workqueue: use shared worklist and pool all workers per cpu
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
15 *
16 * Made to use alloc_percpu by Christoph Lameter.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <linux/idr.h>
37 #include <linux/delay.h>
38
39 enum {
40 /* global_cwq flags */
41 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
42
43 /* worker flags */
44 WORKER_STARTED = 1 << 0, /* started */
45 WORKER_DIE = 1 << 1, /* die die die */
46 WORKER_IDLE = 1 << 2, /* is idle */
47 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
48
49 /* gcwq->trustee_state */
50 TRUSTEE_START = 0, /* start */
51 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
52 TRUSTEE_BUTCHER = 2, /* butcher workers */
53 TRUSTEE_RELEASE = 3, /* release workers */
54 TRUSTEE_DONE = 4, /* trustee is done */
55
56 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
57 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
58 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
59
60 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
61 };
62
63 /*
64 * Structure fields follow one of the following exclusion rules.
65 *
66 * I: Set during initialization and read-only afterwards.
67 *
68 * L: gcwq->lock protected. Access with gcwq->lock held.
69 *
70 * F: wq->flush_mutex protected.
71 *
72 * W: workqueue_lock protected.
73 */
74
75 struct global_cwq;
76
77 struct worker {
78 /* on idle list while idle, on busy hash table while busy */
79 union {
80 struct list_head entry; /* L: while idle */
81 struct hlist_node hentry; /* L: while busy */
82 };
83
84 struct work_struct *current_work; /* L: work being processed */
85 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
86 struct list_head scheduled; /* L: scheduled works */
87 struct task_struct *task; /* I: worker task */
88 struct global_cwq *gcwq; /* I: the associated gcwq */
89 unsigned int flags; /* L: flags */
90 int id; /* I: worker id */
91 };
92
93 /*
94 * Global per-cpu workqueue.
95 */
96 struct global_cwq {
97 spinlock_t lock; /* the gcwq lock */
98 struct list_head worklist; /* L: list of pending works */
99 unsigned int cpu; /* I: the associated cpu */
100 unsigned int flags; /* L: GCWQ_* flags */
101
102 int nr_workers; /* L: total number of workers */
103 int nr_idle; /* L: currently idle ones */
104
105 /* workers are chained either in the idle_list or busy_hash */
106 struct list_head idle_list; /* L: list of idle workers */
107 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
108 /* L: hash of busy workers */
109
110 struct ida worker_ida; /* L: for worker IDs */
111
112 struct task_struct *trustee; /* L: for gcwq shutdown */
113 unsigned int trustee_state; /* L: trustee state */
114 wait_queue_head_t trustee_wait; /* trustee wait */
115 } ____cacheline_aligned_in_smp;
116
117 /*
118 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
119 * work_struct->data are used for flags and thus cwqs need to be
120 * aligned at two's power of the number of flag bits.
121 */
122 struct cpu_workqueue_struct {
123 struct global_cwq *gcwq; /* I: the associated gcwq */
124 struct worker *worker;
125 struct workqueue_struct *wq; /* I: the owning workqueue */
126 int work_color; /* L: current color */
127 int flush_color; /* L: flushing color */
128 int nr_in_flight[WORK_NR_COLORS];
129 /* L: nr of in_flight works */
130 int nr_active; /* L: nr of active works */
131 int max_active; /* L: max active works */
132 struct list_head delayed_works; /* L: delayed works */
133 };
134
135 /*
136 * Structure used to wait for workqueue flush.
137 */
138 struct wq_flusher {
139 struct list_head list; /* F: list of flushers */
140 int flush_color; /* F: flush color waiting for */
141 struct completion done; /* flush completion */
142 };
143
144 /*
145 * The externally visible workqueue abstraction is an array of
146 * per-CPU workqueues:
147 */
148 struct workqueue_struct {
149 unsigned int flags; /* I: WQ_* flags */
150 struct cpu_workqueue_struct *cpu_wq; /* I: cwq's */
151 struct list_head list; /* W: list of all workqueues */
152
153 struct mutex flush_mutex; /* protects wq flushing */
154 int work_color; /* F: current work color */
155 int flush_color; /* F: current flush color */
156 atomic_t nr_cwqs_to_flush; /* flush in progress */
157 struct wq_flusher *first_flusher; /* F: first flusher */
158 struct list_head flusher_queue; /* F: flush waiters */
159 struct list_head flusher_overflow; /* F: flush overflow list */
160
161 unsigned long single_cpu; /* cpu for single cpu wq */
162
163 int saved_max_active; /* I: saved cwq max_active */
164 const char *name; /* I: workqueue name */
165 #ifdef CONFIG_LOCKDEP
166 struct lockdep_map lockdep_map;
167 #endif
168 };
169
170 #define for_each_busy_worker(worker, i, pos, gcwq) \
171 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
172 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
173
174 #ifdef CONFIG_DEBUG_OBJECTS_WORK
175
176 static struct debug_obj_descr work_debug_descr;
177
178 /*
179 * fixup_init is called when:
180 * - an active object is initialized
181 */
182 static int work_fixup_init(void *addr, enum debug_obj_state state)
183 {
184 struct work_struct *work = addr;
185
186 switch (state) {
187 case ODEBUG_STATE_ACTIVE:
188 cancel_work_sync(work);
189 debug_object_init(work, &work_debug_descr);
190 return 1;
191 default:
192 return 0;
193 }
194 }
195
196 /*
197 * fixup_activate is called when:
198 * - an active object is activated
199 * - an unknown object is activated (might be a statically initialized object)
200 */
201 static int work_fixup_activate(void *addr, enum debug_obj_state state)
202 {
203 struct work_struct *work = addr;
204
205 switch (state) {
206
207 case ODEBUG_STATE_NOTAVAILABLE:
208 /*
209 * This is not really a fixup. The work struct was
210 * statically initialized. We just make sure that it
211 * is tracked in the object tracker.
212 */
213 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
214 debug_object_init(work, &work_debug_descr);
215 debug_object_activate(work, &work_debug_descr);
216 return 0;
217 }
218 WARN_ON_ONCE(1);
219 return 0;
220
221 case ODEBUG_STATE_ACTIVE:
222 WARN_ON(1);
223
224 default:
225 return 0;
226 }
227 }
228
229 /*
230 * fixup_free is called when:
231 * - an active object is freed
232 */
233 static int work_fixup_free(void *addr, enum debug_obj_state state)
234 {
235 struct work_struct *work = addr;
236
237 switch (state) {
238 case ODEBUG_STATE_ACTIVE:
239 cancel_work_sync(work);
240 debug_object_free(work, &work_debug_descr);
241 return 1;
242 default:
243 return 0;
244 }
245 }
246
247 static struct debug_obj_descr work_debug_descr = {
248 .name = "work_struct",
249 .fixup_init = work_fixup_init,
250 .fixup_activate = work_fixup_activate,
251 .fixup_free = work_fixup_free,
252 };
253
254 static inline void debug_work_activate(struct work_struct *work)
255 {
256 debug_object_activate(work, &work_debug_descr);
257 }
258
259 static inline void debug_work_deactivate(struct work_struct *work)
260 {
261 debug_object_deactivate(work, &work_debug_descr);
262 }
263
264 void __init_work(struct work_struct *work, int onstack)
265 {
266 if (onstack)
267 debug_object_init_on_stack(work, &work_debug_descr);
268 else
269 debug_object_init(work, &work_debug_descr);
270 }
271 EXPORT_SYMBOL_GPL(__init_work);
272
273 void destroy_work_on_stack(struct work_struct *work)
274 {
275 debug_object_free(work, &work_debug_descr);
276 }
277 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
278
279 #else
280 static inline void debug_work_activate(struct work_struct *work) { }
281 static inline void debug_work_deactivate(struct work_struct *work) { }
282 #endif
283
284 /* Serializes the accesses to the list of workqueues. */
285 static DEFINE_SPINLOCK(workqueue_lock);
286 static LIST_HEAD(workqueues);
287 static bool workqueue_freezing; /* W: have wqs started freezing? */
288
289 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
290
291 static int worker_thread(void *__worker);
292
293 static struct global_cwq *get_gcwq(unsigned int cpu)
294 {
295 return &per_cpu(global_cwq, cpu);
296 }
297
298 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
299 struct workqueue_struct *wq)
300 {
301 return per_cpu_ptr(wq->cpu_wq, cpu);
302 }
303
304 static unsigned int work_color_to_flags(int color)
305 {
306 return color << WORK_STRUCT_COLOR_SHIFT;
307 }
308
309 static int get_work_color(struct work_struct *work)
310 {
311 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
312 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
313 }
314
315 static int work_next_color(int color)
316 {
317 return (color + 1) % WORK_NR_COLORS;
318 }
319
320 /*
321 * Work data points to the cwq while a work is on queue. Once
322 * execution starts, it points to the cpu the work was last on. This
323 * can be distinguished by comparing the data value against
324 * PAGE_OFFSET.
325 *
326 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
327 * cwq, cpu or clear work->data. These functions should only be
328 * called while the work is owned - ie. while the PENDING bit is set.
329 *
330 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
331 * corresponding to a work. gcwq is available once the work has been
332 * queued anywhere after initialization. cwq is available only from
333 * queueing until execution starts.
334 */
335 static inline void set_work_data(struct work_struct *work, unsigned long data,
336 unsigned long flags)
337 {
338 BUG_ON(!work_pending(work));
339 atomic_long_set(&work->data, data | flags | work_static(work));
340 }
341
342 static void set_work_cwq(struct work_struct *work,
343 struct cpu_workqueue_struct *cwq,
344 unsigned long extra_flags)
345 {
346 set_work_data(work, (unsigned long)cwq,
347 WORK_STRUCT_PENDING | extra_flags);
348 }
349
350 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
351 {
352 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
353 }
354
355 static void clear_work_data(struct work_struct *work)
356 {
357 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
358 }
359
360 static inline unsigned long get_work_data(struct work_struct *work)
361 {
362 return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
363 }
364
365 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
366 {
367 unsigned long data = get_work_data(work);
368
369 return data >= PAGE_OFFSET ? (void *)data : NULL;
370 }
371
372 static struct global_cwq *get_work_gcwq(struct work_struct *work)
373 {
374 unsigned long data = get_work_data(work);
375 unsigned int cpu;
376
377 if (data >= PAGE_OFFSET)
378 return ((struct cpu_workqueue_struct *)data)->gcwq;
379
380 cpu = data >> WORK_STRUCT_FLAG_BITS;
381 if (cpu == NR_CPUS)
382 return NULL;
383
384 BUG_ON(cpu >= num_possible_cpus());
385 return get_gcwq(cpu);
386 }
387
388 /* Return the first worker. Safe with preemption disabled */
389 static struct worker *first_worker(struct global_cwq *gcwq)
390 {
391 if (unlikely(list_empty(&gcwq->idle_list)))
392 return NULL;
393
394 return list_first_entry(&gcwq->idle_list, struct worker, entry);
395 }
396
397 /**
398 * wake_up_worker - wake up an idle worker
399 * @gcwq: gcwq to wake worker for
400 *
401 * Wake up the first idle worker of @gcwq.
402 *
403 * CONTEXT:
404 * spin_lock_irq(gcwq->lock).
405 */
406 static void wake_up_worker(struct global_cwq *gcwq)
407 {
408 struct worker *worker = first_worker(gcwq);
409
410 if (likely(worker))
411 wake_up_process(worker->task);
412 }
413
414 /**
415 * busy_worker_head - return the busy hash head for a work
416 * @gcwq: gcwq of interest
417 * @work: work to be hashed
418 *
419 * Return hash head of @gcwq for @work.
420 *
421 * CONTEXT:
422 * spin_lock_irq(gcwq->lock).
423 *
424 * RETURNS:
425 * Pointer to the hash head.
426 */
427 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
428 struct work_struct *work)
429 {
430 const int base_shift = ilog2(sizeof(struct work_struct));
431 unsigned long v = (unsigned long)work;
432
433 /* simple shift and fold hash, do we need something better? */
434 v >>= base_shift;
435 v += v >> BUSY_WORKER_HASH_ORDER;
436 v &= BUSY_WORKER_HASH_MASK;
437
438 return &gcwq->busy_hash[v];
439 }
440
441 /**
442 * __find_worker_executing_work - find worker which is executing a work
443 * @gcwq: gcwq of interest
444 * @bwh: hash head as returned by busy_worker_head()
445 * @work: work to find worker for
446 *
447 * Find a worker which is executing @work on @gcwq. @bwh should be
448 * the hash head obtained by calling busy_worker_head() with the same
449 * work.
450 *
451 * CONTEXT:
452 * spin_lock_irq(gcwq->lock).
453 *
454 * RETURNS:
455 * Pointer to worker which is executing @work if found, NULL
456 * otherwise.
457 */
458 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
459 struct hlist_head *bwh,
460 struct work_struct *work)
461 {
462 struct worker *worker;
463 struct hlist_node *tmp;
464
465 hlist_for_each_entry(worker, tmp, bwh, hentry)
466 if (worker->current_work == work)
467 return worker;
468 return NULL;
469 }
470
471 /**
472 * find_worker_executing_work - find worker which is executing a work
473 * @gcwq: gcwq of interest
474 * @work: work to find worker for
475 *
476 * Find a worker which is executing @work on @gcwq. This function is
477 * identical to __find_worker_executing_work() except that this
478 * function calculates @bwh itself.
479 *
480 * CONTEXT:
481 * spin_lock_irq(gcwq->lock).
482 *
483 * RETURNS:
484 * Pointer to worker which is executing @work if found, NULL
485 * otherwise.
486 */
487 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
488 struct work_struct *work)
489 {
490 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
491 work);
492 }
493
494 /**
495 * insert_work - insert a work into gcwq
496 * @cwq: cwq @work belongs to
497 * @work: work to insert
498 * @head: insertion point
499 * @extra_flags: extra WORK_STRUCT_* flags to set
500 *
501 * Insert @work which belongs to @cwq into @gcwq after @head.
502 * @extra_flags is or'd to work_struct flags.
503 *
504 * CONTEXT:
505 * spin_lock_irq(gcwq->lock).
506 */
507 static void insert_work(struct cpu_workqueue_struct *cwq,
508 struct work_struct *work, struct list_head *head,
509 unsigned int extra_flags)
510 {
511 /* we own @work, set data and link */
512 set_work_cwq(work, cwq, extra_flags);
513
514 /*
515 * Ensure that we get the right work->data if we see the
516 * result of list_add() below, see try_to_grab_pending().
517 */
518 smp_wmb();
519
520 list_add_tail(&work->entry, head);
521 wake_up_worker(cwq->gcwq);
522 }
523
524 /**
525 * cwq_unbind_single_cpu - unbind cwq from single cpu workqueue processing
526 * @cwq: cwq to unbind
527 *
528 * Try to unbind @cwq from single cpu workqueue processing. If
529 * @cwq->wq is frozen, unbind is delayed till the workqueue is thawed.
530 *
531 * CONTEXT:
532 * spin_lock_irq(gcwq->lock).
533 */
534 static void cwq_unbind_single_cpu(struct cpu_workqueue_struct *cwq)
535 {
536 struct workqueue_struct *wq = cwq->wq;
537 struct global_cwq *gcwq = cwq->gcwq;
538
539 BUG_ON(wq->single_cpu != gcwq->cpu);
540 /*
541 * Unbind from workqueue if @cwq is not frozen. If frozen,
542 * thaw_workqueues() will either restart processing on this
543 * cpu or unbind if empty. This keeps works queued while
544 * frozen fully ordered and flushable.
545 */
546 if (likely(!(gcwq->flags & GCWQ_FREEZING))) {
547 smp_wmb(); /* paired with cmpxchg() in __queue_work() */
548 wq->single_cpu = NR_CPUS;
549 }
550 }
551
552 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
553 struct work_struct *work)
554 {
555 struct global_cwq *gcwq;
556 struct cpu_workqueue_struct *cwq;
557 struct list_head *worklist;
558 unsigned long flags;
559 bool arbitrate;
560
561 debug_work_activate(work);
562
563 /*
564 * Determine gcwq to use. SINGLE_CPU is inherently
565 * NON_REENTRANT, so test it first.
566 */
567 if (!(wq->flags & WQ_SINGLE_CPU)) {
568 struct global_cwq *last_gcwq;
569
570 /*
571 * It's multi cpu. If @wq is non-reentrant and @work
572 * was previously on a different cpu, it might still
573 * be running there, in which case the work needs to
574 * be queued on that cpu to guarantee non-reentrance.
575 */
576 gcwq = get_gcwq(cpu);
577 if (wq->flags & WQ_NON_REENTRANT &&
578 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
579 struct worker *worker;
580
581 spin_lock_irqsave(&last_gcwq->lock, flags);
582
583 worker = find_worker_executing_work(last_gcwq, work);
584
585 if (worker && worker->current_cwq->wq == wq)
586 gcwq = last_gcwq;
587 else {
588 /* meh... not running there, queue here */
589 spin_unlock_irqrestore(&last_gcwq->lock, flags);
590 spin_lock_irqsave(&gcwq->lock, flags);
591 }
592 } else
593 spin_lock_irqsave(&gcwq->lock, flags);
594 } else {
595 unsigned int req_cpu = cpu;
596
597 /*
598 * It's a bit more complex for single cpu workqueues.
599 * We first need to determine which cpu is going to be
600 * used. If no cpu is currently serving this
601 * workqueue, arbitrate using atomic accesses to
602 * wq->single_cpu; otherwise, use the current one.
603 */
604 retry:
605 cpu = wq->single_cpu;
606 arbitrate = cpu == NR_CPUS;
607 if (arbitrate)
608 cpu = req_cpu;
609
610 gcwq = get_gcwq(cpu);
611 spin_lock_irqsave(&gcwq->lock, flags);
612
613 /*
614 * The following cmpxchg() is a full barrier paired
615 * with smp_wmb() in cwq_unbind_single_cpu() and
616 * guarantees that all changes to wq->st_* fields are
617 * visible on the new cpu after this point.
618 */
619 if (arbitrate)
620 cmpxchg(&wq->single_cpu, NR_CPUS, cpu);
621
622 if (unlikely(wq->single_cpu != cpu)) {
623 spin_unlock_irqrestore(&gcwq->lock, flags);
624 goto retry;
625 }
626 }
627
628 /* gcwq determined, get cwq and queue */
629 cwq = get_cwq(gcwq->cpu, wq);
630
631 BUG_ON(!list_empty(&work->entry));
632
633 cwq->nr_in_flight[cwq->work_color]++;
634
635 if (likely(cwq->nr_active < cwq->max_active)) {
636 cwq->nr_active++;
637 worklist = &gcwq->worklist;
638 } else
639 worklist = &cwq->delayed_works;
640
641 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
642
643 spin_unlock_irqrestore(&gcwq->lock, flags);
644 }
645
646 /**
647 * queue_work - queue work on a workqueue
648 * @wq: workqueue to use
649 * @work: work to queue
650 *
651 * Returns 0 if @work was already on a queue, non-zero otherwise.
652 *
653 * We queue the work to the CPU on which it was submitted, but if the CPU dies
654 * it can be processed by another CPU.
655 */
656 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
657 {
658 int ret;
659
660 ret = queue_work_on(get_cpu(), wq, work);
661 put_cpu();
662
663 return ret;
664 }
665 EXPORT_SYMBOL_GPL(queue_work);
666
667 /**
668 * queue_work_on - queue work on specific cpu
669 * @cpu: CPU number to execute work on
670 * @wq: workqueue to use
671 * @work: work to queue
672 *
673 * Returns 0 if @work was already on a queue, non-zero otherwise.
674 *
675 * We queue the work to a specific CPU, the caller must ensure it
676 * can't go away.
677 */
678 int
679 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
680 {
681 int ret = 0;
682
683 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
684 __queue_work(cpu, wq, work);
685 ret = 1;
686 }
687 return ret;
688 }
689 EXPORT_SYMBOL_GPL(queue_work_on);
690
691 static void delayed_work_timer_fn(unsigned long __data)
692 {
693 struct delayed_work *dwork = (struct delayed_work *)__data;
694 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
695
696 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
697 }
698
699 /**
700 * queue_delayed_work - queue work on a workqueue after delay
701 * @wq: workqueue to use
702 * @dwork: delayable work to queue
703 * @delay: number of jiffies to wait before queueing
704 *
705 * Returns 0 if @work was already on a queue, non-zero otherwise.
706 */
707 int queue_delayed_work(struct workqueue_struct *wq,
708 struct delayed_work *dwork, unsigned long delay)
709 {
710 if (delay == 0)
711 return queue_work(wq, &dwork->work);
712
713 return queue_delayed_work_on(-1, wq, dwork, delay);
714 }
715 EXPORT_SYMBOL_GPL(queue_delayed_work);
716
717 /**
718 * queue_delayed_work_on - queue work on specific CPU after delay
719 * @cpu: CPU number to execute work on
720 * @wq: workqueue to use
721 * @dwork: work to queue
722 * @delay: number of jiffies to wait before queueing
723 *
724 * Returns 0 if @work was already on a queue, non-zero otherwise.
725 */
726 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
727 struct delayed_work *dwork, unsigned long delay)
728 {
729 int ret = 0;
730 struct timer_list *timer = &dwork->timer;
731 struct work_struct *work = &dwork->work;
732
733 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
734 struct global_cwq *gcwq = get_work_gcwq(work);
735 unsigned int lcpu = gcwq ? gcwq->cpu : raw_smp_processor_id();
736
737 BUG_ON(timer_pending(timer));
738 BUG_ON(!list_empty(&work->entry));
739
740 timer_stats_timer_set_start_info(&dwork->timer);
741 /*
742 * This stores cwq for the moment, for the timer_fn.
743 * Note that the work's gcwq is preserved to allow
744 * reentrance detection for delayed works.
745 */
746 set_work_cwq(work, get_cwq(lcpu, wq), 0);
747 timer->expires = jiffies + delay;
748 timer->data = (unsigned long)dwork;
749 timer->function = delayed_work_timer_fn;
750
751 if (unlikely(cpu >= 0))
752 add_timer_on(timer, cpu);
753 else
754 add_timer(timer);
755 ret = 1;
756 }
757 return ret;
758 }
759 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
760
761 /**
762 * worker_enter_idle - enter idle state
763 * @worker: worker which is entering idle state
764 *
765 * @worker is entering idle state. Update stats and idle timer if
766 * necessary.
767 *
768 * LOCKING:
769 * spin_lock_irq(gcwq->lock).
770 */
771 static void worker_enter_idle(struct worker *worker)
772 {
773 struct global_cwq *gcwq = worker->gcwq;
774
775 BUG_ON(worker->flags & WORKER_IDLE);
776 BUG_ON(!list_empty(&worker->entry) &&
777 (worker->hentry.next || worker->hentry.pprev));
778
779 worker->flags |= WORKER_IDLE;
780 gcwq->nr_idle++;
781
782 /* idle_list is LIFO */
783 list_add(&worker->entry, &gcwq->idle_list);
784
785 if (unlikely(worker->flags & WORKER_ROGUE))
786 wake_up_all(&gcwq->trustee_wait);
787 }
788
789 /**
790 * worker_leave_idle - leave idle state
791 * @worker: worker which is leaving idle state
792 *
793 * @worker is leaving idle state. Update stats.
794 *
795 * LOCKING:
796 * spin_lock_irq(gcwq->lock).
797 */
798 static void worker_leave_idle(struct worker *worker)
799 {
800 struct global_cwq *gcwq = worker->gcwq;
801
802 BUG_ON(!(worker->flags & WORKER_IDLE));
803 worker->flags &= ~WORKER_IDLE;
804 gcwq->nr_idle--;
805 list_del_init(&worker->entry);
806 }
807
808 static struct worker *alloc_worker(void)
809 {
810 struct worker *worker;
811
812 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
813 if (worker) {
814 INIT_LIST_HEAD(&worker->entry);
815 INIT_LIST_HEAD(&worker->scheduled);
816 }
817 return worker;
818 }
819
820 /**
821 * create_worker - create a new workqueue worker
822 * @gcwq: gcwq the new worker will belong to
823 * @bind: whether to set affinity to @cpu or not
824 *
825 * Create a new worker which is bound to @gcwq. The returned worker
826 * can be started by calling start_worker() or destroyed using
827 * destroy_worker().
828 *
829 * CONTEXT:
830 * Might sleep. Does GFP_KERNEL allocations.
831 *
832 * RETURNS:
833 * Pointer to the newly created worker.
834 */
835 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
836 {
837 int id = -1;
838 struct worker *worker = NULL;
839
840 spin_lock_irq(&gcwq->lock);
841 while (ida_get_new(&gcwq->worker_ida, &id)) {
842 spin_unlock_irq(&gcwq->lock);
843 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
844 goto fail;
845 spin_lock_irq(&gcwq->lock);
846 }
847 spin_unlock_irq(&gcwq->lock);
848
849 worker = alloc_worker();
850 if (!worker)
851 goto fail;
852
853 worker->gcwq = gcwq;
854 worker->id = id;
855
856 worker->task = kthread_create(worker_thread, worker, "kworker/%u:%d",
857 gcwq->cpu, id);
858 if (IS_ERR(worker->task))
859 goto fail;
860
861 /*
862 * A rogue worker will become a regular one if CPU comes
863 * online later on. Make sure every worker has
864 * PF_THREAD_BOUND set.
865 */
866 if (bind)
867 kthread_bind(worker->task, gcwq->cpu);
868 else
869 worker->task->flags |= PF_THREAD_BOUND;
870
871 return worker;
872 fail:
873 if (id >= 0) {
874 spin_lock_irq(&gcwq->lock);
875 ida_remove(&gcwq->worker_ida, id);
876 spin_unlock_irq(&gcwq->lock);
877 }
878 kfree(worker);
879 return NULL;
880 }
881
882 /**
883 * start_worker - start a newly created worker
884 * @worker: worker to start
885 *
886 * Make the gcwq aware of @worker and start it.
887 *
888 * CONTEXT:
889 * spin_lock_irq(gcwq->lock).
890 */
891 static void start_worker(struct worker *worker)
892 {
893 worker->flags |= WORKER_STARTED;
894 worker->gcwq->nr_workers++;
895 worker_enter_idle(worker);
896 wake_up_process(worker->task);
897 }
898
899 /**
900 * destroy_worker - destroy a workqueue worker
901 * @worker: worker to be destroyed
902 *
903 * Destroy @worker and adjust @gcwq stats accordingly.
904 *
905 * CONTEXT:
906 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
907 */
908 static void destroy_worker(struct worker *worker)
909 {
910 struct global_cwq *gcwq = worker->gcwq;
911 int id = worker->id;
912
913 /* sanity check frenzy */
914 BUG_ON(worker->current_work);
915 BUG_ON(!list_empty(&worker->scheduled));
916
917 if (worker->flags & WORKER_STARTED)
918 gcwq->nr_workers--;
919 if (worker->flags & WORKER_IDLE)
920 gcwq->nr_idle--;
921
922 list_del_init(&worker->entry);
923 worker->flags |= WORKER_DIE;
924
925 spin_unlock_irq(&gcwq->lock);
926
927 kthread_stop(worker->task);
928 kfree(worker);
929
930 spin_lock_irq(&gcwq->lock);
931 ida_remove(&gcwq->worker_ida, id);
932 }
933
934 /**
935 * move_linked_works - move linked works to a list
936 * @work: start of series of works to be scheduled
937 * @head: target list to append @work to
938 * @nextp: out paramter for nested worklist walking
939 *
940 * Schedule linked works starting from @work to @head. Work series to
941 * be scheduled starts at @work and includes any consecutive work with
942 * WORK_STRUCT_LINKED set in its predecessor.
943 *
944 * If @nextp is not NULL, it's updated to point to the next work of
945 * the last scheduled work. This allows move_linked_works() to be
946 * nested inside outer list_for_each_entry_safe().
947 *
948 * CONTEXT:
949 * spin_lock_irq(gcwq->lock).
950 */
951 static void move_linked_works(struct work_struct *work, struct list_head *head,
952 struct work_struct **nextp)
953 {
954 struct work_struct *n;
955
956 /*
957 * Linked worklist will always end before the end of the list,
958 * use NULL for list head.
959 */
960 list_for_each_entry_safe_from(work, n, NULL, entry) {
961 list_move_tail(&work->entry, head);
962 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
963 break;
964 }
965
966 /*
967 * If we're already inside safe list traversal and have moved
968 * multiple works to the scheduled queue, the next position
969 * needs to be updated.
970 */
971 if (nextp)
972 *nextp = n;
973 }
974
975 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
976 {
977 struct work_struct *work = list_first_entry(&cwq->delayed_works,
978 struct work_struct, entry);
979
980 move_linked_works(work, &cwq->gcwq->worklist, NULL);
981 cwq->nr_active++;
982 }
983
984 /**
985 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
986 * @cwq: cwq of interest
987 * @color: color of work which left the queue
988 *
989 * A work either has completed or is removed from pending queue,
990 * decrement nr_in_flight of its cwq and handle workqueue flushing.
991 *
992 * CONTEXT:
993 * spin_lock_irq(gcwq->lock).
994 */
995 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
996 {
997 /* ignore uncolored works */
998 if (color == WORK_NO_COLOR)
999 return;
1000
1001 cwq->nr_in_flight[color]--;
1002 cwq->nr_active--;
1003
1004 if (!list_empty(&cwq->delayed_works)) {
1005 /* one down, submit a delayed one */
1006 if (cwq->nr_active < cwq->max_active)
1007 cwq_activate_first_delayed(cwq);
1008 } else if (!cwq->nr_active && cwq->wq->flags & WQ_SINGLE_CPU) {
1009 /* this was the last work, unbind from single cpu */
1010 cwq_unbind_single_cpu(cwq);
1011 }
1012
1013 /* is flush in progress and are we at the flushing tip? */
1014 if (likely(cwq->flush_color != color))
1015 return;
1016
1017 /* are there still in-flight works? */
1018 if (cwq->nr_in_flight[color])
1019 return;
1020
1021 /* this cwq is done, clear flush_color */
1022 cwq->flush_color = -1;
1023
1024 /*
1025 * If this was the last cwq, wake up the first flusher. It
1026 * will handle the rest.
1027 */
1028 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1029 complete(&cwq->wq->first_flusher->done);
1030 }
1031
1032 /**
1033 * process_one_work - process single work
1034 * @worker: self
1035 * @work: work to process
1036 *
1037 * Process @work. This function contains all the logics necessary to
1038 * process a single work including synchronization against and
1039 * interaction with other workers on the same cpu, queueing and
1040 * flushing. As long as context requirement is met, any worker can
1041 * call this function to process a work.
1042 *
1043 * CONTEXT:
1044 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1045 */
1046 static void process_one_work(struct worker *worker, struct work_struct *work)
1047 {
1048 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1049 struct global_cwq *gcwq = cwq->gcwq;
1050 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1051 work_func_t f = work->func;
1052 int work_color;
1053 struct worker *collision;
1054 #ifdef CONFIG_LOCKDEP
1055 /*
1056 * It is permissible to free the struct work_struct from
1057 * inside the function that is called from it, this we need to
1058 * take into account for lockdep too. To avoid bogus "held
1059 * lock freed" warnings as well as problems when looking into
1060 * work->lockdep_map, make a copy and use that here.
1061 */
1062 struct lockdep_map lockdep_map = work->lockdep_map;
1063 #endif
1064 /*
1065 * A single work shouldn't be executed concurrently by
1066 * multiple workers on a single cpu. Check whether anyone is
1067 * already processing the work. If so, defer the work to the
1068 * currently executing one.
1069 */
1070 collision = __find_worker_executing_work(gcwq, bwh, work);
1071 if (unlikely(collision)) {
1072 move_linked_works(work, &collision->scheduled, NULL);
1073 return;
1074 }
1075
1076 /* claim and process */
1077 debug_work_deactivate(work);
1078 hlist_add_head(&worker->hentry, bwh);
1079 worker->current_work = work;
1080 worker->current_cwq = cwq;
1081 work_color = get_work_color(work);
1082
1083 /* record the current cpu number in the work data and dequeue */
1084 set_work_cpu(work, gcwq->cpu);
1085 list_del_init(&work->entry);
1086
1087 spin_unlock_irq(&gcwq->lock);
1088
1089 work_clear_pending(work);
1090 lock_map_acquire(&cwq->wq->lockdep_map);
1091 lock_map_acquire(&lockdep_map);
1092 f(work);
1093 lock_map_release(&lockdep_map);
1094 lock_map_release(&cwq->wq->lockdep_map);
1095
1096 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1097 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1098 "%s/0x%08x/%d\n",
1099 current->comm, preempt_count(), task_pid_nr(current));
1100 printk(KERN_ERR " last function: ");
1101 print_symbol("%s\n", (unsigned long)f);
1102 debug_show_held_locks(current);
1103 dump_stack();
1104 }
1105
1106 spin_lock_irq(&gcwq->lock);
1107
1108 /* we're done with it, release */
1109 hlist_del_init(&worker->hentry);
1110 worker->current_work = NULL;
1111 worker->current_cwq = NULL;
1112 cwq_dec_nr_in_flight(cwq, work_color);
1113 }
1114
1115 /**
1116 * process_scheduled_works - process scheduled works
1117 * @worker: self
1118 *
1119 * Process all scheduled works. Please note that the scheduled list
1120 * may change while processing a work, so this function repeatedly
1121 * fetches a work from the top and executes it.
1122 *
1123 * CONTEXT:
1124 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1125 * multiple times.
1126 */
1127 static void process_scheduled_works(struct worker *worker)
1128 {
1129 while (!list_empty(&worker->scheduled)) {
1130 struct work_struct *work = list_first_entry(&worker->scheduled,
1131 struct work_struct, entry);
1132 process_one_work(worker, work);
1133 }
1134 }
1135
1136 /**
1137 * worker_thread - the worker thread function
1138 * @__worker: self
1139 *
1140 * The cwq worker thread function.
1141 */
1142 static int worker_thread(void *__worker)
1143 {
1144 struct worker *worker = __worker;
1145 struct global_cwq *gcwq = worker->gcwq;
1146
1147 woke_up:
1148 spin_lock_irq(&gcwq->lock);
1149
1150 /* DIE can be set only while we're idle, checking here is enough */
1151 if (worker->flags & WORKER_DIE) {
1152 spin_unlock_irq(&gcwq->lock);
1153 return 0;
1154 }
1155
1156 worker_leave_idle(worker);
1157 recheck:
1158 /*
1159 * ->scheduled list can only be filled while a worker is
1160 * preparing to process a work or actually processing it.
1161 * Make sure nobody diddled with it while I was sleeping.
1162 */
1163 BUG_ON(!list_empty(&worker->scheduled));
1164
1165 while (!list_empty(&gcwq->worklist)) {
1166 struct work_struct *work =
1167 list_first_entry(&gcwq->worklist,
1168 struct work_struct, entry);
1169
1170 /*
1171 * The following is a rather inefficient way to close
1172 * race window against cpu hotplug operations. Will
1173 * be replaced soon.
1174 */
1175 if (unlikely(!(worker->flags & WORKER_ROGUE) &&
1176 !cpumask_equal(&worker->task->cpus_allowed,
1177 get_cpu_mask(gcwq->cpu)))) {
1178 spin_unlock_irq(&gcwq->lock);
1179 set_cpus_allowed_ptr(worker->task,
1180 get_cpu_mask(gcwq->cpu));
1181 cpu_relax();
1182 spin_lock_irq(&gcwq->lock);
1183 goto recheck;
1184 }
1185
1186 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1187 /* optimization path, not strictly necessary */
1188 process_one_work(worker, work);
1189 if (unlikely(!list_empty(&worker->scheduled)))
1190 process_scheduled_works(worker);
1191 } else {
1192 move_linked_works(work, &worker->scheduled, NULL);
1193 process_scheduled_works(worker);
1194 }
1195 }
1196
1197 /*
1198 * gcwq->lock is held and there's no work to process, sleep.
1199 * Workers are woken up only while holding gcwq->lock, so
1200 * setting the current state before releasing gcwq->lock is
1201 * enough to prevent losing any event.
1202 */
1203 worker_enter_idle(worker);
1204 __set_current_state(TASK_INTERRUPTIBLE);
1205 spin_unlock_irq(&gcwq->lock);
1206 schedule();
1207 goto woke_up;
1208 }
1209
1210 struct wq_barrier {
1211 struct work_struct work;
1212 struct completion done;
1213 };
1214
1215 static void wq_barrier_func(struct work_struct *work)
1216 {
1217 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1218 complete(&barr->done);
1219 }
1220
1221 /**
1222 * insert_wq_barrier - insert a barrier work
1223 * @cwq: cwq to insert barrier into
1224 * @barr: wq_barrier to insert
1225 * @target: target work to attach @barr to
1226 * @worker: worker currently executing @target, NULL if @target is not executing
1227 *
1228 * @barr is linked to @target such that @barr is completed only after
1229 * @target finishes execution. Please note that the ordering
1230 * guarantee is observed only with respect to @target and on the local
1231 * cpu.
1232 *
1233 * Currently, a queued barrier can't be canceled. This is because
1234 * try_to_grab_pending() can't determine whether the work to be
1235 * grabbed is at the head of the queue and thus can't clear LINKED
1236 * flag of the previous work while there must be a valid next work
1237 * after a work with LINKED flag set.
1238 *
1239 * Note that when @worker is non-NULL, @target may be modified
1240 * underneath us, so we can't reliably determine cwq from @target.
1241 *
1242 * CONTEXT:
1243 * spin_lock_irq(gcwq->lock).
1244 */
1245 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
1246 struct wq_barrier *barr,
1247 struct work_struct *target, struct worker *worker)
1248 {
1249 struct list_head *head;
1250 unsigned int linked = 0;
1251
1252 /*
1253 * debugobject calls are safe here even with gcwq->lock locked
1254 * as we know for sure that this will not trigger any of the
1255 * checks and call back into the fixup functions where we
1256 * might deadlock.
1257 */
1258 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
1259 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
1260 init_completion(&barr->done);
1261
1262 /*
1263 * If @target is currently being executed, schedule the
1264 * barrier to the worker; otherwise, put it after @target.
1265 */
1266 if (worker)
1267 head = worker->scheduled.next;
1268 else {
1269 unsigned long *bits = work_data_bits(target);
1270
1271 head = target->entry.next;
1272 /* there can already be other linked works, inherit and set */
1273 linked = *bits & WORK_STRUCT_LINKED;
1274 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
1275 }
1276
1277 debug_work_activate(&barr->work);
1278 insert_work(cwq, &barr->work, head,
1279 work_color_to_flags(WORK_NO_COLOR) | linked);
1280 }
1281
1282 /**
1283 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
1284 * @wq: workqueue being flushed
1285 * @flush_color: new flush color, < 0 for no-op
1286 * @work_color: new work color, < 0 for no-op
1287 *
1288 * Prepare cwqs for workqueue flushing.
1289 *
1290 * If @flush_color is non-negative, flush_color on all cwqs should be
1291 * -1. If no cwq has in-flight commands at the specified color, all
1292 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
1293 * has in flight commands, its cwq->flush_color is set to
1294 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
1295 * wakeup logic is armed and %true is returned.
1296 *
1297 * The caller should have initialized @wq->first_flusher prior to
1298 * calling this function with non-negative @flush_color. If
1299 * @flush_color is negative, no flush color update is done and %false
1300 * is returned.
1301 *
1302 * If @work_color is non-negative, all cwqs should have the same
1303 * work_color which is previous to @work_color and all will be
1304 * advanced to @work_color.
1305 *
1306 * CONTEXT:
1307 * mutex_lock(wq->flush_mutex).
1308 *
1309 * RETURNS:
1310 * %true if @flush_color >= 0 and there's something to flush. %false
1311 * otherwise.
1312 */
1313 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
1314 int flush_color, int work_color)
1315 {
1316 bool wait = false;
1317 unsigned int cpu;
1318
1319 if (flush_color >= 0) {
1320 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
1321 atomic_set(&wq->nr_cwqs_to_flush, 1);
1322 }
1323
1324 for_each_possible_cpu(cpu) {
1325 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1326 struct global_cwq *gcwq = cwq->gcwq;
1327
1328 spin_lock_irq(&gcwq->lock);
1329
1330 if (flush_color >= 0) {
1331 BUG_ON(cwq->flush_color != -1);
1332
1333 if (cwq->nr_in_flight[flush_color]) {
1334 cwq->flush_color = flush_color;
1335 atomic_inc(&wq->nr_cwqs_to_flush);
1336 wait = true;
1337 }
1338 }
1339
1340 if (work_color >= 0) {
1341 BUG_ON(work_color != work_next_color(cwq->work_color));
1342 cwq->work_color = work_color;
1343 }
1344
1345 spin_unlock_irq(&gcwq->lock);
1346 }
1347
1348 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
1349 complete(&wq->first_flusher->done);
1350
1351 return wait;
1352 }
1353
1354 /**
1355 * flush_workqueue - ensure that any scheduled work has run to completion.
1356 * @wq: workqueue to flush
1357 *
1358 * Forces execution of the workqueue and blocks until its completion.
1359 * This is typically used in driver shutdown handlers.
1360 *
1361 * We sleep until all works which were queued on entry have been handled,
1362 * but we are not livelocked by new incoming ones.
1363 */
1364 void flush_workqueue(struct workqueue_struct *wq)
1365 {
1366 struct wq_flusher this_flusher = {
1367 .list = LIST_HEAD_INIT(this_flusher.list),
1368 .flush_color = -1,
1369 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
1370 };
1371 int next_color;
1372
1373 lock_map_acquire(&wq->lockdep_map);
1374 lock_map_release(&wq->lockdep_map);
1375
1376 mutex_lock(&wq->flush_mutex);
1377
1378 /*
1379 * Start-to-wait phase
1380 */
1381 next_color = work_next_color(wq->work_color);
1382
1383 if (next_color != wq->flush_color) {
1384 /*
1385 * Color space is not full. The current work_color
1386 * becomes our flush_color and work_color is advanced
1387 * by one.
1388 */
1389 BUG_ON(!list_empty(&wq->flusher_overflow));
1390 this_flusher.flush_color = wq->work_color;
1391 wq->work_color = next_color;
1392
1393 if (!wq->first_flusher) {
1394 /* no flush in progress, become the first flusher */
1395 BUG_ON(wq->flush_color != this_flusher.flush_color);
1396
1397 wq->first_flusher = &this_flusher;
1398
1399 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
1400 wq->work_color)) {
1401 /* nothing to flush, done */
1402 wq->flush_color = next_color;
1403 wq->first_flusher = NULL;
1404 goto out_unlock;
1405 }
1406 } else {
1407 /* wait in queue */
1408 BUG_ON(wq->flush_color == this_flusher.flush_color);
1409 list_add_tail(&this_flusher.list, &wq->flusher_queue);
1410 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1411 }
1412 } else {
1413 /*
1414 * Oops, color space is full, wait on overflow queue.
1415 * The next flush completion will assign us
1416 * flush_color and transfer to flusher_queue.
1417 */
1418 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
1419 }
1420
1421 mutex_unlock(&wq->flush_mutex);
1422
1423 wait_for_completion(&this_flusher.done);
1424
1425 /*
1426 * Wake-up-and-cascade phase
1427 *
1428 * First flushers are responsible for cascading flushes and
1429 * handling overflow. Non-first flushers can simply return.
1430 */
1431 if (wq->first_flusher != &this_flusher)
1432 return;
1433
1434 mutex_lock(&wq->flush_mutex);
1435
1436 wq->first_flusher = NULL;
1437
1438 BUG_ON(!list_empty(&this_flusher.list));
1439 BUG_ON(wq->flush_color != this_flusher.flush_color);
1440
1441 while (true) {
1442 struct wq_flusher *next, *tmp;
1443
1444 /* complete all the flushers sharing the current flush color */
1445 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
1446 if (next->flush_color != wq->flush_color)
1447 break;
1448 list_del_init(&next->list);
1449 complete(&next->done);
1450 }
1451
1452 BUG_ON(!list_empty(&wq->flusher_overflow) &&
1453 wq->flush_color != work_next_color(wq->work_color));
1454
1455 /* this flush_color is finished, advance by one */
1456 wq->flush_color = work_next_color(wq->flush_color);
1457
1458 /* one color has been freed, handle overflow queue */
1459 if (!list_empty(&wq->flusher_overflow)) {
1460 /*
1461 * Assign the same color to all overflowed
1462 * flushers, advance work_color and append to
1463 * flusher_queue. This is the start-to-wait
1464 * phase for these overflowed flushers.
1465 */
1466 list_for_each_entry(tmp, &wq->flusher_overflow, list)
1467 tmp->flush_color = wq->work_color;
1468
1469 wq->work_color = work_next_color(wq->work_color);
1470
1471 list_splice_tail_init(&wq->flusher_overflow,
1472 &wq->flusher_queue);
1473 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1474 }
1475
1476 if (list_empty(&wq->flusher_queue)) {
1477 BUG_ON(wq->flush_color != wq->work_color);
1478 break;
1479 }
1480
1481 /*
1482 * Need to flush more colors. Make the next flusher
1483 * the new first flusher and arm cwqs.
1484 */
1485 BUG_ON(wq->flush_color == wq->work_color);
1486 BUG_ON(wq->flush_color != next->flush_color);
1487
1488 list_del_init(&next->list);
1489 wq->first_flusher = next;
1490
1491 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
1492 break;
1493
1494 /*
1495 * Meh... this color is already done, clear first
1496 * flusher and repeat cascading.
1497 */
1498 wq->first_flusher = NULL;
1499 }
1500
1501 out_unlock:
1502 mutex_unlock(&wq->flush_mutex);
1503 }
1504 EXPORT_SYMBOL_GPL(flush_workqueue);
1505
1506 /**
1507 * flush_work - block until a work_struct's callback has terminated
1508 * @work: the work which is to be flushed
1509 *
1510 * Returns false if @work has already terminated.
1511 *
1512 * It is expected that, prior to calling flush_work(), the caller has
1513 * arranged for the work to not be requeued, otherwise it doesn't make
1514 * sense to use this function.
1515 */
1516 int flush_work(struct work_struct *work)
1517 {
1518 struct worker *worker = NULL;
1519 struct global_cwq *gcwq;
1520 struct cpu_workqueue_struct *cwq;
1521 struct wq_barrier barr;
1522
1523 might_sleep();
1524 gcwq = get_work_gcwq(work);
1525 if (!gcwq)
1526 return 0;
1527
1528 spin_lock_irq(&gcwq->lock);
1529 if (!list_empty(&work->entry)) {
1530 /*
1531 * See the comment near try_to_grab_pending()->smp_rmb().
1532 * If it was re-queued to a different gcwq under us, we
1533 * are not going to wait.
1534 */
1535 smp_rmb();
1536 cwq = get_work_cwq(work);
1537 if (unlikely(!cwq || gcwq != cwq->gcwq))
1538 goto already_gone;
1539 } else {
1540 worker = find_worker_executing_work(gcwq, work);
1541 if (!worker)
1542 goto already_gone;
1543 cwq = worker->current_cwq;
1544 }
1545
1546 insert_wq_barrier(cwq, &barr, work, worker);
1547 spin_unlock_irq(&gcwq->lock);
1548
1549 lock_map_acquire(&cwq->wq->lockdep_map);
1550 lock_map_release(&cwq->wq->lockdep_map);
1551
1552 wait_for_completion(&barr.done);
1553 destroy_work_on_stack(&barr.work);
1554 return 1;
1555 already_gone:
1556 spin_unlock_irq(&gcwq->lock);
1557 return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(flush_work);
1560
1561 /*
1562 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
1563 * so this work can't be re-armed in any way.
1564 */
1565 static int try_to_grab_pending(struct work_struct *work)
1566 {
1567 struct global_cwq *gcwq;
1568 int ret = -1;
1569
1570 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1571 return 0;
1572
1573 /*
1574 * The queueing is in progress, or it is already queued. Try to
1575 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1576 */
1577 gcwq = get_work_gcwq(work);
1578 if (!gcwq)
1579 return ret;
1580
1581 spin_lock_irq(&gcwq->lock);
1582 if (!list_empty(&work->entry)) {
1583 /*
1584 * This work is queued, but perhaps we locked the wrong gcwq.
1585 * In that case we must see the new value after rmb(), see
1586 * insert_work()->wmb().
1587 */
1588 smp_rmb();
1589 if (gcwq == get_work_gcwq(work)) {
1590 debug_work_deactivate(work);
1591 list_del_init(&work->entry);
1592 cwq_dec_nr_in_flight(get_work_cwq(work),
1593 get_work_color(work));
1594 ret = 1;
1595 }
1596 }
1597 spin_unlock_irq(&gcwq->lock);
1598
1599 return ret;
1600 }
1601
1602 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
1603 {
1604 struct wq_barrier barr;
1605 struct worker *worker;
1606
1607 spin_lock_irq(&gcwq->lock);
1608
1609 worker = find_worker_executing_work(gcwq, work);
1610 if (unlikely(worker))
1611 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
1612
1613 spin_unlock_irq(&gcwq->lock);
1614
1615 if (unlikely(worker)) {
1616 wait_for_completion(&barr.done);
1617 destroy_work_on_stack(&barr.work);
1618 }
1619 }
1620
1621 static void wait_on_work(struct work_struct *work)
1622 {
1623 int cpu;
1624
1625 might_sleep();
1626
1627 lock_map_acquire(&work->lockdep_map);
1628 lock_map_release(&work->lockdep_map);
1629
1630 for_each_possible_cpu(cpu)
1631 wait_on_cpu_work(get_gcwq(cpu), work);
1632 }
1633
1634 static int __cancel_work_timer(struct work_struct *work,
1635 struct timer_list* timer)
1636 {
1637 int ret;
1638
1639 do {
1640 ret = (timer && likely(del_timer(timer)));
1641 if (!ret)
1642 ret = try_to_grab_pending(work);
1643 wait_on_work(work);
1644 } while (unlikely(ret < 0));
1645
1646 clear_work_data(work);
1647 return ret;
1648 }
1649
1650 /**
1651 * cancel_work_sync - block until a work_struct's callback has terminated
1652 * @work: the work which is to be flushed
1653 *
1654 * Returns true if @work was pending.
1655 *
1656 * cancel_work_sync() will cancel the work if it is queued. If the work's
1657 * callback appears to be running, cancel_work_sync() will block until it
1658 * has completed.
1659 *
1660 * It is possible to use this function if the work re-queues itself. It can
1661 * cancel the work even if it migrates to another workqueue, however in that
1662 * case it only guarantees that work->func() has completed on the last queued
1663 * workqueue.
1664 *
1665 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
1666 * pending, otherwise it goes into a busy-wait loop until the timer expires.
1667 *
1668 * The caller must ensure that workqueue_struct on which this work was last
1669 * queued can't be destroyed before this function returns.
1670 */
1671 int cancel_work_sync(struct work_struct *work)
1672 {
1673 return __cancel_work_timer(work, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(cancel_work_sync);
1676
1677 /**
1678 * cancel_delayed_work_sync - reliably kill off a delayed work.
1679 * @dwork: the delayed work struct
1680 *
1681 * Returns true if @dwork was pending.
1682 *
1683 * It is possible to use this function if @dwork rearms itself via queue_work()
1684 * or queue_delayed_work(). See also the comment for cancel_work_sync().
1685 */
1686 int cancel_delayed_work_sync(struct delayed_work *dwork)
1687 {
1688 return __cancel_work_timer(&dwork->work, &dwork->timer);
1689 }
1690 EXPORT_SYMBOL(cancel_delayed_work_sync);
1691
1692 static struct workqueue_struct *keventd_wq __read_mostly;
1693
1694 /**
1695 * schedule_work - put work task in global workqueue
1696 * @work: job to be done
1697 *
1698 * Returns zero if @work was already on the kernel-global workqueue and
1699 * non-zero otherwise.
1700 *
1701 * This puts a job in the kernel-global workqueue if it was not already
1702 * queued and leaves it in the same position on the kernel-global
1703 * workqueue otherwise.
1704 */
1705 int schedule_work(struct work_struct *work)
1706 {
1707 return queue_work(keventd_wq, work);
1708 }
1709 EXPORT_SYMBOL(schedule_work);
1710
1711 /*
1712 * schedule_work_on - put work task on a specific cpu
1713 * @cpu: cpu to put the work task on
1714 * @work: job to be done
1715 *
1716 * This puts a job on a specific cpu
1717 */
1718 int schedule_work_on(int cpu, struct work_struct *work)
1719 {
1720 return queue_work_on(cpu, keventd_wq, work);
1721 }
1722 EXPORT_SYMBOL(schedule_work_on);
1723
1724 /**
1725 * schedule_delayed_work - put work task in global workqueue after delay
1726 * @dwork: job to be done
1727 * @delay: number of jiffies to wait or 0 for immediate execution
1728 *
1729 * After waiting for a given time this puts a job in the kernel-global
1730 * workqueue.
1731 */
1732 int schedule_delayed_work(struct delayed_work *dwork,
1733 unsigned long delay)
1734 {
1735 return queue_delayed_work(keventd_wq, dwork, delay);
1736 }
1737 EXPORT_SYMBOL(schedule_delayed_work);
1738
1739 /**
1740 * flush_delayed_work - block until a dwork_struct's callback has terminated
1741 * @dwork: the delayed work which is to be flushed
1742 *
1743 * Any timeout is cancelled, and any pending work is run immediately.
1744 */
1745 void flush_delayed_work(struct delayed_work *dwork)
1746 {
1747 if (del_timer_sync(&dwork->timer)) {
1748 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
1749 &dwork->work);
1750 put_cpu();
1751 }
1752 flush_work(&dwork->work);
1753 }
1754 EXPORT_SYMBOL(flush_delayed_work);
1755
1756 /**
1757 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
1758 * @cpu: cpu to use
1759 * @dwork: job to be done
1760 * @delay: number of jiffies to wait
1761 *
1762 * After waiting for a given time this puts a job in the kernel-global
1763 * workqueue on the specified CPU.
1764 */
1765 int schedule_delayed_work_on(int cpu,
1766 struct delayed_work *dwork, unsigned long delay)
1767 {
1768 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1769 }
1770 EXPORT_SYMBOL(schedule_delayed_work_on);
1771
1772 /**
1773 * schedule_on_each_cpu - call a function on each online CPU from keventd
1774 * @func: the function to call
1775 *
1776 * Returns zero on success.
1777 * Returns -ve errno on failure.
1778 *
1779 * schedule_on_each_cpu() is very slow.
1780 */
1781 int schedule_on_each_cpu(work_func_t func)
1782 {
1783 int cpu;
1784 int orig = -1;
1785 struct work_struct *works;
1786
1787 works = alloc_percpu(struct work_struct);
1788 if (!works)
1789 return -ENOMEM;
1790
1791 get_online_cpus();
1792
1793 /*
1794 * When running in keventd don't schedule a work item on
1795 * itself. Can just call directly because the work queue is
1796 * already bound. This also is faster.
1797 */
1798 if (current_is_keventd())
1799 orig = raw_smp_processor_id();
1800
1801 for_each_online_cpu(cpu) {
1802 struct work_struct *work = per_cpu_ptr(works, cpu);
1803
1804 INIT_WORK(work, func);
1805 if (cpu != orig)
1806 schedule_work_on(cpu, work);
1807 }
1808 if (orig >= 0)
1809 func(per_cpu_ptr(works, orig));
1810
1811 for_each_online_cpu(cpu)
1812 flush_work(per_cpu_ptr(works, cpu));
1813
1814 put_online_cpus();
1815 free_percpu(works);
1816 return 0;
1817 }
1818
1819 /**
1820 * flush_scheduled_work - ensure that any scheduled work has run to completion.
1821 *
1822 * Forces execution of the kernel-global workqueue and blocks until its
1823 * completion.
1824 *
1825 * Think twice before calling this function! It's very easy to get into
1826 * trouble if you don't take great care. Either of the following situations
1827 * will lead to deadlock:
1828 *
1829 * One of the work items currently on the workqueue needs to acquire
1830 * a lock held by your code or its caller.
1831 *
1832 * Your code is running in the context of a work routine.
1833 *
1834 * They will be detected by lockdep when they occur, but the first might not
1835 * occur very often. It depends on what work items are on the workqueue and
1836 * what locks they need, which you have no control over.
1837 *
1838 * In most situations flushing the entire workqueue is overkill; you merely
1839 * need to know that a particular work item isn't queued and isn't running.
1840 * In such cases you should use cancel_delayed_work_sync() or
1841 * cancel_work_sync() instead.
1842 */
1843 void flush_scheduled_work(void)
1844 {
1845 flush_workqueue(keventd_wq);
1846 }
1847 EXPORT_SYMBOL(flush_scheduled_work);
1848
1849 /**
1850 * execute_in_process_context - reliably execute the routine with user context
1851 * @fn: the function to execute
1852 * @ew: guaranteed storage for the execute work structure (must
1853 * be available when the work executes)
1854 *
1855 * Executes the function immediately if process context is available,
1856 * otherwise schedules the function for delayed execution.
1857 *
1858 * Returns: 0 - function was executed
1859 * 1 - function was scheduled for execution
1860 */
1861 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1862 {
1863 if (!in_interrupt()) {
1864 fn(&ew->work);
1865 return 0;
1866 }
1867
1868 INIT_WORK(&ew->work, fn);
1869 schedule_work(&ew->work);
1870
1871 return 1;
1872 }
1873 EXPORT_SYMBOL_GPL(execute_in_process_context);
1874
1875 int keventd_up(void)
1876 {
1877 return keventd_wq != NULL;
1878 }
1879
1880 int current_is_keventd(void)
1881 {
1882 bool found = false;
1883 unsigned int cpu;
1884
1885 /*
1886 * There no longer is one-to-one relation between worker and
1887 * work queue and a worker task might be unbound from its cpu
1888 * if the cpu was offlined. Match all busy workers. This
1889 * function will go away once dynamic pool is implemented.
1890 */
1891 for_each_possible_cpu(cpu) {
1892 struct global_cwq *gcwq = get_gcwq(cpu);
1893 struct worker *worker;
1894 struct hlist_node *pos;
1895 unsigned long flags;
1896 int i;
1897
1898 spin_lock_irqsave(&gcwq->lock, flags);
1899
1900 for_each_busy_worker(worker, i, pos, gcwq) {
1901 if (worker->task == current) {
1902 found = true;
1903 break;
1904 }
1905 }
1906
1907 spin_unlock_irqrestore(&gcwq->lock, flags);
1908 if (found)
1909 break;
1910 }
1911
1912 return found;
1913 }
1914
1915 static struct cpu_workqueue_struct *alloc_cwqs(void)
1916 {
1917 /*
1918 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
1919 * Make sure that the alignment isn't lower than that of
1920 * unsigned long long.
1921 */
1922 const size_t size = sizeof(struct cpu_workqueue_struct);
1923 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
1924 __alignof__(unsigned long long));
1925 struct cpu_workqueue_struct *cwqs;
1926 #ifndef CONFIG_SMP
1927 void *ptr;
1928
1929 /*
1930 * On UP, percpu allocator doesn't honor alignment parameter
1931 * and simply uses arch-dependent default. Allocate enough
1932 * room to align cwq and put an extra pointer at the end
1933 * pointing back to the originally allocated pointer which
1934 * will be used for free.
1935 *
1936 * FIXME: This really belongs to UP percpu code. Update UP
1937 * percpu code to honor alignment and remove this ugliness.
1938 */
1939 ptr = __alloc_percpu(size + align + sizeof(void *), 1);
1940 cwqs = PTR_ALIGN(ptr, align);
1941 *(void **)per_cpu_ptr(cwqs + 1, 0) = ptr;
1942 #else
1943 /* On SMP, percpu allocator can do it itself */
1944 cwqs = __alloc_percpu(size, align);
1945 #endif
1946 /* just in case, make sure it's actually aligned */
1947 BUG_ON(!IS_ALIGNED((unsigned long)cwqs, align));
1948 return cwqs;
1949 }
1950
1951 static void free_cwqs(struct cpu_workqueue_struct *cwqs)
1952 {
1953 #ifndef CONFIG_SMP
1954 /* on UP, the pointer to free is stored right after the cwq */
1955 if (cwqs)
1956 free_percpu(*(void **)per_cpu_ptr(cwqs + 1, 0));
1957 #else
1958 free_percpu(cwqs);
1959 #endif
1960 }
1961
1962 struct workqueue_struct *__create_workqueue_key(const char *name,
1963 unsigned int flags,
1964 int max_active,
1965 struct lock_class_key *key,
1966 const char *lock_name)
1967 {
1968 struct workqueue_struct *wq;
1969 bool failed = false;
1970 unsigned int cpu;
1971
1972 max_active = clamp_val(max_active, 1, INT_MAX);
1973
1974 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
1975 if (!wq)
1976 goto err;
1977
1978 wq->cpu_wq = alloc_cwqs();
1979 if (!wq->cpu_wq)
1980 goto err;
1981
1982 wq->flags = flags;
1983 wq->saved_max_active = max_active;
1984 mutex_init(&wq->flush_mutex);
1985 atomic_set(&wq->nr_cwqs_to_flush, 0);
1986 INIT_LIST_HEAD(&wq->flusher_queue);
1987 INIT_LIST_HEAD(&wq->flusher_overflow);
1988 wq->single_cpu = NR_CPUS;
1989
1990 wq->name = name;
1991 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
1992 INIT_LIST_HEAD(&wq->list);
1993
1994 cpu_maps_update_begin();
1995 /*
1996 * We must initialize cwqs for each possible cpu even if we
1997 * are going to call destroy_workqueue() finally. Otherwise
1998 * cpu_up() can hit the uninitialized cwq once we drop the
1999 * lock.
2000 */
2001 for_each_possible_cpu(cpu) {
2002 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2003 struct global_cwq *gcwq = get_gcwq(cpu);
2004
2005 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2006 cwq->gcwq = gcwq;
2007 cwq->wq = wq;
2008 cwq->flush_color = -1;
2009 cwq->max_active = max_active;
2010 INIT_LIST_HEAD(&cwq->delayed_works);
2011
2012 if (failed)
2013 continue;
2014 cwq->worker = create_worker(gcwq, cpu_online(cpu));
2015 if (cwq->worker)
2016 start_worker(cwq->worker);
2017 else
2018 failed = true;
2019 }
2020
2021 /*
2022 * workqueue_lock protects global freeze state and workqueues
2023 * list. Grab it, set max_active accordingly and add the new
2024 * workqueue to workqueues list.
2025 */
2026 spin_lock(&workqueue_lock);
2027
2028 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2029 for_each_possible_cpu(cpu)
2030 get_cwq(cpu, wq)->max_active = 0;
2031
2032 list_add(&wq->list, &workqueues);
2033
2034 spin_unlock(&workqueue_lock);
2035
2036 cpu_maps_update_done();
2037
2038 if (failed) {
2039 destroy_workqueue(wq);
2040 wq = NULL;
2041 }
2042 return wq;
2043 err:
2044 if (wq) {
2045 free_cwqs(wq->cpu_wq);
2046 kfree(wq);
2047 }
2048 return NULL;
2049 }
2050 EXPORT_SYMBOL_GPL(__create_workqueue_key);
2051
2052 /**
2053 * destroy_workqueue - safely terminate a workqueue
2054 * @wq: target workqueue
2055 *
2056 * Safely destroy a workqueue. All work currently pending will be done first.
2057 */
2058 void destroy_workqueue(struct workqueue_struct *wq)
2059 {
2060 unsigned int cpu;
2061
2062 flush_workqueue(wq);
2063
2064 /*
2065 * wq list is used to freeze wq, remove from list after
2066 * flushing is complete in case freeze races us.
2067 */
2068 cpu_maps_update_begin();
2069 spin_lock(&workqueue_lock);
2070 list_del(&wq->list);
2071 spin_unlock(&workqueue_lock);
2072 cpu_maps_update_done();
2073
2074 for_each_possible_cpu(cpu) {
2075 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2076 struct global_cwq *gcwq = cwq->gcwq;
2077 int i;
2078
2079 if (cwq->worker) {
2080 retry:
2081 spin_lock_irq(&gcwq->lock);
2082 /*
2083 * Worker can only be destroyed while idle.
2084 * Wait till it becomes idle. This is ugly
2085 * and prone to starvation. It will go away
2086 * once dynamic worker pool is implemented.
2087 */
2088 if (!(cwq->worker->flags & WORKER_IDLE)) {
2089 spin_unlock_irq(&gcwq->lock);
2090 msleep(100);
2091 goto retry;
2092 }
2093 destroy_worker(cwq->worker);
2094 cwq->worker = NULL;
2095 spin_unlock_irq(&gcwq->lock);
2096 }
2097
2098 for (i = 0; i < WORK_NR_COLORS; i++)
2099 BUG_ON(cwq->nr_in_flight[i]);
2100 BUG_ON(cwq->nr_active);
2101 BUG_ON(!list_empty(&cwq->delayed_works));
2102 }
2103
2104 free_cwqs(wq->cpu_wq);
2105 kfree(wq);
2106 }
2107 EXPORT_SYMBOL_GPL(destroy_workqueue);
2108
2109 /*
2110 * CPU hotplug.
2111 *
2112 * CPU hotplug is implemented by allowing cwqs to be detached from
2113 * CPU, running with unbound workers and allowing them to be
2114 * reattached later if the cpu comes back online. A separate thread
2115 * is created to govern cwqs in such state and is called the trustee.
2116 *
2117 * Trustee states and their descriptions.
2118 *
2119 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2120 * new trustee is started with this state.
2121 *
2122 * IN_CHARGE Once started, trustee will enter this state after
2123 * making all existing workers rogue. DOWN_PREPARE waits
2124 * for trustee to enter this state. After reaching
2125 * IN_CHARGE, trustee tries to execute the pending
2126 * worklist until it's empty and the state is set to
2127 * BUTCHER, or the state is set to RELEASE.
2128 *
2129 * BUTCHER Command state which is set by the cpu callback after
2130 * the cpu has went down. Once this state is set trustee
2131 * knows that there will be no new works on the worklist
2132 * and once the worklist is empty it can proceed to
2133 * killing idle workers.
2134 *
2135 * RELEASE Command state which is set by the cpu callback if the
2136 * cpu down has been canceled or it has come online
2137 * again. After recognizing this state, trustee stops
2138 * trying to drain or butcher and transits to DONE.
2139 *
2140 * DONE Trustee will enter this state after BUTCHER or RELEASE
2141 * is complete.
2142 *
2143 * trustee CPU draining
2144 * took over down complete
2145 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2146 * | | ^
2147 * | CPU is back online v return workers |
2148 * ----------------> RELEASE --------------
2149 */
2150
2151 /**
2152 * trustee_wait_event_timeout - timed event wait for trustee
2153 * @cond: condition to wait for
2154 * @timeout: timeout in jiffies
2155 *
2156 * wait_event_timeout() for trustee to use. Handles locking and
2157 * checks for RELEASE request.
2158 *
2159 * CONTEXT:
2160 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2161 * multiple times. To be used by trustee.
2162 *
2163 * RETURNS:
2164 * Positive indicating left time if @cond is satisfied, 0 if timed
2165 * out, -1 if canceled.
2166 */
2167 #define trustee_wait_event_timeout(cond, timeout) ({ \
2168 long __ret = (timeout); \
2169 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
2170 __ret) { \
2171 spin_unlock_irq(&gcwq->lock); \
2172 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
2173 (gcwq->trustee_state == TRUSTEE_RELEASE), \
2174 __ret); \
2175 spin_lock_irq(&gcwq->lock); \
2176 } \
2177 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
2178 })
2179
2180 /**
2181 * trustee_wait_event - event wait for trustee
2182 * @cond: condition to wait for
2183 *
2184 * wait_event() for trustee to use. Automatically handles locking and
2185 * checks for CANCEL request.
2186 *
2187 * CONTEXT:
2188 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2189 * multiple times. To be used by trustee.
2190 *
2191 * RETURNS:
2192 * 0 if @cond is satisfied, -1 if canceled.
2193 */
2194 #define trustee_wait_event(cond) ({ \
2195 long __ret1; \
2196 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
2197 __ret1 < 0 ? -1 : 0; \
2198 })
2199
2200 static int __cpuinit trustee_thread(void *__gcwq)
2201 {
2202 struct global_cwq *gcwq = __gcwq;
2203 struct worker *worker;
2204 struct hlist_node *pos;
2205 int i;
2206
2207 BUG_ON(gcwq->cpu != smp_processor_id());
2208
2209 spin_lock_irq(&gcwq->lock);
2210 /*
2211 * Make all workers rogue. Trustee must be bound to the
2212 * target cpu and can't be cancelled.
2213 */
2214 BUG_ON(gcwq->cpu != smp_processor_id());
2215
2216 list_for_each_entry(worker, &gcwq->idle_list, entry)
2217 worker->flags |= WORKER_ROGUE;
2218
2219 for_each_busy_worker(worker, i, pos, gcwq)
2220 worker->flags |= WORKER_ROGUE;
2221
2222 /*
2223 * We're now in charge. Notify and proceed to drain. We need
2224 * to keep the gcwq running during the whole CPU down
2225 * procedure as other cpu hotunplug callbacks may need to
2226 * flush currently running tasks.
2227 */
2228 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
2229 wake_up_all(&gcwq->trustee_wait);
2230
2231 /*
2232 * The original cpu is in the process of dying and may go away
2233 * anytime now. When that happens, we and all workers would
2234 * be migrated to other cpus. Try draining any left work.
2235 * Note that if the gcwq is frozen, there may be frozen works
2236 * in freezeable cwqs. Don't declare completion while frozen.
2237 */
2238 while (gcwq->nr_workers != gcwq->nr_idle ||
2239 gcwq->flags & GCWQ_FREEZING ||
2240 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
2241 /* give a breather */
2242 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
2243 break;
2244 }
2245
2246 /* notify completion */
2247 gcwq->trustee = NULL;
2248 gcwq->trustee_state = TRUSTEE_DONE;
2249 wake_up_all(&gcwq->trustee_wait);
2250 spin_unlock_irq(&gcwq->lock);
2251 return 0;
2252 }
2253
2254 /**
2255 * wait_trustee_state - wait for trustee to enter the specified state
2256 * @gcwq: gcwq the trustee of interest belongs to
2257 * @state: target state to wait for
2258 *
2259 * Wait for the trustee to reach @state. DONE is already matched.
2260 *
2261 * CONTEXT:
2262 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2263 * multiple times. To be used by cpu_callback.
2264 */
2265 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
2266 {
2267 if (!(gcwq->trustee_state == state ||
2268 gcwq->trustee_state == TRUSTEE_DONE)) {
2269 spin_unlock_irq(&gcwq->lock);
2270 __wait_event(gcwq->trustee_wait,
2271 gcwq->trustee_state == state ||
2272 gcwq->trustee_state == TRUSTEE_DONE);
2273 spin_lock_irq(&gcwq->lock);
2274 }
2275 }
2276
2277 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
2278 unsigned long action,
2279 void *hcpu)
2280 {
2281 unsigned int cpu = (unsigned long)hcpu;
2282 struct global_cwq *gcwq = get_gcwq(cpu);
2283 struct task_struct *new_trustee = NULL;
2284 struct worker *worker;
2285 struct hlist_node *pos;
2286 unsigned long flags;
2287 int i;
2288
2289 action &= ~CPU_TASKS_FROZEN;
2290
2291 switch (action) {
2292 case CPU_DOWN_PREPARE:
2293 new_trustee = kthread_create(trustee_thread, gcwq,
2294 "workqueue_trustee/%d\n", cpu);
2295 if (IS_ERR(new_trustee))
2296 return notifier_from_errno(PTR_ERR(new_trustee));
2297 kthread_bind(new_trustee, cpu);
2298 }
2299
2300 /* some are called w/ irq disabled, don't disturb irq status */
2301 spin_lock_irqsave(&gcwq->lock, flags);
2302
2303 switch (action) {
2304 case CPU_DOWN_PREPARE:
2305 /* initialize trustee and tell it to acquire the gcwq */
2306 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
2307 gcwq->trustee = new_trustee;
2308 gcwq->trustee_state = TRUSTEE_START;
2309 wake_up_process(gcwq->trustee);
2310 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
2311 break;
2312
2313 case CPU_POST_DEAD:
2314 gcwq->trustee_state = TRUSTEE_BUTCHER;
2315 break;
2316
2317 case CPU_DOWN_FAILED:
2318 case CPU_ONLINE:
2319 if (gcwq->trustee_state != TRUSTEE_DONE) {
2320 gcwq->trustee_state = TRUSTEE_RELEASE;
2321 wake_up_process(gcwq->trustee);
2322 wait_trustee_state(gcwq, TRUSTEE_DONE);
2323 }
2324
2325 /* clear ROGUE from all workers */
2326 list_for_each_entry(worker, &gcwq->idle_list, entry)
2327 worker->flags &= ~WORKER_ROGUE;
2328
2329 for_each_busy_worker(worker, i, pos, gcwq)
2330 worker->flags &= ~WORKER_ROGUE;
2331 break;
2332 }
2333
2334 spin_unlock_irqrestore(&gcwq->lock, flags);
2335
2336 return notifier_from_errno(0);
2337 }
2338
2339 #ifdef CONFIG_SMP
2340
2341 struct work_for_cpu {
2342 struct completion completion;
2343 long (*fn)(void *);
2344 void *arg;
2345 long ret;
2346 };
2347
2348 static int do_work_for_cpu(void *_wfc)
2349 {
2350 struct work_for_cpu *wfc = _wfc;
2351 wfc->ret = wfc->fn(wfc->arg);
2352 complete(&wfc->completion);
2353 return 0;
2354 }
2355
2356 /**
2357 * work_on_cpu - run a function in user context on a particular cpu
2358 * @cpu: the cpu to run on
2359 * @fn: the function to run
2360 * @arg: the function arg
2361 *
2362 * This will return the value @fn returns.
2363 * It is up to the caller to ensure that the cpu doesn't go offline.
2364 * The caller must not hold any locks which would prevent @fn from completing.
2365 */
2366 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
2367 {
2368 struct task_struct *sub_thread;
2369 struct work_for_cpu wfc = {
2370 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
2371 .fn = fn,
2372 .arg = arg,
2373 };
2374
2375 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
2376 if (IS_ERR(sub_thread))
2377 return PTR_ERR(sub_thread);
2378 kthread_bind(sub_thread, cpu);
2379 wake_up_process(sub_thread);
2380 wait_for_completion(&wfc.completion);
2381 return wfc.ret;
2382 }
2383 EXPORT_SYMBOL_GPL(work_on_cpu);
2384 #endif /* CONFIG_SMP */
2385
2386 #ifdef CONFIG_FREEZER
2387
2388 /**
2389 * freeze_workqueues_begin - begin freezing workqueues
2390 *
2391 * Start freezing workqueues. After this function returns, all
2392 * freezeable workqueues will queue new works to their frozen_works
2393 * list instead of gcwq->worklist.
2394 *
2395 * CONTEXT:
2396 * Grabs and releases workqueue_lock and gcwq->lock's.
2397 */
2398 void freeze_workqueues_begin(void)
2399 {
2400 struct workqueue_struct *wq;
2401 unsigned int cpu;
2402
2403 spin_lock(&workqueue_lock);
2404
2405 BUG_ON(workqueue_freezing);
2406 workqueue_freezing = true;
2407
2408 for_each_possible_cpu(cpu) {
2409 struct global_cwq *gcwq = get_gcwq(cpu);
2410
2411 spin_lock_irq(&gcwq->lock);
2412
2413 BUG_ON(gcwq->flags & GCWQ_FREEZING);
2414 gcwq->flags |= GCWQ_FREEZING;
2415
2416 list_for_each_entry(wq, &workqueues, list) {
2417 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2418
2419 if (wq->flags & WQ_FREEZEABLE)
2420 cwq->max_active = 0;
2421 }
2422
2423 spin_unlock_irq(&gcwq->lock);
2424 }
2425
2426 spin_unlock(&workqueue_lock);
2427 }
2428
2429 /**
2430 * freeze_workqueues_busy - are freezeable workqueues still busy?
2431 *
2432 * Check whether freezing is complete. This function must be called
2433 * between freeze_workqueues_begin() and thaw_workqueues().
2434 *
2435 * CONTEXT:
2436 * Grabs and releases workqueue_lock.
2437 *
2438 * RETURNS:
2439 * %true if some freezeable workqueues are still busy. %false if
2440 * freezing is complete.
2441 */
2442 bool freeze_workqueues_busy(void)
2443 {
2444 struct workqueue_struct *wq;
2445 unsigned int cpu;
2446 bool busy = false;
2447
2448 spin_lock(&workqueue_lock);
2449
2450 BUG_ON(!workqueue_freezing);
2451
2452 for_each_possible_cpu(cpu) {
2453 /*
2454 * nr_active is monotonically decreasing. It's safe
2455 * to peek without lock.
2456 */
2457 list_for_each_entry(wq, &workqueues, list) {
2458 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2459
2460 if (!(wq->flags & WQ_FREEZEABLE))
2461 continue;
2462
2463 BUG_ON(cwq->nr_active < 0);
2464 if (cwq->nr_active) {
2465 busy = true;
2466 goto out_unlock;
2467 }
2468 }
2469 }
2470 out_unlock:
2471 spin_unlock(&workqueue_lock);
2472 return busy;
2473 }
2474
2475 /**
2476 * thaw_workqueues - thaw workqueues
2477 *
2478 * Thaw workqueues. Normal queueing is restored and all collected
2479 * frozen works are transferred to their respective gcwq worklists.
2480 *
2481 * CONTEXT:
2482 * Grabs and releases workqueue_lock and gcwq->lock's.
2483 */
2484 void thaw_workqueues(void)
2485 {
2486 struct workqueue_struct *wq;
2487 unsigned int cpu;
2488
2489 spin_lock(&workqueue_lock);
2490
2491 if (!workqueue_freezing)
2492 goto out_unlock;
2493
2494 for_each_possible_cpu(cpu) {
2495 struct global_cwq *gcwq = get_gcwq(cpu);
2496
2497 spin_lock_irq(&gcwq->lock);
2498
2499 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
2500 gcwq->flags &= ~GCWQ_FREEZING;
2501
2502 list_for_each_entry(wq, &workqueues, list) {
2503 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2504
2505 if (!(wq->flags & WQ_FREEZEABLE))
2506 continue;
2507
2508 /* restore max_active and repopulate worklist */
2509 cwq->max_active = wq->saved_max_active;
2510
2511 while (!list_empty(&cwq->delayed_works) &&
2512 cwq->nr_active < cwq->max_active)
2513 cwq_activate_first_delayed(cwq);
2514
2515 /* perform delayed unbind from single cpu if empty */
2516 if (wq->single_cpu == gcwq->cpu &&
2517 !cwq->nr_active && list_empty(&cwq->delayed_works))
2518 cwq_unbind_single_cpu(cwq);
2519
2520 wake_up_process(cwq->worker->task);
2521 }
2522
2523 spin_unlock_irq(&gcwq->lock);
2524 }
2525
2526 workqueue_freezing = false;
2527 out_unlock:
2528 spin_unlock(&workqueue_lock);
2529 }
2530 #endif /* CONFIG_FREEZER */
2531
2532 void __init init_workqueues(void)
2533 {
2534 unsigned int cpu;
2535 int i;
2536
2537 /*
2538 * The pointer part of work->data is either pointing to the
2539 * cwq or contains the cpu number the work ran last on. Make
2540 * sure cpu number won't overflow into kernel pointer area so
2541 * that they can be distinguished.
2542 */
2543 BUILD_BUG_ON(NR_CPUS << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
2544
2545 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
2546
2547 /* initialize gcwqs */
2548 for_each_possible_cpu(cpu) {
2549 struct global_cwq *gcwq = get_gcwq(cpu);
2550
2551 spin_lock_init(&gcwq->lock);
2552 INIT_LIST_HEAD(&gcwq->worklist);
2553 gcwq->cpu = cpu;
2554
2555 INIT_LIST_HEAD(&gcwq->idle_list);
2556 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
2557 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
2558
2559 ida_init(&gcwq->worker_ida);
2560
2561 gcwq->trustee_state = TRUSTEE_DONE;
2562 init_waitqueue_head(&gcwq->trustee_wait);
2563 }
2564
2565 keventd_wq = create_workqueue("events");
2566 BUG_ON(!keventd_wq);
2567 }
This page took 0.086401 seconds and 6 git commands to generate.