static inline void debug_work_deactivate(struct work_struct *work)
427 {
428 debug_object_deactivate(work, &work_debug_descr);
429 }
430
431 void __init_work(struct work_struct *work, int onstack)
432 {
433 if (onstack)
434 debug_object_init_on_stack(work, &work_debug_descr);
435 else
436 debug_object_init(work, &work_debug_descr);
437 }
438 EXPORT_SYMBOL_GPL(__init_work);
439
440 void destroy_work_on_stack(struct work_struct *work)
441 {
442 debug_object_free(work, &work_debug_descr);
443 }
444 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
445
446 #else
447 static inline void debug_work_activate(struct work_struct *work) { }
448 static inline void debug_work_deactivate(struct work_struct *work) { }
449 #endif
450
451 /* Serializes the accesses to the list of workqueues. */
452 static DEFINE_SPINLOCK(workqueue_lock);
453 static LIST_HEAD(workqueues);
454 static bool workqueue_freezing; /* W: have wqs started freezing? */
455
456 /*
457 * The almighty global cpu workqueues. nr_running is the only field
458 * which is expected to be used frequently by other cpus via
459 * try_to_wake_up(). Put it in a separate cacheline.
460 */
461 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
462 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
463
464 /*
465 * Global cpu workqueue and nr_running counter for unbound gcwq. The
466 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
467 * workers have WORKER_UNBOUND set.
468 */
469 static struct global_cwq unbound_global_cwq;
470 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
471 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
472 };
473
474 static int worker_thread(void *__worker);
475
476 static int worker_pool_pri(struct worker_pool *pool)
477 {
478 return pool - pool->gcwq->pools;
479 }
480
481 static struct global_cwq *get_gcwq(unsigned int cpu)
482 {
483 if (cpu != WORK_CPU_UNBOUND)
484 return &per_cpu(global_cwq, cpu);
485 else
486 return &unbound_global_cwq;
487 }
488
489 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
490 {
491 int cpu = pool->gcwq->cpu;
492 int idx = worker_pool_pri(pool);
493
494 if (cpu != WORK_CPU_UNBOUND)
495 return &per_cpu(pool_nr_running, cpu)[idx];
496 else
497 return &unbound_pool_nr_running[idx];
498 }
499
500 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
501 struct workqueue_struct *wq)
502 {
503 if (!(wq->flags & WQ_UNBOUND)) {
504 if (likely(cpu < nr_cpu_ids))
505 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
506 } else if (likely(cpu == WORK_CPU_UNBOUND))
507 return wq->cpu_wq.single;
508 return NULL;
509 }
510
511 static unsigned int work_color_to_flags(int color)
512 {
513 return color << WORK_STRUCT_COLOR_SHIFT;
514 }
515
516 static int get_work_color(struct work_struct *work)
517 {
518 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
519 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
520 }
521
522 static int work_next_color(int color)
523 {
524 return (color + 1) % WORK_NR_COLORS;
525 }
526
527 /*
528 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
529 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
530 * cleared and the work data contains the cpu number it was last on.
531 *
532 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
533 * cwq, cpu or clear work->data. These functions should only be
534 * called while the work is owned - ie. while the PENDING bit is set.
535 *
536 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
537 * corresponding to a work. gcwq is available once the work has been
538 * queued anywhere after initialization. cwq is available only from
539 * queueing until execution starts.
540 */
541 static inline void set_work_data(struct work_struct *work, unsigned long data,
542 unsigned long flags)
543 {
544 BUG_ON(!work_pending(work));
545 atomic_long_set(&work->data, data | flags | work_static(work));
546 }
547
548 static void set_work_cwq(struct work_struct *work,
549 struct cpu_workqueue_struct *cwq,
550 unsigned long extra_flags)
551 {
552 set_work_data(work, (unsigned long)cwq,
553 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
554 }
555
556 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
557 {
558 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
559 }
560
561 static void clear_work_data(struct work_struct *work)
562 {
563 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
564 }
565
566 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
567 {
568 unsigned long data = atomic_long_read(&work->data);
569
570 if (data & WORK_STRUCT_CWQ)
571 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
572 else
573 return NULL;
574 }
575
576 static struct global_cwq *get_work_gcwq(struct work_struct *work)
577 {
578 unsigned long data = atomic_long_read(&work->data);
579 unsigned int cpu;
580
581 if (data & WORK_STRUCT_CWQ)
582 return ((struct cpu_workqueue_struct *)
583 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
584
585 cpu = data >> WORK_STRUCT_FLAG_BITS;
586 if (cpu == WORK_CPU_NONE)
587 return NULL;
588
589 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
590 return get_gcwq(cpu);
591 }
592
593 /*
594 * Policy functions. These define the policies on how the global worker
595 * pools are managed. Unless noted otherwise, these functions assume that
596 * they're being called with gcwq->lock held.
597 */
598
599 static bool __need_more_worker(struct worker_pool *pool)
600 {
601 return !atomic_read(get_pool_nr_running(pool));
602 }
603
604 /*
605 * Need to wake up a worker? Called from anything but currently
606 * running workers.
607 *
608 * Note that, because unbound workers never contribute to nr_running, this
609 * function will always return %true for unbound gcwq as long as the
610 * worklist isn't empty.
611 */
612 static bool need_more_worker(struct worker_pool *pool)
613 {
614 return !list_empty(&pool->worklist) && __need_more_worker(pool);
615 }
616
617 /* Can I start working? Called from busy but !running workers. */
618 static bool may_start_working(struct worker_pool *pool)
619 {
620 return pool->nr_idle;
621 }
622
623 /* Do I need to keep working? Called from currently running workers. */
624 static bool keep_working(struct worker_pool *pool)
625 {
626 atomic_t *nr_running = get_pool_nr_running(pool);
627
628 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
629 }
630
631 /* Do we need a new worker? Called from manager. */
632 static bool need_to_create_worker(struct worker_pool *pool)
633 {
634 return need_more_worker(pool) && !may_start_working(pool);
635 }
636
637 /* Do I need to be the manager? */
638 static bool need_to_manage_workers(struct worker_pool *pool)
639 {
640 return need_to_create_worker(pool) ||
641 (pool->flags & POOL_MANAGE_WORKERS);
642 }
643
644 /* Do we have too many workers and should some go away? */
645 static bool too_many_workers(struct worker_pool *pool)
646 {
647 bool managing = mutex_is_locked(&pool->manager_mutex);
648 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
649 int nr_busy = pool->nr_workers - nr_idle;
650
651 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
652 }
653
654 /*
655 * Wake up functions.
656 */
657
658 /* Return the first worker. Safe with preemption disabled */
659 static struct worker *first_worker(struct worker_pool *pool)
660 {
661 if (unlikely(list_empty(&pool->idle_list)))
662 return NULL;
663
664 return list_first_entry(&pool->idle_list, struct worker, entry);
665 }
666
667 /**
668 * wake_up_worker - wake up an idle worker
669 * @pool: worker pool to wake worker from
670 *
671 * Wake up the first idle worker of @pool.
672 *
673 * CONTEXT:
674 * spin_lock_irq(gcwq->lock).
675 */
676 static void wake_up_worker(struct worker_pool *pool)
677 {
678 struct worker *worker = first_worker(pool);
679
680 if (likely(worker))
681 wake_up_process(worker->task);
682 }
683
684 /**
685 * wq_worker_waking_up - a worker is waking up
686 * @task: task waking up
687 * @cpu: CPU @task is waking up to
688 *
689 * This function is called during try_to_wake_up() when a worker is
690 * being awoken.
691 *
692 * CONTEXT:
693 * spin_lock_irq(rq->lock)
694 */
695 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
696 {
697 struct worker *worker = kthread_data(task);
698
699 if (!(worker->flags & WORKER_NOT_RUNNING))
700 atomic_inc(get_pool_nr_running(worker->pool));
701 }
702
703 /**
704 * wq_worker_sleeping - a worker is going to sleep
705 * @task: task going to sleep
706 * @cpu: CPU in question, must be the current CPU number
707 *
708 * This function is called during schedule() when a busy worker is
709 * going to sleep. Worker on the same cpu can be woken up by
710 * returning pointer to its task.
711 *
712 * CONTEXT:
713 * spin_lock_irq(rq->lock)
714 *
715 * RETURNS:
716 * Worker task on @cpu to wake up, %NULL if none.
717 */
718 struct task_struct *wq_worker_sleeping(struct task_struct *task,
719 unsigned int cpu)
720 {
721 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
722 struct worker_pool *pool = worker->pool;
723 atomic_t *nr_running = get_pool_nr_running(pool);
724
725 if (worker->flags & WORKER_NOT_RUNNING)
726 return NULL;
727
728 /* this can only happen on the local cpu */
729 BUG_ON(cpu != raw_smp_processor_id());
730
731 /*
732 * The counterpart of the following dec_and_test, implied mb,
733 * worklist not empty test sequence is in insert_work().
734 * Please read comment there.
735 *
736 * NOT_RUNNING is clear. This means that trustee is not in
737 * charge and we're running on the local cpu w/ rq lock held
738 * and preemption disabled, which in turn means that none else
739 * could be manipulating idle_list, so dereferencing idle_list
740 * without gcwq lock is safe.
741 */
742 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
743 to_wakeup = first_worker(pool);
744 return to_wakeup ? to_wakeup->task : NULL;
745 }
746
747 /**
748 * worker_set_flags - set worker flags and adjust nr_running accordingly
749 * @worker: self
750 * @flags: flags to set
751 * @wakeup: wakeup an idle worker if necessary
752 *
753 * Set @flags in @worker->flags and adjust nr_running accordingly. If
754 * nr_running becomes zero and @wakeup is %true, an idle worker is
755 * woken up.
756 *
757 * CONTEXT:
758 * spin_lock_irq(gcwq->lock)
759 */
760 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
761 bool wakeup)
762 {
763 struct worker_pool *pool = worker->pool;
764
765 WARN_ON_ONCE(worker->task != current);
766
767 /*
768 * If transitioning into NOT_RUNNING, adjust nr_running and
769 * wake up an idle worker as necessary if requested by
770 * @wakeup.
771 */
772 if ((flags & WORKER_NOT_RUNNING) &&
773 !(worker->flags & WORKER_NOT_RUNNING)) {
774 atomic_t *nr_running = get_pool_nr_running(pool);
775
776 if (wakeup) {
777 if (atomic_dec_and_test(nr_running) &&
778 !list_empty(&pool->worklist))
779 wake_up_worker(pool);
780 } else
781 atomic_dec(nr_running);
782 }
783
784 worker->flags |= flags;
785 }
786
787 /**
788 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
789 * @worker: self
790 * @flags: flags to clear
791 *
792 * Clear @flags in @worker->flags and adjust nr_running accordingly.
793 *
794 * CONTEXT:
795 * spin_lock_irq(gcwq->lock)
796 */
797 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
798 {
799 struct worker_pool *pool = worker->pool;
800 unsigned int oflags = worker->flags;
801
802 WARN_ON_ONCE(worker->task != current);
803
804 worker->flags &= ~flags;
805
806 /*
807 * If transitioning out of NOT_RUNNING, increment nr_running. Note
808 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
809 * of multiple flags, not a single flag.
810 */
811 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
812 if (!(worker->flags & WORKER_NOT_RUNNING))
813 atomic_inc(get_pool_nr_running(pool));
814 }
815
816 /**
817 * busy_worker_head - return the busy hash head for a work
818 * @gcwq: gcwq of interest
819 * @work: work to be hashed
820 *
821 * Return hash head of @gcwq for @work.
822 *
823 * CONTEXT:
824 * spin_lock_irq(gcwq->lock).
825 *
826 * RETURNS:
827 * Pointer to the hash head.
828 */
829 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
830 struct work_struct *work)
831 {
832 const int base_shift = ilog2(sizeof(struct work_struct));
833 unsigned long v = (unsigned long)work;
834
835 /* simple shift and fold hash, do we need something better? */
836 v >>= base_shift;
837 v += v >> BUSY_WORKER_HASH_ORDER;
838 v &= BUSY_WORKER_HASH_MASK;
839
840 return &gcwq->busy_hash[v];
841 }
842
843 /**
844 * __find_worker_executing_work - find worker which is executing a work
845 * @gcwq: gcwq of interest
846 * @bwh: hash head as returned by busy_worker_head()
847 * @work: work to find worker for
848 *
849 * Find a worker which is executing @work on @gcwq. @bwh should be
850 * the hash head obtained by calling busy_worker_head() with the same
851 * work.
852 *
853 * CONTEXT:
854 * spin_lock_irq(gcwq->lock).
855 *
856 * RETURNS:
857 * Pointer to worker which is executing @work if found, NULL
858 * otherwise.
859 */
860 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
861 struct hlist_head *bwh,
862 struct work_struct *work)
863 {
864 struct worker *worker;
865 struct hlist_node *tmp;
866
867 hlist_for_each_entry(worker, tmp, bwh, hentry)
868 if (worker->current_work == work)
869 return worker;
870 return NULL;
871 }
872
873 /**
874 * find_worker_executing_work - find worker which is executing a work
875 * @gcwq: gcwq of interest
876 * @work: work to find worker for
877 *
878 * Find a worker which is executing @work on @gcwq. This function is
879 * identical to __find_worker_executing_work() except that this
880 * function calculates @bwh itself.
881 *
882 * CONTEXT:
883 * spin_lock_irq(gcwq->lock).
884 *
885 * RETURNS:
886 * Pointer to worker which is executing @work if found, NULL
887 * otherwise.
888 */
889 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
890 struct work_struct *work)
891 {
892 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
893 work);
894 }
895
896 /**
897 * insert_work - insert a work into gcwq
898 * @cwq: cwq @work belongs to
899 * @work: work to insert
900 * @head: insertion point
901 * @extra_flags: extra WORK_STRUCT_* flags to set
902 *
903 * Insert @work which belongs to @cwq into @gcwq after @head.
904 * @extra_flags is or'd to work_struct flags.
905 *
906 * CONTEXT:
907 * spin_lock_irq(gcwq->lock).
908 */
909 static void insert_work(struct cpu_workqueue_struct *cwq,
910 struct work_struct *work, struct list_head *head,
911 unsigned int extra_flags)
912 {
913 struct worker_pool *pool = cwq->pool;
914
915 /* we own @work, set data and link */
916 set_work_cwq(work, cwq, extra_flags);
917
918 /*
919 * Ensure that we get the right work->data if we see the
920 * result of list_add() below, see try_to_grab_pending().
921 */
922 smp_wmb();
923
924 list_add_tail(&work->entry, head);
925
926 /*
927 * Ensure either worker_sched_deactivated() sees the above
928 * list_add_tail() or we see zero nr_running to avoid workers
929 * lying around lazily while there are works to be processed.
930 */
931 smp_mb();
932
933 if (__need_more_worker(pool))
934 wake_up_worker(pool);
935 }
936
937 /*
938 * Test whether @work is being queued from another work executing on the
939 * same workqueue. This is rather expensive and should only be used from
940 * cold paths.
941 */
942 static bool is_chained_work(struct workqueue_struct *wq)
943 {
944 unsigned long flags;
945 unsigned int cpu;
946
947 for_each_gcwq_cpu(cpu) {
948 struct global_cwq *gcwq = get_gcwq(cpu);
949 struct worker *worker;
950 struct hlist_node *pos;
951 int i;
952
953 spin_lock_irqsave(&gcwq->lock, flags);
954 for_each_busy_worker(worker, i, pos, gcwq) {
955 if (worker->task != current)
956 continue;
957 spin_unlock_irqrestore(&gcwq->lock, flags);
958 /*
959 * I'm @worker, no locking necessary. See if @work
960 * is headed to the same workqueue.
961 */
962 return worker->current_cwq->wq == wq;
963 }
964 spin_unlock_irqrestore(&gcwq->lock, flags);
965 }
966 return false;
967 }
968
969 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
970 struct work_struct *work)
971 {
972 struct global_cwq *gcwq;
973 struct cpu_workqueue_struct *cwq;
974 struct list_head *worklist;
975 unsigned int work_flags;
976 unsigned long flags;
977
978 debug_work_activate(work);
979
980 /* if dying, only works from the same workqueue are allowed */
981 if (unlikely(wq->flags & WQ_DRAINING) &&
982 WARN_ON_ONCE(!is_chained_work(wq)))
983 return;
984
985 /* determine gcwq to use */
986 if (!(wq->flags & WQ_UNBOUND)) {
987 struct global_cwq *last_gcwq;
988
989 if (unlikely(cpu == WORK_CPU_UNBOUND))
990 cpu = raw_smp_processor_id();
991
992 /*
993 * It's multi cpu. If @wq is non-reentrant and @work
994 * was previously on a different cpu, it might still
995 * be running there, in which case the work needs to
996 * be queued on that cpu to guarantee non-reentrance.
997 */
998 gcwq = get_gcwq(cpu);
999 if (wq->flags & WQ_NON_REENTRANT &&
1000 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1001 struct worker *worker;
1002
1003 spin_lock_irqsave(&last_gcwq->lock, flags);
1004
1005 worker = find_worker_executing_work(last_gcwq, work);
1006
1007 if (worker && worker->current_cwq->wq == wq)
1008 gcwq = last_gcwq;
1009 else {
1010 /* meh... not running there, queue here */
1011 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1012 spin_lock_irqsave(&gcwq->lock, flags);
1013 }
1014 } else
1015 spin_lock_irqsave(&gcwq->lock, flags);
1016 } else {
1017 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1018 spin_lock_irqsave(&gcwq->lock, flags);
1019 }
1020
1021 /* gcwq determined, get cwq and queue */
1022 cwq = get_cwq(gcwq->cpu, wq);
1023 trace_workqueue_queue_work(cpu, cwq, work);
1024
1025 if (WARN_ON(!list_empty(&work->entry))) {
1026 spin_unlock_irqrestore(&gcwq->lock, flags);
1027 return;
1028 }
1029
1030 cwq->nr_in_flight[cwq->work_color]++;
1031 work_flags = work_color_to_flags(cwq->work_color);
1032
1033 if (likely(cwq->nr_active < cwq->max_active)) {
1034 trace_workqueue_activate_work(work);
1035 cwq->nr_active++;
1036 worklist = &cwq->pool->worklist;
1037 } else {
1038 work_flags |= WORK_STRUCT_DELAYED;
1039 worklist = &cwq->delayed_works;
1040 }
1041
1042 insert_work(cwq, work, worklist, work_flags);
1043
1044 spin_unlock_irqrestore(&gcwq->lock, flags);
1045 }
1046
1047 /**
1048 * queue_work - queue work on a workqueue
1049 * @wq: workqueue to use
1050 * @work: work to queue
1051 *
1052 * Returns 0 if @work was already on a queue, non-zero otherwise.
1053 *
1054 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1055 * it can be processed by another CPU.
1056 */
1057 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1058 {
1059 int ret;
1060
1061 ret = queue_work_on(get_cpu(), wq, work);
1062 put_cpu();
1063
1064 return ret;
1065 }
1066 EXPORT_SYMBOL_GPL(queue_work);
1067
1068 /**
1069 * queue_work_on - queue work on specific cpu
1070 * @cpu: CPU number to execute work on
1071 * @wq: workqueue to use
1072 * @work: work to queue
1073 *
1074 * Returns 0 if @work was already on a queue, non-zero otherwise.
1075 *
1076 * We queue the work to a specific CPU, the caller must ensure it
1077 * can't go away.
1078 */
1079 int
1080 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1081 {
1082 int ret = 0;
1083
1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1085 __queue_work(cpu, wq, work);
1086 ret = 1;
1087 }
1088 return ret;
1089 }
1090 EXPORT_SYMBOL_GPL(queue_work_on);
1091
1092 static void delayed_work_timer_fn(unsigned long __data)
1093 {
1094 struct delayed_work *dwork = (struct delayed_work *)__data;
1095 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1096
1097 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1098 }
1099
1100 /**
1101 * queue_delayed_work - queue work on a workqueue after delay
1102 * @wq: workqueue to use
1103 * @dwork: delayable work to queue
1104 * @delay: number of jiffies to wait before queueing
1105 *
1106 * Returns 0 if @work was already on a queue, non-zero otherwise.
1107 */
1108 int queue_delayed_work(struct workqueue_struct *wq,
1109 struct delayed_work *dwork, unsigned long delay)
1110 {
1111 if (delay == 0)
1112 return queue_work(wq, &dwork->work);
1113
1114 return queue_delayed_work_on(-1, wq, dwork, delay);
1115 }
1116 EXPORT_SYMBOL_GPL(queue_delayed_work);
1117
1118 /**
1119 * queue_delayed_work_on - queue work on specific CPU after delay
1120 * @cpu: CPU number to execute work on
1121 * @wq: workqueue to use
1122 * @dwork: work to queue
1123 * @delay: number of jiffies to wait before queueing
1124 *
1125 * Returns 0 if @work was already on a queue, non-zero otherwise.
1126 */
1127 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1128 struct delayed_work *dwork, unsigned long delay)
1129 {
1130 int ret = 0;
1131 struct timer_list *timer = &dwork->timer;
1132 struct work_struct *work = &dwork->work;
1133
1134 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1135 unsigned int lcpu;
1136
1137 BUG_ON(timer_pending(timer));
1138 BUG_ON(!list_empty(&work->entry));
1139
1140 timer_stats_timer_set_start_info(&dwork->timer);
1141
1142 /*
1143 * This stores cwq for the moment, for the timer_fn.
1144 * Note that the work's gcwq is preserved to allow
1145 * reentrance detection for delayed works.
1146 */
1147 if (!(wq->flags & WQ_UNBOUND)) {
1148 struct global_cwq *gcwq = get_work_gcwq(work);
1149
1150 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1151 lcpu = gcwq->cpu;
1152 else
1153 lcpu = raw_smp_processor_id();
1154 } else
1155 lcpu = WORK_CPU_UNBOUND;
1156
1157 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1158
1159 timer->expires = jiffies + delay;
1160 timer->data = (unsigned long)dwork;
1161 timer->function = delayed_work_timer_fn;
1162
1163 if (unlikely(cpu >= 0))
1164 add_timer_on(timer, cpu);
1165 else
1166 add_timer(timer);
1167 ret = 1;
1168 }
1169 return ret;
1170 }
1171 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1172
1173 /**
1174 * worker_enter_idle - enter idle state
1175 * @worker: worker which is entering idle state
1176 *
1177 * @worker is entering idle state. Update stats and idle timer if
1178 * necessary.
1179 *
1180 * LOCKING:
1181 * spin_lock_irq(gcwq->lock).
1182 */
1183 static void worker_enter_idle(struct worker *worker)
1184 {
1185 struct worker_pool *pool = worker->pool;
1186 struct global_cwq *gcwq = pool->gcwq;
1187
1188 BUG_ON(worker->flags & WORKER_IDLE);
1189 BUG_ON(!list_empty(&worker->entry) &&
1190 (worker->hentry.next || worker->hentry.pprev));
1191
1192 /* can't use worker_set_flags(), also called from start_worker() */
1193 worker->flags |= WORKER_IDLE;
1194 pool->nr_idle++;
1195 worker->last_active = jiffies;
1196
1197 /* idle_list is LIFO */
1198 list_add(&worker->entry, &pool->idle_list);
1199
1200 if (likely(gcwq->trustee_state != TRUSTEE_DONE)) {
1201 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1202 mod_timer(&pool->idle_timer,
1203 jiffies + IDLE_WORKER_TIMEOUT);
1204 } else
1205 wake_up_all(&gcwq->trustee_wait);
1206
1207 /*
1208 * Sanity check nr_running. Because trustee releases gcwq->lock
1209 * between setting %WORKER_UNBOUND and zapping nr_running, the
1210 * warning may trigger spuriously. Check iff trustee is idle.
1211 */
1212 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1213 pool->nr_workers == pool->nr_idle &&
1214 atomic_read(get_pool_nr_running(pool)));
1215 }
1216
1217 /**
1218 * worker_leave_idle - leave idle state
1219 * @worker: worker which is leaving idle state
1220 *
1221 * @worker is leaving idle state. Update stats.
1222 *
1223 * LOCKING:
1224 * spin_lock_irq(gcwq->lock).
1225 */
1226 static void worker_leave_idle(struct worker *worker)
1227 {
1228 struct worker_pool *pool = worker->pool;
1229
1230 BUG_ON(!(worker->flags & WORKER_IDLE));
1231 worker_clr_flags(worker, WORKER_IDLE);
1232 pool->nr_idle--;
1233 list_del_init(&worker->entry);
1234 }
1235
1236 /**
1237 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1238 * @worker: self
1239 *
1240 * Works which are scheduled while the cpu is online must at least be
1241 * scheduled to a worker which is bound to the cpu so that if they are
1242 * flushed from cpu callbacks while cpu is going down, they are
1243 * guaranteed to execute on the cpu.
1244 *
1245 * This function is to be used by rogue workers and rescuers to bind
1246 * themselves to the target cpu and may race with cpu going down or
1247 * coming online. kthread_bind() can't be used because it may put the
1248 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1249 * verbatim as it's best effort and blocking and gcwq may be
1250 * [dis]associated in the meantime.
1251 *
1252 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1253 * binding against %GCWQ_DISASSOCIATED which is set during
1254 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1255 * enters idle state or fetches works without dropping lock, it can
1256 * guarantee the scheduling requirement described in the first paragraph.
1257 *
1258 * CONTEXT:
1259 * Might sleep. Called without any lock but returns with gcwq->lock
1260 * held.
1261 *
1262 * RETURNS:
1263 * %true if the associated gcwq is online (@worker is successfully
1264 * bound), %false if offline.
1265 */
1266 static bool worker_maybe_bind_and_lock(struct worker *worker)
1267 __acquires(&gcwq->lock)
1268 {
1269 struct global_cwq *gcwq = worker->pool->gcwq;
1270 struct task_struct *task = worker->task;
1271
1272 while (true) {
1273 /*
1274 * The following call may fail, succeed or succeed
1275 * without actually migrating the task to the cpu if
1276 * it races with cpu hotunplug operation. Verify
1277 * against GCWQ_DISASSOCIATED.
1278 */
1279 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1280 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1281
1282 spin_lock_irq(&gcwq->lock);
1283 if (gcwq->flags & GCWQ_DISASSOCIATED)
1284 return false;
1285 if (task_cpu(task) == gcwq->cpu &&
1286 cpumask_equal(&current->cpus_allowed,
1287 get_cpu_mask(gcwq->cpu)))
1288 return true;
1289 spin_unlock_irq(&gcwq->lock);
1290
1291 /*
1292 * We've raced with CPU hot[un]plug. Give it a breather
1293 * and retry migration. cond_resched() is required here;
1294 * otherwise, we might deadlock against cpu_stop trying to
1295 * bring down the CPU on non-preemptive kernel.
1296 */
1297 cpu_relax();
1298 cond_resched();
1299 }
1300 }
1301
1302 /*
1303 * Function for worker->rebind_work used to rebind unbound busy workers to
1304 * the associated cpu which is coming back online. This is scheduled by
1305 * cpu up but can race with other cpu hotplug operations and may be
1306 * executed twice without intervening cpu down.
1307 */
1308 static void worker_rebind_fn(struct work_struct *work)
1309 {
1310 struct worker *worker = container_of(work, struct worker, rebind_work);
1311 struct global_cwq *gcwq = worker->pool->gcwq;
1312
1313 if (worker_maybe_bind_and_lock(worker))
1314 worker_clr_flags(worker, WORKER_REBIND);
1315
1316 spin_unlock_irq(&gcwq->lock);
1317 }
1318
1319 static struct worker *alloc_worker(void)
1320 {
1321 struct worker *worker;
1322
1323 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1324 if (worker) {
1325 INIT_LIST_HEAD(&worker->entry);
1326 INIT_LIST_HEAD(&worker->scheduled);
1327 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1328 /* on creation a worker is in !idle && prep state */
1329 worker->flags = WORKER_PREP;
1330 }
1331 return worker;
1332 }
1333
1334 /**
1335 * create_worker - create a new workqueue worker
1336 * @pool: pool the new worker will belong to
1337 * @bind: whether to set affinity to @cpu or not
1338 *
1339 * Create a new worker which is bound to @pool. The returned worker
1340 * can be started by calling start_worker() or destroyed using
1341 * destroy_worker().
1342 *
1343 * CONTEXT:
1344 * Might sleep. Does GFP_KERNEL allocations.
1345 *
1346 * RETURNS:
1347 * Pointer to the newly created worker.
1348 */
1349 static struct worker *create_worker(struct worker_pool *pool, bool bind)
1350 {
1351 struct global_cwq *gcwq = pool->gcwq;
1352 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1353 const char *pri = worker_pool_pri(pool) ? "H" : "";
1354 struct worker *worker = NULL;
1355 int id = -1;
1356
1357 spin_lock_irq(&gcwq->lock);
1358 while (ida_get_new(&pool->worker_ida, &id)) {
1359 spin_unlock_irq(&gcwq->lock);
1360 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1361 goto fail;
1362 spin_lock_irq(&gcwq->lock);
1363 }
1364 spin_unlock_irq(&gcwq->lock);
1365
1366 worker = alloc_worker();
1367 if (!worker)
1368 goto fail;
1369
1370 worker->pool = pool;
1371 worker->id = id;
1372
1373 if (!on_unbound_cpu)
1374 worker->task = kthread_create_on_node(worker_thread,
1375 worker, cpu_to_node(gcwq->cpu),
1376 "kworker/%u:%d%s", gcwq->cpu, id, pri);
1377 else
1378 worker->task = kthread_create(worker_thread, worker,
1379 "kworker/u:%d%s", id, pri);
1380 if (IS_ERR(worker->task))
1381 goto fail;
1382
1383 if (worker_pool_pri(pool))
1384 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1385
1386 /*
1387 * An unbound worker will become a regular one if CPU comes online
1388 * later on. Make sure every worker has PF_THREAD_BOUND set.
1389 */
1390 if (bind && !on_unbound_cpu)
1391 kthread_bind(worker->task, gcwq->cpu);
1392 else {
1393 worker->task->flags |= PF_THREAD_BOUND;
1394 if (on_unbound_cpu)
1395 worker->flags |= WORKER_UNBOUND;
1396 }
1397
1398 return worker;
1399 fail:
1400 if (id >= 0) {
1401 spin_lock_irq(&gcwq->lock);
1402 ida_remove(&pool->worker_ida, id);
1403 spin_unlock_irq(&gcwq->lock);
1404 }
1405 kfree(worker);
1406 return NULL;
1407 }
1408
1409 /**
1410 * start_worker - start a newly created worker
1411 * @worker: worker to start
1412 *
1413 * Make the gcwq aware of @worker and start it.
1414 *
1415 * CONTEXT:
1416 * spin_lock_irq(gcwq->lock).
1417 */
1418 static void start_worker(struct worker *worker)
1419 {
1420 worker->flags |= WORKER_STARTED;
1421 worker->pool->nr_workers++;
1422 worker_enter_idle(worker);
1423 wake_up_process(worker->task);
1424 }
1425
1426 /**
1427 * destroy_worker - destroy a workqueue worker
1428 * @worker: worker to be destroyed
1429 *
1430 * Destroy @worker and adjust @gcwq stats accordingly.
1431 *
1432 * CONTEXT:
1433 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1434 */
1435 static void destroy_worker(struct worker *worker)
1436 {
1437 struct worker_pool *pool = worker->pool;
1438 struct global_cwq *gcwq = pool->gcwq;
1439 int id = worker->id;
1440
1441 /* sanity check frenzy */
1442 BUG_ON(worker->current_work);
1443 BUG_ON(!list_empty(&worker->scheduled));
1444
1445 if (worker->flags & WORKER_STARTED)
1446 pool->nr_workers--;
1447 if (worker->flags & WORKER_IDLE)
1448 pool->nr_idle--;
1449
1450 list_del_init(&worker->entry);
1451 worker->flags |= WORKER_DIE;
1452
1453 spin_unlock_irq(&gcwq->lock);
1454
1455 kthread_stop(worker->task);
1456 kfree(worker);
1457
1458 spin_lock_irq(&gcwq->lock);
1459 ida_remove(&pool->worker_ida, id);
1460 }
1461
1462 static void idle_worker_timeout(unsigned long __pool)
1463 {
1464 struct worker_pool *pool = (void *)__pool;
1465 struct global_cwq *gcwq = pool->gcwq;
1466
1467 spin_lock_irq(&gcwq->lock);
1468
1469 if (too_many_workers(pool)) {
1470 struct worker *worker;
1471 unsigned long expires;
1472
1473 /* idle_list is kept in LIFO order, check the last one */
1474 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1475 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1476
1477 if (time_before(jiffies, expires))
1478 mod_timer(&pool->idle_timer, expires);
1479 else {
1480 /* it's been idle for too long, wake up manager */
1481 pool->flags |= POOL_MANAGE_WORKERS;
1482 wake_up_worker(pool);
1483 }
1484 }
1485
1486 spin_unlock_irq(&gcwq->lock);
1487 }
1488
1489 static bool send_mayday(struct work_struct *work)
1490 {
1491 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1492 struct workqueue_struct *wq = cwq->wq;
1493 unsigned int cpu;
1494
1495 if (!(wq->flags & WQ_RESCUER))
1496 return false;
1497
1498 /* mayday mayday mayday */
1499 cpu = cwq->pool->gcwq->cpu;
1500 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1501 if (cpu == WORK_CPU_UNBOUND)
1502 cpu = 0;
1503 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1504 wake_up_process(wq->rescuer->task);
1505 return true;
1506 }
1507
1508 static void gcwq_mayday_timeout(unsigned long __pool)
1509 {
1510 struct worker_pool *pool = (void *)__pool;
1511 struct global_cwq *gcwq = pool->gcwq;
1512 struct work_struct *work;
1513
1514 spin_lock_irq(&gcwq->lock);
1515
1516 if (need_to_create_worker(pool)) {
1517 /*
1518 * We've been trying to create a new worker but
1519 * haven't been successful. We might be hitting an
1520 * allocation deadlock. Send distress signals to
1521 * rescuers.
1522 */
1523 list_for_each_entry(work, &pool->worklist, entry)
1524 send_mayday(work);
1525 }
1526
1527 spin_unlock_irq(&gcwq->lock);
1528
1529 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1530 }
1531
1532 /**
1533 * maybe_create_worker - create a new worker if necessary
1534 * @pool: pool to create a new worker for
1535 *
1536 * Create a new worker for @pool if necessary. @pool is guaranteed to
1537 * have at least one idle worker on return from this function. If
1538 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1539 * sent to all rescuers with works scheduled on @pool to resolve
1540 * possible allocation deadlock.
1541 *
1542 * On return, need_to_create_worker() is guaranteed to be false and
1543 * may_start_working() true.
1544 *
1545 * LOCKING:
1546 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1547 * multiple times. Does GFP_KERNEL allocations. Called only from
1548 * manager.
1549 *
1550 * RETURNS:
1551 * false if no action was taken and gcwq->lock stayed locked, true
1552 * otherwise.
1553 */
1554 static bool maybe_create_worker(struct worker_pool *pool)
1555 __releases(&gcwq->lock)
1556 __acquires(&gcwq->lock)
1557 {
1558 struct global_cwq *gcwq = pool->gcwq;
1559
1560 if (!need_to_create_worker(pool))
1561 return false;
1562 restart:
1563 spin_unlock_irq(&gcwq->lock);
1564
1565 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1566 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1567
1568 while (true) {
1569 struct worker *worker;
1570
1571 worker = create_worker(pool, true);
1572 if (worker) {
1573 del_timer_sync(&pool->mayday_timer);
1574 spin_lock_irq(&gcwq->lock);
1575 start_worker(worker);
1576 BUG_ON(need_to_create_worker(pool));
1577 return true;
1578 }
1579
1580 if (!need_to_create_worker(pool))
1581 break;
1582
1583 __set_current_state(TASK_INTERRUPTIBLE);
1584 schedule_timeout(CREATE_COOLDOWN);
1585
1586 if (!need_to_create_worker(pool))
1587 break;
1588 }
1589
1590 del_timer_sync(&pool->mayday_timer);
1591 spin_lock_irq(&gcwq->lock);
1592 if (need_to_create_worker(pool))
1593 goto restart;
1594 return true;
1595 }
1596
1597 /**
1598 * maybe_destroy_worker - destroy workers which have been idle for a while
1599 * @pool: pool to destroy workers for
1600 *
1601 * Destroy @pool workers which have been idle for longer than
1602 * IDLE_WORKER_TIMEOUT.
1603 *
1604 * LOCKING:
1605 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1606 * multiple times. Called only from manager.
1607 *
1608 * RETURNS:
1609 * false if no action was taken and gcwq->lock stayed locked, true
1610 * otherwise.
1611 */
1612 static bool maybe_destroy_workers(struct worker_pool *pool)
1613 {
1614 bool ret = false;
1615
1616 while (too_many_workers(pool)) {
1617 struct worker *worker;
1618 unsigned long expires;
1619
1620 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1621 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1622
1623 if (time_before(jiffies, expires)) {
1624 mod_timer(&pool->idle_timer, expires);
1625 break;
1626 }
1627
1628 destroy_worker(worker);
1629 ret = true;
1630 }
1631
1632 return ret;
1633 }
1634
1635 /**
1636 * manage_workers - manage worker pool
1637 * @worker: self
1638 *
1639 * Assume the manager role and manage gcwq worker pool @worker belongs
1640 * to. At any given time, there can be only zero or one manager per
1641 * gcwq. The exclusion is handled automatically by this function.
1642 *
1643 * The caller can safely start processing works on false return. On
1644 * true return, it's guaranteed that need_to_create_worker() is false
1645 * and may_start_working() is true.
1646 *
1647 * CONTEXT:
1648 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1649 * multiple times. Does GFP_KERNEL allocations.
1650 *
1651 * RETURNS:
1652 * false if no action was taken and gcwq->lock stayed locked, true if
1653 * some action was taken.
1654 */
1655 static bool manage_workers(struct worker *worker)
1656 {
1657 struct worker_pool *pool = worker->pool;
1658 bool ret = false;
1659
1660 if (!mutex_trylock(&pool->manager_mutex))
1661 return ret;
1662
1663 pool->flags &= ~POOL_MANAGE_WORKERS;
1664
1665 /*
1666 * Destroy and then create so that may_start_working() is true
1667 * on return.
1668 */
1669 ret |= maybe_destroy_workers(pool);
1670 ret |= maybe_create_worker(pool);
1671
1672 mutex_unlock(&pool->manager_mutex);
1673 return ret;
1674 }
1675
1676 /**
1677 * move_linked_works - move linked works to a list
1678 * @work: start of series of works to be scheduled
1679 * @head: target list to append @work to
1680 * @nextp: out paramter for nested worklist walking
1681 *
1682 * Schedule linked works starting from @work to @head. Work series to
1683 * be scheduled starts at @work and includes any consecutive work with
1684 * WORK_STRUCT_LINKED set in its predecessor.
1685 *
1686 * If @nextp is not NULL, it's updated to point to the next work of
1687 * the last scheduled work. This allows move_linked_works() to be
1688 * nested inside outer list_for_each_entry_safe().
1689 *
1690 * CONTEXT:
1691 * spin_lock_irq(gcwq->lock).
1692 */
1693 static void move_linked_works(struct work_struct *work, struct list_head *head,
1694 struct work_struct **nextp)
1695 {
1696 struct work_struct *n;
1697
1698 /*
1699 * Linked worklist will always end before the end of the list,
1700 * use NULL for list head.
1701 */
1702 list_for_each_entry_safe_from(work, n, NULL, entry) {
1703 list_move_tail(&work->entry, head);
1704 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1705 break;
1706 }
1707
1708 /*
1709 * If we're already inside safe list traversal and have moved
1710 * multiple works to the scheduled queue, the next position
1711 * needs to be updated.
1712 */
1713 if (nextp)
1714 *nextp = n;
1715 }
1716
1717 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1718 {
1719 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1720 struct work_struct, entry);
1721
1722 trace_workqueue_activate_work(work);
1723 move_linked_works(work, &cwq->pool->worklist, NULL);
1724 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1725 cwq->nr_active++;
1726 }
1727
1728 /**
1729 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1730 * @cwq: cwq of interest
1731 * @color: color of work which left the queue
1732 * @delayed: for a delayed work
1733 *
1734 * A work either has completed or is removed from pending queue,
1735 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1736 *
1737 * CONTEXT:
1738 * spin_lock_irq(gcwq->lock).
1739 */
1740 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1741 bool delayed)
1742 {
1743 /* ignore uncolored works */
1744 if (color == WORK_NO_COLOR)
1745 return;
1746
1747 cwq->nr_in_flight[color]--;
1748
1749 if (!delayed) {
1750 cwq->nr_active--;
1751 if (!list_empty(&cwq->delayed_works)) {
1752 /* one down, submit a delayed one */
1753 if (cwq->nr_active < cwq->max_active)
1754 cwq_activate_first_delayed(cwq);
1755 }
1756 }
1757
1758 /* is flush in progress and are we at the flushing tip? */
1759 if (likely(cwq->flush_color != color))
1760 return;
1761
1762 /* are there still in-flight works? */
1763 if (cwq->nr_in_flight[color])
1764 return;
1765
1766 /* this cwq is done, clear flush_color */
1767 cwq->flush_color = -1;
1768
1769 /*
1770 * If this was the last cwq, wake up the first flusher. It
1771 * will handle the rest.
1772 */
1773 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1774 complete(&cwq->wq->first_flusher->done);
1775 }
1776
1777 /**
1778 * process_one_work - process single work
1779 * @worker: self
1780 * @work: work to process
1781 *
1782 * Process @work. This function contains all the logics necessary to
1783 * process a single work including synchronization against and
1784 * interaction with other workers on the same cpu, queueing and
1785 * flushing. As long as context requirement is met, any worker can
1786 * call this function to process a work.
1787 *
1788 * CONTEXT:
1789 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1790 */
1791 static void process_one_work(struct worker *worker, struct work_struct *work)
1792 __releases(&gcwq->lock)
1793 __acquires(&gcwq->lock)
1794 {
1795 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1796 struct worker_pool *pool = worker->pool;
1797 struct global_cwq *gcwq = pool->gcwq;
1798 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1799 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1800 work_func_t f = work->func;
1801 int work_color;
1802 struct worker *collision;
1803 #ifdef CONFIG_LOCKDEP
1804 /*
1805 * It is permissible to free the struct work_struct from
1806 * inside the function that is called from it, this we need to
1807 * take into account for lockdep too. To avoid bogus "held
1808 * lock freed" warnings as well as problems when looking into
1809 * work->lockdep_map, make a copy and use that here.
1810 */
1811 struct lockdep_map lockdep_map;
1812
1813 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1814 #endif
1815 /*
1816 * A single work shouldn't be executed concurrently by
1817 * multiple workers on a single cpu. Check whether anyone is
1818 * already processing the work. If so, defer the work to the
1819 * currently executing one.
1820 */
1821 collision = __find_worker_executing_work(gcwq, bwh, work);
1822 if (unlikely(collision)) {
1823 move_linked_works(work, &collision->scheduled, NULL);
1824 return;
1825 }
1826
1827 /* claim and process */
1828 debug_work_deactivate(work);
1829 hlist_add_head(&worker->hentry, bwh);
1830 worker->current_work = work;
1831 worker->current_cwq = cwq;
1832 work_color = get_work_color(work);
1833
1834 /* record the current cpu number in the work data and dequeue */
1835 set_work_cpu(work, gcwq->cpu);
1836 list_del_init(&work->entry);
1837
1838 /*
1839 * CPU intensive works don't participate in concurrency
1840 * management. They're the scheduler's responsibility.
1841 */
1842 if (unlikely(cpu_intensive))
1843 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1844
1845 /*
1846 * Unbound gcwq isn't concurrency managed and work items should be
1847 * executed ASAP. Wake up another worker if necessary.
1848 */
1849 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
1850 wake_up_worker(pool);
1851
1852 spin_unlock_irq(&gcwq->lock);
1853
1854 work_clear_pending(work);
1855 lock_map_acquire_read(&cwq->wq->lockdep_map);
1856 lock_map_acquire(&lockdep_map);
1857 trace_workqueue_execute_start(work);
1858 f(work);
1859 /*
1860 * While we must be careful to not use "work" after this, the trace
1861 * point will only record its address.
1862 */
1863 trace_workqueue_execute_end(work);
1864 lock_map_release(&lockdep_map);
1865 lock_map_release(&cwq->wq->lockdep_map);
1866
1867 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1868 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1869 "%s/0x%08x/%d\n",
1870 current->comm, preempt_count(), task_pid_nr(current));
1871 printk(KERN_ERR " last function: ");
1872 print_symbol("%s\n", (unsigned long)f);
1873 debug_show_held_locks(current);
1874 dump_stack();
1875 }
1876
1877 spin_lock_irq(&gcwq->lock);
1878
1879 /* clear cpu intensive status */
1880 if (unlikely(cpu_intensive))
1881 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1882
1883 /* we're done with it, release */
1884 hlist_del_init(&worker->hentry);
1885 worker->current_work = NULL;
1886 worker->current_cwq = NULL;
1887 cwq_dec_nr_in_flight(cwq, work_color, false);
1888 }
1889
1890 /**
1891 * process_scheduled_works - process scheduled works
1892 * @worker: self
1893 *
1894 * Process all scheduled works. Please note that the scheduled list
1895 * may change while processing a work, so this function repeatedly
1896 * fetches a work from the top and executes it.
1897 *
1898 * CONTEXT:
1899 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1900 * multiple times.
1901 */
1902 static void process_scheduled_works(struct worker *worker)
1903 {
1904 while (!list_empty(&worker->scheduled)) {
1905 struct work_struct *work = list_first_entry(&worker->scheduled,
1906 struct work_struct, entry);
1907 process_one_work(worker, work);
1908 }
1909 }
1910
1911 /**
1912 * worker_thread - the worker thread function
1913 * @__worker: self
1914 *
1915 * The gcwq worker thread function. There's a single dynamic pool of
1916 * these per each cpu. These workers process all works regardless of
1917 * their specific target workqueue. The only exception is works which
1918 * belong to workqueues with a rescuer which will be explained in
1919 * rescuer_thread().
1920 */
1921 static int worker_thread(void *__worker)
1922 {
1923 struct worker *worker = __worker;
1924 struct worker_pool *pool = worker->pool;
1925 struct global_cwq *gcwq = pool->gcwq;
1926
1927 /* tell the scheduler that this is a workqueue worker */
1928 worker->task->flags |= PF_WQ_WORKER;
1929 woke_up:
1930 spin_lock_irq(&gcwq->lock);
1931
1932 /* DIE can be set only while we're idle, checking here is enough */
1933 if (worker->flags & WORKER_DIE) {
1934 spin_unlock_irq(&gcwq->lock);
1935 worker->task->flags &= ~PF_WQ_WORKER;
1936 return 0;
1937 }
1938
1939 worker_leave_idle(worker);
1940 recheck:
1941 /* no more worker necessary? */
1942 if (!need_more_worker(pool))
1943 goto sleep;
1944
1945 /* do we need to manage? */
1946 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
1947 goto recheck;
1948
1949 /*
1950 * ->scheduled list can only be filled while a worker is
1951 * preparing to process a work or actually processing it.
1952 * Make sure nobody diddled with it while I was sleeping.
1953 */
1954 BUG_ON(!list_empty(&worker->scheduled));
1955
1956 /*
1957 * When control reaches this point, we're guaranteed to have
1958 * at least one idle worker or that someone else has already
1959 * assumed the manager role.
1960 */
1961 worker_clr_flags(worker, WORKER_PREP);
1962
1963 do {
1964 struct work_struct *work =
1965 list_first_entry(&pool->worklist,
1966 struct work_struct, entry);
1967
1968 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1969 /* optimization path, not strictly necessary */
1970 process_one_work(worker, work);
1971 if (unlikely(!list_empty(&worker->scheduled)))
1972 process_scheduled_works(worker);
1973 } else {
1974 move_linked_works(work, &worker->scheduled, NULL);
1975 process_scheduled_works(worker);
1976 }
1977 } while (keep_working(pool));
1978
1979 worker_set_flags(worker, WORKER_PREP, false);
1980 sleep:
1981 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
1982 goto recheck;
1983
1984 /*
1985 * gcwq->lock is held and there's no work to process and no
1986 * need to manage, sleep. Workers are woken up only while
1987 * holding gcwq->lock or from local cpu, so setting the
1988 * current state before releasing gcwq->lock is enough to
1989 * prevent losing any event.
1990 */
1991 worker_enter_idle(worker);
1992 __set_current_state(TASK_INTERRUPTIBLE);
1993 spin_unlock_irq(&gcwq->lock);
1994 schedule();
1995 goto woke_up;
1996 }
1997
1998 /**
1999 * rescuer_thread - the rescuer thread function
2000 * @__wq: the associated workqueue
2001 *
2002 * Workqueue rescuer thread function. There's one rescuer for each
2003 * workqueue which has WQ_RESCUER set.
2004 *
2005 * Regular work processing on a gcwq may block trying to create a new
2006 * worker which uses GFP_KERNEL allocation which has slight chance of
2007 * developing into deadlock if some works currently on the same queue
2008 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2009 * the problem rescuer solves.
2010 *
2011 * When such condition is possible, the gcwq summons rescuers of all
2012 * workqueues which have works queued on the gcwq and let them process
2013 * those works so that forward progress can be guaranteed.
2014 *
2015 * This should happen rarely.
2016 */
2017 static int rescuer_thread(void *__wq)
2018 {
2019 struct workqueue_struct *wq = __wq;
2020 struct worker *rescuer = wq->rescuer;
2021 struct list_head *scheduled = &rescuer->scheduled;
2022 bool is_unbound = wq->flags & WQ_UNBOUND;
2023 unsigned int cpu;
2024
2025 set_user_nice(current, RESCUER_NICE_LEVEL);
2026 repeat:
2027 set_current_state(TASK_INTERRUPTIBLE);
2028
2029 if (kthread_should_stop())
2030 return 0;
2031
2032 /*
2033 * See whether any cpu is asking for help. Unbounded
2034 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2035 */
2036 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2037 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2038 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2039 struct worker_pool *pool = cwq->pool;
2040 struct global_cwq *gcwq = pool->gcwq;
2041 struct work_struct *work, *n;
2042
2043 __set_current_state(TASK_RUNNING);
2044 mayday_clear_cpu(cpu, wq->mayday_mask);
2045
2046 /* migrate to the target cpu if possible */
2047 rescuer->pool = pool;
2048 worker_maybe_bind_and_lock(rescuer);
2049
2050 /*
2051 * Slurp in all works issued via this workqueue and
2052 * process'em.
2053 */
2054 BUG_ON(!list_empty(&rescuer->scheduled));
2055 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2056 if (get_work_cwq(work) == cwq)
2057 move_linked_works(work, scheduled, &n);
2058
2059 process_scheduled_works(rescuer);
2060
2061 /*
2062 * Leave this gcwq. If keep_working() is %true, notify a
2063 * regular worker; otherwise, we end up with 0 concurrency
2064 * and stalling the execution.
2065 */
2066 if (keep_working(pool))
2067 wake_up_worker(pool);
2068
2069 spin_unlock_irq(&gcwq->lock);
2070 }
2071
2072 schedule();
2073 goto repeat;
2074 }
2075
2076 struct wq_barrier {
2077 struct work_struct work;
2078 struct completion done;
2079 };
2080
2081 static void wq_barrier_func(struct work_struct *work)
2082 {
2083 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2084 complete(&barr->done);
2085 }
2086
2087 /**
2088 * insert_wq_barrier - insert a barrier work
2089 * @cwq: cwq to insert barrier into
2090 * @barr: wq_barrier to insert
2091 * @target: target work to attach @barr to
2092 * @worker: worker currently executing @target, NULL if @target is not executing
2093 *
2094 * @barr is linked to @target such that @barr is completed only after
2095 * @target finishes execution. Please note that the ordering
2096 * guarantee is observed only with respect to @target and on the local
2097 * cpu.
2098 *
2099 * Currently, a queued barrier can't be canceled. This is because
2100 * try_to_grab_pending() can't determine whether the work to be
2101 * grabbed is at the head of the queue and thus can't clear LINKED
2102 * flag of the previous work while there must be a valid next work
2103 * after a work with LINKED flag set.
2104 *
2105 * Note that when @worker is non-NULL, @target may be modified
2106 * underneath us, so we can't reliably determine cwq from @target.
2107 *
2108 * CONTEXT:
2109 * spin_lock_irq(gcwq->lock).
2110 */
2111 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2112 struct wq_barrier *barr,
2113 struct work_struct *target, struct worker *worker)
2114 {
2115 struct list_head *head;
2116 unsigned int linked = 0;
2117
2118 /*
2119 * debugobject calls are safe here even with gcwq->lock locked
2120 * as we know for sure that this will not trigger any of the
2121 * checks and call back into the fixup functions where we
2122 * might deadlock.
2123 */
2124 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2125 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2126 init_completion(&barr->done);
2127
2128 /*
2129 * If @target is currently being executed, schedule the
2130 * barrier to the worker; otherwise, put it after @target.
2131 */
2132 if (worker)
2133 head = worker->scheduled.next;
2134 else {
2135 unsigned long *bits = work_data_bits(target);
2136
2137 head = target->entry.next;
2138 /* there can already be other linked works, inherit and set */
2139 linked = *bits & WORK_STRUCT_LINKED;
2140 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2141 }
2142
2143 debug_work_activate(&barr->work);
2144 insert_work(cwq, &barr->work, head,
2145 work_color_to_flags(WORK_NO_COLOR) | linked);
2146 }
2147
2148 /**
2149 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2150 * @wq: workqueue being flushed
2151 * @flush_color: new flush color, < 0 for no-op
2152 * @work_color: new work color, < 0 for no-op
2153 *
2154 * Prepare cwqs for workqueue flushing.
2155 *
2156 * If @flush_color is non-negative, flush_color on all cwqs should be
2157 * -1. If no cwq has in-flight commands at the specified color, all
2158 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2159 * has in flight commands, its cwq->flush_color is set to
2160 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2161 * wakeup logic is armed and %true is returned.
2162 *
2163 * The caller should have initialized @wq->first_flusher prior to
2164 * calling this function with non-negative @flush_color. If
2165 * @flush_color is negative, no flush color update is done and %false
2166 * is returned.
2167 *
2168 * If @work_color is non-negative, all cwqs should have the same
2169 * work_color which is previous to @work_color and all will be
2170 * advanced to @work_color.
2171 *
2172 * CONTEXT:
2173 * mutex_lock(wq->flush_mutex).
2174 *
2175 * RETURNS:
2176 * %true if @flush_color >= 0 and there's something to flush. %false
2177 * otherwise.
2178 */
2179 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2180 int flush_color, int work_color)
2181 {
2182 bool wait = false;
2183 unsigned int cpu;
2184
2185 if (flush_color >= 0) {
2186 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2187 atomic_set(&wq->nr_cwqs_to_flush, 1);
2188 }
2189
2190 for_each_cwq_cpu(cpu, wq) {
2191 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2192 struct global_cwq *gcwq = cwq->pool->gcwq;
2193
2194 spin_lock_irq(&gcwq->lock);
2195
2196 if (flush_color >= 0) {
2197 BUG_ON(cwq->flush_color != -1);
2198
2199 if (cwq->nr_in_flight[flush_color]) {
2200 cwq->flush_color = flush_color;
2201 atomic_inc(&wq->nr_cwqs_to_flush);
2202 wait = true;
2203 }
2204 }
2205
2206 if (work_color >= 0) {
2207 BUG_ON(work_color != work_next_color(cwq->work_color));
2208 cwq->work_color = work_color;
2209 }
2210
2211 spin_unlock_irq(&gcwq->lock);
2212 }
2213
2214 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2215 complete(&wq->first_flusher->done);
2216
2217 return wait;
2218 }
2219
2220 /**
2221 * flush_workqueue - ensure that any scheduled work has run to completion.
2222 * @wq: workqueue to flush
2223 *
2224 * Forces execution of the workqueue and blocks until its completion.
2225 * This is typically used in driver shutdown handlers.
2226 *
2227 * We sleep until all works which were queued on entry have been handled,
2228 * but we are not livelocked by new incoming ones.
2229 */
2230 void flush_workqueue(struct workqueue_struct *wq)
2231 {
2232 struct wq_flusher this_flusher = {
2233 .list = LIST_HEAD_INIT(this_flusher.list),
2234 .flush_color = -1,
2235 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2236 };
2237 int next_color;
2238
2239 lock_map_acquire(&wq->lockdep_map);
2240 lock_map_release(&wq->lockdep_map);
2241
2242 mutex_lock(&wq->flush_mutex);
2243
2244 /*
2245 * Start-to-wait phase
2246 */
2247 next_color = work_next_color(wq->work_color);
2248
2249 if (next_color != wq->flush_color) {
2250 /*
2251 * Color space is not full. The current work_color
2252 * becomes our flush_color and work_color is advanced
2253 * by one.
2254 */
2255 BUG_ON(!list_empty(&wq->flusher_overflow));
2256 this_flusher.flush_color = wq->work_color;
2257 wq->work_color = next_color;
2258
2259 if (!wq->first_flusher) {
2260 /* no flush in progress, become the first flusher */
2261 BUG_ON(wq->flush_color != this_flusher.flush_color);
2262
2263 wq->first_flusher = &this_flusher;
2264
2265 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2266 wq->work_color)) {
2267 /* nothing to flush, done */
2268 wq->flush_color = next_color;
2269 wq->first_flusher = NULL;
2270 goto out_unlock;
2271 }
2272 } else {
2273 /* wait in queue */
2274 BUG_ON(wq->flush_color == this_flusher.flush_color);
2275 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2276 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2277 }
2278 } else {
2279 /*
2280 * Oops, color space is full, wait on overflow queue.
2281 * The next flush completion will assign us
2282 * flush_color and transfer to flusher_queue.
2283 */
2284 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2285 }
2286
2287 mutex_unlock(&wq->flush_mutex);
2288
2289 wait_for_completion(&this_flusher.done);
2290
2291 /*
2292 * Wake-up-and-cascade phase
2293 *
2294 * First flushers are responsible for cascading flushes and
2295 * handling overflow. Non-first flushers can simply return.
2296 */
2297 if (wq->first_flusher != &this_flusher)
2298 return;
2299
2300 mutex_lock(&wq->flush_mutex);
2301
2302 /* we might have raced, check again with mutex held */
2303 if (wq->first_flusher != &this_flusher)
2304 goto out_unlock;
2305
2306 wq->first_flusher = NULL;
2307
2308 BUG_ON(!list_empty(&this_flusher.list));
2309 BUG_ON(wq->flush_color != this_flusher.flush_color);
2310
2311 while (true) {
2312 struct wq_flusher *next, *tmp;
2313
2314 /* complete all the flushers sharing the current flush color */
2315 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2316 if (next->flush_color != wq->flush_color)
2317 break;
2318 list_del_init(&next->list);
2319 complete(&next->done);
2320 }
2321
2322 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2323 wq->flush_color != work_next_color(wq->work_color));
2324
2325 /* this flush_color is finished, advance by one */
2326 wq->flush_color = work_next_color(wq->flush_color);
2327
2328 /* one color has been freed, handle overflow queue */
2329 if (!list_empty(&wq->flusher_overflow)) {
2330 /*
2331 * Assign the same color to all overflowed
2332 * flushers, advance work_color and append to
2333 * flusher_queue. This is the start-to-wait
2334 * phase for these overflowed flushers.
2335 */
2336 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2337 tmp->flush_color = wq->work_color;
2338
2339 wq->work_color = work_next_color(wq->work_color);
2340
2341 list_splice_tail_init(&wq->flusher_overflow,
2342 &wq->flusher_queue);
2343 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2344 }
2345
2346 if (list_empty(&wq->flusher_queue)) {
2347 BUG_ON(wq->flush_color != wq->work_color);
2348 break;
2349 }
2350
2351 /*
2352 * Need to flush more colors. Make the next flusher
2353 * the new first flusher and arm cwqs.
2354 */
2355 BUG_ON(wq->flush_color == wq->work_color);
2356 BUG_ON(wq->flush_color != next->flush_color);
2357
2358 list_del_init(&next->list);
2359 wq->first_flusher = next;
2360
2361 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2362 break;
2363
2364 /*
2365 * Meh... this color is already done, clear first
2366 * flusher and repeat cascading.
2367 */
2368 wq->first_flusher = NULL;
2369 }
2370
2371 out_unlock:
2372 mutex_unlock(&wq->flush_mutex);
2373 }
2374 EXPORT_SYMBOL_GPL(flush_workqueue);
2375
2376 /**
2377 * drain_workqueue - drain a workqueue
2378 * @wq: workqueue to drain
2379 *
2380 * Wait until the workqueue becomes empty. While draining is in progress,
2381 * only chain queueing is allowed. IOW, only currently pending or running
2382 * work items on @wq can queue further work items on it. @wq is flushed
2383 * repeatedly until it becomes empty. The number of flushing is detemined
2384 * by the depth of chaining and should be relatively short. Whine if it
2385 * takes too long.
2386 */
2387 void drain_workqueue(struct workqueue_struct *wq)
2388 {
2389 unsigned int flush_cnt = 0;
2390 unsigned int cpu;
2391
2392 /*
2393 * __queue_work() needs to test whether there are drainers, is much
2394 * hotter than drain_workqueue() and already looks at @wq->flags.
2395 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2396 */
2397 spin_lock(&workqueue_lock);
2398 if (!wq->nr_drainers++)
2399 wq->flags |= WQ_DRAINING;
2400 spin_unlock(&workqueue_lock);
2401 reflush:
2402 flush_workqueue(wq);
2403
2404 for_each_cwq_cpu(cpu, wq) {
2405 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2406 bool drained;
2407
2408 spin_lock_irq(&cwq->pool->gcwq->lock);
2409 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2410 spin_unlock_irq(&cwq->pool->gcwq->lock);
2411
2412 if (drained)
2413 continue;
2414
2415 if (++flush_cnt == 10 ||
2416 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2417 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2418 wq->name, flush_cnt);
2419 goto reflush;
2420 }
2421
2422 spin_lock(&workqueue_lock);
2423 if (!--wq->nr_drainers)
2424 wq->flags &= ~WQ_DRAINING;
2425 spin_unlock(&workqueue_lock);
2426 }
2427 EXPORT_SYMBOL_GPL(drain_workqueue);
2428
2429 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2430 bool wait_executing)
2431 {
2432 struct worker *worker = NULL;
2433 struct global_cwq *gcwq;
2434 struct cpu_workqueue_struct *cwq;
2435
2436 might_sleep();
2437 gcwq = get_work_gcwq(work);
2438 if (!gcwq)
2439 return false;
2440
2441 spin_lock_irq(&gcwq->lock);
2442 if (!list_empty(&work->entry)) {
2443 /*
2444 * See the comment near try_to_grab_pending()->smp_rmb().
2445 * If it was re-queued to a different gcwq under us, we
2446 * are not going to wait.
2447 */
2448 smp_rmb();
2449 cwq = get_work_cwq(work);
2450 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2451 goto already_gone;
2452 } else if (wait_executing) {
2453 worker = find_worker_executing_work(gcwq, work);
2454 if (!worker)
2455 goto already_gone;
2456 cwq = worker->current_cwq;
2457 } else
2458 goto already_gone;
2459
2460 insert_wq_barrier(cwq, barr, work, worker);
2461 spin_unlock_irq(&gcwq->lock);
2462
2463 /*
2464 * If @max_active is 1 or rescuer is in use, flushing another work
2465 * item on the same workqueue may lead to deadlock. Make sure the
2466 * flusher is not running on the same workqueue by verifying write
2467 * access.
2468 */
2469 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2470 lock_map_acquire(&cwq->wq->lockdep_map);
2471 else
2472 lock_map_acquire_read(&cwq->wq->lockdep_map);
2473 lock_map_release(&cwq->wq->lockdep_map);
2474
2475 return true;
2476 already_gone:
2477 spin_unlock_irq(&gcwq->lock);
2478 return false;
2479 }
2480
2481 /**
2482 * flush_work - wait for a work to finish executing the last queueing instance
2483 * @work: the work to flush
2484 *
2485 * Wait until @work has finished execution. This function considers
2486 * only the last queueing instance of @work. If @work has been
2487 * enqueued across different CPUs on a non-reentrant workqueue or on
2488 * multiple workqueues, @work might still be executing on return on
2489 * some of the CPUs from earlier queueing.
2490 *
2491 * If @work was queued only on a non-reentrant, ordered or unbound
2492 * workqueue, @work is guaranteed to be idle on return if it hasn't
2493 * been requeued since flush started.
2494 *
2495 * RETURNS:
2496 * %true if flush_work() waited for the work to finish execution,
2497 * %false if it was already idle.
2498 */
2499 bool flush_work(struct work_struct *work)
2500 {
2501 struct wq_barrier barr;
2502
2503 lock_map_acquire(&work->lockdep_map);
2504 lock_map_release(&work->lockdep_map);
2505
2506 if (start_flush_work(work, &barr, true)) {
2507 wait_for_completion(&barr.done);
2508 destroy_work_on_stack(&barr.work);
2509 return true;
2510 } else
2511 return false;
2512 }
2513 EXPORT_SYMBOL_GPL(flush_work);
2514
2515 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2516 {
2517 struct wq_barrier barr;
2518 struct worker *worker;
2519
2520 spin_lock_irq(&gcwq->lock);
2521
2522 worker = find_worker_executing_work(gcwq, work);
2523 if (unlikely(worker))
2524 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2525
2526 spin_unlock_irq(&gcwq->lock);
2527
2528 if (unlikely(worker)) {
2529 wait_for_completion(&barr.done);
2530 destroy_work_on_stack(&barr.work);
2531 return true;
2532 } else
2533 return false;
2534 }
2535
2536 static bool wait_on_work(struct work_struct *work)
2537 {
2538 bool ret = false;
2539 int cpu;
2540
2541 might_sleep();
2542
2543 lock_map_acquire(&work->lockdep_map);
2544 lock_map_release(&work->lockdep_map);
2545
2546 for_each_gcwq_cpu(cpu)
2547 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2548 return ret;
2549 }
2550
2551 /**
2552 * flush_work_sync - wait until a work has finished execution
2553 * @work: the work to flush
2554 *
2555 * Wait until @work has finished execution. On return, it's
2556 * guaranteed that all queueing instances of @work which happened
2557 * before this function is called are finished. In other words, if
2558 * @work hasn't been requeued since this function was called, @work is
2559 * guaranteed to be idle on return.
2560 *
2561 * RETURNS:
2562 * %true if flush_work_sync() waited for the work to finish execution,
2563 * %false if it was already idle.
2564 */
2565 bool flush_work_sync(struct work_struct *work)
2566 {
2567 struct wq_barrier barr;
2568 bool pending, waited;
2569
2570 /* we'll wait for executions separately, queue barr only if pending */
2571 pending = start_flush_work(work, &barr, false);
2572
2573 /* wait for executions to finish */
2574 waited = wait_on_work(work);
2575
2576 /* wait for the pending one */
2577 if (pending) {
2578 wait_for_completion(&barr.done);
2579 destroy_work_on_stack(&barr.work);
2580 }
2581
2582 return pending || waited;
2583 }
2584 EXPORT_SYMBOL_GPL(flush_work_sync);
2585
2586 /*
2587 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2588 * so this work can't be re-armed in any way.
2589 */
2590 static int try_to_grab_pending(struct work_struct *work)
2591 {
2592 struct global_cwq *gcwq;
2593 int ret = -1;
2594
2595 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2596 return 0;
2597
2598 /*
2599 * The queueing is in progress, or it is already queued. Try to
2600 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2601 */
2602 gcwq = get_work_gcwq(work);
2603 if (!gcwq)
2604 return ret;
2605
2606 spin_lock_irq(&gcwq->lock);
2607 if (!list_empty(&work->entry)) {
2608 /*
2609 * This work is queued, but perhaps we locked the wrong gcwq.
2610 * In that case we must see the new value after rmb(), see
2611 * insert_work()->wmb().
2612 */
2613 smp_rmb();
2614 if (gcwq == get_work_gcwq(work)) {
2615 debug_work_deactivate(work);
2616 list_del_init(&work->entry);
2617 cwq_dec_nr_in_flight(get_work_cwq(work),
2618 get_work_color(work),
2619 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2620 ret = 1;
2621 }
2622 }
2623 spin_unlock_irq(&gcwq->lock);
2624
2625 return ret;
2626 }
2627
2628 static bool __cancel_work_timer(struct work_struct *work,
2629 struct timer_list* timer)
2630 {
2631 int ret;
2632
2633 do {
2634 ret = (timer && likely(del_timer(timer)));
2635 if (!ret)
2636 ret = try_to_grab_pending(work);
2637 wait_on_work(work);
2638 } while (unlikely(ret < 0));
2639
2640 clear_work_data(work);
2641 return ret;
2642 }
2643
2644 /**
2645 * cancel_work_sync - cancel a work and wait for it to finish
2646 * @work: the work to cancel
2647 *
2648 * Cancel @work and wait for its execution to finish. This function
2649 * can be used even if the work re-queues itself or migrates to
2650 * another workqueue. On return from this function, @work is
2651 * guaranteed to be not pending or executing on any CPU.
2652 *
2653 * cancel_work_sync(&delayed_work->work) must not be used for
2654 * delayed_work's. Use cancel_delayed_work_sync() instead.
2655 *
2656 * The caller must ensure that the workqueue on which @work was last
2657 * queued can't be destroyed before this function returns.
2658 *
2659 * RETURNS:
2660 * %true if @work was pending, %false otherwise.
2661 */
2662 bool cancel_work_sync(struct work_struct *work)
2663 {
2664 return __cancel_work_timer(work, NULL);
2665 }
2666 EXPORT_SYMBOL_GPL(cancel_work_sync);
2667
2668 /**
2669 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2670 * @dwork: the delayed work to flush
2671 *
2672 * Delayed timer is cancelled and the pending work is queued for
2673 * immediate execution. Like flush_work(), this function only
2674 * considers the last queueing instance of @dwork.
2675 *
2676 * RETURNS:
2677 * %true if flush_work() waited for the work to finish execution,
2678 * %false if it was already idle.
2679 */
2680 bool flush_delayed_work(struct delayed_work *dwork)
2681 {
2682 if (del_timer_sync(&dwork->timer))
2683 __queue_work(raw_smp_processor_id(),
2684 get_work_cwq(&dwork->work)->wq, &dwork->work);
2685 return flush_work(&dwork->work);
2686 }
2687 EXPORT_SYMBOL(flush_delayed_work);
2688
2689 /**
2690 * flush_delayed_work_sync - wait for a dwork to finish
2691 * @dwork: the delayed work to flush
2692 *
2693 * Delayed timer is cancelled and the pending work is queued for
2694 * execution immediately. Other than timer handling, its behavior
2695 * is identical to flush_work_sync().
2696 *
2697 * RETURNS:
2698 * %true if flush_work_sync() waited for the work to finish execution,
2699 * %false if it was already idle.
2700 */
2701 bool flush_delayed_work_sync(struct delayed_work *dwork)
2702 {
2703 if (del_timer_sync(&dwork->timer))
2704 __queue_work(raw_smp_processor_id(),
2705 get_work_cwq(&dwork->work)->wq, &dwork->work);
2706 return flush_work_sync(&dwork->work);
2707 }
2708 EXPORT_SYMBOL(flush_delayed_work_sync);
2709
2710 /**
2711 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2712 * @dwork: the delayed work cancel
2713 *
2714 * This is cancel_work_sync() for delayed works.
2715 *
2716 * RETURNS:
2717 * %true if @dwork was pending, %false otherwise.
2718 */
2719 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2720 {
2721 return __cancel_work_timer(&dwork->work, &dwork->timer);
2722 }
2723 EXPORT_SYMBOL(cancel_delayed_work_sync);
2724
2725 /**
2726 * schedule_work - put work task in global workqueue
2727 * @work: job to be done
2728 *
2729 * Returns zero if @work was already on the kernel-global workqueue and
2730 * non-zero otherwise.
2731 *
2732 * This puts a job in the kernel-global workqueue if it was not already
2733 * queued and leaves it in the same position on the kernel-global
2734 * workqueue otherwise.
2735 */
2736 int schedule_work(struct work_struct *work)
2737 {
2738 return queue_work(system_wq, work);
2739 }
2740 EXPORT_SYMBOL(schedule_work);
2741
2742 /*
2743 * schedule_work_on - put work task on a specific cpu
2744 * @cpu: cpu to put the work task on
2745 * @work: job to be done
2746 *
2747 * This puts a job on a specific cpu
2748 */
2749 int schedule_work_on(int cpu, struct work_struct *work)
2750 {
2751 return queue_work_on(cpu, system_wq, work);
2752 }
2753 EXPORT_SYMBOL(schedule_work_on);
2754
2755 /**
2756 * schedule_delayed_work - put work task in global workqueue after delay
2757 * @dwork: job to be done
2758 * @delay: number of jiffies to wait or 0 for immediate execution
2759 *
2760 * After waiting for a given time this puts a job in the kernel-global
2761 * workqueue.
2762 */
2763 int schedule_delayed_work(struct delayed_work *dwork,
2764 unsigned long delay)
2765 {
2766 return queue_delayed_work(system_wq, dwork, delay);
2767 }
2768 EXPORT_SYMBOL(schedule_delayed_work);
2769
2770 /**
2771 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2772 * @cpu: cpu to use
2773 * @dwork: job to be done
2774 * @delay: number of jiffies to wait
2775 *
2776 * After waiting for a given time this puts a job in the kernel-global
2777 * workqueue on the specified CPU.
2778 */
2779 int schedule_delayed_work_on(int cpu,
2780 struct delayed_work *dwork, unsigned long delay)
2781 {
2782 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2783 }
2784 EXPORT_SYMBOL(schedule_delayed_work_on);
2785
2786 /**
2787 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2788 * @func: the function to call
2789 *
2790 * schedule_on_each_cpu() executes @func on each online CPU using the
2791 * system workqueue and blocks until all CPUs have completed.
2792 * schedule_on_each_cpu() is very slow.
2793 *
2794 * RETURNS:
2795 * 0 on success, -errno on failure.
2796 */
2797 int schedule_on_each_cpu(work_func_t func)
2798 {
2799 int cpu;
2800 struct work_struct __percpu *works;
2801
2802 works = alloc_percpu(struct work_struct);
2803 if (!works)
2804 return -ENOMEM;
2805
2806 get_online_cpus();
2807
2808 for_each_online_cpu(cpu) {
2809 struct work_struct *work = per_cpu_ptr(works, cpu);
2810
2811 INIT_WORK(work, func);
2812 schedule_work_on(cpu, work);
2813 }
2814
2815 for_each_online_cpu(cpu)
2816 flush_work(per_cpu_ptr(works, cpu));
2817
2818 put_online_cpus();
2819 free_percpu(works);
2820 return 0;
2821 }
2822
2823 /**
2824 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2825 *
2826 * Forces execution of the kernel-global workqueue and blocks until its
2827 * completion.
2828 *
2829 * Think twice before calling this function! It's very easy to get into
2830 * trouble if you don't take great care. Either of the following situations
2831 * will lead to deadlock:
2832 *
2833 * One of the work items currently on the workqueue needs to acquire
2834 * a lock held by your code or its caller.
2835 *
2836 * Your code is running in the context of a work routine.
2837 *
2838 * They will be detected by lockdep when they occur, but the first might not
2839 * occur very often. It depends on what work items are on the workqueue and
2840 * what locks they need, which you have no control over.
2841 *
2842 * In most situations flushing the entire workqueue is overkill; you merely
2843 * need to know that a particular work item isn't queued and isn't running.
2844 * In such cases you should use cancel_delayed_work_sync() or
2845 * cancel_work_sync() instead.
2846 */
2847 void flush_scheduled_work(void)
2848 {
2849 flush_workqueue(system_wq);
2850 }
2851 EXPORT_SYMBOL(flush_scheduled_work);
2852
2853 /**
2854 * execute_in_process_context - reliably execute the routine with user context
2855 * @fn: the function to execute
2856 * @ew: guaranteed storage for the execute work structure (must
2857 * be available when the work executes)
2858 *
2859 * Executes the function immediately if process context is available,
2860 * otherwise schedules the function for delayed execution.
2861 *
2862 * Returns: 0 - function was executed
2863 * 1 - function was scheduled for execution
2864 */
2865 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2866 {
2867 if (!in_interrupt()) {
2868 fn(&ew->work);
2869 return 0;
2870 }
2871
2872 INIT_WORK(&ew->work, fn);
2873 schedule_work(&ew->work);
2874
2875 return 1;
2876 }
2877 EXPORT_SYMBOL_GPL(execute_in_process_context);
2878
2879 int keventd_up(void)
2880 {
2881 return system_wq != NULL;
2882 }
2883
2884 static int alloc_cwqs(struct workqueue_struct *wq)
2885 {
2886 /*
2887 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2888 * Make sure that the alignment isn't lower than that of
2889 * unsigned long long.
2890 */
2891 const size_t size = sizeof(struct cpu_workqueue_struct);
2892 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2893 __alignof__(unsigned long long));
2894
2895 if (!(wq->flags & WQ_UNBOUND))
2896 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2897 else {
2898 void *ptr;
2899
2900 /*
2901 * Allocate enough room to align cwq and put an extra
2902 * pointer at the end pointing back to the originally
2903 * allocated pointer which will be used for free.
2904 */
2905 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2906 if (ptr) {
2907 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2908 *(void **)(wq->cpu_wq.single + 1) = ptr;
2909 }
2910 }
2911
2912 /* just in case, make sure it's actually aligned */
2913 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2914 return wq->cpu_wq.v ? 0 : -ENOMEM;
2915 }
2916
2917 static void free_cwqs(struct workqueue_struct *wq)
2918 {
2919 if (!(wq->flags & WQ_UNBOUND))
2920 free_percpu(wq->cpu_wq.pcpu);
2921 else if (wq->cpu_wq.single) {
2922 /* the pointer to free is stored right after the cwq */
2923 kfree(*(void **)(wq->cpu_wq.single + 1));
2924 }
2925 }
2926
2927 static int wq_clamp_max_active(int max_active, unsigned int flags,
2928 const char *name)
2929 {
2930 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2931
2932 if (max_active < 1 || max_active > lim)
2933 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2934 "is out of range, clamping between %d and %d\n",
2935 max_active, name, 1, lim);
2936
2937 return clamp_val(max_active, 1, lim);
2938 }
2939
2940 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2941 unsigned int flags,
2942 int max_active,
2943 struct lock_class_key *key,
2944 const char *lock_name, ...)
2945 {
2946 va_list args, args1;
2947 struct workqueue_struct *wq;
2948 unsigned int cpu;
2949 size_t namelen;
2950
2951 /* determine namelen, allocate wq and format name */
2952 va_start(args, lock_name);
2953 va_copy(args1, args);
2954 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2955
2956 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2957 if (!wq)
2958 goto err;
2959
2960 vsnprintf(wq->name, namelen, fmt, args1);
2961 va_end(args);
2962 va_end(args1);
2963
2964 /*
2965 * Workqueues which may be used during memory reclaim should
2966 * have a rescuer to guarantee forward progress.
2967 */
2968 if (flags & WQ_MEM_RECLAIM)
2969 flags |= WQ_RESCUER;
2970
2971 max_active = max_active ?: WQ_DFL_ACTIVE;
2972 max_active = wq_clamp_max_active(max_active, flags, wq->name);
2973
2974 /* init wq */
2975 wq->flags = flags;
2976 wq->saved_max_active = max_active;
2977 mutex_init(&wq->flush_mutex);
2978 atomic_set(&wq->nr_cwqs_to_flush, 0);
2979 INIT_LIST_HEAD(&wq->flusher_queue);
2980 INIT_LIST_HEAD(&wq->flusher_overflow);
2981
2982 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2983 INIT_LIST_HEAD(&wq->list);
2984
2985 if (alloc_cwqs(wq) < 0)
2986 goto err;
2987
2988 for_each_cwq_cpu(cpu, wq) {
2989 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2990 struct global_cwq *gcwq = get_gcwq(cpu);
2991 int pool_idx = (bool)(flags & WQ_HIGHPRI);
2992
2993 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2994 cwq->pool = &gcwq->pools[pool_idx];
2995 cwq->wq = wq;
2996 cwq->flush_color = -1;
2997 cwq->max_active = max_active;
2998 INIT_LIST_HEAD(&cwq->delayed_works);
2999 }
3000
3001 if (flags & WQ_RESCUER) {
3002 struct worker *rescuer;
3003
3004 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3005 goto err;
3006
3007 wq->rescuer = rescuer = alloc_worker();
3008 if (!rescuer)
3009 goto err;
3010
3011 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3012 wq->name);
3013 if (IS_ERR(rescuer->task))
3014 goto err;
3015
3016 rescuer->task->flags |= PF_THREAD_BOUND;
3017 wake_up_process(rescuer->task);
3018 }
3019
3020 /*
3021 * workqueue_lock protects global freeze state and workqueues
3022 * list. Grab it, set max_active accordingly and add the new
3023 * workqueue to workqueues list.
3024 */
3025 spin_lock(&workqueue_lock);
3026
3027 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3028 for_each_cwq_cpu(cpu, wq)
3029 get_cwq(cpu, wq)->max_active = 0;
3030
3031 list_add(&wq->list, &workqueues);
3032
3033 spin_unlock(&workqueue_lock);
3034
3035 return wq;
3036 err:
3037 if (wq) {
3038 free_cwqs(wq);
3039 free_mayday_mask(wq->mayday_mask);
3040 kfree(wq->rescuer);
3041 kfree(wq);
3042 }
3043 return NULL;
3044 }
3045 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3046
3047 /**
3048 * destroy_workqueue - safely terminate a workqueue
3049 * @wq: target workqueue
3050 *
3051 * Safely destroy a workqueue. All work currently pending will be done first.
3052 */
3053 void destroy_workqueue(struct workqueue_struct *wq)
3054 {
3055 unsigned int cpu;
3056
3057 /* drain it before proceeding with destruction */
3058 drain_workqueue(wq);
3059
3060 /*
3061 * wq list is used to freeze wq, remove from list after
3062 * flushing is complete in case freeze races us.
3063 */
3064 spin_lock(&workqueue_lock);
3065 list_del(&wq->list);
3066 spin_unlock(&workqueue_lock);
3067
3068 /* sanity check */
3069 for_each_cwq_cpu(cpu, wq) {
3070 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3071 int i;
3072
3073 for (i = 0; i < WORK_NR_COLORS; i++)
3074 BUG_ON(cwq->nr_in_flight[i]);
3075 BUG_ON(cwq->nr_active);
3076 BUG_ON(!list_empty(&cwq->delayed_works));
3077 }
3078
3079 if (wq->flags & WQ_RESCUER) {
3080 kthread_stop(wq->rescuer->task);
3081 free_mayday_mask(wq->mayday_mask);
3082 kfree(wq->rescuer);
3083 }
3084
3085 free_cwqs(wq);
3086 kfree(wq);
3087 }
3088 EXPORT_SYMBOL_GPL(destroy_workqueue);
3089
3090 /**
3091 * workqueue_set_max_active - adjust max_active of a workqueue
3092 * @wq: target workqueue
3093 * @max_active: new max_active value.
3094 *
3095 * Set max_active of @wq to @max_active.
3096 *
3097 * CONTEXT:
3098 * Don't call from IRQ context.
3099 */
3100 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3101 {
3102 unsigned int cpu;
3103
3104 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3105
3106 spin_lock(&workqueue_lock);
3107
3108 wq->saved_max_active = max_active;
3109
3110 for_each_cwq_cpu(cpu, wq) {
3111 struct global_cwq *gcwq = get_gcwq(cpu);
3112
3113 spin_lock_irq(&gcwq->lock);
3114
3115 if (!(wq->flags & WQ_FREEZABLE) ||
3116 !(gcwq->flags & GCWQ_FREEZING))
3117 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3118
3119 spin_unlock_irq(&gcwq->lock);
3120 }
3121
3122 spin_unlock(&workqueue_lock);
3123 }
3124 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3125
3126 /**
3127 * workqueue_congested - test whether a workqueue is congested
3128 * @cpu: CPU in question
3129 * @wq: target workqueue
3130 *
3131 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3132 * no synchronization around this function and the test result is
3133 * unreliable and only useful as advisory hints or for debugging.
3134 *
3135 * RETURNS:
3136 * %true if congested, %false otherwise.
3137 */
3138 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3139 {
3140 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3141
3142 return !list_empty(&cwq->delayed_works);
3143 }
3144 EXPORT_SYMBOL_GPL(workqueue_congested);
3145
3146 /**
3147 * work_cpu - return the last known associated cpu for @work
3148 * @work: the work of interest
3149 *
3150 * RETURNS:
3151 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3152 */
3153 unsigned int work_cpu(struct work_struct *work)
3154 {
3155 struct global_cwq *gcwq = get_work_gcwq(work);
3156
3157 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3158 }
3159 EXPORT_SYMBOL_GPL(work_cpu);
3160
3161 /**
3162 * work_busy - test whether a work is currently pending or running
3163 * @work: the work to be tested
3164 *
3165 * Test whether @work is currently pending or running. There is no
3166 * synchronization around this function and the test result is
3167 * unreliable and only useful as advisory hints or for debugging.
3168 * Especially for reentrant wqs, the pending state might hide the
3169 * running state.
3170 *
3171 * RETURNS:
3172 * OR'd bitmask of WORK_BUSY_* bits.
3173 */
3174 unsigned int work_busy(struct work_struct *work)
3175 {
3176 struct global_cwq *gcwq = get_work_gcwq(work);
3177 unsigned long flags;
3178 unsigned int ret = 0;
3179
3180 if (!gcwq)
3181 return false;
3182
3183 spin_lock_irqsave(&gcwq->lock, flags);
3184
3185 if (work_pending(work))
3186 ret |= WORK_BUSY_PENDING;
3187 if (find_worker_executing_work(gcwq, work))
3188 ret |= WORK_BUSY_RUNNING;
3189
3190 spin_unlock_irqrestore(&gcwq->lock, flags);
3191
3192 return ret;
3193 }
3194 EXPORT_SYMBOL_GPL(work_busy);
3195
3196 /*
3197 * CPU hotplug.
3198 *
3199 * There are two challenges in supporting CPU hotplug. Firstly, there
3200 * are a lot of assumptions on strong associations among work, cwq and
3201 * gcwq which make migrating pending and scheduled works very
3202 * difficult to implement without impacting hot paths. Secondly,
3203 * gcwqs serve mix of short, long and very long running works making
3204 * blocked draining impractical.
3205 *
3206 * This is solved by allowing a gcwq to be detached from CPU, running it
3207 * with unbound workers and allowing it to be reattached later if the cpu
3208 * comes back online. A separate thread is created to govern a gcwq in
3209 * such state and is called the trustee of the gcwq.
3210 *
3211 * Trustee states and their descriptions.
3212 *
3213 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3214 * new trustee is started with this state.
3215 *
3216 * IN_CHARGE Once started, trustee will enter this state after
3217 * assuming the manager role and making all existing
3218 * workers rogue. DOWN_PREPARE waits for trustee to
3219 * enter this state. After reaching IN_CHARGE, trustee
3220 * tries to execute the pending worklist until it's empty
3221 * and the state is set to BUTCHER, or the state is set
3222 * to RELEASE.
3223 *
3224 * BUTCHER Command state which is set by the cpu callback after
3225 * the cpu has went down. Once this state is set trustee
3226 * knows that there will be no new works on the worklist
3227 * and once the worklist is empty it can proceed to
3228 * killing idle workers.
3229 *
3230 * RELEASE Command state which is set by the cpu callback if the
3231 * cpu down has been canceled or it has come online
3232 * again. After recognizing this state, trustee stops
3233 * trying to drain or butcher and clears ROGUE, rebinds
3234 * all remaining workers back to the cpu and releases
3235 * manager role.
3236 *
3237 * DONE Trustee will enter this state after BUTCHER or RELEASE
3238 * is complete.
3239 *
3240 * trustee CPU draining
3241 * took over down complete
3242 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3243 * | | ^
3244 * | CPU is back online v return workers |
3245 * ----------------> RELEASE --------------
3246 */
3247
3248 /* claim manager positions of all pools */
3249 static void gcwq_claim_management(struct global_cwq *gcwq)
3250 {
3251 struct worker_pool *pool;
3252
3253 for_each_worker_pool(pool, gcwq)
3254 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3255 }
3256
3257 /* release manager positions */
3258 static void gcwq_release_management(struct global_cwq *gcwq)
3259 {
3260 struct worker_pool *pool;
3261
3262 for_each_worker_pool(pool, gcwq)
3263 mutex_unlock(&pool->manager_mutex);
3264 }
3265
3266 /**
3267 * trustee_wait_event_timeout - timed event wait for trustee
3268 * @cond: condition to wait for
3269 * @timeout: timeout in jiffies
3270 *
3271 * wait_event_timeout() for trustee to use. Handles locking and
3272 * checks for RELEASE request.
3273 *
3274 * CONTEXT:
3275 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3276 * multiple times. To be used by trustee.
3277 *
3278 * RETURNS:
3279 * Positive indicating left time if @cond is satisfied, 0 if timed
3280 * out, -1 if canceled.
3281 */
3282 #define trustee_wait_event_timeout(cond, timeout) ({ \
3283 long __ret = (timeout); \
3284 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3285 __ret) { \
3286 spin_unlock_irq(&gcwq->lock); \
3287 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3288 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3289 __ret); \
3290 spin_lock_irq(&gcwq->lock); \
3291 } \
3292 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3293 })
3294
3295 /**
3296 * trustee_wait_event - event wait for trustee
3297 * @cond: condition to wait for
3298 *
3299 * wait_event() for trustee to use. Automatically handles locking and
3300 * checks for CANCEL request.
3301 *
3302 * CONTEXT:
3303 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3304 * multiple times. To be used by trustee.
3305 *
3306 * RETURNS:
3307 * 0 if @cond is satisfied, -1 if canceled.
3308 */
3309 #define trustee_wait_event(cond) ({ \
3310 long __ret1; \
3311 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3312 __ret1 < 0 ? -1 : 0; \
3313 })
3314
3315 static bool gcwq_has_idle_workers(struct global_cwq *gcwq)
3316 {
3317 struct worker_pool *pool;
3318
3319 for_each_worker_pool(pool, gcwq)
3320 if (!list_empty(&pool->idle_list))
3321 return true;
3322 return false;
3323 }
3324
3325 static int __cpuinit trustee_thread(void *__gcwq)
3326 {
3327 struct global_cwq *gcwq = __gcwq;
3328 struct worker_pool *pool;
3329 struct worker *worker;
3330 struct work_struct *work;
3331 struct hlist_node *pos;
3332 long rc;
3333 int i;
3334
3335 BUG_ON(gcwq->cpu != smp_processor_id());
3336
3337 gcwq_claim_management(gcwq);
3338 spin_lock_irq(&gcwq->lock);
3339
3340 /*
3341 * We've claimed all manager positions. Make all workers unbound
3342 * and set DISASSOCIATED. Before this, all workers except for the
3343 * ones which are still executing works from before the last CPU
3344 * down must be on the cpu. After this, they may become diasporas.
3345 */
3346 for_each_worker_pool(pool, gcwq)
3347 list_for_each_entry(worker, &pool->idle_list, entry)
3348 worker->flags |= WORKER_UNBOUND;
3349
3350 for_each_busy_worker(worker, i, pos, gcwq)
3351 worker->flags |= WORKER_UNBOUND;
3352
3353 gcwq->flags |= GCWQ_DISASSOCIATED;
3354
3355 /*
3356 * Call schedule() so that we cross rq->lock and thus can guarantee
3357 * sched callbacks see the unbound flag. This is necessary as
3358 * scheduler callbacks may be invoked from other cpus.
3359 */
3360 spin_unlock_irq(&gcwq->lock);
3361 schedule();
3362 spin_lock_irq(&gcwq->lock);
3363
3364 /*
3365 * Sched callbacks are disabled now. Zap nr_running. After
3366 * this, nr_running stays zero and need_more_worker() and
3367 * keep_working() are always true as long as the worklist is
3368 * not empty.
3369 */
3370 for_each_worker_pool(pool, gcwq)
3371 atomic_set(get_pool_nr_running(pool), 0);
3372
3373 spin_unlock_irq(&gcwq->lock);
3374 for_each_worker_pool(pool, gcwq)
3375 del_timer_sync(&pool->idle_timer);
3376 spin_lock_irq(&gcwq->lock);
3377
3378 /*
3379 * We're now in charge. Notify and proceed to drain. We need
3380 * to keep the gcwq running during the whole CPU down
3381 * procedure as other cpu hotunplug callbacks may need to
3382 * flush currently running tasks.
3383 */
3384 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3385 wake_up_all(&gcwq->trustee_wait);
3386
3387 /*
3388 * The original cpu is in the process of dying and may go away
3389 * anytime now. When that happens, we and all workers would
3390 * be migrated to other cpus. Try draining any left work. We
3391 * want to get it over with ASAP - spam rescuers, wake up as
3392 * many idlers as necessary and create new ones till the
3393 * worklist is empty. Note that if the gcwq is frozen, there
3394 * may be frozen works in freezable cwqs. Don't declare
3395 * completion while frozen.
3396 */
3397 while (true) {
3398 bool busy = false;
3399
3400 for_each_worker_pool(pool, gcwq)
3401 busy |= pool->nr_workers != pool->nr_idle;
3402
3403 if (!busy && !(gcwq->flags & GCWQ_FREEZING) &&
3404 gcwq->trustee_state != TRUSTEE_IN_CHARGE)
3405 break;
3406
3407 for_each_worker_pool(pool, gcwq) {
3408 int nr_works = 0;
3409
3410 list_for_each_entry(work, &pool->worklist, entry) {
3411 send_mayday(work);
3412 nr_works++;
3413 }
3414
3415 list_for_each_entry(worker, &pool->idle_list, entry) {
3416 if (!nr_works--)
3417 break;
3418 wake_up_process(worker->task);
3419 }
3420
3421 if (need_to_create_worker(pool)) {
3422 spin_unlock_irq(&gcwq->lock);
3423 worker = create_worker(pool, false);
3424 spin_lock_irq(&gcwq->lock);
3425 if (worker) {
3426 worker->flags |= WORKER_UNBOUND;
3427 start_worker(worker);
3428 }
3429 }
3430 }
3431
3432 /* give a breather */
3433 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3434 break;
3435 }
3436
3437 /*
3438 * Either all works have been scheduled and cpu is down, or
3439 * cpu down has already been canceled. Wait for and butcher
3440 * all workers till we're canceled.
3441 */
3442 do {
3443 rc = trustee_wait_event(gcwq_has_idle_workers(gcwq));
3444
3445 i = 0;
3446 for_each_worker_pool(pool, gcwq) {
3447 while (!list_empty(&pool->idle_list)) {
3448 worker = list_first_entry(&pool->idle_list,
3449 struct worker, entry);
3450 destroy_worker(worker);
3451 }
3452 i |= pool->nr_workers;
3453 }
3454 } while (i && rc >= 0);
3455
3456 /*
3457 * At this point, either draining has completed and no worker
3458 * is left, or cpu down has been canceled or the cpu is being
3459 * brought back up. There shouldn't be any idle one left.
3460 * Tell the remaining busy ones to rebind once it finishes the
3461 * currently scheduled works by scheduling the rebind_work.
3462 */
3463 for_each_worker_pool(pool, gcwq)
3464 WARN_ON(!list_empty(&pool->idle_list));
3465
3466 for_each_busy_worker(worker, i, pos, gcwq) {
3467 struct work_struct *rebind_work = &worker->rebind_work;
3468
3469 /*
3470 * Rebind_work may race with future cpu hotplug
3471 * operations. Use a separate flag to mark that
3472 * rebinding is scheduled.
3473 */
3474 worker->flags |= WORKER_REBIND;
3475 worker->flags &= ~WORKER_UNBOUND;
3476
3477 /* queue rebind_work, wq doesn't matter, use the default one */
3478 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3479 work_data_bits(rebind_work)))
3480 continue;
3481
3482 debug_work_activate(rebind_work);
3483 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3484 worker->scheduled.next,
3485 work_color_to_flags(WORK_NO_COLOR));
3486 }
3487
3488 gcwq_release_management(gcwq);
3489
3490 /* notify completion */
3491 gcwq->trustee = NULL;
3492 gcwq->trustee_state = TRUSTEE_DONE;
3493 wake_up_all(&gcwq->trustee_wait);
3494 spin_unlock_irq(&gcwq->lock);
3495 return 0;
3496 }
3497
3498 /**
3499 * wait_trustee_state - wait for trustee to enter the specified state
3500 * @gcwq: gcwq the trustee of interest belongs to
3501 * @state: target state to wait for
3502 *
3503 * Wait for the trustee to reach @state. DONE is already matched.
3504 *
3505 * CONTEXT:
3506 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3507 * multiple times. To be used by cpu_callback.
3508 */
3509 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3510 __releases(&gcwq->lock)
3511 __acquires(&gcwq->lock)
3512 {
3513 if (!(gcwq->trustee_state == state ||
3514 gcwq->trustee_state == TRUSTEE_DONE)) {
3515 spin_unlock_irq(&gcwq->lock);
3516 __wait_event(gcwq->trustee_wait,
3517 gcwq->trustee_state == state ||
3518 gcwq->trustee_state == TRUSTEE_DONE);
3519 spin_lock_irq(&gcwq->lock);
3520 }
3521 }
3522
3523 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3524 unsigned long action,
3525 void *hcpu)
3526 {
3527 unsigned int cpu = (unsigned long)hcpu;
3528 struct global_cwq *gcwq = get_gcwq(cpu);
3529 struct task_struct *new_trustee = NULL;
3530 struct worker *new_workers[NR_WORKER_POOLS] = { };
3531 struct worker_pool *pool;
3532 unsigned long flags;
3533 int i;
3534
3535 action &= ~CPU_TASKS_FROZEN;
3536
3537 switch (action) {
3538 case CPU_DOWN_PREPARE:
3539 new_trustee = kthread_create(trustee_thread, gcwq,
3540 "workqueue_trustee/%d\n", cpu);
3541 if (IS_ERR(new_trustee))
3542 return notifier_from_errno(PTR_ERR(new_trustee));
3543 kthread_bind(new_trustee, cpu);
3544 /* fall through */
3545 case CPU_UP_PREPARE:
3546 i = 0;
3547 for_each_worker_pool(pool, gcwq) {
3548 BUG_ON(pool->first_idle);
3549 new_workers[i] = create_worker(pool, false);
3550 if (!new_workers[i++])
3551 goto err_destroy;
3552 }
3553 }
3554
3555 /* some are called w/ irq disabled, don't disturb irq status */
3556 spin_lock_irqsave(&gcwq->lock, flags);
3557
3558 switch (action) {
3559 case CPU_DOWN_PREPARE:
3560 /* initialize trustee and tell it to acquire the gcwq */
3561 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3562 gcwq->trustee = new_trustee;
3563 gcwq->trustee_state = TRUSTEE_START;
3564 wake_up_process(gcwq->trustee);
3565 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3566 /* fall through */
3567 case CPU_UP_PREPARE:
3568 i = 0;
3569 for_each_worker_pool(pool, gcwq) {
3570 BUG_ON(pool->first_idle);
3571 pool->first_idle = new_workers[i++];
3572 }
3573 break;
3574
3575 case CPU_POST_DEAD:
3576 gcwq->trustee_state = TRUSTEE_BUTCHER;
3577 /* fall through */
3578 case CPU_UP_CANCELED:
3579 for_each_worker_pool(pool, gcwq) {
3580 destroy_worker(pool->first_idle);
3581 pool->first_idle = NULL;
3582 }
3583 break;
3584
3585 case CPU_DOWN_FAILED:
3586 case CPU_ONLINE:
3587 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3588 if (gcwq->trustee_state != TRUSTEE_DONE) {
3589 gcwq->trustee_state = TRUSTEE_RELEASE;
3590 wake_up_process(gcwq->trustee);
3591 wait_trustee_state(gcwq, TRUSTEE_DONE);
3592 }
3593
3594 /*
3595 * Trustee is done and there might be no worker left.
3596 * Put the first_idle in and request a real manager to
3597 * take a look.
3598 */
3599 for_each_worker_pool(pool, gcwq) {
3600 spin_unlock_irq(&gcwq->lock);
3601 kthread_bind(pool->first_idle->task, cpu);
3602 spin_lock_irq(&gcwq->lock);
3603 pool->flags |= POOL_MANAGE_WORKERS;
3604 start_worker(pool->first_idle);
3605 pool->first_idle = NULL;
3606 }
3607 break;
3608 }
3609
3610 spin_unlock_irqrestore(&gcwq->lock, flags);
3611
3612 return notifier_from_errno(0);
3613
3614 err_destroy:
3615 if (new_trustee)
3616 kthread_stop(new_trustee);
3617
3618 spin_lock_irqsave(&gcwq->lock, flags);
3619 for (i = 0; i < NR_WORKER_POOLS; i++)
3620 if (new_workers[i])
3621 destroy_worker(new_workers[i]);
3622 spin_unlock_irqrestore(&gcwq->lock, flags);
3623
3624 return NOTIFY_BAD;
3625 }
3626
3627 /*
3628 * Workqueues should be brought up before normal priority CPU notifiers.
3629 * This will be registered high priority CPU notifier.
3630 */
3631 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3632 unsigned long action,
3633 void *hcpu)
3634 {
3635 switch (action & ~CPU_TASKS_FROZEN) {
3636 case CPU_UP_PREPARE:
3637 case CPU_UP_CANCELED:
3638 case CPU_DOWN_FAILED:
3639 case CPU_ONLINE:
3640 return workqueue_cpu_callback(nfb, action, hcpu);
3641 }
3642 return NOTIFY_OK;
3643 }
3644
3645 /*
3646 * Workqueues should be brought down after normal priority CPU notifiers.
3647 * This will be registered as low priority CPU notifier.
3648 */
3649 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3650 unsigned long action,
3651 void *hcpu)
3652 {
3653 switch (action & ~CPU_TASKS_FROZEN) {
3654 case CPU_DOWN_PREPARE:
3655 case CPU_POST_DEAD:
3656 return workqueue_cpu_callback(nfb, action, hcpu);
3657 }
3658 return NOTIFY_OK;
3659 }
3660
3661 #ifdef CONFIG_SMP
3662
3663 struct work_for_cpu {
3664 struct completion completion;
3665 long (*fn)(void *);
3666 void *arg;
3667 long ret;
3668 };
3669
3670 static int do_work_for_cpu(void *_wfc)
3671 {
3672 struct work_for_cpu *wfc = _wfc;
3673 wfc->ret = wfc->fn(wfc->arg);
3674 complete(&wfc->completion);
3675 return 0;
3676 }
3677
3678 /**
3679 * work_on_cpu - run a function in user context on a particular cpu
3680 * @cpu: the cpu to run on
3681 * @fn: the function to run
3682 * @arg: the function arg
3683 *
3684 * This will return the value @fn returns.
3685 * It is up to the caller to ensure that the cpu doesn't go offline.
3686 * The caller must not hold any locks which would prevent @fn from completing.
3687 */
3688 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3689 {
3690 struct task_struct *sub_thread;
3691 struct work_for_cpu wfc = {
3692 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3693 .fn = fn,
3694 .arg = arg,
3695 };
3696
3697 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3698 if (IS_ERR(sub_thread))
3699 return PTR_ERR(sub_thread);
3700 kthread_bind(sub_thread, cpu);
3701 wake_up_process(sub_thread);
3702 wait_for_completion(&wfc.completion);
3703 return wfc.ret;
3704 }
3705 EXPORT_SYMBOL_GPL(work_on_cpu);
3706 #endif /* CONFIG_SMP */
3707
3708 #ifdef CONFIG_FREEZER
3709
3710 /**
3711 * freeze_workqueues_begin - begin freezing workqueues
3712 *
3713 * Start freezing workqueues. After this function returns, all freezable
3714 * workqueues will queue new works to their frozen_works list instead of
3715 * gcwq->worklist.
3716 *
3717 * CONTEXT:
3718 * Grabs and releases workqueue_lock and gcwq->lock's.
3719 */
3720 void freeze_workqueues_begin(void)
3721 {
3722 unsigned int cpu;
3723
3724 spin_lock(&workqueue_lock);
3725
3726 BUG_ON(workqueue_freezing);
3727 workqueue_freezing = true;
3728
3729 for_each_gcwq_cpu(cpu) {
3730 struct global_cwq *gcwq = get_gcwq(cpu);
3731 struct workqueue_struct *wq;
3732
3733 spin_lock_irq(&gcwq->lock);
3734
3735 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3736 gcwq->flags |= GCWQ_FREEZING;
3737
3738 list_for_each_entry(wq, &workqueues, list) {
3739 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3740
3741 if (cwq && wq->flags & WQ_FREEZABLE)
3742 cwq->max_active = 0;
3743 }
3744
3745 spin_unlock_irq(&gcwq->lock);
3746 }
3747
3748 spin_unlock(&workqueue_lock);
3749 }
3750
3751 /**
3752 * freeze_workqueues_busy - are freezable workqueues still busy?
3753 *
3754 * Check whether freezing is complete. This function must be called
3755 * between freeze_workqueues_begin() and thaw_workqueues().
3756 *
3757 * CONTEXT:
3758 * Grabs and releases workqueue_lock.
3759 *
3760 * RETURNS:
3761 * %true if some freezable workqueues are still busy. %false if freezing
3762 * is complete.
3763 */
3764 bool freeze_workqueues_busy(void)
3765 {
3766 unsigned int cpu;
3767 bool busy = false;
3768
3769 spin_lock(&workqueue_lock);
3770
3771 BUG_ON(!workqueue_freezing);
3772
3773 for_each_gcwq_cpu(cpu) {
3774 struct workqueue_struct *wq;
3775 /*
3776 * nr_active is monotonically decreasing. It's safe
3777 * to peek without lock.
3778 */
3779 list_for_each_entry(wq, &workqueues, list) {
3780 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3781
3782 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3783 continue;
3784
3785 BUG_ON(cwq->nr_active < 0);
3786 if (cwq->nr_active) {
3787 busy = true;
3788 goto out_unlock;
3789 }
3790 }
3791 }
3792 out_unlock:
3793 spin_unlock(&workqueue_lock);
3794 return busy;
3795 }
3796
3797 /**
3798 * thaw_workqueues - thaw workqueues
3799 *
3800 * Thaw workqueues. Normal queueing is restored and all collected
3801 * frozen works are transferred to their respective gcwq worklists.
3802 *
3803 * CONTEXT:
3804 * Grabs and releases workqueue_lock and gcwq->lock's.
3805 */
3806 void thaw_workqueues(void)
3807 {
3808 unsigned int cpu;
3809
3810 spin_lock(&workqueue_lock);
3811
3812 if (!workqueue_freezing)
3813 goto out_unlock;
3814
3815 for_each_gcwq_cpu(cpu) {
3816 struct global_cwq *gcwq = get_gcwq(cpu);
3817 struct worker_pool *pool;
3818 struct workqueue_struct *wq;
3819
3820 spin_lock_irq(&gcwq->lock);
3821
3822 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3823 gcwq->flags &= ~GCWQ_FREEZING;
3824
3825 list_for_each_entry(wq, &workqueues, list) {
3826 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3827
3828 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3829 continue;
3830
3831 /* restore max_active and repopulate worklist */
3832 cwq->max_active = wq->saved_max_active;
3833
3834 while (!list_empty(&cwq->delayed_works) &&
3835 cwq->nr_active < cwq->max_active)
3836 cwq_activate_first_delayed(cwq);
3837 }
3838
3839 for_each_worker_pool(pool, gcwq)
3840 wake_up_worker(pool);
3841
3842 spin_unlock_irq(&gcwq->lock);
3843 }
3844
3845 workqueue_freezing = false;
3846 out_unlock:
3847 spin_unlock(&workqueue_lock);
3848 }
3849 #endif /* CONFIG_FREEZER */
3850
3851 static int __init init_workqueues(void)
3852 {
3853 unsigned int cpu;
3854 int i;
3855
3856 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3857 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3858
3859 /* initialize gcwqs */
3860 for_each_gcwq_cpu(cpu) {
3861 struct global_cwq *gcwq = get_gcwq(cpu);
3862 struct worker_pool *pool;
3863
3864 spin_lock_init(&gcwq->lock);
3865 gcwq->cpu = cpu;
3866 gcwq->flags |= GCWQ_DISASSOCIATED;
3867
3868 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3869 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3870
3871 for_each_worker_pool(pool, gcwq) {
3872 pool->gcwq = gcwq;
3873 INIT_LIST_HEAD(&pool->worklist);
3874 INIT_LIST_HEAD(&pool->idle_list);
3875
3876 init_timer_deferrable(&pool->idle_timer);
3877 pool->idle_timer.function = idle_worker_timeout;
3878 pool->idle_timer.data = (unsigned long)pool;
3879
3880 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3881 (unsigned long)pool);
3882
3883 mutex_init(&pool->manager_mutex);
3884 ida_init(&pool->worker_ida);
3885 }
3886
3887 gcwq->trustee_state = TRUSTEE_DONE;
3888 init_waitqueue_head(&gcwq->trustee_wait);
3889 }
3890
3891 /* create the initial worker */
3892 for_each_online_gcwq_cpu(cpu) {
3893 struct global_cwq *gcwq = get_gcwq(cpu);
3894 struct worker_pool *pool;
3895
3896 if (cpu != WORK_CPU_UNBOUND)
3897 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3898
3899 for_each_worker_pool(pool, gcwq) {
3900 struct worker *worker;
3901
3902 worker = create_worker(pool, true);
3903 BUG_ON(!worker);
3904 spin_lock_irq(&gcwq->lock);
3905 start_worker(worker);
3906 spin_unlock_irq(&gcwq->lock);
3907 }
3908 }
3909
3910 system_wq = alloc_workqueue("events", 0, 0);
3911 system_long_wq = alloc_workqueue("events_long", 0, 0);
3912 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3913 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3914 WQ_UNBOUND_MAX_ACTIVE);
3915 system_freezable_wq = alloc_workqueue("events_freezable",
3916 WQ_FREEZABLE, 0);
3917 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3918 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3919 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3920 !system_unbound_wq || !system_freezable_wq ||
3921 !system_nrt_freezable_wq);
3922 return 0;
3923 }
3924 early_initcall(init_workqueues);
This page took 0.113956 seconds and 6 git commands to generate.